1
|
Oliveira M, Barbosa J, Teixeira P. Listeria monocytogenes gut interactions and listeriosis: Gut modulation and pathogenicity. Microbiol Res 2025; 297:128187. [PMID: 40279724 DOI: 10.1016/j.micres.2025.128187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Following ingestion via contaminated food, Listeria monocytogenes faces multiple hurdles through the human digestive system, thereby influencing its capacity to cause infection. This review provides a comprehensive overview of the multifaceted mechanisms employed by L. monocytogenes to overcome gastrointestinal hurdles and interact with the host's microbiota, facing chemical and physical barriers such as saliva, stomach acidity, bile salts and mechanical clearance. Proposed evasion strategies will be highlighted, exploring the bacteriocins produced by L. monocytogenes, such as the well-described bacteriocin Listeriolysin S (LLS), a bacteriocin that inhibits inflammogenic species - Lmo2776, and a phage tail-like bacteriocin, monocin. The competitive dynamic interactions within the gut microbiota, as well as the modulation of microbiota composition and immune responses, will also be explored. Finally, the adhesion and invasion of the intestinal epithelium by L. monocytogenes is described, exploring the mechanism of pathogenesis, biofilm and aggregation capacities and other virulence factors. Unlike previous reviews that may focus on individual aspects of L. monocytogenes pathogenicity, this review offers a holistic perspective on the bacterium's ability to persist and cause infection, integrating information about survival strategies, including bacteriocin production, immune modulation, and virulence factors. By connecting recent findings on microbial interactions and infection dynamics, this review incorporates recent developments in the field and connects various lines of research that explore both host and microbial factors influencing infection outcomes.
Collapse
Affiliation(s)
- M Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - J Barbosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - P Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
2
|
Hugon AM, Golos TG. Listeria monocytogenes infection in intestinal epithelial Caco-2 cells with exposure to progesterone and estradiol-17beta. PLoS One 2025; 20:e0320631. [PMID: 40153373 PMCID: PMC11952216 DOI: 10.1371/journal.pone.0320631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/21/2025] [Indexed: 03/30/2025] Open
Abstract
Listeria monocytogenes (Lm) is a food-borne pathogen associated with serious pregnancy complications, including miscarriage, stillbirth, preterm birth, neonatal sepsis, and meningitis. Although Lm infection within the gastrointestinal tract is well studied, little is known about the influence sex hormones may have on listeriosis. Estradiol-17beta and progesterone not only have receptors within the gastrointestinal tract but are significantly increased during pregnancy. The presence of these hormones may play a role in susceptibility to listeriosis during pregnancy. Caco-2 cell monolayers were grown on trans-well inserts in the presence of estradiol 17-beta (E2), progesterone (P4), both hormones, or no hormones (control). Cells were inoculated with Lm for 1 hour, before rinsing with gentamycin and transfer to fresh media. Trans-epithelial resistance was recorded hourly, and bacterial burden of the apical media, intracellular lysates, and basal media were assessed at 6 hours post inoculation. There were no significant differences in bacterial replication when directly exposed to sex steroids, and Caco-2 cell epithelial barrier function was not impacted during culture with Lm. Addition of progesterone significantly reduced intracellular bacterial burden compared to estradiol 17-beta only and no hormone controls. Interestingly, estradiol 17-beta only treatment was associated with significantly increased Lm within the basal compartment, compared to reduction in the intracellular and apical layers. These data indicate that the sex hormones P4 and E2 alone do not significantly impact intestinal epithelial barrier integrity during listeriosis, but that addition of P4 and E2, alone or in combination, was associated with reduced epithelial cell bacterial burden and apical release of Lm.
Collapse
Affiliation(s)
- Anna Marie Hugon
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
3
|
Hu G, Yan W, Dong F, Li G, Zhang X, Li Q, Zhang P, Ji L. Maternal-Fetal Listeriosis in China: Clinical and Genomic Characteristics From an ST8 Listeria monocytogenes Case. Infect Drug Resist 2025; 18:1313-1324. [PMID: 40083537 PMCID: PMC11905801 DOI: 10.2147/idr.s508470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
Background Listeriosis, a severe foodborne infection caused by Listeria monocytogenes, poses significant risks during pregnancy, including maternal-neonatal transmission. This study describes the clinical and genomic characteristics of an sequence type 8 (ST8) L. monocytogenes strain involved in maternal-neonatal transmission during pregnancy. Methods Clinical presentation, diagnostic process, and treatment outcomes of the case were documented in detail. Whole-genome sequencing (WGS) and subsequent genomic analyses were performed on L. monocytogenes isolates obtained from the maternal and neonatal blood cultures. Results A 33-week pregnant woman presented with decreased fetal movements and underwent an emergency cesarean delivery. Postpartum, she developed a high fever, and blood cultures from both the mother and the neonate the day after caesarean delivery confirmed L. monocytogenes infection. WGS revealed that the isolates belonged to serotype 1/2a, ST8, clonal complex (CC) 8, and lineage II. Both isolates exhibited susceptibility to first-line antibiotics, including penicillin and ampicillin, and contained virulence and stress adaptation genes such as LIPI-1 and SSI-1. Phylogenetic analysis based on cg-SNP linked the clinical isolates to foodborne ST8 strains from Huzhou and Shanghai, suggesting potential contamination routes. Conclusion This case highlights the importance of timely diagnosis and effective antibiotic management in preventing adverse pregnancy outcomes. It also underscores the need for enhanced food safety surveillance and genomic monitoring of L. monocytogenes to better understand the transmission dynamics and to avoid the extension of a foodborne infection.
Collapse
Affiliation(s)
- Gang Hu
- Department of Obstetrics, Huzhou Maternity & Child Health Care Hospital, Zhejiang, People’s Republic of China
| | - Wei Yan
- Department of Microbiology Testing, Huzhou Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Fenfen Dong
- Department of Microbiology Testing, Huzhou Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Gang Li
- Department of Clinical Laboratory, Huzhou Maternity & Child Health Care Hospital, Zhejiang, People’s Republic of China
| | - Xiaoxing Zhang
- Department of Obstetrics, Huzhou Maternity & Child Health Care Hospital, Zhejiang, People’s Republic of China
| | - Qiongshan Li
- Department of Obstetrics, Huzhou Maternity & Child Health Care Hospital, Zhejiang, People’s Republic of China
| | - Peng Zhang
- Department of Microbiology Testing, Huzhou Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Lei Ji
- Department of Microbiology Testing, Huzhou Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| |
Collapse
|
4
|
Jackson TM. Kinetics, thresholds, and a comparison of mechanisms underlying systemic infection by Listeria monocytogenes. J Theor Biol 2025; 599:112009. [PMID: 39643030 DOI: 10.1016/j.jtbi.2024.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/23/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Studies on the system-scale pathogenesis of Listeria monocytogenes infection have classically focused on its ability to colonize in the intestines following an exposure event. However, despite this, many of the most dangerous complications arising from L. monocytogenes infection are observed days, weeks, or months after exposure, resulting indirectly from bacteria escaping this intestinal colonization hub and invading other organs. Over time, findings of various individual phenomena observed during systemic infection have accumulated, including a shift away from the principal route of intestinal dissemination, delays in bacterial colonization of the central nervous system, differing bacterial flux rates across organs, and multi-stability of bacterial population levels. To further our quantitative understanding of foodborne bacterial infection dynamics, a compartmental model of systemic infection that synthesizes these findings is proposed. Under parameterization to infection in BALB/c mice, the model is used to show a substantial decrease in bacterial populations resulting from dissemination through the mesenteric lymph nodes, as compared to the portal vein, when controlling for the number of bacteria passing through each route. Due to the compartmental nature of this model, we anticipate that this result may be paralleled in other microbes which make use of these pathways to escape the intestinal environment. Additionally, we predict thresholds for intestinal dissemination along each of these routes, which must be surpassed to induce systemic infection, and describe how these thresholds change over time. Supplementarily, logistic curves are fitted to synthetic data as a means of robustly quantifying the dose-response relationship beyond the intestinal barrier.
Collapse
Affiliation(s)
- Tristen M Jackson
- Department of Mathematics, Florida State University, Tallahassee, 32301, FL, United States of America.
| |
Collapse
|
5
|
Espí-Malillos A, López-Almela I, Ruiz-García P, López-Mendoza MC, Carrón N, González-Torres P, Quereda JJ. Raw milk at refrigeration temperature displays an independent microbiota dynamic regardless Listeria monocytogenes contamination. Food Res Int 2025; 202:115637. [PMID: 39967137 DOI: 10.1016/j.foodres.2024.115637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
Dairy products made of raw milk are associated with hypervirulent L. monocytogenes clonal complexes (CCs) CC1, CC4, and CC6, and cause half of the reported listeriosis outbreaks in Europe. However, it is currently unknown whether the overrepresentation of L. monocytogenes hypervirulent clones in dairy products made of raw milk is conditioned by an alteration in the native raw milk microbiota growth and/or composition. In this study, the lag phase, maximal growth rate, and the final maximal concentration of mesophilic aerobic bacteria from native raw milk bacteria were measured at refrigerated temperature (4 °C) in the presence and absence of L. monocytogenes contamination. The raw milk microbiota composition and dynamics were evaluated in the presence and absence of L. monocytogenes hypervirulent (CC1, CC4, CC6), and hypovirulent (CC9 and CC121) clones at 4 °C by using 16S rRNA high-throughput sequencing. Our results showed that the growth and composition of the microbial communities naturally present in raw milk are independent of the contamination with hyper- or hypovirulent L. monocytogenes CCs at refrigeration temperature. Pseudomonas was the most abundant genus in raw milk on days 11 and 21, while Carnobacterium was the second most abundant genus regardless of the contaminant L. monocytogenes CCs. Altogether these results suggest that the overrepresentation of hypervirulent L. monocytogenes CC1, CC4, and CC6 in dairy products is not the consequence of a differential alteration in the native composition of the raw milk microbiota.
Collapse
Affiliation(s)
- Alba Espí-Malillos
- Grupo de investigación LisBio, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Inmaculada López-Almela
- Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Pilar Ruiz-García
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - María Carmen López-Mendoza
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | | | | | - Juan J Quereda
- Grupo de investigación LisBio, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain.
| |
Collapse
|
6
|
Yan H, Xu B, Gao B, Xu Y, Xia X, Ma Y, Qin X, Dong Q, Hirata T, Li Z. Comparative Analysis of In Vivo and In Vitro Virulence Among Foodborne and Clinical Listeria monocytogenes Strains. Microorganisms 2025; 13:191. [PMID: 39858959 PMCID: PMC11767709 DOI: 10.3390/microorganisms13010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens that can cause invasive listeriosis. In this study, the virulence levels of 26 strains of L. monocytogenes isolated from food and clinical samples in Shanghai, China, between 2020 and 2022 were analyzed. There were significant differences among isolates in terms of their mortality rate in Galleria mellonella, cytotoxicity to JEG-3 cells, hemolytic activity, and expression of important virulence genes. Compared with other STs, both the ST121 (food source) and ST1930 (clinic source) strains exhibited higher G. mellonella mortality. The 48 h mortality in G. mellonella of lineage II strains was significantly higher than that in lineage I. Compared with other STs, ST1930, ST3, ST5, and ST1032 exhibited higher cytotoxicity to JEG-3 cells. Based on the classification of sources (food and clinical strains) and serogroups (II a, II b, and II c), there were no significant differences observed in terms of G. mellonella mortality, cytotoxicity, and hemolytic activity. In addition, ST121 exhibited significantly higher hly, inlA, inlB, prfA, plcA, and plcB gene expression compared with other STs. A gray relation analysis showed a high correlation between the toxicity of G. mellonella and the expression of the hly and inlB genes; in addition, L. monocytogenes may have a consistent virulence mechanism involving hemolysis activity and cytotoxicity. Through the integration of in vivo and in vitro infection models with information on the expression of virulence factor genes, the differences in virulence between strains or subtypes can be better understood.
