1
|
Hashikawa K, Hashikawa Y, Briones B, Ishii K, Liu Y, Rossi MA, Basiri ML, Chen JY, Ahmad OR, Mukundan RV, Johnston NL, Simon RC, Soetedjo JC, Siputro JR, McHenry JA, Palmiter RD, Rubinow DR, Zweifel LS, Stuber GD. Esr1-Dependent Signaling and Transcriptional Maturation in the Medial Preoptic Area of the Hypothalamus Shapes the Development of Mating Behavior during Adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640339. [PMID: 40060480 PMCID: PMC11888408 DOI: 10.1101/2025.02.26.640339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Mating and other behaviors emerge during adolescence through the coordinated actions of steroid hormone signaling throughout the nervous system and periphery. In this study, we investigated the transcriptional dynamics of the medial preoptic area (MPOA), a critical region for reproductive behavior, using single-cell RNA sequencing (scRNAseq) and in situ hybridization techniques in male and female mice throughout adolescence development. Our findings reveal that estrogen receptor 1 (Esr1) plays a pivotal role in the transcriptional maturation of GABAergic neurons within the MPOA during adolescence. Deletion of the estrogen receptor gene, Esr1, in GABAergic neurons (Vgat+) disrupted the developmental progression of mating behaviors in both sexes, while its deletion in glutamatergic neurons (Vglut2+) had no observable effect. In males and females, these neurons displayed distinct transcriptional trajectories, with hormone-dependent gene expression patterns emerging throughout adolescence and regulated by Esr1. Esr1 deletion in MPOA GABAergic neurons, prior to adolescence, arrested adolescent transcriptional progression of these cells and uncovered sex-specific gene-regulatory networks associated with Esr1 signaling. Our results underscore the critical role of Esr1 in orchestrating sex-specific transcriptional dynamics during adolescence, revealing gene regulatory networks implicated in the development of hypothalamic controlled reproductive behaviors.
Collapse
Affiliation(s)
- Koichi Hashikawa
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Yoshiko Hashikawa
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Brandy Briones
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Kentaro Ishii
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Yuejia Liu
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Mark A. Rossi
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Marcus L. Basiri
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
- University of North Carolina, Chapel Hill, NC 27599
| | - Jane Y. Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Omar R. Ahmad
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Rishi V. Mukundan
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Nathan L. Johnston
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Rhiana C. Simon
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - James C. Soetedjo
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Jason R. Siputro
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Jenna A. McHenry
- Department of Psychology & Neuroscience, Duke University, Durham, NC 27708
| | - Richard D. Palmiter
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - David R. Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Larry S. Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Garret D. Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| |
Collapse
|
2
|
Rosenkranz JA. Developmental Shifts in Amygdala Function. Curr Top Behav Neurosci 2024. [PMID: 39546164 DOI: 10.1007/7854_2024_538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Mammals have evolved with strategies to optimize survival and thrive in their native environment. This includes both physical and behavioral adaptations, and extends to their social environment. However, within a social context, the roles of an animal change across development, and their behavior and biology must update to match these changes. The amygdala has a key role in social and emotional processing and expression, and displays developmental changes in early juvenile, adolescent, and adult transitions. Furthermore, the amygdala is highly sensitive to the social environment. This chapter will describe the primary amygdala developmental changes, how this maps onto major changes in social and emotional domains, and propose a framework where developmental stage of intra-amygdala circuits and its regulation by cortical inputs biases the animal toward developmentally appropriate social and emotional behavior. This developmental plasticity also presents an opportunity for retuning the developmental trajectory in the presence of ongoing challenges during maturation, such as constant threat or resource scarcity, so there can be realignment of behavior to match environmental demands.
Collapse
Affiliation(s)
- J Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Brain Science Institute, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
3
|
Torres T, Adam N, Mhaouty-Kodja S, Naulé L. Reproductive function and behaviors: an update on the role of neural estrogen receptors alpha and beta. Front Endocrinol (Lausanne) 2024; 15:1408677. [PMID: 38978624 PMCID: PMC11228153 DOI: 10.3389/fendo.2024.1408677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
Infertility is becoming a major public health problem, with increasing frequency due to medical, environmental and societal causes. The increasingly late age of childbearing, growing exposure to endocrine disruptors and other reprotoxic products, and increasing number of medical reproductive dysfunctions (endometriosis, polycystic ovary syndrome, etc.) are among the most common causes. Fertility relies on fine-tuned control of both neuroendocrine function and reproductive behaviors, those are critically regulated by sex steroid hormones. Testosterone and estradiol exert organizational and activational effects throughout life to establish and activate the neural circuits underlying reproductive function. This regulation is mediated through estrogen receptors (ERs) and androgen receptor (AR). Estradiol acts mainly via nuclear estrogen receptors ERα and ERβ. The aim of this review is to summarize the genetic studies that have been undertaken to comprehend the specific contribution of ERα and ERβ in the neural circuits underlying the regulation of the hypothalamic-pituitary-gonadal axis and the expression of reproductive behaviors, including sexual and parental behavior. Particular emphasis will be placed on the neural role of these receptors and the underlying sex differences.
Collapse
Affiliation(s)
| | | | | | - Lydie Naulé
- Sorbonne Université, CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
4
|
Fisher DW, Dunn JT, Keszycki R, Rodriguez G, Bennett DA, Wilson RS, Dong H. Unique transcriptional signatures correlate with behavioral and psychological symptom domains in Alzheimer's disease. Transl Psychiatry 2024; 14:178. [PMID: 38575567 PMCID: PMC10995139 DOI: 10.1038/s41398-024-02878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Despite the significant burden, cost, and worse prognosis of Alzheimer's disease (AD) with behavioral and psychological symptoms of dementia (BPSD), little is known about the molecular causes of these symptoms. Using antemortem assessments of BPSD in AD, we demonstrate that individual BPSD can be grouped into 4 domain factors in our cohort: affective, apathy, agitation, and psychosis. Then, we performed a transcriptome-wide analysis for each domain utilizing bulk RNA-seq of post-mortem anterior cingulate cortex (ACC) tissues. Though all 4 domains are associated with a predominantly downregulated pattern of hundreds of differentially expressed genes (DEGs), most DEGs are unique to each domain, with only 22 DEGs being common to all BPSD domains, including TIMP1. Weighted gene co-expression network analysis (WGCNA) yielded multiple transcriptional modules that were shared between BPSD domains or unique to each domain, and NetDecoder was used to analyze context-dependent information flow through the biological network. For the agitation domain, we found that all DEGs and a highly associated transcriptional module were functionally enriched for ECM-related genes including TIMP1, TAGLN, and FLNA. Another unique transcriptional module also associated with the agitation domain was enriched with genes involved in post-synaptic signaling, including DRD1, PDE1B, CAMK4, and GABRA4. By comparing context-dependent changes in DEGs between cases and control networks, ESR1 and PARK2 were implicated as two high-impact genes associated with agitation that mediated significant information flow through the biological network. Overall, our work establishes unique targets for future study of the biological mechanisms of BPSD and resultant drug development.
Collapse
Affiliation(s)
- Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Jeffrey T Dunn
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Rachel Keszycki
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Rush University Medical Center, Chicago, IL, 60611, USA
| | - Robert S Wilson
- Rush Alzheimer's Disease Center, Rush University Medical Center, Rush University Medical Center, Chicago, IL, 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Hasunuma K, Murakawa T, Takenawa S, Mitsui K, Hatsukano T, Sano K, Nakata M, Ogawa S. Estrogen Receptor β in the Lateral Septum Mediates Estrogen Regulation of Social Anxiety-like Behavior in Male Mice. Neuroscience 2024; 537:126-140. [PMID: 38042251 DOI: 10.1016/j.neuroscience.2023.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/04/2023]
Abstract
17β-estradiol (E2) regulates various forms of social behavior through the activation of two types of estrogen receptors, ERα and ERβ. The lateral septum (LS) is thought to be one of the potential target sites of E2, but the role played by ERα and ERβ in this brain area remains largely unknown. In the present study, we first analyzed the distribution of ERα and ERβ with double fluorescent immunohistochemistry in a transgenic mouse line in which red fluorescent protein (RFP) signal has been a reliable marker of ERβ expression. The overall number of ERβ-RFP-expressing cells was significantly higher (about 2.5 times) compared to ERα-expressing cells. The distribution of the two types of ERs was different, with co-expression only seen in about 1.2% of total ER-positive cells. Given these distinctive distribution patterns, we examined the behavioral effects of site-specific knockdown of each ER using viral vector-mediated small interference RNA (siRNA) techniques in male mice. We found ERβ-specific behavioral alterations during a social interaction test, suggesting involvement of ERβ-expressing LS neurons in the regulation of social anxiety and social interest. Further, we investigated the neuronal projections of ERα- and ERβ-expressing LS cells by injecting an anterograde viral tracer in ERα-Cre and ERβ-iCre mice. Dense expression of green fluorescence protein (GFP) in synaptic terminals was observed in ERβ-iCre mice in areas known to be related to the modulation of anxiety. These findings collectively suggest that ERβ expressed in the LS plays a major role in the estrogenic control of social anxiety-like behavior.
