1
|
Guerra‐García A, Balarynová J, Smykal P, von Wettberg EJ, Noble SD, Bett KE. Genetic and transcriptomic analysis of lentil seed imbibition and dormancy in relation to its domestication. THE PLANT GENOME 2025; 18:e70021. [PMID: 40164967 PMCID: PMC11958875 DOI: 10.1002/tpg2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
Seed dormancy is an adaptation that delays germination to prevent the start of this process during unsuitable conditions. It is crucial in wild species but its loss was selected during crop domestication to ensure a fast and uniform germination. Water uptake, or imbibition, is the first step of germination. In the Fabaceae family, seeds have physical dormancy, in which seed coats are impermeable to water. We used an interspecific cross between an elite lentil line (Lens culinaris) and a wild lentil (L. orientalis) to investigate the genetic basis of imbibition capacity through quantitative trait locus (QTL) mapping and by using RNA from embryos and seed coats at different development stages, and phenotypic data of seed coat thickness (SCT) and proportion of imbibed seeds (PIS). Both characteristics were consistent throughout different years and locations, suggesting a hereditary component. QTL results suggest that they are each controlled by relatively few loci. Differentially expressed genes (DEGs) within the QTL were considered candidate genes. Two glycosyl-hydrolase genes (a β-glucosidase and a β-galactosidase), which degrade complex polysaccharides in the cell wall, were found among the candidate genes, and one of them had a positive correlation (β-glucosidase) between gene expression and imbibition capacity, and the other gene (β-galactosidase) presented a negative correlation between gene expression and SCT.
Collapse
Affiliation(s)
- Azalea Guerra‐García
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV‐IPN)IrapuatoMéxico
| | | | - Petr Smykal
- Department of BotanyPalacký UniversityOlomoucCzech Republic
| | - Eric J von Wettberg
- Department of Agriculture, Landscape, and Environment, Gund Institute for the EnvironmentUniversity of VermontBurlingtonVermontUSA
| | - Scott D. Noble
- Department of Mechanical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Kirstin E. Bett
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
2
|
Yang G, Yang L, Shen S, Wang Y, Wang Y. Unraveling the Evolutionary Tales of Yunnanopilia longistaminea (Opiliaceae): Insights from Genetic Diversity, Climate Adaptation, and Conservation Strategies. PLANTS (BASEL, SWITZERLAND) 2025; 14:706. [PMID: 40094572 PMCID: PMC11901472 DOI: 10.3390/plants14050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
The evolutionary history of Yunnanopilia longistaminea, a vulnerable plant endemic to the Yuanjiang-Honghe River Valley in southwestern China, was investigated using cpDNA and nrDNA sequences along with ecological niche modeling. Understanding the genetic diversity and population structure of Y. longistaminea is crucial for developing effective conservation strategies and managing its genetic resources. This study comprehensively sampled 295 individuals from 16 populations, which represent the species' entire global distribution range, ensuring a thorough and representative analysis of its genetic diversity and population structure. The results revealed high genetic diversity and population structure, with significant genetic differentiation among populations. Specifically, the total nucleotide diversity was 2.40 × 10-3 for cpDNA and 1.51 × 10-3 for nrDNA, while the total haplotype diversity was 0.605 for cpDNA and 0.526 for nrDNA. The divergence time of ancestral haplotypes of Y. longistaminea was estimated to be around 2.19 million years ago based on nrDNA and 2.72 million years ago based on cpDNA. These divergence times are comparable to those of other ancient plant species, suggesting a long evolutionary history. The population size of Y. longistaminea was found to have significantly declined around 30,000 years ago. The current distribution model suggests that Y. longistaminea primarily inhabits the warm temperate zone of China, and the LGM distribution model predicts a concentration of the species in Yuanjiang-Honghe River Valley in southwestern China. This study concludes that the southwestern region of China may have served as a glacial refuge for Y. longistaminea. These findings suggest that establishing protected areas in these regions and creating gene banks for ex situ conservation could be effective strategies to preserve the genetic diversity of Y. longistaminea. Further research on its population dynamics and genetic adaptation to climate change is valuable for understanding the species' evolutionary history and conservation.