Collapse
Affiliation(s)
- Hui Yan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Biyao Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200051, China;
| | - Binru Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Yunyan Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Takashi Hirata
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8501, Japan;
- Faculty of Rehabilitation, Shijonawate Gakuen University, Osaka 574-0011, Japan
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| |
Collapse
|
7
|
Sousa M, Magalhães R, Ferreira V, Teixeira P. Current methodologies available to evaluate the virulence potential among Listeria monocytogenes clonal complexes. Front Microbiol 2024; 15:1425437. [PMID: 39493856 PMCID: PMC11528214 DOI: 10.3389/fmicb.2024.1425437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis in humans, the severity of which depends on multiple factors, including intrinsic characteristics of the affected individuals and the pathogen itself. Additionally, emerging evidence suggests that epigenetic modifications may also modulate host susceptibility to infection. Therefore, different clinical outcomes can be expected, ranging from self-limiting gastroenteritis to severe central nervous system and maternal-neonatal infections, and bacteremia. Furthermore, L. monocytogenes is a genetically and phenotypically diverse species, resulting in a large variation in virulence potential between strains. Multilocus sequence typing (MLST) has been widely used to categorize the clonal structure of bacterial species and to define clonal complexes (CCs) of genetically related isolates. The combination of MLST and epidemiological data allows to distinguish hypervirulent CCs, which are notably more prevalent in clinical cases and typically associated with severe forms of the disease. Conversely, other CCs, termed hypovirulent, are predominantly isolated from food and food processing environments and are associated with the occurrence of listeriosis in immunosuppressed individuals. Reports of genetic traits associated with this diversity have been described. The Food and Agriculture Organization (FAO) is encouraging the search for virulence biomarkers to rapidly identify the main strains of concern to reduce food waste and economical losses. The aim of this review is to comprehensively collect, describe and discuss the methodologies used to discriminate the virulence potential of L. monocytogenes CCs. From the exploration of in vitro and in vivo models to the study of expression of virulence genes, each approach is critically explored to better understand its applicability and efficiency in distinguishing the virulence potential of the pathogen.
Collapse
Affiliation(s)
| | | | | | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, Portugal
| |
Collapse
|
8
|
Peng Z, Wang D, He Y, Wei Z, Xie M, Xiong T. Gut Distribution, Impact Factor, and Action Mechanism of Bacteriocin-Producing Beneficial Microbes as Promising Antimicrobial Agents in Gastrointestinal Infection. Probiotics Antimicrob Proteins 2024; 16:1516-1527. [PMID: 38319538 DOI: 10.1007/s12602-024-10222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Gastrointestinal (GI) infection by intestinal pathogens poses great threats to human health, and the therapeutic use of antibiotics has reached a bottleneck due to drug resistance. The developments of antimicrobial peptides produced by beneficial bacteria have drawn attention by virtue of effective, safe, and not prone to developing resistance. Though bacteriocin as antimicrobial agent in gut infection has been intensively investigated and reviewed, reviews on that of bacteriocin-producing beneficial microbes are very rare. It is important to explicitly state the prospect of bacteriocin-producing microbes in prevention of gastrointestinal infection towards their application in host. This review discusses the potential of gut as an appropriate resource for mining targeted bacteriocin-producing microbes. Then, host-related factors affecting the bacteriocin production and activity of bacteriocin-producing microbes in the gut are summarized. Accordingly, the multiple mechanisms (direct inhibition and indirect inhibition) behind the preventive effects of bacteriocin-producing microbes on gut infection are discussed. Finally, we propose several targeted strategies for the manipulation of bacteriocin-producing beneficial microbes to improve their performance in antimicrobial outcomes. We anticipate an upcoming emergence of developments and applications of bacteriocin-producing beneficial microbes as antimicrobial agent in gut infection induced by pathogenic bacteria.
Collapse
Affiliation(s)
- Zhen Peng
- School of Food Science and Technology, Nanchang University, Nanchang, China
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Donglin Wang
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yuyan He
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ziqi Wei
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mingyong Xie
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Tao Xiong
- School of Food Science and Technology, Nanchang University, Nanchang, China.
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi, China.
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China.
| |
Collapse
|
9
|
Wei P, Sun W, Hao S, Deng L, Zou W, Wu H, Lu W, He Y. Dietary Supplementation of Crossbred Pigs with Glycerol, Vitamin C, and Niacinamide Alters the Composition of Gut Flora and Gut Flora-Derived Metabolites. Animals (Basel) 2024; 14:2198. [PMID: 39123724 PMCID: PMC11311027 DOI: 10.3390/ani14152198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The addition of glycerin, vitamin C, and niacinamide to pig diets increased the redness of longissimus dorsi; however, it remains unclear how these supplements affect gut microbiota and metabolites. A total of 84 piglets (20.35 ± 2.14 kg) were randomly allotted to groups A (control), B (glycerin-supplemented), C (vitamin C and niacinamide-supplemented), and D (glycerin, vitamin C and niacinamide-supplemented) during a feeding experiment. Metagenomic and metabolomic technologies were used to analyze the fecal compositions of bile acids, metabolites, and microbiota. The results showed that compared to pigs in group A, pigs in group D had lower virulence factor expressions of lipopolysaccharide (p < 0.05), fatty acid resistance system (p < 0.05), and capsule (p < 0.01); higher fecal levels of ferric ion (p < 0.05), allolithocholic acid (p < 0.01), deoxycholic acid (p < 0.05), tauroursodeoxycholic acid dihydrate (p < 0.01), glycodeoxycholic acid (p < 0.05), L-proline (p < 0.01) and calcitriol (p < 0.01); and higher (p < 0.05) abundances of iron-acquiring microbiota (Methanobrevibacter, Clostridium, Clostridiaceae, Clostridium_sp_CAG_1000, Faecalibacterium_sp_CAG_74_58_120, Eubacteriales_Family_XIII_Incertae_Sedis, Alistipes_sp_CAG_435, Alistipes_sp_CAG_514 and Methanobrevibacter_sp_YE315). Supplementation with glycerin, vitamin C, and niacinamide to pigs significantly promoted the growth of iron-acquiring microbiota in feces, reduced the expression of some virulence factor genes of fecal pathogens, and increased the fecal levels of ferric ion, L-proline, and some secondary bile acids. The administration of glycerol, vitamin C, and niacinamide to pigs may serve as an effective measure for muscle redness improvement by altering the compositions of fecal microbiota and metabolites.
Collapse
Affiliation(s)
- Panting Wei
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wenchen Sun
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Shaobin Hao
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Linglan Deng
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wanjie Zou
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| |
Collapse
|
10
|
Santos-Júnior CD, Torres MDT, Duan Y, Rodríguez Del Río Á, Schmidt TSB, Chong H, Fullam A, Kuhn M, Zhu C, Houseman A, Somborski J, Vines A, Zhao XM, Bork P, Huerta-Cepas J, de la Fuente-Nunez C, Coelho LP. Discovery of antimicrobial peptides in the global microbiome with machine learning. Cell 2024; 187:3761-3778.e16. [PMID: 38843834 PMCID: PMC11666328 DOI: 10.1016/j.cell.2024.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024]
Abstract
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.
Collapse
Affiliation(s)
- Célio Dias Santos-Júnior
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Laboratory of Microbial Processes & Biodiversity - LMPB, Department of Hydrobiology, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Yiqian Duan
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Álvaro Rodríguez Del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; APC Microbiome & School of Medicine, University College Cork, Cork, Ireland
| | - Hui Chong
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chengkai Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Amy Houseman
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Jelena Somborski
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Anna Vines
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
11
|
Zhang P, Ji L, Wu X, Chen L, Yan W, Dong F. Prevalence, Genotypic Characteristics, and Antibiotic Resistance of Listeria monocytogenes From Retail Foods in Huzhou, China. J Food Prot 2024; 87:100307. [PMID: 38797247 DOI: 10.1016/j.jfp.2024.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Listeria monocytogenes are considered to be the major foodborne pathogen worldwide. To understand the prevalence and potential risk of L. monocytogenes in retail foods, a total of 1243 retail foods in 12 food categories were sampled and screened for L. monocytogenes from 2020 to 2022 in Huzhou, China. A total of 46 out of 1234 samples were confirmed to be L. monocytogenes positive with a total rate of 3.7%. The contamination rate of seasoned raw meat (15.2%) was the highest, followed by raw poultry meat and raw livestock meat (9.9%) and salmon sashimi (9.5%). The L. monocytogenes isolates belonged to four serotypes, 1/2a,1/2b, 1/2c, and 4b, with the most prevalent serotype being 1/2a (47.9%). All isolates were grouped into 15 sequence types (STs) belonging to 14 clonal complexes (CCs) via multilocus sequence typing (MLST). The most prevalent ST was ST9/CC9 (23.9%), followed by ST3/CC3 (19.6%) and ST121/CC121 (17.4%). Notably, 11 STs were detected from ready-to-eat (RTE) foods, some of them have been verified to be strongly associated with clinical origin listeriosis cases, such as ST3, ST2, ST5, ST8, and ST87. Listeria pathogenicity islands 1 (LIPI-1) and LIPI-2 were detected in approximately all L. monocytogenes isolates, whereas the distribution of both LIPI-3 genes and LIPI-4 genes exhibited association with specific ST, with LIPI-3 in ST3 and ST288, and LIPI-4 in ST87. The strains carrying LIPI-3 and LIPI-4 virulence genes in this study were all isolated from RTE foods. Antimicrobial susceptibility tests showed that >90% of isolates were susceptible to PEN, AMP, ERY, CIP, SXT, VAN, CHL, and GEN, indicating the antibiotic treatment might be still efficient for most of the L. monocytogenes strains. However, for the three clinical first-line antibiotics (PEN, AMP, and GEN), we also observed three and four strains showing MIC values greater than the susceptibility standards for PEN and AMP, respectively, and one strain showing resistance to GEN.
Collapse
Affiliation(s)
- Peng Zhang
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China.
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China.
| | - Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China.