Collapse
Affiliation(s)
- Kansuke Hasunuma
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Tomoaki Murakawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Satoshi Takenawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Koshiro Mitsui
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Tetsu Hatsukano
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Kazuhiro Sano
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Mariko Nakata
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
6
|
Takenawa S, Nagasawa Y, Go K, Chérasse Y, Mizuno S, Sano K, Ogawa S. Activity of estrogen receptor β expressing neurons in the medial amygdala regulates preference toward receptive females in male mice. Proc Natl Acad Sci U S A 2023; 120:e2305950120. [PMID: 37819977 PMCID: PMC10589649 DOI: 10.1073/pnas.2305950120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
The processing of information regarding the sex and reproductive state of conspecific individuals is critical for successful reproduction and survival in males. Generally, male mice exhibit a preference toward the odor of sexually receptive (RF) over nonreceptive females (XF) or gonadally intact males (IM). Previous studies suggested the involvement of estrogen receptor beta (ERβ) expressed in the medial amygdala (MeA) in male preference toward RF. To further delineate the role played by ERβ in the MeA in the neuronal network regulating male preference, we developed a new ERβ-iCre mouse line using the CRISPR-Cas9 system. Fiber photometry Ca2+ imaging revealed that ERβ-expressing neurons in the postero-dorsal part of the MeA (MeApd-ERβ+ neurons) were more active during social investigation toward RF compared to copresented XF or IM mice in a preference test. Chemogenetic inhibition of MeApd-ERβ+ neuronal activity abolished a preference to RF in "RF vs. XF," but not "RF vs. IM," tests. Analysis with cre-dependent retrograde tracing viral vectors identified the principal part of the bed nucleus of stria terminalis (BNSTp) as a primary projection site of MeApd-ERβ+ neurons. Fiber photometry recording in the BNSTp during a preference test revealed that chemogenetic inhibition of MeApd-ERβ+ neurons abolished differential neuronal activity of BNSTp cells as well as a preference to RF against XF but not against IM mice. Collectively, these findings demonstrate for the first time that MeApd-ERβ+ neuronal activity is required for expression of receptivity-based preference (i.e., RF vs. XF) but not sex-based preference (i.e., RF vs. IM) in male mice.
Collapse
Affiliation(s)
- Satoshi Takenawa
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba305-8577, Japan
| | - Yutaro Nagasawa
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba305-8577, Japan
| | - Kim Go
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba305-8577, Japan
| | - Yoan Chérasse
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Kazuhiro Sano
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba305-8577, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba305-8577, Japan
| |
Collapse
|
7
|
Jackson LR, Lopez MS, Alward B. Breaking Through the Bottleneck: Krogh's Principle in Behavioral Neuroendocrinology and the Potential of Gene Editing. Integr Comp Biol 2023; 63:428-443. [PMID: 37312279 PMCID: PMC10445420 DOI: 10.1093/icb/icad068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
In 1929, August Krogh wrote that for every question in biology, there is a species or collection of species in which pursuing such questions is the most appropriate for achieving the deepest insights. Referred to as "Krogh's Principle," these words are a guiding force for many biologists. In practice, Krogh's principle might guide a biologist interested in studying bi-parental care to choose not to use lab mice, in which the female does most of the parenting, but instead study species in which bi-parental care is present and clearly observable, such as in certain poison dart frogs. This approach to pursuing biological questions has been fruitful, with more in-depth insights achievable with new technologies. However, up until recently, an important limitation of Krogh's principle for biologists interested in the functions of certain genes, was certain techniques were only available for a few traditional model organisms such as lab mice, fruit flies (Drosophila melanogaster), zebrafish (Danio rerio) and C. elegans (Caenorhabditis elegans), in which testing the functions of molecular systems on biological processes can be achieved using genetic knockout (KO) and transgenic technology. These methods are typically more precise than other approaches (e.g., pharmacology) commonly used in nontraditional model organisms to address similar questions. Therefore, some of the most in-depth insights into our understanding of the molecular control of these mechanisms have come from a small number of genetically tractable species. Recent advances in gene editing technology such as CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats)/Cas9 gene editing as a laboratory tool has changed the insights achievable for biologists applying Krogh's principle. In this review, we will provide a brief summary on how some researchers of nontraditional model organisms have been able to achieve different levels of experimental precision with limited genetic tractability in their non-traditional model organism in the field of behavioral neuroendocrinology, a field in which understanding tissue and brain-region specific actions of molecules of interest has been a major goal. Then, we will highlight the exciting potential of Krogh's principle using discoveries made in a popular model species of social behavior, the African cichlid fish Astatotilapia burtoni. Specifically, we will focus on insights gained from studies of the control of social status by sex steroid hormones (androgens and estrogens) in A. burtoni that originated during field observations during the 1970s, and have recently culminated in novel insights from CRISPR/Cas9 gene editing in laboratory studies. Our review highlighting discoveries in A. burtoni may function as a roadmap for others using Krogh's principle aiming to incorporate gene editing into their research program. Gene editing is thus a powerful complimentary laboratory tool researchers can use to yield novel insights into understanding the molecular mechanisms of physiology and behavior in non-traditional model organisms.
Collapse
Affiliation(s)
- Lillian R Jackson
- Department of Psychology, University of Houston, Houston, TX 77204USA
| | - Mariana S Lopez
- Department of Psychology, University of Houston, Houston, TX 77204USA
| | - Beau Alward
- Department of Psychology, University of Houston, Houston, TX 77204USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004USA
| |
Collapse
|
8
|
Yu ZX, Zha X, Xu XH. Estrogen-responsive neural circuits governing male and female mating behavior in mice. Curr Opin Neurobiol 2023; 81:102749. [PMID: 37421660 DOI: 10.1016/j.conb.2023.102749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
Decades of knockout analyses have highlighted the crucial involvement of estrogen receptors and downstream genes in controlling mating behaviors. More recently, advancements in neural circuit research have unveiled a distributed subcortical network comprising estrogen-receptor or estrogen-synthesis-enzyme-expressing cells that transforms sensory inputs into sex-specific mating actions. This review provides an overview of the latest discoveries on estrogen-responsive neurons in various brain regions and the associated neural circuits that govern different aspects of male and female mating actions in mice. By contextualizing these findings within previous knockout studies of estrogen receptors, we emphasize the emerging field of "circuit genetics", where identifying mating behavior-related neural circuits may allow for a more precise evaluation of gene functions within these circuits. Such investigations will enable a deeper understanding of how hormone fluctuation, acting through estrogen receptors and downstream genes, influences the connectivity and activity of neural circuits, ultimately impacting the manifestation of innate mating actions.
Collapse
Affiliation(s)
- Zi-Xian Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Zha
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China.
| |
Collapse
|
9
|
Fukumitsu K, Huang AJ, McHugh TJ, Kuroda KO. Role of Calcr expressing neurons in the medial amygdala in social contact among females. Mol Brain 2023; 16:10. [PMID: 36658598 PMCID: PMC9850531 DOI: 10.1186/s13041-023-00993-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Social animals become stressed upon social isolation, proactively engaging in affiliative contacts among conspecifics after resocialization. We have previously reported that calcitonin receptor (Calcr) expressing neurons in the central part of the medial preoptic area (cMPOA) mediate contact-seeking behaviors in female mice. Calcr neurons in the posterodorsal part of the medial amygdala (MeApd) are also activated by resocialization, however their role in social affiliation is still unclear. Here we first investigated the functional characteristics of MeApd Calcr + cells; these neurons are GABAergic and show female-biased Calcr expression. Next, using an adeno-associated virus vector expressing a short hairpin RNA targeting Calcr we aimed to identify its molecular role in the MeApd. Inhibiting Calcr expression in the MeApd increased social contacts during resocialization without affecting locomotor activity, suggesting that the endogenous Calcr signaling in the MeApd suppresses social contacts. These results demonstrate the distinct roles of Calcr in the cMPOA and MeApd for regulating social affiliation.