Collapse
Affiliation(s)
- Guansong Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China;
| | - Liu Yang
- College of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (L.Y.); (S.S.); (Y.W.)
| | - Shikang Shen
- College of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (L.Y.); (S.S.); (Y.W.)
| | - Yuehua Wang
- College of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (L.Y.); (S.S.); (Y.W.)
| | - Yuying Wang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
3
|
Kosma DK, Graça J, Molina I. Update on the structure and regulated biosynthesis of the apoplastic polymers cutin and suberin. PLANT PHYSIOLOGY 2025; 197:kiae653. [PMID: 39657911 DOI: 10.1093/plphys/kiae653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
The plant lipid polymers cutin and suberin play a critical role in many aspects of plant growth, development, and physiology. The mechanisms of cutin and suberin biosynthesis are relatively well understood thanks to just over 2 decades of work with primarily Arabidopsis (Arabidopsis thaliana) mutants. Recent advances in our understanding of cutin and suberin structure have arisen through the application of novel chemistries targeted at quantitative comprehension of intermolecular linkages, isolating intact suberins and cutins, and the application of advanced analytical techniques. The advent of high-throughput transcription factor binding assays and next-generation sequencing has facilitated the discovery of numerous cutin and suberin-regulating transcription factors and their gene promoter targets. Herein we provide an overview of aspects of cutin and suberin structure, biosynthesis, and transcriptional regulation of their synthesis highlighting recent developments in our understanding of these facets of cutin and suberin biology. We further identify outstanding questions in these respective areas and provide perspectives on how to advance the field to address these questions.
Collapse
Affiliation(s)
- Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89501, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV 89501, USA
| | - José Graça
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada P6A 2G4
| |
Collapse
|
4
|
Ye Q, Zhou C, Lin H, Luo D, Jain D, Chai M, Lu Z, Liu Z, Roy S, Dong J, Wang ZY, Wang T. Medicago2035: Genomes, functional genomics, and molecular breeding. MOLECULAR PLANT 2025; 18:219-244. [PMID: 39741417 DOI: 10.1016/j.molp.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025]
Abstract
Medicago, a genus in the Leguminosae or Fabaceae family, includes the most globally significant forage crops, notably alfalfa (Medicago sativa). Its close diploid relative Medicago truncatula serves as an exemplary model plant for investigating legume growth and development, as well as symbiosis with rhizobia. Over the past decade, advances in Medicago genomics have significantly deepened our understanding of the molecular regulatory mechanisms that underlie various traits. In this review, we comprehensively summarize research progress on Medicago genomics, growth and development (including compound leaf development, shoot branching, flowering time regulation, inflorescence development, floral organ development, and seed dormancy), resistance to abiotic and biotic stresses, and symbiotic nitrogen fixation with rhizobia, as well as molecular breeding. We propose avenues for molecular biology research on Medicago in the coming decade, highlighting those areas that have yet to be investigated or that remain ambiguous.
Collapse
Affiliation(s)
- Qinyi Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Dong Luo
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, China
| | - Divya Jain
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA
| | - Maofeng Chai
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhipeng Liu
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China.
| | - Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zeng-Yu Wang
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Wang Z, Liu Y, Huang H, Zheng Z, Lü S, Yang X, Ma C. Functional identification of two Glycerol-3-phosphate Acyltransferase5 homologs from Chenopodium quinoa. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112313. [PMID: 39521065 DOI: 10.1016/j.plantsci.2024.112313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Glycerol-3-phosphate acyltransferase5 (GPAT5) is the key enzyme in suberin biosynthesis in Arabidopsis, tomato and Sarracenia purpurea. However, little is known about whether GPAT5 function is conserved in halophytes. In this study, we identified two GPAT5 homologs, CqGPAT5a and CqGPAT5b, in Chenopodium quinoa, the typical halophyte. Using RT-qPCR, we found that CqGPAT5a and CqGPAT5b were highly expressed in quinoa roots and rapidly induced by high salt stress. CqGPAT5a and CqGPAT5b were localized to the endoplasmic reticulum and found to have glycerol-3-phosphate acyltransferase activity using yeast complementation assays. Compared with CqGPAT5b, CqGPAT5a showed relatively weaker function and less protein abundance when expressed in yeast, Arabidopsis or Nicotiana benthamiana. Subsequently, we identified a serine (S) to leucine (L) variation in the CqGPAT5a protein sequence (S251L) compared with CqGPAT5b, located in the connecting region between the second and third transmembrane domains. Site-directed mutagenesis together with yeast mutant complementation and transient expression in tobacco demonstrated that this variation significantly affected CqGPAT5a activity and protein abundance. These findings expand our understanding of GPAT5 and provide new evidence that GPAT5 may be functionally conserved in halophytes.