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China.
| | - Wei Yan
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China.
| | - Fenfen Dong
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China.
| |
Collapse
|
12
|
Liu TP, Lin LC, Chang SC, Ou YH, Lu JJ. Molecular Characteristics and Virulence Profile of Clinical Listeria monocytogenes Isolates in Northern Taiwan, 2009-2019. Foodborne Pathog Dis 2024; 21:386-394. [PMID: 38346310 DOI: 10.1089/fpd.2023.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Listeria monocytogenes is a critical foodborne pathogen that causes severe invasive and noninvasive diseases and is associated with high mortality. Information on the prevalence of L. monocytogenes infections in Taiwan is very limited. This study aimed to analyze the molecular epidemiological surveillance and virulence gene distribution of 176 human clinical L. monocytogenes isolates collected between 2009 and 2019 in northern Taiwan. Our results showed that the isolates belonged to 4 serogroups (IIa, IIb, IVb, and IIc), with most isolates in serogroups IIa (81/176, 46%) and IIb (71/176, 40.3%). Multilocus sequence typing analysis revealed 18 sequence types (STs) and 13 clonal complexes (CCs). Eighty-four percent of all isolates belonged to six STs: CC87-ST87 (40/176, 22.7%), CC19-ST378 (36/176, 19.9%), CC155-ST155 (28/176, 15.5%), CC1-ST710 (16/176, 8.8%), CC5-ST5 (16/176, 8.8%), and CC101-ST101 (11/176, 6.1%). Furthermore, our analysis showed the distributions of four Listeria pathogenicity islands (LIPI) among all isolates. LIPI-1 and LIPI-2 existed in all isolates, whereas LIPI-3 and LIPI-4 only existed in specific STs and CCs. LIPI-3 existed in the STs, CC1-ST710, CC3-ST3, CC288-ST295, and CC191-ST1458, whereas LIPI-4 could be found in the STs, CC87-ST87 and CC87-ST1459. Strains containing LIPI-3 and LIPI-4 are potentially hypervirulent; thus, 68/176 isolates (39.1%) collected in this study were potentially hypervirulent. Since L. monocytogenes infections are considered highly correlated with diet, molecular epidemiological surveillance of Listeria in food is important; continued surveillance will provide critical information to prevent foodborne diseases.
Collapse
Affiliation(s)
- Tsui-Ping Liu
- Infectious Control Office, Tao-Yuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Laboratory Medicine, Tao-Yuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Shih-Cheng Chang
- Department of Medical Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yu-Hsiang Ou
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
13
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
14
|
Baldelli G, De Santi M, Ateba CN, Cifola G, Amagliani G, Tchatchouang CDK, Montso PK, Brandi G, Schiavano GF. The potential role of Listeria monocytogenes in promoting colorectal adenocarcinoma tumorigenic process. BMC Microbiol 2024; 24:87. [PMID: 38491424 PMCID: PMC10941472 DOI: 10.1186/s12866-024-03240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Listeria monocytogenes is a foodborne pathogen, which can cause a severe illness, especially in people with a weakened immune system or comorbidities. The interactions between host and pathogens and between pathogens and tumor cells have been debated in recent years. However, it is still unclear how bacteria can interact with tumor cells, and if this interaction can affect tumor progression and therapy. METHODS In this study, we evaluated the involvement of L. monocytogenes in pre-neoplastic and colorectal cancer cell proliferation and tumorigenic potential. RESULTS Our findings showed that the interaction between heat-killed L. monocytogenes and pre-neoplastic or colorectal cancer cells led to a proliferative induction; furthermore, by using a three-dimensional cell culture model, the obtained data indicated that L. monocytogenes was able to increase the tumorigenic potential of both pre-neoplastic and colorectal cancer cells. The observed effects were then confirmed as L. monocytogenes-specific, using Listeria innocua as negative control. Lastly, data suggested the Insulin Growth Factor 1 Receptor (IGF1R) cascade as one of the possible mechanisms involved in the effects induced by L. monocytogenes in the human colorectal adenocarcinoma cell line. CONCLUSIONS These findings, although preliminary, suggest that the presence of pathogenic bacterial cells in the tumor niches may directly induce, increase, and stimulate tumor progression.
Collapse
Affiliation(s)
- Giulia Baldelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Urbino, Italy
| | - Mauro De Santi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Urbino, Italy
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Giorgia Cifola
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Urbino, Italy
| | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Urbino, Italy
| | | | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Urbino, Italy
| | | |
Collapse
|
15
|
Popoff MR, Ladant D. Toxins, Pathogenicity, Anti-Toxins, a Bicentennial Contribution. Toxins (Basel) 2024; 16:97. [PMID: 38393174 PMCID: PMC10891685 DOI: 10.3390/toxins16020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The bicentenary of Louis Pasteur's birth raises the opportunity to revisit the activity and influence of L [...].
Collapse
Affiliation(s)
- Michel R. Popoff
- Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, F-75015 Paris, France
| | - Daniel Ladant
- Unité de Biochimie des Interactions Macromoléculaires, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, F-75015 Paris, France;
| |
Collapse
|
16
|
Pracser N, Zaiser A, Ying HMK, Pietzka A, Wagner M, Rychli K. Diverse Listeria monocytogenes in-house clones are present in a dynamic frozen vegetable processing environment. Int J Food Microbiol 2024; 410:110479. [PMID: 37977080 DOI: 10.1016/j.ijfoodmicro.2023.110479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Listeria (L.) monocytogenes is of global concern for food safety as the listeriosis-causing pathogen is widely distributed in the food processing environments, where it can survive for a long time. Frozen vegetables contaminated with L. monocytogenes were recently identified as the source of two large listeriosis outbreaks in the EU and US. So far, only a few studies have investigated the occurrence and behavior of Listeria in frozen vegetables and the associated processing environment. This study investigates the occurrence of L. monocytogenes and other Listeria spp. in a frozen vegetable processing environment and in frozen vegetable products. Using whole genome sequencing (WGS), the distribution of sequence types (MLST-STs) and core genome sequence types (cgMLST-CT) of L. monocytogenes were assessed, and in-house clones were identified. Comparative genomic analyses and phenotypical characterization of the different MLST-STs and isolates were performed, including growth ability under low temperatures, as well as survival of freeze-thaw cycles. Listeria were widely disseminated in the processing environment and five in-house clones namely ST451-CT4117, ST20-CT3737, ST8-CT1349, ST8-CT6243, ST224-CT5623 were identified among L. monocytogenes isolates present in environmental swab samples. Subsequently, the identified in-house clones were also detected in product samples. Conveyor belts were a major source of contamination in the processing environment. A wide repertoire of stress resistance markers supported the colonization and survival of L. monocytogenes in the frozen vegetable processing facility. The presence of ArgB was significantly associated with in-house clones. Significant differences were also observed in the growth rate between different MLST-STs at low temperatures (4 °C and 10 °C), but not between in-house and non-in-house isolates. All isolates harbored major virulence genes such as full length InlA and InlB and LIPI-1, yet there were differences between MLST-STs in the genomic content. The results of this study demonstrate that WGS is a strong tool for tracing contamination sources and transmission routes, and for identifying in-house clones. Further research targeting the co-occurring microbiota and the presence of biofilms is needed to fully understand the mechanism of colonization and persistence in a food processing environment.
Collapse
Affiliation(s)
- Nadja Pracser
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria.
| | - Andreas Zaiser
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Hui Min Katharina Ying
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Ariane Pietzka
- Austrian National Reference Laboratory for Listeria monocytogenes, Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Beethovenstrasse 6, 8010 Graz, Austria.
| | - Martin Wagner
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria; Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Kathrin Rychli
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
17
|
Colombini L, Santoro F, Tirziu M, Lazzeri E, Morelli L, Pozzi G, Iannelli F. The mobilome of Lactobacillus crispatus M247 includes two novel genetic elements: Tn 7088 coding for a putative bacteriocin and the siphovirus prophage ΦM247. Microb Genom 2023; 9:001150. [PMID: 38085804 PMCID: PMC10763512 DOI: 10.1099/mgen.0.001150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Lactobacillus crispatus is a member of the vaginal and gastrointestinal human microbiota. Here we determined the complete genome sequence of the probiotic strain M247 combining Nanopore and Illumina technologies. The M247 genome is organized in one circular chromosome of 2 336 109 bp, with a GC content of 37.04 % and 2303 ORFs, of which 1962 could be annotated. Analysis of the M247 mobilome, which accounts for 14 % of the whole genome, revealed the presence of: (i) Tn7088, a novel 14 105 bp long integrative and mobilizable element (IME) containing 16 ORFs; (ii) ΦM247, a novel 42 510 bp long siphovirus prophage containing 52 ORFs; (iii) three clustered regularly interspaced short palindromic repeats (CRISPRs); and (iv) 226 insertion sequences (ISs) belonging to 14 different families. Tn7088 has a modular organization including a mobilization module encoding FtsK homologous proteins and a relaxase, an integration/excision module coding for an integrase and an excisionase, and an adaptation module coding for a class I bacteriocin and homologous to the listeriolysin S (lls) locus of Listeria monocytogenes. Genome-wide homology search analysis showed the presence of Tn7088-like elements in 12 out of 23 L. crispatus complete public genomes. Mobilization and integration/excision modules are essentially conserved, while the adaptation module is variable since it is the target site for the integration of different ISs. Prophage ΦM247 contains genes for phage structural proteins, DNA replication and packaging, lysogenic and lytic cycles. ΦM247-like prophages are present in seven L. crispatus complete genomes, with sequence variability mainly due to the integration of ISs. PCR and sequencing showed that the Tn7088 IME excises from the M247 chromosome producing a circular form at a concentration of 4.32×10-5 copies per chromosome, and reconstitution of the Tn7088 chromosomal target site occurred at 6.65×10-4 copies per chromosome. The ΦM247 prophage produces an excised form and a reconstituted target site at a level of 3.90×10-5 and 2.48×10-5 copies per chromosome, respectively. This study identified two novel genetic elements in L. crispatus. Tn7088 represents the first example of an IME carrying a biosynthetic gene cluster for a class I bacteriocin in L. crispatus.
Collapse
Affiliation(s)
- Lorenzo Colombini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Mariana Tirziu
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Lazzeri
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Lorenzo Morelli
- Università Cattolica del Sacro Cuore, Department of Food Science and Technologies for a Sustainable Agri-food Supply Chain (DiSTAS), University of Piacenza, 53100 Piacenza, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| |
Collapse
|
18
|
Mousavi SM, Archangi B, Zamani I. Antibacterial Properties of Bacteriocin Purified from Serratia marcescens and Computerized Assessment of its Interaction with Antigen 43 in Escherichia coli. ARCHIVES OF RAZI INSTITUTE 2023; 78:1738-1745. [PMID: 38828162 PMCID: PMC11139391 DOI: 10.32592/ari.2023.78.6.2694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/06/2023] [Indexed: 06/05/2024]
Abstract
Bacteriocins are a kind of antimicrobial peptides that kill or inhibit the growth of bacterial strains. The purpose of this study was to investigate the antibacterial effect of Serratia marcescens on several pathogenic bacterial strains. Bacteriocin produced by S. marcescens was purified by chromatography with Sephadex G-75 column, and its antibacterial effect on gram-negative bacteria, including Escherichia coli ATCC 700928, Pseudomonas aeruginosa PTCC 1707, S. marcescens PTCC 1621, Vibrio fischeri PTCC 1693, and Vibrio harveyi PTCC 1755, were evaluated by the disk diffusion method. The structure of bacteriocin was determined by nuclear magnetic resonance spectroscopy. The interaction of bacteriocin with the antigen 43 (Ag43) of E. coli was evaluated by the molecular docking method. Bacteriocin extracted from bacterial isolates had antibacterial activity on E. coli strains but not on other studied strains. Bioinformatics analysis also showed bacteriocin docking with Ag43 with an energy of -159.968 kJ/mol. Natural compounds, such as bacteriocin, can be an alternative to common chemical compounds and antibiotics. To reach a definite conclusion in this regard, there is a need for further research and understanding of their mechanism of action.
Collapse
Affiliation(s)
- S M Mousavi
- Department of Marine Biotechnology, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - B Archangi
- Department of Marine Biotechnology, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - I Zamani
- Department of Marine Biotechnology, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| |
Collapse
|
19
|
Cossart P. Raising a Bacterium to the Rank of a Model System: The Listeria Paradigm. Annu Rev Microbiol 2023; 77:1-22. [PMID: 37713460 DOI: 10.1146/annurev-micro-110422-112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
My scientific career has resulted from key decisions and reorientations, sometimes taken rapidly but not always, guided by discussions or collaborations with amazing individuals from whom I learnt a lot scientifically and humanly. I had never anticipated that I would accomplish so much in what appeared as terra incognita when I started to interrogate the mechanisms underlying the virulence of the bacterium Listeria monocytogenes. All this has been possible thanks to a number of talented team members who ultimately became friends.