Collapse
Affiliation(s)
- Kansai Fukumitsu
- grid.474690.8Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Hirosawa 2-1, Wakoshi, Saitama 351-0198 Japan
| | - Arthur J. Huang
- grid.474690.8Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama 351-0198 Japan
| | - Thomas J. McHugh
- grid.474690.8Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama 351-0198 Japan
| | - Kumi O. Kuroda
- grid.474690.8Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Hirosawa 2-1, Wakoshi, Saitama 351-0198 Japan
| |
Collapse
|
10
|
Fisher DW, Dunn JT, Keszycki R, Rodriguez G, Bennett DA, Wilson RS, Dong H. Unique Transcriptional Signatures Correlate with Behavioral and Psychological Symptom Domains in Alzheimer's Disease. RESEARCH SQUARE 2023:rs.3.rs-2444391. [PMID: 36711772 PMCID: PMC9882691 DOI: 10.21203/rs.3.rs-2444391/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Despite the significant burden, cost, and worse prognosis of Alzheimer's disease (AD) with behavioral and psychological symptoms of dementia (BPSD), little is known about the molecular causes of these symptoms. Using antemortem assessments of BPSD in AD, we demonstrate that individual BPSD can be grouped into 4 domain factors in our sample: affective, apathy, agitation, and psychosis. Then, we performed a transcriptome-wide analysis for each domain utilizing bulk RNA-seq of post-mortem anterior cingulate cortex (ACC) tissue. Though all 4 domains are associated with a predominantly downregulated pattern of hundreds of differentially expressed genes (DEGs), most DEGs are unique to each domain, with only 22 DEGs being common to all BPSD domains, including TIMP1. Weighted gene co-expression network analysis (WGCNA) yielded multiple transcriptional modules that were shared between BPSD domains or unique to each domain, and NetDecoder was used to analyze context-dependent information flow through the biological network. For the agitation domain, we found that all DEGs and a highly correlated transcriptional module were functionally enriched for ECM-related genes including TIMP1, TAGLN, and FLNA. Another unique transcriptional module also associated with the agitation domain was enriched with genes involved in post-synaptic signaling, including DRD1, PDE1B, CAMK4, and GABRA4. By comparing context-dependent changes in DEGs between cases and control networks, ESR1 and PARK2 were implicated as two high impact genes associated with agitation that mediated significant information flow through the biological network. Overall, our work establishes unique targets for future study of the biological mechanisms of BPSD and resultant drug development.
Collapse
Affiliation(s)
- Daniel W. Fisher
- Department of Psychiatry and Behavioral Sciences,
Northwestern University Feinberg School of Medicine
- Department of Psychiatry and Behavioral Sciences,
University of Washington School of Medicine
| | - Jeffrey T. Dunn
- Department of Psychiatry and Behavioral Sciences,
Northwestern University Feinberg School of Medicine
| | - Rachel Keszycki
- Department of Psychiatry and Behavioral Sciences,
Northwestern University Feinberg School of Medicine
- Mesulam Center for Cognitive Neurology and
Alzheimer’s Disease, Northwestern University Feinberg School of
Medicine
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences,
Northwestern University Feinberg School of Medicine
| | | | | | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences,
Northwestern University Feinberg School of Medicine
| |
Collapse
|
11
|
Lana LC, Hatsukano T, Sano K, Nakata M, Ogawa S. Sex and age differences in the distribution of estrogen receptors in mice. Neurosci Lett 2023; 793:136973. [PMID: 36414134 DOI: 10.1016/j.neulet.2022.136973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Estrogen receptors (ERα and ERβ) are crucial for the regulation of socio-sexual behaviors and the organization of sex-specific neural networks in the developing brain. However, how the distribution patterns of ERα and ERβ change throughout life is unclear. Using genetically modified ERβ-RFPtg mice, we investigated the distribution of ERα, ERβ, and their colocalization in the ventromedial nucleus of the hypothalamus (VMH), anteroventral periventricular nucleus (AVPV), and bed nucleus of stria terminalis (BNST) from postnatal days (PD) 0 to 56. ERα expression was higher in females that showed an increase after PD14 in all brain regions, whereas ERβ-RFP expression pattern was markedly different among the regions. In the VMH, ERβ-RFP was highly expressed on PD0 and PD7 but decreased drastically to very low expression afterward in both sexes. In contrast, ERβ-RFP expression was higher in females compared to males in the AVPV but lower in the BNST throughout life especially late- and post-pubertal periods. Our results demonstrating that ERα and ERβ-RFP expression changed in a sex-, age- and region-specific manner contribute to further clarification of the mechanisms underlying estrogen-dependent organization of the brain in both sexes.
Collapse
Affiliation(s)
- Larissa Campista Lana
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tetsu Hatsukano
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuhiro Sano
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mariko Nakata
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
12
|
Trouillet AC, Ducroq S, Naulé L, Capela D, Parmentier C, Radovick S, Hardin-Pouzet H, Mhaouty-Kodja S. Deletion of neural estrogen receptor alpha induces sex differential effects on reproductive behavior in mice. Commun Biol 2022; 5:383. [PMID: 35444217 PMCID: PMC9021208 DOI: 10.1038/s42003-022-03324-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Estrogen receptor (ER) α is involved in several estrogen-modulated neural and peripheral functions. To determine its role in the expression of female and male reproductive behavior, a mouse line lacking the ERα in the nervous system was generated. Mutant females did not exhibit sexual behavior despite normal olfactory preference, and had a reduced number of progesterone receptor-immunoreactive neurons in the ventromedial hypothalamus. Mutant males displayed a moderately impaired sexual behavior and unaffected fertility, despite evidences of altered organization of sexually dimorphic populations in the preoptic area. In comparison, males deleted for both neural ERα and androgen receptor (AR) displayed greater sexual deficiencies. Thus, these data highlight a predominant role for neural ERα in females and a complementary role with the AR in males in the regulation of sexual behavior, and provide a solid background for future analyses of neuronal versus glial implication of these signaling pathways in both sexes. Neural deletion of the estrogen receptor, ERα, inhibits sexual behavior in female mice, but only has moderately effect in male mice. These results contrast with previous studies using global ERα knockouts, which found that ERα is mandatory for reproductive behavior in both sexes.
Collapse
Affiliation(s)
- Anne-Charlotte Trouillet
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Suzanne Ducroq
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Lydie Naulé
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Daphné Capela
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Caroline Parmentier
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Sally Radovick
- Unit of Pediatric Endocrinology, Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Hélène Hardin-Pouzet
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France.
| |
Collapse
|
13
|
John SR, Dagash W, Mohapatra AN, Netser S, Wagner S. Distinct dynamics of theta and gamma rhythmicity during social interaction suggest differential mode of action in the medial amygdala of SD rats and C57BL/6J mice. Neuroscience 2022; 493:69-80. [DOI: 10.1016/j.neuroscience.2022.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
|
14
|
Fukui K, Sato K, Murakawa S, Minami M, Amano T. Estrogen signaling modulates behavioral selection toward pups and amygdalohippocampal area in the rhomboid nucleus of the bed nucleus of the stria terminalis circuit. Neuropharmacology 2022; 204:108879. [PMID: 34785164 DOI: 10.1016/j.neuropharm.2021.108879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023]
Abstract
Gonadal steroid hormone influences behavioral choice of adult animals toward pups, parental or aggressive. We previously reported that long-term administration of 17β-estradiol (E2) to male mice during sexual maturation induces aggressive behavior toward conspecific pups, which is called "infanticide," and significantly enhanced excitatory synaptic transmission in the rhomboid nucleus of bed nucleus of the stria terminalis (BSTrh), which is an important brain region for infanticide. However, it is unclear how estrogen receptor-dependent signaling after sexual maturity regulates neural circuits including the BSTrh. Here we revealed that E2 administration to gonadectomized mice in adulthood elicited infanticidal behavior and enhanced excitatory synaptic transmission in the BSTrh by increasing the probability of glutamate release from the presynaptic terminalis. Next, we performed whole-brain mapping of E2-sensitive brain regions projecting to the BSTrh and found that amygdalohippocampal area (AHi) neurons that project to the BSTrh densely express estrogen receptor 1 (Esr1). Moreover, E2 treatment enhanced synaptic connectivity in the AHi-BSTrh pathway. Together, these results suggest that reinforcement of excitatory inputs from AHi neurons into the BSTrh by estrogen receptor-dependent signaling may contribute to the expression of infanticide.
Collapse
Affiliation(s)
- Kiyoshiro Fukui
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-0812, Japan
| | - Keiichiro Sato
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-0812, Japan
| | - Shunsaku Murakawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-0812, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-0812, Japan
| | - Taiju Amano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-0812, Japan.
| |
Collapse
|
15
|
Vaudry H, Ubuka T, Soma KK, Tsutsui K. Editorial: Recent Progress and Perspectives in Neurosteroid Research. Front Endocrinol (Lausanne) 2022; 13:951990. [PMID: 35966056 PMCID: PMC9365233 DOI: 10.3389/fendo.2022.951990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hubert Vaudry
- Université de Rouen Normandie, Mont-Saint-Aignan, France
- *Correspondence: Hubert Vaudry,
| | | | - Kiran K. Soma
- University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
16
|
Zha X, Xu XH. Neural circuit mechanisms that govern inter-male attack in mice. Cell Mol Life Sci 2021; 78:7289-7307. [PMID: 34687319 PMCID: PMC11072497 DOI: 10.1007/s00018-021-03956-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Individuals of many species fight with conspecifics to gain access to or defend critical resources essential for survival and reproduction. Such intraspecific fighting is evolutionarily selected for in a species-, sex-, and environment-dependent manner when the value of resources secured exceeds the cost of fighting. One such example is males fighting for chances to mate with females. Recent advances in new tools open up ways to dissect the detailed neural circuit mechanisms that govern intraspecific, particularly inter-male, aggression in the model organism Mus musculus (house mouse). By targeting and functional manipulating genetically defined populations of neurons and their projections, these studies reveal a core neural circuit that controls the display of reactive male-male attacks in mice, from sensory detection to decision making and action selection. Here, we summarize these critical results. We then describe various modulatory inputs that route into the core circuit to afford state-dependent and top-down modulation of inter-male attacks. While reviewing these exciting developments, we note that how the inter-male attack circuit converges or diverges with neural circuits that mediate other forms of social interactions remain not fully understood. Finally, we emphasize the importance of combining circuit, pharmacological, and genetic analysis when studying the neural control of aggression in the future.