Collapse
Affiliation(s)
- Zhen Wang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yuxin Liu
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhifu Zheng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257000, China.
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250014, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257000, China.
| |
Collapse
|
6
|
Sun Y, Gong Y. Research advances on the hard seededness trait of soybean and the underlying regulatory mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1419962. [PMID: 38988633 PMCID: PMC11233808 DOI: 10.3389/fpls.2024.1419962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Soybean is one of the world's most economically significant crops and is widely utilized as an essential source of vegetable protein and edible oil. Cultivated soybean is domesticated from its annual counterpart, wild soybean, which is considered valuable germplasm for soybean breeding. However, wild soybean accessions generally produce seeds with impermeable coats, a trait known as hard seededness (HS), which is beneficial for long-term seed survival but is undesirable for the uniform water absorption and germination of seeds, thus limiting the utilization of wild soybeans in breeding. In addition, moderate HS can isolate the embryo from the surrounding environment and is thus beneficial for long-term seed storage and germplasm preservation. The HS trait is primarily associated with the structure and chemical composition of the seed coat. Moreover, its development is also influenced by various environmental conditions, such as water and temperature. Genetic analysis has revealed that HS of soybean is a complex quantitative trait controlled by multiple genes or minor quantitative trait loci (QTL), with many QTLs and several causal genes currently identified. Investigating the physiological and molecular mechanisms underlying this trait is crucial for soybean breeding, production, and food processing. For this article, the literature was reviewed and condensed to create a well-rounded picture of the current understanding of internal and external factors, QTLs, causal genes, and the regulatory mechanisms related to the HS of soybean, with the aim of providing reference for future research and utilization of this trait.
Collapse
Affiliation(s)
- Yongwang Sun
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Yujie Gong
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
7
|
Laosatit K, Amkul K, Lin Y, Yuan X, Chen X, Somta P. Two genes encoding caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1) are candidate genes for physical seed dormancy in cowpea (Vigna unguiculata (L.) Walp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:146. [PMID: 38834825 DOI: 10.1007/s00122-024-04653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
KEY MESSAGE The major QTL Sdp1.1+ controlling seed dormancy in cowpea was finely mapped, and two CCoAOMT1 genes were identified as candidate genes for the dormancy. Seed dormancy in wild cowpea may be useful in breeding cultivated cowpea with pre-harvest sprouting resistance. A previous study identified a major quantitative trait locus (QTL) for seed dormancy, Sdp1.1+ , using the population of the cross between cultivated cowpea 'JP81610' and wild cowpea 'JP89083.' However, the molecular basis of seed dormancy in cowpea is not yet known. In this study, we aimed to finely map the locus Sdp1.1+ and identify candidate gene(s) for it. Germination tests demonstrated that the seed coat is the major factor controlling seed dormancy in the wild cowpea JP89083. Microscopic observations revealed that wild cowpea seeds, unlike cultivated cowpea seeds, possessed a palisade cuticle layer. Fine mapping using a large F2 population of the cross JP81610 × JP89083 grown in Thailand revealed a single QTL, Sdp1.1+ , controlling seed dormancy. The Sdp1.1+ was confirmed using a small F2 population of the same cross grown in Japan. The Sdp1.1+ was mapped to a 37.34-Kb region containing three genes. Two closely linked genes, Vigun03g278900 (VuCCoAOMT1a) and Vigun03g290000 (VuCCoAOMT1b), located 4.844 Kb apart were considered as candidate genes for seed dormancy. The two genes encoded caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1). DNA sequencing and alignment of VuCCoAOMT1a and VuCCoAOMT1b between JP89083 and JP81610 revealed a single nucleotide polymorphism (SNP) causing an amino acid change in VuCCoAOMT1a and several SNPs leading to six amino acid changes in VuCCoAOMT1b. Altogether, these results indicate that VuCCoAOMT1a and VuCCoAOMT1b are candidate genes controlling physical seed dormancy in the wild cowpea JP89083.