Collapse
Affiliation(s)
- Pascale Cossart
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France;
| |
Collapse
|
20
|
Cho J, Alexander KL, Ferrell JL, Johnson LA, Estus S, D’Orazio SEF. Apolipoprotein E genotype affects innate susceptibility to Listeria monocytogenes infection in aged male mice. Infect Immun 2023; 91:e0025123. [PMID: 37594272 PMCID: PMC10501219 DOI: 10.1128/iai.00251-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 08/19/2023] Open
Abstract
Apolipoprotein E (ApoE) is a lipid transport protein that is hypothesized to suppress proinflammatory cytokine production, particularly after stimulation with Toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). Studies using transgenic ApoE human replacement mice (APOE) expressing one of three different allelic variants suggest that there is a hierarchy in terms of responsiveness to proinflammatory stimuli such as APOE4/E4 > APOE3/E3 > APOE2/E2. In this study, we test the hypothesis that APOE genotype can also predict susceptibility to infection with the facultative intracellular gram-positive bacterium Listeria monocytogenes. We found that bone-marrow-derived macrophages isolated from aged APOE4/E4 mice expressed elevated levels of nitric oxide synthase 2 and were highly resistant to in vitro infection with L. monocytogenes compared to APOE3/E3 and APOE2/E2 mice. However, we did not find statistically significant differences in cytokine or chemokine output from either macrophages or whole splenocytes isolated from APOE2/E2, APOE3/E3, or APOE4/E4 mice following L. monocytogenes infection. In vivo, overall susceptibility to foodborne listeriosis also did not differ by APOE genotype in either young (2 mo old) or aged (15 mo old) C57BL/6 mice. However, we observed a sex-dependent susceptibility to infection in aged APOE2/E2 male mice and a sex-dependent resistance to infection in aged APOE4/E4 male mice that was not present in female mice. Thus, these results suggest that APOE genotype does not play an important role in innate resistance to infection with L. monocytogenes but may be linked to sex-dependent changes that occur during immune senescence.
Collapse
Affiliation(s)
- Jooyoung Cho
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Katie L. Alexander
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Jessica L. Ferrell
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Lance A. Johnson
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Steven Estus
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sarah E. F. D’Orazio
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
21
|
Santos-Júnior CD, Der Torossian Torres M, Duan Y, del Río ÁR, Schmidt TS, Chong H, Fullam A, Kuhn M, Zhu C, Houseman A, Somborski J, Vines A, Zhao XM, Bork P, Huerta-Cepas J, de la Fuente-Nunez C, Coelho LP. Computational exploration of the global microbiome for antibiotic discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555663. [PMID: 37693522 PMCID: PMC10491242 DOI: 10.1101/2023.08.31.555663] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, the majority of which were previously unknown. We observed that AMP production varies by habitat, with animal-associated samples displaying the highest proportion of AMPs compared to other habitats. Furthermore, within different human-associated microbiota, strain-level differences were evident. To validate our predictions, we synthesized and experimentally tested 50 AMPs, demonstrating their efficacy against clinically relevant drug-resistant pathogens both in vitro and in vivo. These AMPs exhibited antibacterial activity by targeting the bacterial membrane. Additionally, AMPSphere provides valuable insights into the evolutionary origins of peptides. In conclusion, our approach identified AMP sequences within prokaryotic microbiomes, opening up new avenues for the discovery of antibiotics.
Collapse
Affiliation(s)
- Célio Dias Santos-Júnior
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
| | - Yiqian Duan
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Álvaro Rodríguez del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Thomas S.B. Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hui Chong
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chengkai Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Amy Houseman
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Jelena Somborski
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Anna Vines
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- International Human Phenome Institute, Shanghai, China
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Hugon AM, Golos TG. Listeria monocytogenes infection in intestinal epithelial Caco-2 cells with exposure to progesterone and estradiol-17beta in a gestational infection model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550068. [PMID: 37503025 PMCID: PMC10370168 DOI: 10.1101/2023.07.21.550068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Listeria monocytogenes (Lm) is a food-borne pathogen associated with serious pregnancy complications, including miscarriage, stillbirth, preterm birth, neonatal sepsis, and meningitis. Although Lm infection within the gastrointestinal (GI) tract is well studied, little is known about the influence sex hormones may have on listeriosis. Estradiol (E2) and progesterone (P4) not only have receptors within the GI tract but are significantly increased during pregnancy. The presence of these hormones may play a role in susceptibility to listeriosis during pregnancy. Caco-2 cell monolayers were grown on trans-well inserts in the presence of E2, P4, both E2 and P4, or no hormones (control). Cells were inoculated with Lm for 1 hour, before rinsing with gentamycin and transfer to fresh media. Trans-epithelial resistance was recorded hourly, and bacterial burden of the apical media, intracellular lysates, and basal media were assessed at 6 hours post inoculation. There were no significant differences in bacterial replication when directly exposed to sex steroids, and Caco-2 cell epithelial barrier function was not impacted during culture with Lm. Addition of P4 significantly reduced intracellular bacterial burden compared to E2 only and no hormone controls. Interestingly, E2 only treatment was associated with significantly increased Lm within the basal compartment, compared to reduction in the intracellular and apical layers. These data indicate that increased circulating sex hormones alone do not significantly impact intestinal epithelial barrier integrity during listeriosis, but that addition of P4 and E2, alone or in combination, was associated with reduced epithelial cell bacterial burden and apical release of Lm.
Collapse
Affiliation(s)
- Anna Marie Hugon
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
23
|
Effects of microbial-derived biotics (meta/pharma/post-biotics) on the modulation of gut microbiome and metabolome; general aspects and emerging trends. Food Chem 2023; 411:135478. [PMID: 36696721 DOI: 10.1016/j.foodchem.2023.135478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/20/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Potential effects of metabiotics (probiotics effector molecules or signaling factors), pharmabiotics (pro-functional metabolites produced by gut microbiota (GMB)) and postbiotics (multifunctional metabolites and structural compounds of food-grade microorganisms) on GMB have been rarely reviewed. These multifunctional components have several promising capabilities for prevention, alleviation and treatment of some diseases or disorders. Correlations between these essential biotics and GMB are also very interesting and important in human health and nutrition. Furthermore, these natural bioactives are involved in modulation of the immune function, control of metabolic dysbiosis and regulation of the signaling pathways. This review discusses the potential of meta/pharma/post-biotics as new classes of pharmaceutical agents and their effective mechanisms associated with GMB-host cell to cell communications with therapeutic benefits which are important in balance and the integrity of the host microbiome. In addition, cutting-edge findings about bioinformatics /metabolomics analyses related to GMB and these essential biotics are reviewed.
Collapse
|
24
|
Wiktorczyk-Kapischke N, Skowron K, Wałecka-Zacharska E. Genomic and pathogenicity islands of Listeria monocytogenes-overview of selected aspects. Front Mol Biosci 2023; 10:1161486. [PMID: 37388250 PMCID: PMC10300472 DOI: 10.3389/fmolb.2023.1161486] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Listeria monocytogenes causes listeriosis, a disease characterized by a high mortality rate (up to 30%). Since the pathogen is highly tolerant to changing conditions (high and low temperature, wide pH range, low availability of nutrients), it is widespread in the environment, e.g., water, soil, or food. L. monocytogenes possess a number of genes that determine its high virulence potential, i.e., genes involved in the intracellular cycle (e.g., prfA, hly, plcA, plcB, inlA, inlB), response to stress conditions (e.g., sigB, gadA, caspD, clpB, lmo1138), biofilm formation (e.g., agr, luxS), or resistance to disinfectants (e.g., emrELm, bcrABC, mdrL). Some genes are organized into genomic and pathogenicity islands. The islands LIPI-1 and LIPI-3 contain genes related to the infectious life cycle and survival in the food processing environment, while LGI-1 and LGI-2 potentially ensure survival and durability in the production environment. Researchers constantly have been searching for new genes determining the virulence of L. monocytogenes. Understanding the virulence potential of L. monocytogenes is an important element of public health protection, as highly pathogenic strains may be associated with outbreaks and the severity of listeriosis. This review summarizes the selected aspects of L. monocytogenes genomic and pathogenicity islands, and the importance of whole genome sequencing for epidemiological purposes.
Collapse
Affiliation(s)
- Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
25
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Contrasting Genetic Diversity of Listeria Pathogenicity Islands 3 and 4 Harbored by Nonpathogenic Listeria spp. Appl Environ Microbiol 2023; 89:e0209722. [PMID: 36728444 PMCID: PMC9973017 DOI: 10.1128/aem.02097-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Listeria monocytogenes causes the severe foodborne disease listeriosis. Several clonal groups of L. monocytogenes possess the pathogenicity islands Listeria pathogenicity island 3 (LIPI-3) and LIPI-4. Here, we investigated the prevalence and genetic diversity of LIPI-3 and LIPI-4 among 63 strains of seven nonpathogenic Listeria spp. from the natural environment, i.e., wildlife (black bears [Ursus americanus]) and surface water. Analysis of the whole-genome sequence data suggested that both islands were horizontally acquired but differed considerably in their incidence and genetic diversity. LIPI-3 was identified among half of the L. innocua strains in the same genomic location as in L. monocytogenes (guaA hot spot) in a truncated form, with only three strains harboring full-length LIPI-3, and a highly divergent partial LIPI-3 was observed in three Listeria seeligeri strains, outside the guaA hot spot. Premature stop codons (PMSCs) and frameshifts were frequently noted in the LIPI-3 gene encoding listeriolysin S. On the other hand, full-length LIPI-4 without any PMSCs was found in all Listeria innocua strains, in the same genomic location as L. monocytogenes and with ~85% similarity to the L. monocytogenes counterpart. Our study provides intriguing examples of genetic changes that pathogenicity islands may undergo in nonpathogenic bacterial species, potentially in response to environmental pressures that promote either maintenance or degeneration of the islands. Investigations of the roles that LIPI-3 and LIPI-4 play in nonpathogenic Listeria spp. are warranted to further understand the differential evolution of genetic elements in pathogenic versus nonpathogenic hosts of the same genus. IMPORTANCE Listeria monocytogenes is a serious foodborne pathogen that can harbor the pathogenicity islands Listeria pathogenicity island 3 (LIPI-3) and LIPI-4. Intriguingly, these have also been reported in nonpathogenic L. innocua from food and farm environments, though limited information is available for strains from the natural environment. Here, we analyzed whole-genome sequence data of nonpathogenic Listeria spp. from wildlife and surface water to further elucidate the genetic diversity and evolution of LIPI-3 and LIPI-4 in Listeria. While the full-length islands were found only in L. innocua, LIPI-3 was uncommon and exhibited frequent truncation and genetic diversification, while LIPI-4 was remarkable in being ubiquitous, albeit diversified from L. monocytogenes. These contrasting features demonstrate that pathogenicity islands in nonpathogenic hosts can evolve along different trajectories, leading to either degeneration or maintenance, and highlight the need to examine their physiological roles in nonpathogenic hosts.