Collapse
Affiliation(s)
- Xi Zha
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
17
|
Yamaguchi T. Neural circuit mechanisms of sex and fighting in male mice. Neurosci Res 2021; 174:1-8. [PMID: 34175319 DOI: 10.1016/j.neures.2021.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Surviving in the animal kingdom hinges on the ability to fight competitors and to mate with partners. Dedicated neural circuits in the brain allow animals to mate and attack without any prior experience. Classical lesioning and stimulation studies demonstrated that medial hypothalamic and limbic areas are crucial for male sexual and aggressive behaviors. Moreover, recent functional manipulation tools have uncovered neural circuits critical for mating and aggression, and optical and electrophysiological recordings have revealed how socially relevant information (e.g. sex-specific sensory signals, action commands for specific behaviors, mating- and aggression-specific motivational states) is encoded in these circuits. A better understanding of the neural mechanisms of innate social behaviors will provide critical insights to how complex behavioral outputs are coordinated at the circuit level. In this paper, I review these recent studies and discuss the potential circuit logic of male sexual and aggressive behaviors in mice.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, United States.
| |
Collapse
|
18
|
Tsuneoka Y, Funato H. Cellular Composition of the Preoptic Area Regulating Sleep, Parental, and Sexual Behavior. Front Neurosci 2021; 15:649159. [PMID: 33867927 PMCID: PMC8044373 DOI: 10.3389/fnins.2021.649159] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
The preoptic area (POA) has long been recognized as a sleep center, first proposed by von Economo. The POA, especially the medial POA (MPOA), is also involved in the regulation of various innate functions such as sexual and parental behaviors. Consistent with its many roles, the MPOA is composed of subregions that are identified by different gene and protein expressions. This review addresses the current understanding of the molecular and cellular architecture of POA neurons in relation to sleep and reproductive behavior. Optogenetic and pharmacogenetic studies have revealed a diverse group of neurons within the POA that exhibit different neural activity patterns depending on vigilance states and whose activity can enhance or suppress wake, non-rapid eye movement (NREM) sleep, or rapid eye movement (REM) sleep. These sleep-regulating neurons are not restricted to the ventrolateral POA (VLPO) region but are widespread in the lateral MPOA and LPOA as well. Neurons expressing galanin also express gonadal steroid receptors and regulate motivational aspects of reproductive behaviors. Moxd1, a novel marker of sexually dimorphic nuclei (SDN), visualizes the SDN of the POA (SDN-POA). The role of the POA in sleep and other innate behaviors has been addressed separately; more integrated observation will be necessary to obtain physiologically relevant insight that penetrates the different dimensions of animal behavior.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
19
|
Androgen Affects the Inhibitory Avoidance Memory by Primarily Acting on Androgen Receptor in the Brain in Adolescent Male Rats. Brain Sci 2021; 11:brainsci11020239. [PMID: 33672867 PMCID: PMC7918178 DOI: 10.3390/brainsci11020239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Adolescence is the critical postnatal stage for the action of androgen in multiple brain regions. Androgens can regulate the learning/memory functions in the brain. It is known that the inhibitory avoidance test can evaluate emotional memory and is believed to be dependent largely on the amygdala and hippocampus. However, the effects of androgen on inhibitory avoidance memory have never been reported in adolescent male rats. In the present study, the effects of androgen on inhibitory avoidance memory and on androgen receptor (AR)-immunoreactivity in the amygdala and hippocampus were studied using behavioral analysis, Western blotting and immunohistochemistry in sham-operated, orchiectomized, orchiectomized + testosterone or orchiectomized + dihydrotestosterone-administered male adolescent rats. Orchiectomized rats showed significantly reduced time spent in the illuminated box after 30 min (test 1) or 24 h (test 2) of electrical foot-shock (training) and reduced AR-immunoreactivity in amygdala/hippocampal cornu Ammonis (CA1) in comparison to those in sham-operated rats. Treatment of orchiectomized rats with either non-aromatizable dihydrotestosterone or aromatizable testosterone were successfully reinstated these effects. Application of flutamide (AR-antagonist) in intact adolescent rats exhibited identical changes to those in orchiectomized rats. These suggest that androgens enhance the inhibitory avoidance memory plausibly by binding with AR in the amygdala and hippocampus.
Collapse
|
20
|
Kwon E, Jo YH. Activation of the ARC POMC→MeA Projection Reduces Food Intake. Front Neural Circuits 2020; 14:595783. [PMID: 33250721 PMCID: PMC7674918 DOI: 10.3389/fncir.2020.595783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/09/2020] [Indexed: 02/05/2023] Open
Abstract
Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) plays an essential role in the control of food intake and energy expenditure. Melanocortin-4 receptors (MC4Rs) are expressed in key areas that are implicated in regulating energy homeostasis. Although the importance of MC4Rs in the paraventricular hypothalamus (PVH) has been well documented, the role of MC4Rs in the medial amygdala (MeA) on feeding remains controversial. In this study, we specifically examine the role of a novel ARCPOMC→MeA neural circuit in the regulation of short-term food intake. To map a local melanocortinergic neural circuit, we use monosynaptic anterograde as well as retrograde viral tracers and perform double immunohistochemistry to determine the identity of the neurons receiving synaptic input from POMC neurons in the ARC. To investigate the role of the ARCPOMC→MeA projection on feeding, we optogenetically stimulate channelrhodopsin-2 (ChR2)-expressing POMC fibers in the MeA. Anterograde viral tracing studies reveal that ARC POMC neurons send axonal projections to estrogen receptor-α (ER-α)- and MC4R-expressing neurons in the MeA. Retrograde viral tracing experiments show that the neurons projecting to the MeA is located mainly in the lateral part of the ARC. Optogenetic stimulation of the ARCPOMC→MeA pathway reduces short-term food intake. This anorectic effect is blocked by treatment with the MC4R antagonist SHU9119. In addition to the melanocortinergic local circuits within the hypothalamus, this extrahypothalamic ARCPOMC→MeA neural circuit would play a role in regulating short-term food intake.
Collapse
Affiliation(s)
- Eunjin Kwon
- The Fleischer Institute for Diabetes and Metabolism, Bronx, NY, United States
- Division of Endocrinology, Department of Medicine, Bronx, NY, United States
| | - Young-Hwan Jo
- The Fleischer Institute for Diabetes and Metabolism, Bronx, NY, United States
- Division of Endocrinology, Department of Medicine, Bronx, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
21
|
Tsukahara S, Morishita M. Sexually Dimorphic Formation of the Preoptic Area and the Bed Nucleus of the Stria Terminalis by Neuroestrogens. Front Neurosci 2020; 14:797. [PMID: 32848568 PMCID: PMC7403479 DOI: 10.3389/fnins.2020.00797] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023] Open
Abstract
Testicular androgens during the perinatal period play an important role in the sexual differentiation of the brain of rodents. Testicular androgens transported into the brain act via androgen receptors or are the substrate of aromatase, which synthesizes neuroestrogens that act via estrogen receptors. The latter that occurs in the perinatal period significantly contributes to the sexual differentiation of the brain. The preoptic area (POA) and the bed nucleus of the stria terminalis (BNST) are sexually dimorphic brain regions that are involved in the regulation of sex-specific social behaviors and the reproductive neuroendocrine system. Here, we discuss how neuroestrogens of testicular origin act in the perinatal period to organize the sexually dimorphic structures of the POA and BNST. Accumulating data from rodent studies suggest that neuroestrogens induce the sex differences in glial and immune cells, which play an important role in the sexually dimorphic formation of the dendritic synapse patterning in the POA, and induce the sex differences in the cell number of specific neuronal cell groups in the POA and BNST, which may be established by controlling the number of cells dying by apoptosis or the phenotypic organization of living cells. Testicular androgens in the peripubertal period also contribute to the sexual differentiation of the POA and BNST, and thus their aromatization to estrogens may be unnecessary. Additionally, we discuss the notion that testicular androgens that do not aromatize to estrogens can also induce significant effects on the sexually dimorphic formation of the POA and BNST.