Collapse
|
27
|
Guo L, Yin X, Liu Q. Fecal microbiota transplantation reduces mouse mortality from Listeria monocytogenes infection. Microb Pathog 2023; 178:106036. [PMID: 36813004 DOI: 10.1016/j.micpath.2023.106036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Listeria monocytogenes (Lm) is a food bacterium with strong pathogenicity which causes infections via the gastrointestinal tract. Mechanisms by which gut microbiota (GM) resist microbial infections have received little attention. Eight-week-old mice were orally inoculated with wild-type Lm EGD-e and fecal microbiota transplantation (FMT) employed. GM richness and diversity of infected mice changed rapidly within 24h. Firmicutes class decreased and Bacteroidetes, Tenericutes and Ruminococcaceae increased significantly. Coprococcus, Blautia and Eubacterium also increased on the 3rd day post-infection. Moreover, GM transplanted from healthy mice reduced mortality of infected mice by approximately 32%. FMT treatment decreased production of TNFα, IFN-γ, IL-1β and IL-6 relative to PBS treatment. In summary, FMT has potential as a treatment against Lm infection and may be used for bacterial resistance management. Further work is required to elucidate the key GM effector molecules.
Collapse
Affiliation(s)
- Liang Guo
- Zaozhuang University, Shandong, 277160, China; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | | | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
28
|
Zakrzewski AJ, Kurpas M, Zadernowska A, Chajęcka-Wierzchowska W, Fraqueza MJ. A Comprehensive Virulence and Resistance Characteristics of Listeria monocytogenes Isolated from Fish and the Fish Industry Environment. Int J Mol Sci 2023; 24:ijms24043581. [PMID: 36834997 PMCID: PMC9967382 DOI: 10.3390/ijms24043581] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Listeria monocytogenes is an important pathogen, often associated with fish, that can adapt and survive in products and food processing plants, where it can persist for many years. It is a species characterized by diverse genotypic and phenotypic characteristics. Therefore, in this study, a total of 17 L. monocytogenes strains from fish and fish-processing environments in Poland were characterized for their relatedness, virulence profiles, and resistance genes. The Core Genome Multilocus Sequence Typing (cgMLST) analysis revealed that the most frequent serogroups were IIa and IIb; sequence types (ST) were ST6 and ST121; and clonal complexes (CC) were CC6 and CC121. Core genome multilocus sequence typing (cgMLST) analysis was applied to compare the present isolates with the publicly available genomes of L. monocytogenes strains recovered in Europe from humans with listeriosis. Despite differential genotypic subtypes, most strains had similar antimicrobial resistance profiles; however, some of genes were located on mobile genetic elements that could be transferred to commensal or pathogenic bacteria. The results of this study showed that molecular clones of tested strains were characteristic for L. monocytogenes isolated from similar sources. Nevertheless, it is worth emphasizing that they could present a major public health risk due to their close relation with strains isolated from human listeriosis.
Collapse
Affiliation(s)
| | - Monika Kurpas
- Department of Immunobiology and Environmental Microbiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Anna Zadernowska
- Department of Industrial and Food Microbiology, University of Warmia and Mazrui, 10-726 Olsztyn, Poland
- Correspondence:
| | | | - Maria João Fraqueza
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
29
|
Herzog MKM, Cazzaniga M, Peters A, Shayya N, Beldi L, Hapfelmeier S, Heimesaat MM, Bereswill S, Frankel G, Gahan CG, Hardt WD. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 2023; 15:2172667. [PMID: 36794831 PMCID: PMC9980611 DOI: 10.1080/19490976.2023.2172667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.
Collapse
Affiliation(s)
- Mathias K.-M. Herzog
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nizar Shayya
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Cardenas-Alvarez MX, Zeng H, Webb BT, Mani R, Muñoz M, Bergholz TM. Comparative Genomics of Listeria monocytogenes Isolates from Ruminant Listeriosis Cases in the Midwest United States. Microbiol Spectr 2022; 10:e0157922. [PMID: 36314928 PMCID: PMC9769944 DOI: 10.1128/spectrum.01579-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Ruminants are a well-known reservoir for Listeria monocytogenes. In addition to asymptomatic carriage of the pathogen, ruminants can also acquire listeriosis and develop clinical manifestations in the form of neurologic or fetal infections, similar to those occurring in humans. Genomic characterization of ruminant listeriosis cases in Europe have identified lineage 1 and 2 strains associated with infection, as well as clonal complexes (CCs) that are commonly isolated from human cases of listeriosis; however, there is little information on the diversity of L. monocytogenes from ruminant listeriosis in the United States. In this study, we characterized and compared 73 L. monocytogenes isolates from ruminant listeriosis cases from the Midwest and the Upper Great Plains collected from 2015 to 2020. Using whole-genome sequence data, we classified the isolates and identified key virulence factors, stress-associated genes, and mobile genetic elements within our data set. Our isolates belonged to three different lineages: 31% to lineage 1, 53% to lineage 2, and 15% to lineage 3. Lineage 1 and 3 isolates were associated with neurologic infections, while lineage 2 showed a greater frequency of fetal infections. Additionally, the presence of mobile elements, virulence-associated genes, and stress and antimicrobial resistance genes was evaluated. These genetic elements are responsible for most of the subgroup-specific features and may play a key role in the spread of hypervirulent clones, including the spread of hypervirulent CC1 clone commonly associated with disease in humans, and may explain the increased frequency of certain clones in the area. IMPORTANCE Listeria monocytogenes affects humans and animals, causing encephalitis, septicemia, and abortions, among other clinical outcomes. Ruminants such as cattle, goats, and sheep are the main carriers contributing to the maintenance and dispersal of this pathogen in the farm environment. Contamination of food products from farms is of concern not only because many L. monocytogenes genotypes found there are associated with human listeriosis but also as a cause of significant economic losses when livestock and food products are affected. Ruminant listeriosis has been characterized extensively in Europe; however, there is limited information about the genetic diversity of these cases in the United States. Identification of subgroups with a greater ability to spread may facilitate surveillance and management of listeriosis and contribute to a better understanding of the genome diversity of this pathogen, providing insights into the molecular epidemiology of ruminant listeriosis in the region.
Collapse
Affiliation(s)
- Maria X. Cardenas-Alvarez
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Hui Zeng
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Brett T. Webb
- Veterinary Diagnostic Laboratory, North Dakota State University, Fargo, North Dakota, USA
| | - Rinosh Mani
- Veterinary Diagnostic Laboratory, Michigan State University, Lansing, Michigan, USA
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Teresa M. Bergholz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
31
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
32
|
Varsaki A, Ortiz S, Santorum P, López P, López-Alonso V, Hernández M, Abad D, Rodríguez-Grande J, Ocampo-Sosa AA, Martínez-Suárez JV. Prevalence and Population Diversity of Listeria monocytogenes Isolated from Dairy Cattle Farms in the Cantabria Region of Spain. Animals (Basel) 2022; 12:ani12182477. [PMID: 36139336 PMCID: PMC9495194 DOI: 10.3390/ani12182477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary The origin and prevalence of Listeria monocytogenes was studied in dairy cattle farms in order to examine its diversity and determine its possible persistence in manure. The utilization of manure for agricultural purposes is common in many countries. While properly treated and managed manure is an effective and safe fertilizer, foodborne illness outbreaks can occur, as many of the most prominent foodborne pathogens are carried by healthy livestock. It is, therefore, necessary to study the origin and persistence of zoonotic agents in general and of L. monocytogenes in particular, in order to avoid recirculation in farms and reduce risk for human populations. Abstract Listeria monocytogenes is an opportunistic pathogen that is widely distributed in the environment. Here we show the prevalence and transmission of L. monocytogenes in dairy farms in the Cantabria region, on the northern coast of Spain. A total of 424 samples was collected from 14 dairy farms (5 organic and 9 conventional) and 211 L. monocytogenes isolates were recovered following conventional microbiological methods. There were no statistically significant differences in antimicrobial resistance ratios between organic and conventional farms. A clonal relationship among the isolates was assessed by pulsed field gel electrophoresis (PFGE) analysis and 64 different pulsotypes were obtained. Most isolates (89%, n = 187) were classified as PCR serogroup IVb by using a multiplex PCR assay. In this case, 45 isolates of PCR serogroup IVb were whole genome-sequenced to perform a further analysis at genomic level. In silico MLST analysis showed the presence of 12 sequence types (ST), of which ST1, ST54 and ST666 were the most common. Our data indicate that the environment of cattle farms retains a high incidence of L. monocytogenes, including subtypes involved in human listeriosis reports and outbreaks. This pathogen is shed in the feces and could easily colonize dairy products, as a result of fecal contamination. Effective herd and manure management are needed in order to prevent possible outbreaks.
Collapse
Affiliation(s)
- Athanasia Varsaki
- Centro de Investigación y Formación Agrarias (CIFA), 39600 Muriedas, Spain
- Correspondence: (A.V.); (J.V.M.-S.)
| | - Sagrario Ortiz
- National Institute for Agricultural and Food Research and Technology (INIA)-Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Patricia Santorum
- Centro de Investigación y Formación Agrarias (CIFA), 39600 Muriedas, Spain
| | - Pilar López
- National Institute for Agricultural and Food Research and Technology (INIA)-Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | | | - Marta Hernández
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), 47071 Valladolid, Spain
| | - David Abad
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), 47071 Valladolid, Spain
| | - Jorge Rodríguez-Grande
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), 39008 Santander, Spain
| | - Alain A. Ocampo-Sosa
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), 39008 Santander, Spain
| | - Joaquín V. Martínez-Suárez
- National Institute for Agricultural and Food Research and Technology (INIA)-Spanish National Research Council (CSIC), 28040 Madrid, Spain
- Correspondence: (A.V.); (J.V.M.-S.)
| |
Collapse
|
33
|
Kaempferol-Driven Inhibition of Listeriolysin O Pore Formation and Inflammation Suppresses Listeria monocytogenes Infection. Microbiol Spectr 2022; 10:e0181022. [PMID: 35856678 PMCID: PMC9431489 DOI: 10.1128/spectrum.01810-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Listeria monocytogenes remains a nonnegligible cause of foodborne infection, posing a critical threat to public health. Under the global antibiotic crisis, novel alternative approaches are urgently needed. The indispensable role of listeriolysin O (LLO) in the intracellular life cycle, barrier penetration, colonization, and systemic dissemination of L. monocytogenes renders it a potent drug target, which means curbing L. monocytogenes via interfering with LLO-associated pathogenic mechanisms. Here, we identified kaempferol, a natural small molecule compound, as an effective LLO inhibitor that engaged the residues Glu437, Ile468, and Tyr469 of LLO, thereby suppressing LLO-mediated membrane perforation and barrier disruption. Moreover, we found that kaempferol also suppressed host-derived inflammation in a distinct way independent of LLO inhibition. The in vivo study revealed that kaempferol treatment significantly reduced bacterial burden and cytokine burst in target organs, thereby effectively protecting mice from systemic L. monocytogenes infection. Our findings present kaempferol as a potential therapeutic application for L. monocytogenes infection, which is less likely to induce drug resistance than antibiotics because of its superiority of interfering with the pathogenesis process rather than exerting pressure on bacterial viability. IMPORTANCE Currently, we are facing a global crisis of antibiotic resistance, and novel alternative approaches are urgently needed to curb L. monocytogenes infection. Our study demonstrated that kaempferol alleviated L. monocytogenes infection via suppressing LLO pore formation and inflammation response, which might represent a novel antimicrobial-independent strategy to curb listeriosis.
Collapse
|
34
|
Burnett E, Kucerova Z, Freeman M, Kathariou S, Chen J, Smikle M. Whole-Genome Sequencing Reveals Multiple Subpopulations of Dominant and Persistent Lineage I Isolates of Listeria monocytogenes in Two Meat Processing Facilities during 2011-2015. Microorganisms 2022; 10:microorganisms10051070. [PMID: 35630512 PMCID: PMC9147069 DOI: 10.3390/microorganisms10051070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen with a highly clonal population structure comprising multiple phylogenetic sub-groups that can persist within food processing environments and contaminate food. The epidemiology of L. monocytogenes is well-described in some developed countries; however, little is known about the prevalence and population structure of this pathogen in food and food processing environments located in less developed regions. The aim of this study was to determine the genetic characteristics and clonal relatedness of L. monocytogenes that were isolated from two Jamaican meat processing facilities. Of the 37 isolates collected between 2011 and 2015, only a single lineage II isolate was recovered (serotype 1/2c), and the remaining were lineage I isolates representing serotypes 4b, 1/2b, 3b, and two untypeable isolates. Pulsed-field gel electrophoresis (PFGE) delineated isolates into seven pulsotypes, and whole-genome sequencing (WGS) categorized most isolates within one of three clonal complexes (CC): CC2 (N = 12), CC5 (N = 11), and CC288 (N = 11). Isolates representing CC1 (N = 2) and CC9 (N = 1) were also recovered. Virulence-associated genes such as inlA and the LIPI-3 cluster were detected in multiple isolates, along with the stress survival islet cluster-1 (SSI-1), and benzalkonium (bcrABC) and cadmium (cad1, cad2, cad4) resistance cassettes. Multiple isolates that belong to the same CC and matching PFGE patterns were isolated from food and the environment from both facilities across multiple years, suggesting the presence of persistent strains of L. monocytogenes, and/or constant re-entry of the pathogens into the facilities from common sources. These findings highlight the ability of lineage I isolates of L. monocytogenes to colonize, persist, and predominate within two meat-producing environments, and underscores the need for robust surveillance strategies to monitor and mitigate against these important foodborne pathogens.
Collapse
Affiliation(s)
- Elton Burnett
- Institute of Parasitology, McGill University, 2111 Lakeshore Road, Montreal, QC H9X 3V9, Canada
- Department of Microbiology, University of the West Indies, Mona, Kingston 7, Jamaica;
- Correspondence:
| | - Zuzana Kucerova
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA 30329, USA; (Z.K.); (M.F.); (J.C.)
| | - Molly Freeman
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA 30329, USA; (Z.K.); (M.F.); (J.C.)
| | - Sophia Kathariou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jessica Chen
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA 30329, USA; (Z.K.); (M.F.); (J.C.)
| | - Monica Smikle
- Department of Microbiology, University of the West Indies, Mona, Kingston 7, Jamaica;
| |
Collapse
|
35
|
Liang Z, Wu H, Bian C, Chen H, Shen Y, Gao X, Ma J, Yao H, Wang L, Wu Z. The antimicrobial systems of Streptococcus suis promote niche competition in pig tonsils. Virulence 2022; 13:781-793. [PMID: 35481413 PMCID: PMC9067509 DOI: 10.1080/21505594.2022.2069390] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Streptococcus suis can cause severe infections in pigs and humans. The tonsils of pigs are major niches for S. suis, and different serotypes of S. suis can be found in the same tonsil. Pig tonsil colonization by S. suis is believed to be an important source of infection for humans and pigs. However, how S. suis competes for a stable tonsil niche is unknown. Here, we found that S. suis strain WUSS351, isolated from a healthy pig tonsil, is virulent and multidrug-resistant. The ABC transporter system SstFEG, conferring resistance to bacitracin, was reported to confer a competitive survival advantage in vivo. In addition, strain WUSS351 has several antimicrobial systems, including a novel type VII secretion system (T7SS), lantibiotic bacteriocin, and lactococcin972-like bacteriocin Lcn351. Bacterial competition experiments demonstrated T7SS-mediated cell contact-dependent antagonism of S. suis. Antibacterial activity analysis and 16S rRNA gene sequencing of the culture-independent and culture-dependent pig tonsillar microbiome revealed that Lcn351 mainly targets S. suis, one of the core microbiomes in pig tonsils. Taken together, our results revealed the mechanism of the stable persistence of S. suis in the tonsil niche, which might have important implications for S. suis epidemiology, potentially influencing strain prevalence and disease progression.
Collapse
Affiliation(s)
- Zijing Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Huizhen Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Chen Bian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Hao Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Yanling Shen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Xueping Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| |
Collapse
|
36
|
Serafini N, Jarade A, Surace L, Goncalves P, Sismeiro O, Varet H, Legendre R, Coppee JY, Disson O, Durum SK, Frankel G, Di Santo JP. Trained ILC3 responses promote intestinal defense. Science 2022; 375:859-863. [PMID: 35201883 PMCID: PMC10351749 DOI: 10.1126/science.aaz8777] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) are innate immune effectors that contribute to host defense. Whether ILC3 functions are stably modified after pathogen encounter is unknown. Here, we assess the impact of a time-restricted enterobacterial challenge to long-term ILC3 activation in mice. We found that intestinal ILC3s persist for months in an activated state after exposure to Citrobacter rodentium. Upon rechallenge, these "trained" ILC3s proliferate, display enhanced interleukin-22 (IL-22) responses, and have a superior capacity to control infection compared with naïve ILC3s. Metabolic changes occur in C. rodentium-exposed ILC3s, but only trained ILC3s have an enhanced proliferative capacity that contributes to increased IL-22 production. Accordingly, a limited encounter with a pathogen can promote durable phenotypic and functional changes in intestinal ILC3s that contribute to long-term mucosal defense.
Collapse
Affiliation(s)
- Nicolas Serafini
- Institut Pasteur, Université de Paris, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Angélique Jarade
- Institut Pasteur, Université de Paris, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Laura Surace
- Institut Pasteur, Université de Paris, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Pedro Goncalves
- Institut Pasteur, Université de Paris, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Université de Paris, Transcriptome and Epigenome Platform-Biomics Pole, Paris, France
| | - Hugo Varet
- Institut Pasteur, Université de Paris, Transcriptome and Epigenome Platform-Biomics Pole, Paris, France
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université de Paris, Transcriptome and Epigenome Platform-Biomics Pole, Paris, France
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Paris, France
| | - Jean-Yves Coppee
- Institut Pasteur, Université de Paris, Transcriptome and Epigenome Platform-Biomics Pole, Paris, France
| | - Olivier Disson
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France
| | - Scott K Durum
- Laboratory of Cancer and Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - James P Di Santo
- Institut Pasteur, Université de Paris, Inserm U1223, Innate Immunity Unit, Paris, France
| |
Collapse
|
37
|
Lakicevic BZ, Den Besten HMW, De Biase D. Landscape of Stress Response and Virulence Genes Among Listeria monocytogenes Strains. Front Microbiol 2022; 12:738470. [PMID: 35126322 PMCID: PMC8811131 DOI: 10.3389/fmicb.2021.738470] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
The pathogenic microorganism Listeria monocytogenes is ubiquitous and responsible for listeriosis, a disease with a high mortality rate in susceptible people. It can persist in different habitats, including the farm environment, the food production environments, and in foods. This pathogen can grow under challenging conditions, such as low pH, low temperatures, and high salt concentrations. However, L. monocytogenes has a high degree of strain divergence regarding virulence potential, environmental adaption, and stress response. This review seeks to provide the reader with an up-to-date overview of clonal and serotype-specific differences among L. monocytogenes strains. Emphasis on the genes and genomic islands responsible for virulence and resistance to environmental stresses is given to explain the complex adaptation among L. monocytogenes strains. Moreover, we highlight the use of advanced diagnostic technologies, such as whole-genome sequencing, to fine-tune quantitative microbiological risk assessment for better control of listeriosis.
Collapse
Affiliation(s)
- Brankica Z. Lakicevic
- Institute of Meat Hygiene and Technology, Belgrade, Serbia
- *Correspondence: Brankica Z. Lakicevic,
| | | | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
38
|
Jakobsen RR, Trinh JT, Bomholtz L, Brok-Lauridsen SK, Sulakvelidze A, Nielsen DS. A Bacteriophage Cocktail Significantly Reduces Listeria Monocytogenes without Deleterious Impact on the Commensal Gut Microbiota under Simulated Gastrointestinal Conditions. Viruses 2022; 14:v14020190. [PMID: 35215782 PMCID: PMC8875722 DOI: 10.3390/v14020190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, we examined the effect of a bacteriophage cocktail (tentatively designated as the Foodborne Outbreak Pill (FOP)) on the levels of Listeria monocytogenes in simulated small intestine, large intestine, and Caco-2 model systems. We found that FOP survival during simulated passage of the upper gastrointestinal was dependent on stomach pH, and that FOP robustly inhibited L. monocytogenes levels with effectiveness comparable to antibiotic treatment (ampicillin) under simulated ilium and colon conditions. The FOP did not inhibit the commensal bacteria, whereas ampicillin treatment led to dysbiosis-like conditions. The FOP was also more effective than an antibiotic in protecting Caco-2 cells from adhesion and invasion by L. monocytogenes (5-log reduction vs. 1-log reduction) while not triggering an inflammatory response. Our data suggested that the FOP may provide a robust protection against L. monocytogenes should the bacterium enter the human gastrointestinal tract (e.g., by consumption of contaminated food), without deleterious impact on the commensal bacteria.
Collapse
Affiliation(s)
- Rasmus Riemer Jakobsen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (L.B.); (S.K.B.-L.); (D.S.N.)
- Correspondence: ; Tel.: +45-50541606
| | - Jimmy T. Trinh
- Intralytix, Inc., 8681 Robert Fulton Drive, Columbia, MD 21046, USA; (J.T.T.); (A.S.)
| | - Louise Bomholtz
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (L.B.); (S.K.B.-L.); (D.S.N.)
| | - Signe Kristine Brok-Lauridsen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (L.B.); (S.K.B.-L.); (D.S.N.)
| | | | - Dennis Sandris Nielsen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (L.B.); (S.K.B.-L.); (D.S.N.)
| |
Collapse
|
39
|
Costa SS, Lago LAB, Silva A, Graças DAD, Lameira J, Baraúna RA. Diversity of bacteriocins in the microbiome of the Tucuruí Hydroelectric Power Plant water reservoir and three-dimensional structure prediction of a zoocin. Genet Mol Biol 2022; 45:e20210204. [PMID: 35037933 PMCID: PMC8762718 DOI: 10.1590/1678-4685-gmb-2021-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Bacteriocins are antimicrobial peptides expressed by bacteria through ribosomal activity. In this study, we analyzed the diversity of bacteriocin-like genes in the Tucuruí-HPP using a whole-metagenome shotgun sequencing approach. Three layers of the water column were analyzed (photic, aphotic and sediment). Detection of bacteriocin-like genes was performed with blastx using the BAGEL4 database as subject sequences. In order to calculate the abundance of bacteriocin-like genes we also determined the number of 16S rRNA genes using blastn. Taxonomic analysis was performed using RAST server and the metagenome was assembled using IDBA-UD in order to recover the full sequence of a zoocin which had its three-dimensional structure determined. The photic zone presented the highest number of reads affiliated to bacteriocins. The most abundant bacteriocins were sonorensin, Klebicin D , pyocin and colicin. The zoocin model was composed of eight anti-parallel β-sheets and two α-helices with a Zn2+ ion in the active site. This model was considerably stable during 10 ns of molecular dynamics simulation. We observed a high diversity of bacteriocins in the Tucuruí-HPP, demonstrating that the environment is an inexhaustible source for prospecting these molecules. Finally, the zoocin model can be used for further studies of substrate binding and molecular mechanisms involving peptidoglycan degradation.