Collapse
Affiliation(s)
- Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Masahiro Morishita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
22
|
Sagoshi S, Maejima S, Morishita M, Takenawa S, Otubo A, Takanami K, Sakamoto T, Sakamoto H, Tsukahara S, Ogawa S. Detection and Characterization of Estrogen Receptor Beta Expression in the Brain with Newly Developed Transgenic Mice. Neuroscience 2020; 438:182-197. [PMID: 32387645 DOI: 10.1016/j.neuroscience.2020.04.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Two types of nuclear estrogen receptors, ERα and ERβ, have been shown to be differentially involved in the regulation of various types of behaviors. Due to a lack of tools for identifying ERβ expression, detailed anatomical distribution and neurochemical characteristics of ERβ expressing cells and cellular co-expression with ERα remain unclear. We have generated transgenic mice ERβ-RFPtg, in which RFP was inserted downstream of ERβ BAC promotor. We verified RFP signals as ERβ by confirming: (1) high ERβ mRNA levels in RFP-expressing cells collected by fluorescence-activated cell sorting; and (2) co-localization of ERβ mRNA and RFP proteins in the paraventricular nucleus (PVN). Strong ERβ-RFP signals were found in the PVN, medial preoptic area (MPOA), bed nucleus of the stria terminalis, medial amygdala (MeA), and dorsal raphe nucleus (DRN). In the MPOA and MeA, three types of cell populations were identified; those expressing both ERα and ERβ, and those expressing exclusively either ERα or ERβ. The majority of PVN and DRN cells expressed only ERβ-RFP. Further, ERβ-RFP positive cells co-expressed oxytocin in the PVN, and tryptophan hydroxylase 2 and progesterone receptors in the DRN. In the MeA, some ERβ-RFP positive cells co-expressed oxytocin receptors. These findings collectively suggest that ERβ-RFPtg mice can be a powerful tool for future studies on ERβ function in the estrogenic regulation of social behaviors.
Collapse
Affiliation(s)
- Shoko Sagoshi
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Sho Maejima
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Masahiro Morishita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Satoshi Takenawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Akito Otubo
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Setouchi, Okayama 701-4303, Japan
| | - Keiko Takanami
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Setouchi, Okayama 701-4303, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Setouchi, Okayama 701-4303, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Setouchi, Okayama 701-4303, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
23
|
Islam MN, Sakimoto Y, Jahan MR, Ishida M, Tarif AMM, Nozaki K, Masumoto KH, Yanai A, Mitsushima D, Shinoda K. Androgen Affects the Dynamics of Intrinsic Plasticity of Pyramidal Neurons in the CA1 Hippocampal Subfield in Adolescent Male Rats. Neuroscience 2020; 440:15-29. [PMID: 32450298 DOI: 10.1016/j.neuroscience.2020.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Androgen receptor (AR) is abundantly expressed in the preoptico-hypothalamic area, bed nucleus of stria terminalis, and medial amygdala of the brain where androgen plays an important role in regulating male sociosexual, emotional and aggressive behaviors. In addition to these brain regions, AR is also highly expressed in the hippocampus, suggesting that the hippocampus is another major target of androgenic modulation. It is known that androgen can modulate synaptic plasticity in the CA1 hippocampal subfield. However, to date, the effects of androgen on the intrinsic plasticity of hippocampal neurons have not been clearly elucidated. In this study, the effects of androgen on the expression of AR in the hippocampus and on the dynamics of intrinsic plasticity of CA1 pyramidal neurons were examined using immunohistochemistry, Western blotting and whole-cell current-clamp recording in unoperated, sham-operated, orchiectomized (OCX), OCX + testosterone (T) or OCX + dihydrotestosterone (DHT)-primed adolescent male rats. Orchiectomy significantly decreased AR-immunoreactivity, resting membrane potential, action potential numbers, afterhyperpolarization amplitude and membrane resistance, whereas it significantly increased action potential threshold and membrane capacitance. These effects were successfully reversed by treatment with either aromatizable androgen T or non-aromatizable androgen DHT. Furthermore, administration of the AR-antagonist flutamide in intact rats showed similar changes to those in OCX rats, suggesting that androgens affect the excitability of CA1 pyramidal neurons possibly by acting on the AR. Our current study potentially clarifies the role of androgen in enhancing the basal excitability of the CA1 pyramidal neurons, which may influence selective neuronal excitation/activation to modulate certain hippocampal functions.
Collapse
Affiliation(s)
- Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Yuya Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Mir Rubayet Jahan
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan; Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mako Ishida
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Abu Md Mamun Tarif
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Kanako Nozaki
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Koh-Hei Masumoto
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Akie Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan; Department of Basic Laboratory Sciences, Faculty of Medicine and Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Dai Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan.
| |
Collapse
|
24
|
Beking T, Burke SM, Geuze RH, Staphorsius AS, Bakker J, Groothuis AGG, Kreukels BPC. Testosterone effects on functional amygdala lateralization: A study in adolescent transgender boys and cisgender boys and girls. Psychoneuroendocrinology 2020; 111:104461. [PMID: 31630051 DOI: 10.1016/j.psyneuen.2019.104461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023]
Abstract
The influence of testosterone on the development of human brain lateralization has been subject of debate for a long time, partly because studies investigating this are necessarily mostly correlational. In the present study we used a quasi-experimental approach by assessing functional brain lateralization in trans boys (female sex assigned at birth, diagnosed with Gender Dysphoria, n = 21) before and after testosterone treatment, and compared these results to the functional lateralization of age-matched control groups of cisgender boys (n = 20) and girls (n = 21) around 16 years of age. The lateralization index of the amygdala was determined with functional magnetic resonance imaging (fMRI) during an emotional face matching task with angry and fearful faces, as the literature indicates that boys show more activation in the right amygdala than girls during the perception of emotional faces. As expected, the lateralization index in trans boys shifted towards the right amygdala after testosterone treatment, and the cumulative dose of testosterone treatment correlated significantly with amygdala lateralization after treatment. However, we did not find any significant group differences in lateralization and endogenous testosterone concentrations predicted rightward amygdala lateralization only in the cis boys, but not in cis girls or trans boys. These inconsistencies may be due to sex differences in sensitivity to testosterone or its metabolites, which would be a worthwhile course for future studies.
Collapse
Affiliation(s)
- T Beking
- University of Groningen, Department Clinical & Developmental Neuropsychology. Grote Kruisstraat 2/1, 9712 TS, Groningen, the Netherlands.
| | - S M Burke
- Leiden University, Brain & Development Research Centre, Department of Developmental and Educational Psychology. Wassenaarseweg 52, 2333 AK, Leiden, the Netherlands.
| | - R H Geuze
- University of Groningen, Department Clinical & Developmental Neuropsychology. Grote Kruisstraat 2/1, 9712 TS, Groningen, the Netherlands.
| | - A S Staphorsius
- Amsterdam University Medical Centers, Location VU, Department of Internal Medicine, Center of Expertise on Gender Dysphoria. PO Box 7057, 1007 MB, Amsterdam, the Netherlands.
| | - J Bakker
- Liège University, GIGA Neurosciences, Avenue Hippocrate 15, B36, 4000, Liège, Belgium.
| | - A G G Groothuis
- University of Groningen, Groningen Institute for Evolutionary Life Sciences, Nijenborgh 7, 9747 AG, Groningen, the Netherlands.
| | - B P C Kreukels
- Amsterdam University Medical Centers, Location VU, Department of Medical Psychology, Center of Expertise on Gender Dysphoria, PO Box 7057, 1007 MB, Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Khbouz B, de Bournonville C, Court L, Taziaux M, Corona R, Arnal JF, Lenfant F, Cornil CA. Role for the membrane estrogen receptor alpha in the sexual differentiation of the brain. Eur J Neurosci 2019; 52:2627-2645. [PMID: 31833601 DOI: 10.1111/ejn.14646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/30/2019] [Accepted: 12/05/2019] [Indexed: 12/25/2022]
Abstract
Estrogens exert pleiotropic effects on multiple physiological and behavioral responses. Male and female sexual behavior in rodents constitutes some of the best-characterized responses activated by estrogens in adulthood and largely depend on ERα. Evidence exists that nucleus- and membrane-initiated estrogen signaling cooperate to orchestrate the activation of these behaviors both in short- and long-term. However, questions remain regarding the mechanism(s) and receptor(s) involved in the early brain programming during development to organize the circuits underlying sexually differentiated responses. Taking advantage of a mouse model harboring a mutation of the ERα palmitoylation site, which prevents membrane ERα signaling (mERα; ERα-C451A), this study investigated the role of mERα on the expression of male and female sexual behavior and neuronal populations that differ between sexes. The results revealed no genotype effect on the expression of female sexual behavior, while male sexual behavior was significantly reduced, but not abolished, in males homozygous for the mutation. Similarly, the number of kisspeptin- (Kp-ir) and calbindin-immunoreactive (Cb-ir) neurons in the anteroventral periventricular nucleus (AVPv) and the sexually dimorphic nucleus of the preoptic area (SDN-POA), respectively, were not different between genotypes in females. In contrast, homozygous males showed increased numbers of Kp-ir and decreased numbers of Cb-ir neurons compared to wild-types, thus leading to an intermediate phenotype between females and wild-type males. Importantly, females neonatally treated with estrogens exhibited the same neurochemical phenotype as their corresponding genotype among males. Together, these data provide evidence that mERα is involved in the perinatal programming of the male brain.