Collapse
Affiliation(s)
- Sávio S Costa
- Parque de Ciência e Tecnologia Guamá, Laboratório de Engenharia Biológica, Belém, PA, Brazil
| | - Leticia A B Lago
- Parque de Ciência e Tecnologia Guamá, Laboratório de Engenharia Biológica, Belém, PA, Brazil
| | - Artur Silva
- Parque de Ciência e Tecnologia Guamá, Laboratório de Engenharia Biológica, Belém, PA, Brazil
| | - Diego A das Graças
- Parque de Ciência e Tecnologia Guamá, Laboratório de Engenharia Biológica, Belém, PA, Brazil
| | - Jerônimo Lameira
- Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais, Laboratório de Planejamento e Desenvolvimento de Fármacos, Belém, PA, Brazil
| | - Rafael A Baraúna
- Parque de Ciência e Tecnologia Guamá, Laboratório de Engenharia Biológica, Belém, PA, Brazil
| |
Collapse
|
40
|
Zhang X, Liu Y, Zhang P, Niu Y, Chen Q, Ma X. Genomic Characterization of Clinical Listeria monocytogenes Isolates in Beijing, China. Front Microbiol 2021; 12:751003. [PMID: 34956116 PMCID: PMC8703193 DOI: 10.3389/fmicb.2021.751003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
Listeria monocytogenes is a foodborne human pathogen that affects public health worldwide. Whole-genome sequencing (WGS) can classify L. monocytogenes isolates and identify virulence islands and resistance genes potentially influencing infectivity. Herein, WGS was used to assess 151 L. monocytogenes isolates from 120 cases of clinical infection in Beijing, China, between 2014 and 2018. Most isolates were either serogroup 1/2a,3a or serogroup 1/2b,3b,7, with 25 multilocus sequence typing (MLST) types (STs) represented, of which ST8, ST87, and ST5 were the most common. Core-genome MLST (cgMLST) grouped the 151 isolates into 116 cgMLST types. The discriminatory power of cgMLST was greater than other subtypes, revealing that isolates from the same patient were highly related (only differing at one allele). Eighty-six isolates formed 30 complexes with ≤ 7 cgMLST alleles between neighboring isolates, suggesting possible outbreaks. Compared with isolates in the United States, ST8, ST121, ST619, ST87, and ST155 isolates were grouped into unified clades. All 151 isolates were positive for common virulence-associated loci, and 26 lineage I isolates harbored the pathogenicity island 3 (LIPI-3) locus, while 42 lineage I isolates harbored the complete LIPI-4 locus. Eleven ST619 isolates had both LIPI-3 and LIPI-4. Among the 151 isolates, 13 were resistant to at least one antibiotic, and no multidrug-resistant isolates were identified. Resistance phenotypes correlated with genotypes, apart from two meropenem resistance isolates. The findings provided insight into the nature of L. monocytogenes strains currently causing clinical disease in Beijing, and WGS analysis indicated possible outbreaks.
Collapse
Affiliation(s)
- Xiaoai Zhang
- Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Beijing Research Centre for Preventive Medicine, Beijing, China
| | - Yuzhu Liu
- Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Beijing Research Centre for Preventive Medicine, Beijing, China
| | - Penghang Zhang
- Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Beijing Research Centre for Preventive Medicine, Beijing, China
| | - Yanlin Niu
- Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Beijing Research Centre for Preventive Medicine, Beijing, China
| | - Qian Chen
- Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Beijing Research Centre for Preventive Medicine, Beijing, China
| | - Xiaochen Ma
- Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Beijing Research Centre for Preventive Medicine, Beijing, China
| |
Collapse
|
41
|
Kammoun H, Kim M, Hafner L, Gaillard J, Disson O, Lecuit M. Listeriosis, a model infection to study host-pathogen interactions in vivo. Curr Opin Microbiol 2021; 66:11-20. [PMID: 34923331 DOI: 10.1016/j.mib.2021.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes (Lm) is a foodborne pathogen and the etiological agent of listeriosis. This facultative intracellular Gram-positive bacterium has the ability to colonize the intestinal lumen, cross the intestinal, blood-brain and placental barriers, leading to bacteremia, neurolisteriosis and maternal-fetal listeriosis. Lm is a model microorganism for the study of the interplay between a pathogenic microbe, host tissues and microbiota in vivo. Here we review how animal models permissive to Lm-host interactions allow deciphering some of the key steps of the infectious process, from the intestinal lumen to the crossing of host barriers and dissemination within the host. We also highlight recent investigations using tagged Lm and clinically relevant strains that have shed light on within-host dynamics and the purifying selection of Lm virulence factors. Studying Lm infection in vivo is a way forward to explore host biology and unveil the mechanisms that have selected its capacity to closely associate with its vertebrate hosts.
Collapse
Affiliation(s)
- Hana Kammoun
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Minhee Kim
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Lukas Hafner
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Julien Gaillard
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Olivier Disson
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Marc Lecuit
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France; Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, 75015 Paris, France; Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, 75006 Paris, France.
| |
Collapse
|
42
|
Bagatella S, Tavares-Gomes L, Oevermann A. Listeria monocytogenes at the interface between ruminants and humans: A comparative pathology and pathogenesis review. Vet Pathol 2021; 59:186-210. [PMID: 34856818 DOI: 10.1177/03009858211052659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bacterium Listeria monocytogenes (Lm) is widely distributed in the environment as a saprophyte, but may turn into a lethal intracellular pathogen upon ingestion. Invasive infections occur in numerous species worldwide, but most commonly in humans and farmed ruminants, and manifest as distinct forms. Of those, neuroinfection is remarkably threatening due to its high mortality. Lm is widely studied not only as a pathogen but also as an essential model for intracellular infections and host-pathogen interactions. Many aspects of its ecology and pathogenesis, however, remain unclear and are rarely addressed in its natural hosts. This review highlights the heterogeneity and adaptability of Lm by summarizing its association with the environment, farm animals, and disease. It also provides current knowledge on key features of the pathology and (molecular) pathogenesis of various listeriosis forms in naturally susceptible species with a special focus on ruminants and on the neuroinvasive form of the disease. Moreover, knowledge gaps on pathomechanisms of listerial infections and relevant unexplored topics in Lm pathogenesis research are highlighted.
Collapse
Affiliation(s)
- Stefano Bagatella
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Leticia Tavares-Gomes
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
43
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
44
|
Jacob H, Besson M, Oberhaensli F, Taylor A, Gillet B, Hughes S, Melvin SD, Bustamante P, Swarzenski PW, Lecchini D, Metian M. A multifaceted assessment of the effects of polyethylene microplastics on juvenile gilthead seabreams (Sparus aurata). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:106004. [PMID: 34739976 DOI: 10.1016/j.aquatox.2021.106004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Plastic pollution has become a major environmental and societal concern in the last decade. From larger debris to microplastics (MP), this pollution is ubiquitous and particularly affects aquatic ecosystems. MP can be directly or inadvertently ingested by organisms, transferred along the trophic chain, and sometimes translocated into tissues. However, the impacts of such MP exposure on organisms' biological functions are yet to be fully understood. Here, we used a multi-diagnostic approach at multiple levels of biological organization (from atoms to organisms) to determine how MP affect the biology of a marine fish, the gilthead seabream, Sparus aurata. We exposed juvenile seabreams for 35 days to spherical 10-20 µm polyethylene primary MP through food (Artemia salina pre-exposed to MP) at a concentration of 5 ± 1 µg of MP per gram of fish per day. MP-exposed fish experienced higher mortality, increased abundance of several brain and liver primary metabolites, hepatic and intestinal histological defects, higher assimilation of an essential element (Zn), and lower assimilation of a non-essential element (Ag). In contrast, growth and muscle C/N isotopic profiles were similar between control and MP-exposed fish, while variable patterns were observed for the intestinal microbiome. This comprehensive analysis of biological responses to MP exposure reveals how MP ingestion can cause negligible to profound effects in a fish species and contributes towards a better understanding of the causal mechanisms of its toxicity.
Collapse
Affiliation(s)
- Hugo Jacob
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE BP 1013, Moorea, Papetoai 98729, French Polynesia
| | - Marc Besson
- School of Biological Sciences, University of Bristol, United Kingdom
| | - François Oberhaensli
- International Atomic Energy Agency - Environment Laboratories, 4a Quai Antoine 1er, Monaco, Principality of Monaco 98000, Monaco
| | - Angus Taylor
- International Atomic Energy Agency - Environment Laboratories, 4a Quai Antoine 1er, Monaco, Principality of Monaco 98000, Monaco
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure, Lyon 69342, France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure, Lyon 69342, France
| | - Steven D Melvin
- Australian Rivers Institute, Griffith University Gold Coast, Building G51, Edmund Rice Drive,Q, Southport 4215, Australia
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, La Rochelle 17000, France; Institut Universitaire de France (IUF), 1 rue Descartes, Paris 75005, France
| | - Peter W Swarzenski
- International Atomic Energy Agency - Environment Laboratories, 4a Quai Antoine 1er, Monaco, Principality of Monaco 98000, Monaco
| | - David Lecchini
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE BP 1013, Moorea, Papetoai 98729, French Polynesia; Laboratoire d'Excellence "CORAIL", Moorea, Papetoai 98729, French Polynesia
| | - Marc Metian
- International Atomic Energy Agency - Environment Laboratories, 4a Quai Antoine 1er, Monaco, Principality of Monaco 98000, Monaco.
| |
Collapse
|
45
|
Hafner L, Pichon M, Burucoa C, Nusser SHA, Moura A, Garcia-Garcera M, Lecuit M. Listeria monocytogenes faecal carriage is common and depends on the gut microbiota. Nat Commun 2021; 12:6826. [PMID: 34819495 PMCID: PMC8613254 DOI: 10.1038/s41467-021-27069-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/03/2021] [Indexed: 01/15/2023] Open
Abstract
Listeria genus comprises two pathogenic species, L. monocytogenes (Lm) and L. ivanovii, and non-pathogenic species. All can thrive as saprophytes, whereas only pathogenic species cause systemic infections. Identifying Listeria species' respective biotopes is critical to understand the ecological contribution of Listeria virulence. In order to investigate the prevalence and abundance of Listeria species in various sources, we retrieved and analyzed 16S rRNA datasets from MG-RAST metagenomic database. 26% of datasets contain Listeria sensu stricto sequences, and Lm is the most prevalent species, most abundant in soil and host-associated environments, including 5% of human stools. Lm is also detected in 10% of human stool samples from an independent cohort of 900 healthy asymptomatic donors. A specific microbiota signature is associated with Lm faecal carriage, both in humans and experimentally inoculated mice, in which it precedes Lm faecal carriage. These results indicate that Lm faecal carriage is common and depends on the gut microbiota, and suggest that Lm faecal carriage is a crucial yet overlooked consequence of its virulence.
Collapse
Affiliation(s)
- Lukas Hafner
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
| | - Maxime Pichon
- University Hospital of Poitiers, Infectious Agents Department, Bacteriology and Infection Control Laboratory, 86021, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie, EA 4331, 86022, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie, Inserm U1070, 86022, Poitiers, France
| | - Christophe Burucoa
- University Hospital of Poitiers, Infectious Agents Department, Bacteriology and Infection Control Laboratory, 86021, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie, EA 4331, 86022, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie, Inserm U1070, 86022, Poitiers, France
| | - Sophie H A Nusser
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
| | - Alexandra Moura
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015, Paris, France
| | - Marc Garcia-Garcera
- University of Lausanne, Department of Fundamental Microbiology, 1015, Lausanne, Switzerland
| | - Marc Lecuit
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015, Paris, France.