Collapse
Affiliation(s)
- Badr Khbouz
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | | | - Lucas Court
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | | | - Rebeca Corona
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Jean-François Arnal
- INSERM/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Françoise Lenfant
- INSERM/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | | |
Collapse
|
26
|
Ranjan A, Choubey M, Yada T, Krishna A. Immunohistochemical localization and possible functions of nesfatin-1 in the testis of mice during pubertal development and sexual maturation. J Mol Histol 2019; 50:533-549. [DOI: 10.1007/s10735-019-09846-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022]
|
27
|
Fukui K, Uki H, Minami M, Amano T. Effect of gonadal steroid hormone levels during pubertal development on social behavior of adult mice toward pups and synaptic transmission in the rhomboid nucleus of the bed nucleus of the stria terminalis. Neurosci Lett 2019; 708:134357. [PMID: 31260727 DOI: 10.1016/j.neulet.2019.134357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 11/25/2022]
Abstract
Sexually immature male mice exhibit parenting behavior toward unfamiliar pups; however, the percentage of males that engage in infanticidal behavior gradually increases with age. We previously reported that excitatory synaptic transmission of the rhomboid nucleus of the bed nucleus of the stria terminalis (BSTrh), a brain region implicated in infanticidal behavior, is reinforced during pubertal development. However, it remains unclear how gonadal steroid hormones mediate this behavioral transition and neural plastic change during pubertal development. Here we revealed that administration of either 17β-estradiol (E2) or 5α-dihydrotestosterone (DHT) to gonadectomized mice during pubertal development induced infanticidal behavior in adulthood (about 7 weeks old). Next, we performed whole-cell patch clamp recording in the BSTrh to study the effect of gonadal steroid hormones on neural synaptic transmission. We found that E2 but not DHT administration during pubertal development considerably enhanced excitatory synaptic transmission in the BSTrh by increasing the probability of excitatory neurotransmitter release from the presynaptic terminalis. These data suggest that reinforcement of excitatory synaptic transmission by estrogen-receptor-dependent signaling in the BSTrh during puberty may contribute to the development of infanticidal behavior.
Collapse
Affiliation(s)
- Kiyoshiro Fukui
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-081, Japan
| | - Haruka Uki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-081, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-081, Japan
| | - Taiju Amano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-081, Japan.
| |
Collapse
|
28
|
Chen P, Hong W. Neural Circuit Mechanisms of Social Behavior. Neuron 2019; 98:16-30. [PMID: 29621486 DOI: 10.1016/j.neuron.2018.02.026] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/11/2018] [Accepted: 02/26/2018] [Indexed: 12/31/2022]
Abstract
We live in a world that is largely socially constructed, and we are constantly involved in and fundamentally influenced by a broad array of complex social interactions. Social behaviors among conspecifics, either conflictive or cooperative, are exhibited by all sexually reproducing animal species and are essential for the health, survival, and reproduction of animals. Conversely, impairment in social function is a prominent feature of several neuropsychiatric disorders, such as autism spectrum disorders and schizophrenia. Despite the importance of social behaviors, many fundamental questions remain unanswered. How is social sensory information processed and integrated in the nervous system? How are different social behavioral decisions selected and modulated in brain circuits? Here we discuss conceptual issues and recent advances in our understanding of brain regions and neural circuit mechanisms underlying the regulation of social behaviors.
Collapse
Affiliation(s)
- Patrick Chen
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Weizhe Hong
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Hodges TE, Louth EL, Bailey CDC, McCormick CM. Adolescent social instability stress alters markers of synaptic plasticity and dendritic structure in the medial amygdala and lateral septum in male rats. Brain Struct Funct 2018; 224:643-659. [DOI: 10.1007/s00429-018-1789-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/03/2018] [Indexed: 10/27/2022]
|
30
|
Ogawa S, Tsukahara S, Choleris E, Vasudevan N. Estrogenic regulation of social behavior and sexually dimorphic brain formation. Neurosci Biobehav Rev 2018; 110:46-59. [PMID: 30392880 DOI: 10.1016/j.neubiorev.2018.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
It has long been known that the estrogen, 17β-estradiol (17β-E), plays a central role for female reproductive physiology and behavior. Numerous studies have established the neurochemical and molecular basis of estrogenic induction of female sexual behavior, i.e., lordosis, in animal models. In addition, 17β-E also regulates male-type sexual and aggressive behavior. In males, testosterone secreted from the testes is irreversibly aromatized to 17β-E in the brain. We discuss the contribution of two nuclear receptor isoforms, estrogen receptor (ER)α and ERβ to the estrogenic regulation of sexually dimorphic brain formation and sex-typical expression of these social behaviors. Furthermore, 17β-E is a key player for social behaviors such as social investigation, preference, recognition and memory as well as anxiety-related behaviors in social contexts. Recent studies also demonstrated that not only nuclear receptor-mediated genomic signaling but also membrane receptor-mediated non-genomic actions of 17β-E may underlie the regulation of these behaviors. Finally, we will discuss how rapidly developing research tools and ideas allow us to investigate estrogenic action by emphasizing behavioral neural networks.
Collapse
Affiliation(s)
- Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, WhiteKnights Campus, Reading, RG6 6AS, United Kingdom
| |
Collapse
|
31
|
Binder AM, Stiemsma LT, Keller K, van Otterdijk SD, Mericq V, Pereira A, Santos JL, Shepherd J, Michels KB. Inverse association between estrogen receptor-α DNA methylation and breast composition in adolescent Chilean girls. Clin Epigenetics 2018; 10:122. [PMID: 30286806 PMCID: PMC6172836 DOI: 10.1186/s13148-018-0553-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
Background Estrogen receptor-α (ER-α) is a transcriptional regulator, which mediates estrogen-dependent breast development, as well as breast tumorigenesis. The influence of epigenetic regulation of ER-α on adolescent breast composition has not been previously studied and could serve as a marker of pubertal health and susceptibility to breast cancer. We investigated the association between ER-α DNA methylation in leukocytes and breast composition in adolescent Chilean girls enrolled in the Growth and Obesity Cohort Study (GOCS) in Santiago, Chile. Breast composition (total breast volume (BV; cm3), fibroglandular volume (FGV; cm3), and percent fibroglandular volume (%FGV)) was measured at breast Tanner stage 4 (B4). ER-α promoter DNA methylation was assessed by pyrosequencing in blood samples collected at breast Tanner stages 2 (B2; n = 256) and B4 (n = 338). Results After adjusting for fat percentage at breast density measurement, ER-α methylation at B2, and cellular heterogeneity, we observed an inverse association between B4 average ER-α DNA methylation and BV and FGV. Geometric mean BV was 15% lower (95% CI: − 28%, − 1%) among girls in the highest quartile of B4 ER-α methylation (6.96–23.60%) relative to the lowest (0.78–3.37%). Similarly, FGV was 19% lower (95% CI: − 33%, − 2%) among girls in the highest quartile of B4 ER-α methylation relative to the lowest. The association between ER-α methylation and breast composition was not significantly modified by body fat percentage and was not influenced by pubertal timing. Conclusions These findings suggest that the methylation profile of ER-α may modulate adolescent response to estrogen and breast composition, which may influence breast cancer risk in adulthood. Electronic supplementary material The online version of this article (10.1186/s13148-018-0553-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, 90095, USA
| | - Leah T Stiemsma
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, 90095, USA
| | - Kristen Keller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, 90095, USA
| | - Sanne D van Otterdijk
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Verónica Mericq
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Ana Pereira
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - José L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - John Shepherd
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, 90095, USA.
| |
Collapse
|
32
|
Jardí F, Laurent MR, Dubois V, Kim N, Khalil R, Decallonne B, Vanderschueren D, Claessens F. Androgen and estrogen actions on male physical activity: a story beyond muscle. J Endocrinol 2018; 238:R31-R52. [PMID: 29743340 DOI: 10.1530/joe-18-0125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 12/15/2022]
Abstract
Physical inactivity is a pandemic that contributes to several chronic diseases and poses a significant burden on health care systems worldwide. The search for effective strategies to combat sedentary behavior has led to an intensification of the research efforts to unravel the biological substrate controlling activity. A wide body of preclinical evidence makes a strong case for sex steroids regulating physical activity in both genders, albeit the mechanisms implicated remain unclear. The beneficial effects of androgens on muscle as well as on other peripheral functions might play a role in favoring adaptation to exercise. Alternatively or in addition, sex steroids could act on specific brain circuitries to boost physical activity. This review critically discusses the evidence supporting a role for androgens and estrogens stimulating male physical activity, with special emphasis on the possible role of peripheral and/or central mechanisms. Finally, the potential translation of these findings to humans is briefly discussed.
Collapse
Affiliation(s)
- Ferran Jardí
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Michaël R Laurent
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Gerontology and GeriatricsDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Vanessa Dubois
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nari Kim
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Rougin Khalil
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Brigitte Decallonne
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Rosenfeld CS, Shay DA, Vieira-Potter VJ. Cognitive Effects of Aromatase and Possible Role in Memory Disorders. Front Endocrinol (Lausanne) 2018; 9:610. [PMID: 30386297 PMCID: PMC6199361 DOI: 10.3389/fendo.2018.00610] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
Diverse cognitive functions in many vertebrate species are influenced by local conversion of androgens to 17β-estradiol (E2) by aromatase. This enzyme is highly expressed in various brain regions across species, with some inter-species variation in terms of regional brain expression. Since women with breast cancer and men and women with other disorders are often treated with aromatase inhibitors (AI), these populations might be especially vulnerable to cognitive deficits due to low neuroE2 synthesis, i.e., synthesis of E2 directly within the brain. Animal models have been useful in deciphering aromatase effects on cognitive functions. Consequences of AI administration at various life cycle stages have been assessed on auditory, song processing, and spatial memory in birds and various aspects of cognition in rodent models. Additionally, cognitive deficits have been described in aromatase knockout (ArKO) mice that systemically lack this gene throughout their lifespan. This review will consider evidence to date that AI treatment in male and female rodent models, birds, and humans results in cognitive impairments. How brain aromatase regulates cognitive function throughout the lifespan, and gaps in current knowledge will be considered, along with future directions to better define how aromatase might guide learning and memory from early development through the geriatric period. Better understanding the importance of E2 synthesis on neurobehavioral responses at various ages will likely aid in the discovery of therapeutic strategies to prevent potential cognitive deficits, including Alzheimer's Disease, in individuals treated with AI or those possessing CYP19 gene polymorphisms, as well as cognitive effects of normal aging that may be related to changes in brain aromatase activity.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States
- Biomedical Sciences, University of Missouri, Columbia, MO, United States
- *Correspondence: Cheryl S. Rosenfeld
| | - Dusti A. Shay
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Victoria J. Vieira-Potter
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Victoria J. Vieira-Potter
| |
Collapse
|
34
|
Wu MV, Tollkuhn J. Estrogen receptor alpha is required in GABAergic, but not glutamatergic, neurons to masculinize behavior. Horm Behav 2017; 95:3-12. [PMID: 28734725 PMCID: PMC7011612 DOI: 10.1016/j.yhbeh.2017.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/05/2017] [Accepted: 07/04/2017] [Indexed: 01/06/2023]
Abstract
Masculinization of the altricial rodent brain is driven by estrogen signaling during a perinatal critical period. Genetic deletion of estrogen receptor alpha (Esr1/ERα) results in altered hypothalamic-pituitary-gonadal (HPG) axis signaling and a dramatic reduction of male sexual and territorial behaviors. However, the role of ERα in masculinizing distinct classes of neurons remains unexplored. We deleted ERα in excitatory or inhibitory neurons using either a Vglut2 or Vgat driver and assessed male behaviors. We find that Vglut2-Cre;Esr1lox/lox mutant males lack ERα in the ventrolateral region of the ventromedial hypothalamus (VMHvl) and posterior ventral portion of the medial amygdala (MePV). These mutants recapitulate the increased serum testosterone levels seen with constitutive ERα deletion, but have none of the behavioral deficits. In contrast, Vgat-Cre;Esr1lox/lox males with substantial ERα deletion in inhibitory neurons, including those of the principal nucleus of the bed nucleus of the stria terminalis (BNSTpr), posterior dorsal MeA (MePD), and medial preoptic area (MPOA) have normal testosterone levels, but display alterations in mating and territorial behaviors. These mutants also show dysmasculinized expression of androgen receptor (AR) and estrogen receptor beta (Esr2). Our results demonstrate that ERα masculinizes GABAergic neurons that gate the display of male-typical behaviors.
Collapse
Affiliation(s)
- Melody V Wu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
35
|
Tsuneoka Y, Yoshida S, Takase K, Oda S, Kuroda M, Funato H. Neurotransmitters and neuropeptides in gonadal steroid receptor-expressing cells in medial preoptic area subregions of the male mouse. Sci Rep 2017; 7:9809. [PMID: 28852050 PMCID: PMC5575033 DOI: 10.1038/s41598-017-10213-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/07/2017] [Indexed: 11/09/2022] Open
Abstract
Testosterone is involved in male sexual, parental and aggressive behaviors through the androgen receptor (AR) and estrogen receptor (ER) α expressed in the brain. Although several studies have demonstrated that ERα and AR in the medial preoptic area (MPOA) are required for exhibiting sexual and aggressive behaviors of male mice, the molecular characteristics of ERα- and AR-expressing cells in the mouse MPOA are largely unknown. Here, we performed in situ hybridization for neurotransmitters and neuropeptides, combined with immunohistochemistry for ERα and AR to quantitate and characterize gonadal steroid receptor-expressing cells in the MPOA subregions of male mice. Prodynorphin, preproenkephalin (Penk), cocaine- and amphetamine-related transcript, neurotensin, galanin, tachykinin (Tac)1, Tac2 and thyrotropin releasing hormone (Trh) have distinct expression patterns in the MPOA subregions. Gad67-expressing cells were the most dominant neuronal subtype among the ERα- and AR-expressing cells throughout the MPOA. The percentage of ERα- and AR-immunoreactivities varied depending on the neuronal subtype. A substantial proportion of the neurotensin-, galanin-, Tac2- and Penk-expressing cells in the MPOA were positive for ERα and AR, whereas the vast majority of the Trh-expressing cells were negative. These results suggest that testosterone exerts differential effects depending on both the neuronal subtypes and MPOA subregions.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Sachine Yoshida
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Kenkichi Takase
- Laboratory of Psychology, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Satoko Oda
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Masaru Kuroda
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan.
- International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
36
|
Rosinger ZJ, Jacobskind JS, Park SG, Justice NJ, Zuloaga DG. Distribution of corticotropin-releasing factor receptor 1 in the developing mouse forebrain: A novel sex difference revealed in the rostral periventricular hypothalamus. Neuroscience 2017; 361:167-178. [PMID: 28823817 DOI: 10.1016/j.neuroscience.2017.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/19/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022]
Abstract
Corticotropin-releasing factor (CRF) signaling through CRF receptor 1 (CRFR1) regulates autonomic, endocrine and behavioral responses to stress and has been implicated in the pathophysiology of several disorders including anxiety, depression, and addiction. Using a validated CRFR1 reporter mouse line (bacterial artificial chromosome identified by green fluorescence protein (BAC GFP-CRFR1)), we investigated the distribution of CRFR1 in the developing mouse forebrain. Distribution of CRFR1 was investigated at postnatal days (P) 0, 4, and 21 in male and female mice. CRFR1 increased with age in several regions including the medial amygdala, arcuate nucleus, paraventricular hypothalamus, medial septum, CA1 hippocampal area, and the lateral habenula. Regions showing decreased CRFR1 expression with increased age include the intermediate portion of the periventricular hypothalamic nucleus, and CA3 hippocampal area. We report a sexually dimorphic expression of CRFR1 within the rostral portion of the anteroventral periventricular nucleus of the hypothalamus (AVPV/PeN), a region known to regulate ovulation, reproductive and maternal behaviors. Females had a greater number of CRFR1-GFP-ir cells at all time points in the AVPV/PeN and CRFR1-GFP-ir was nearly absent in males by P21. Overall, alterations in CRFR1-GFP-ir distribution based on age and sex may contribute to observed age- and sex-dependent differences in stress regulation.