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015, Paris, France.
- Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, 75006, Paris, France.
| |
Collapse
|
46
|
Rebuffat S. Ribosomally synthesized peptides, foreground players in microbial interactions: recent developments and unanswered questions. Nat Prod Rep 2021; 39:273-310. [PMID: 34755755 DOI: 10.1039/d1np00052g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is currently well established that multicellular organisms live in tight association with complex communities of microorganisms including a large number of bacteria. These are immersed in complex interaction networks reflecting the relationships established between them and with host organisms; yet, little is known about the molecules and mechanisms involved in these mutual interactions. Ribosomally synthesized peptides, among which bacterial antimicrobial peptides called bacteriocins and microcins have been identified as contributing to host-microbe interplays, are either unmodified or post-translationally modified peptides. This review will unveil current knowledge on these ribosomal peptide-based natural products, their interplay with the host immune system, and their roles in microbial interactions and symbioses. It will include their major structural characteristics and post-translational modifications, the main rules of their maturation pathways, and the principal ecological functions they ensure (communication, signalization, competition), especially in symbiosis, taking select examples in various organisms. Finally, we address unanswered questions and provide a framework for deciphering big issues inspiring future directions in the field.
Collapse
Affiliation(s)
- Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), National Centre of Scientific Research (CNRS), CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|
47
|
Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol 2021; 19:726-739. [PMID: 34075213 DOI: 10.1038/s41579-021-00569-w] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 02/05/2023]
Abstract
The microbiomes on human body surfaces affect health in multiple ways. They include not only commensal or mutualistic bacteria but also potentially pathogenic bacteria, which can enter sterile tissues to cause invasive infection. Many commensal bacteria produce small antibacterial molecules termed bacteriocins that have the capacity to eliminate specific colonizing pathogens; as such, bacteriocins have attracted increased attention as potential microbiome-editing tools. Metagenome-based and activity-based screening approaches have strongly expanded our knowledge of the abundance and diversity of bacteriocin biosynthetic gene clusters and the properties of a continuously growing list of bacteriocin classes. The dynamic acquisition, diversification or loss of bacteriocin genes can shape the fitness of a bacterial strain that is in competition with bacteriocin-susceptible bacteria. However, a bacteriocin can only provide a competitive advantage if its fitness benefit exceeds the metabolic cost of production, if it spares crucial mutualistic partner strains and if major competitors cannot develop resistance. In contrast to most currently available antibiotics, many bacteriocins have only narrow activity ranges and could be attractive agents for precision therapy and prevention of infections. A common scientific strategy involving multiple disciplines is needed to uncover the immense potential of microbiome-shaping bacteriocins.
Collapse
Affiliation(s)
- Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
48
|
Listeriolysin S: A bacteriocin from Listeria monocytogenes that induces membrane permeabilization in a contact-dependent manner. Proc Natl Acad Sci U S A 2021; 118:2108155118. [PMID: 34599102 PMCID: PMC8501752 DOI: 10.1073/pnas.2108155118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes (Lm) is a bacterial pathogen that causes listeriosis, a foodborne disease characterized by gastroenteritis, meningitis, bacteremia, and abortions in pregnant women. The most severe human listeriosis outbreaks are associated with a subset of Lm hypervirulent clones that encode the bacteriocin Listeriolysin S (LLS), which modifies the gut microbiota and allows efficient Lm gut colonization and invasion of deeper organs. Our present work identifies the killing mechanism displayed by LLS to outcompete gut commensal bacteria, demonstrating that it induces membrane permeabilization and membrane depolarization of target bacteria. Moreover, we show that LLS is a thiazole/oxazole–modified microcin that displays a contact-dependent inhibition mechanism. Listeriolysin S (LLS) is a thiazole/oxazole–modified microcin (TOMM) produced by hypervirulent clones of Listeria monocytogenes. LLS targets specific gram-positive bacteria and modulates the host intestinal microbiota composition. To characterize the mechanism of LLS transfer to target bacteria and its bactericidal function, we first investigated its subcellular distribution in LLS-producer bacteria. Using subcellular fractionation assays, transmission electron microscopy, and single-molecule superresolution microscopy, we identified that LLS remains associated with the bacterial cell membrane and cytoplasm and is not secreted to the bacterial extracellular space. Only living LLS-producer bacteria (and not purified LLS-positive bacterial membranes) display bactericidal activity. Applying transwell coculture systems and microfluidic-coupled microscopy, we determined that LLS requires direct contact between LLS-producer and -target bacteria in order to display bactericidal activity, and thus behaves as a contact-dependent bacteriocin. Contact-dependent exposure to LLS leads to permeabilization/depolarization of the target bacterial cell membrane and adenosine triphosphate (ATP) release. Additionally, we show that lipoteichoic acids (LTAs) can interact with LLS and that LTA decorations influence bacterial susceptibility to LLS. Overall, our results suggest that LLS is a TOMM that displays a contact-dependent inhibition mechanism.
Collapse
|
49
|
Peterson SB, Bertolli SK, Mougous JD. The Central Role of Interbacterial Antagonism in Bacterial Life. Curr Biol 2021; 30:R1203-R1214. [PMID: 33022265 DOI: 10.1016/j.cub.2020.06.103] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study of bacteria interacting with their environment has historically centered on strategies for obtaining nutrients and resisting abiotic stresses. We argue this focus has deemphasized a third facet of bacterial life that is equally central to their existence: namely, the threat to survival posed by antagonizing bacteria. The diversity and ubiquity of interbacterial antagonism pathways is becoming increasingly apparent, and the insidious manner by which interbacterial toxins disarm their targets emphasizes the highly evolved nature of these processes. Studies examining the role of antagonism in natural communities reveal it can serve many functions, from facilitating colonization of naïve habitats to maintaining bacterial community stability. The pervasiveness of antagonistic pathways is necessarily matched by an equally extensive array of defense strategies. These overlap with well characterized, central stress response pathways, highlighting the contribution of bacterial interactions to shaping cell physiology. In this review, we build the case for the ubiquity and importance of interbacterial antagonism.
Collapse
Affiliation(s)
- S Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Savannah K Bertolli
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
50
|
Dellière S, Dannaoui E, Fieux M, Bonfils P, Gricourt G, Demontant V, Podglajen I, Woerther PL, Angebault C, Botterel F. Analysis of Microbiota and Mycobiota in Fungal Ball Rhinosinusitis: Specific Interaction between Aspergillus fumigatus and Haemophilus influenza? J Fungi (Basel) 2021; 7:550. [PMID: 34356929 PMCID: PMC8305266 DOI: 10.3390/jof7070550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022] Open
Abstract
Fungal ball (FB) rhinosinusitis (RS) is the main type of non-invasive fungal RS. Despite positive direct examination (DE) of biopsies, culture remains negative in more than 60% of cases. The aim of the study was to evaluate the performance/efficacy of targeted metagenomics (TM) to analyze microbiota and mycobiota in FB and find microbial associations. Forty-five sinus biopsies from patients who underwent surgery for chronic RS were included. After DE and culture, DNA was extracted, then fungal ITS1-ITS2 and bacterial V3-V4 16S rDNA loci were sequenced (MiSeqTM Illumina). Operational taxonomic units (OTUs) were defined via QIIME and assigned to SILVA (16S) and UNITE (ITS) databases. Statistical analyses were performed using SHAMAN. Thirty-eight patients had FB and seven had non-fungal rhinosinusitis (NFRS). DE and culture of FB were positive for fungi in 97.3 and 31.6% of patients, respectively. TM analysis of the 38 FB yielded more than one fungal genus in 100% of cases, with Aspergillus in 89.5% (34/38). Haemophilus was over-represented in FB with >1000 reads/sample in 47.3% (18/38) compared to NFRS (p < 0.001). TM allowed fungal identification in biopsies with negative culture. Haemophilus was associated with FB. Pathogenesis could result from fungi-bacteria interactions in a mixed biofilm-like structure.
Collapse
Affiliation(s)
- Sarah Dellière
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, APHP, GHU Hôpitaux Universitaires Henri-Mondor, 94010 Créteil, France; (S.D.); (C.A.)
- Unité de Parasitologie-Mycologie, Hôpital Saint-Louis, Assistance Publique des Hôpitaux de Paris, Université de Paris, 75010 Paris, France
| | - Eric Dannaoui
- UR DYNAMiC 7380, Faculté de Santé, Université Paris-Est Créteil, 94010 Créteil, France; (E.D.); (P.-L.W.)
- UR DYNAMiC 7380, Ecole Nationale Vétérinaire d’Alfort, USC Anses, 94700 Maison-Alfort, France
- Unité de Parasitologie-Mycologie, Département de Microbiologie, Hôpital Européen George Pompidou, APHP, Université de Paris, 75015 Paris, France
| | - Maxime Fieux
- Département d’Otorhinolaryngologie, Hôpital Européen George Pompidou, APHP, Université de Paris, 75015 Paris, France; (M.F.); (P.B.)
- Service d’Otorhinolaryngologie, d’Otoneurochirurgie et de Chirurgie Cervico-Faciale, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Pierre Bonfils
- Département d’Otorhinolaryngologie, Hôpital Européen George Pompidou, APHP, Université de Paris, 75015 Paris, France; (M.F.); (P.B.)
| | - Guillaume Gricourt
- Plate-Forme Genomiques, APHP-IMRB, GHU Hôpitaux Universitaires Henri-Mondor, UPEC, 94010 Créteil, France; (G.G.); (V.D.)
| | - Vanessa Demontant
- Plate-Forme Genomiques, APHP-IMRB, GHU Hôpitaux Universitaires Henri-Mondor, UPEC, 94010 Créteil, France; (G.G.); (V.D.)
| | - Isabelle Podglajen
- Unité de Bactériologie, Département de Microbiologie, Hôpital Européen George Pompidou, APHP, Université de Paris, 75015 Paris, France;
| | - Paul-Louis Woerther
- UR DYNAMiC 7380, Faculté de Santé, Université Paris-Est Créteil, 94010 Créteil, France; (E.D.); (P.-L.W.)
- Unité de Bactériologie, Département de Prévention, Diagnostic et Traitement des Infections, APHP, GHU Hôpitaux Universitaires Henri-Mondor, 94010 Créteil, France
| | - Cécile Angebault
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, APHP, GHU Hôpitaux Universitaires Henri-Mondor, 94010 Créteil, France; (S.D.); (C.A.)
- UR DYNAMiC 7380, Faculté de Santé, Université Paris-Est Créteil, 94010 Créteil, France; (E.D.); (P.-L.W.)
- UR DYNAMiC 7380, Ecole Nationale Vétérinaire d’Alfort, USC Anses, 94700 Maison-Alfort, France
| | - Françoise Botterel
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, APHP, GHU Hôpitaux Universitaires Henri-Mondor, 94010 Créteil, France; (S.D.); (C.A.)
- UR DYNAMiC 7380, Faculté de Santé, Université Paris-Est Créteil, 94010 Créteil, France; (E.D.); (P.-L.W.)
- UR DYNAMiC 7380, Ecole Nationale Vétérinaire d’Alfort, USC Anses, 94700 Maison-Alfort, France
| |
Collapse
|