Collapse
Affiliation(s)
| | | | - Shannon G Park
- University at Albany, Department of Psychology, Albany, NY 12222, USA
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Damian G Zuloaga
- University at Albany, Department of Psychology, Albany, NY 12222, USA.
| |
Collapse
|
37
|
Piekarski DJ, Boivin JR, Wilbrecht L. Ovarian Hormones Organize the Maturation of Inhibitory Neurotransmission in the Frontal Cortex at Puberty Onset in Female Mice. Curr Biol 2017; 27:1735-1745.e3. [PMID: 28578932 PMCID: PMC5699709 DOI: 10.1016/j.cub.2017.05.027] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/03/2017] [Accepted: 05/08/2017] [Indexed: 01/02/2023]
Abstract
The frontal cortex matures late in development, showing dramatic changes after puberty onset, yet few experiments have directly tested the role of pubertal hormones in cortical maturation. One mechanism thought to play a primary role in regulating the maturation of the neocortex is an increase in inhibitory neurotransmission, which alters the balance of excitation and inhibition. We hypothesized that pubertal hormones could regulate maturation of the frontal cortex by this mechanism. Here, we report that manipulations of gonadal hormones do significantly alter the maturation of inhibitory neurotransmission in the cingulate region of the mouse medial frontal cortex, an associative region that matures during the pubertal transition and is implicated in decision making, learning, and psychopathology. We find that inhibitory neurotransmission, but not excitatory neurotransmission, increases onto cingulate pyramidal neurons during peri-pubertal development and that this increase can be blocked by pre-pubertal, but not post-pubertal, gonadectomy. We next used pre-pubertal hormone treatment to model early puberty onset, a phenomenon increasingly observed in girls living in developed nations. We find that pre-pubertal hormone treatment drives an early increase in inhibitory neurotransmission in the frontal cortex, but not the somatosensory cortex, suggesting that earlier puberty can advance cortical maturation in a regionally specific manner. Pre-pubertal hormone treatment also accelerates maturation of tonic inhibition and performance in a frontal-cortex-dependent reversal-learning task. These data provide rare evidence of enduring, organizational effects of ovarian hormones at puberty and provide a potential mechanism by which gonadal hormones could regulate the maturation of the associative neocortex.
Collapse
Affiliation(s)
- David J Piekarski
- Department of Psychology, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Josiah R Boivin
- Neuroscience Graduate Program, University of California, San Francisco, 1550 4(th) Street, San Francisco, CA 94158, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
38
|
McCormick CM, Cameron NM, Thompson MA, Cumming MJ, Hodges TE, Langett M. The sexual preference of female rats is influenced by males' adolescent social stress history and social status. Horm Behav 2017; 89:30-37. [PMID: 27956227 DOI: 10.1016/j.yhbeh.2016.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/21/2016] [Accepted: 12/06/2016] [Indexed: 01/26/2023]
Abstract
Ongoing development of brain systems for social behaviour renders these systems susceptible to the influence of stressors in adolescence. We previously found that adult male rats that underwent social instability stress (SS) in mid-adolescence had decreased sexual performance compared with control males (CTL). Here, we test the hypotheses that SS in adolescence decreases the "attractiveness" of male rats as sexual partners compared with CTL rats and that dominance status is a protective factor against the effects of SS. The main prediction was that females would spend more time with CTL males than SS males, and that this bias would be greater for submissive than for dominant rats. Among dominant pairs (n=16), females preferred SS males, spending more time with and visiting more often SS than CTL males (each pair tested 5×), and SS males had shorter latencies to ejaculation, shorter inter-ejaculation intervals, and made more ejaculations compared with CTL males. Among submissive pairs (n=16), females spent more time with, visited more often, and displayed more paracopulatory behaviour with CTL than with SS males, and differences in sexual performance between SS and CTL males were modest and in the opposite direction from that in dominant pairs. The heightened motivation of SS males relative to CTL males for natural rewards may have attenuated differences in sexual performance in a paced mating context. In sum, the experience of stress in adolescence leads to long-lasting changes in males that are perceptible to females, are moderated by social status, and influence sexual behaviour.
Collapse
Affiliation(s)
- Cheryl M McCormick
- Department of Psychology, Brock University, Canada; Centre for Neuroscience, Brock University, Canada.
| | - Nicole M Cameron
- Department of Psychology and Center for Developmental and Behavioral Neuroscience, Binghamton University, Canada
| | | | | | | | - Marissa Langett
- Department of Psychology and Center for Developmental and Behavioral Neuroscience, Binghamton University, Canada
| |
Collapse
|
39
|
Nutsch VL, Bell MR, Will RG, Yin W, Wolfe A, Gillette R, Dominguez JM, Gore AC. Aging and estradiol effects on gene expression in the medial preoptic area, bed nucleus of the stria terminalis, and posterodorsal medial amygdala of male rats. Mol Cell Endocrinol 2017; 442:153-164. [PMID: 28007657 PMCID: PMC5276730 DOI: 10.1016/j.mce.2016.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/17/2016] [Accepted: 12/18/2016] [Indexed: 12/27/2022]
Abstract
Studies on the role of hormones in male reproductive aging have traditionally focused on testosterone, but estradiol (E2) also plays important roles in the control of masculine physiology and behavior. Our goal was to examine the effects of E2 on the expression of genes selected for E2-sensitivity, involvement in behavioral neuroendocrine functions, and impairments with aging. Mature adult (MAT, 5 mo) and aged (AG, 18 mo) Sprague-Dawley male rats were castrated, implanted with either vehicle or E2 subcutaneous capsules, and euthanized one month later. Bilateral punches were taken from the bed nucleus of the stria terminalis (BnST), posterodorsal medial amygdala (MePD) and the preoptic area (POA). RNA was extracted, and expression of 48 genes analyzed by qPCR using Taqman low-density arrays. Results showed that effects of age and E2 were age- and region-specific. In the POA, 5 genes were increased with E2 compared to vehicle, and there were no age effects. By contrast the BnST showed primarily age-related changes, with 6 genes decreasing with age. The MePD had 5 genes that were higher in aged than mature males, and 17 genes with significant interactions between age and E2. Gene families identified in the MePD included nuclear hormone receptors, neurotransmitters and neuropeptides and their receptors. Ten serum hormones were assayed in these same males, with results revealing both age- and E2-effects, in several cases quite profound. These results support the idea that the male brain continues to be highly sensitive to estradiol even with aging, but the nature of the response can be substantially different in mature and aging animals.
Collapse
Affiliation(s)
- Victoria L Nutsch
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Margaret R Bell
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Ryan G Will
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Andrew Wolfe
- Johns Hopkins University School of Medicine, Baltimore, MD, 21298, USA
| | - Ross Gillette
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Juan M Dominguez
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Andrea C Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA; Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
40
|
Stephens SBZ, Kauffman AS. Regulation and Possible Functions of Kisspeptin in the Medial Amygdala. Front Endocrinol (Lausanne) 2017; 8:191. [PMID: 28824550 PMCID: PMC5545938 DOI: 10.3389/fendo.2017.00191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
Kisspeptin, encoded by the Kiss1 gene, is required for reproduction. Humans and mice lacking kisspeptin or its receptor, Kiss1r, have impairments in reproductive physiology and fertility. In addition to being located in the hypothalamus in the anteroventral periventricular and arcuate nuclei, kisspeptin neurons are also present in several extra-hypothalamic regions, such as the medial amygdala (MeA). However, while there has been a significant focus on the reproductive roles of hypothalamic kisspeptin neurons, the regulation and function(s) of MeA and other extra-hypothalamic kisspeptin neurons have received far less attention. This review summarizes what is currently known about the regulation, development, neural projections, and potential functions of MeA kisspeptin neurons, as well as kisspeptin signaling directly within the MeA, with emphasis on data gathered from rodent models. Recent data are summarized and compared between rodent species and also between males and females. In addition, critical gaps in knowledge and important future directions are discussed.
Collapse
Affiliation(s)
- Shannon B. Z. Stephens
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Alexander S. Kauffman
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Alexander S. Kauffman,
| |
Collapse
|
41
|
Effects of Prepubertal or Adult Site-Specific Knockdown of Estrogen Receptor β in the Medial Preoptic Area and Medial Amygdala on Social Behaviors in Male Mice. eNeuro 2016; 3:eN-NWR-0155-15. [PMID: 27066533 PMCID: PMC4819287 DOI: 10.1523/eneuro.0155-15.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 11/21/2022] Open
Abstract
Testosterone, after being converted to estradiol in the brain, acts on estrogen receptors (ERα and ERβ) and controls the expression of male-type social behavior. Previous studies in male mice have revealed that ERα expressed in the medial preoptic area (MPOA) and medial amygdala (MeA) are differently involved in the regulation of sexual and aggressive behaviors by testosterone action at the time of testing in adult and/or on brain masculinization process during pubertal period. However, a role played by ERβ in these brain regions still remains unclear. Here we examined the effects of site-specific knockdown of ERβ (βERKD) in the MPOA and MeA on male social behaviors with the use of adeno-associated viral mediated RNA interference methods in ICR/Jcl mice. Prepubertal βERKD in the MPOA revealed that continuous suppression of ERβ gene expression throughout the pubertal period and adulthood decreased aggressive but not sexual behavior tested as adults. Because βERKD in the MPOA only in adulthood did not affect either sexual or aggressive behaviors, it was concluded that pubertal ERβ in the MPOA might have an essential role for the full expression of aggressive behavior in adulthood. On the other hand, although neither prepubertal nor adult βERKD in the MeA had any effects on sexual and aggressive behavior, βERKD in adulthood disrupted sexual preference of receptive females over nonreceptive females. Collectively, these results suggest that ERβ in the MPOA and MeA are involved in the regulation of male sexual and aggressive behavior in a manner substantially different from that of ERα.
Collapse
|