Collapse
Affiliation(s)
- Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand.
| |
Collapse
|
8
|
Klčová B, Balarynová J, Trněný O, Krejčí P, Cechová MZ, Leonova T, Gorbach D, Frolova N, Kysil E, Orlova A, Ihling С, Frolov A, Bednář P, Smýkal P. Domestication has altered gene expression and secondary metabolites in pea seed coat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2269-2295. [PMID: 38578789 DOI: 10.1111/tpj.16734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/09/2024] [Indexed: 04/07/2024]
Abstract
The mature seed in legumes consists of an embryo and seed coat. In contrast to knowledge about the embryo, we know relatively little about the seed coat. We analyzed the gene expression during seed development using a panel of cultivated and wild pea genotypes. Gene co-expression analysis identified gene modules related to seed development, dormancy, and domestication. Oxidoreductase genes were found to be important components of developmental and domestication processes. Proteomic and metabolomic analysis revealed that domestication favored proteins involved in photosynthesis and protein metabolism at the expense of seed defense. Seed coats of wild peas were rich in cell wall-bound metabolites and the protective compounds predominated in their seed coats. Altogether, we have shown that domestication altered pea seed development and modified (mostly reduced) the transcripts along with the protein and metabolite composition of the seed coat, especially the content of the compounds involved in defense. We investigated dynamic profiles of selected identified phenolic and flavonoid metabolites across seed development. These compounds usually deteriorated the palatability and processing of the seeds. Our findings further provide resources to study secondary metabolism and strategies for improving the quality of legume seeds which comprise an important part of the human protein diet.
Collapse
Affiliation(s)
- Barbora Klčová
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| | - Jana Balarynová
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| | - Oldřich Trněný
- Agricultural Research Ltd., Zemědělská 1, Troubsko, 664 41, Czech Republic
| | - Petra Krejčí
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Monika Zajacová Cechová
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Daria Gorbach
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Nadezhda Frolova
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Elana Kysil
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Anastasia Orlova
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Сhristian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle (Saale), 06120, Germany
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Petr Bednář
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| |
Collapse
|
9
|
Wen Z, Lu X, Wen J, Wang Z, Chai M. Physical Seed Dormancy in Legumes: Molecular Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:1473. [PMID: 38891282 PMCID: PMC11174410 DOI: 10.3390/plants13111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Physical dormancy of seeds is a form of dormancy due to the presence of an impermeable seed coat layer, and it represents a feature for plants to adapt to environmental changes over an extended period of phylogenetic evolution. However, in agricultural practice, physical dormancy is problematic. because it prevents timely and uniform seed germination. Therefore, physical dormancy is an important agronomical trait to target in breeding and domestication, especially for many leguminous crops. Compared to the well-characterized physiological dormancy, research progress on physical dormancy at the molecular level has been limited until recent years, due to the lack of suitable research materials. This review focuses on the structure of seed coat, factors affecting physical dormancy, genes controlling physical dormancy, and plants suitable for studying physical dormancy at the molecular level. Our goal is to provide a plethora of information for further molecular research on physical dormancy.
Collapse
Affiliation(s)
- Zhaozhu Wen
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xuran Lu
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Zengyu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Maofeng Chai
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
10
|
Williams OR, Vander Schoor JK, Butler JB, Hecht VFG, Weller JL. Physical seed dormancy in pea is genetically separable from seed coat thickness and roughness. FRONTIERS IN PLANT SCIENCE 2024; 15:1359226. [PMID: 38476691 PMCID: PMC10927720 DOI: 10.3389/fpls.2024.1359226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Introduction The seeds of wild pea (Pisum) exhibit marked physical dormancy due to impermeability of the seed coat to water, and the loss of this dormancy is thought to have been critical for domestication. Wild pea seed coats are also notably thick and rough, traits that have also reduced during domestication and are anecdotally linked to increased permeability. However, how these traits specifically interact with permeability is unclear. Methods To investigate this, we examined the genetic control of differences in seed coat characteristics between wild P. sativum ssp. humile and a non-dormant domesticated P. s. sativum accession in a recombinant inbred population. QTL effects were confirmed and their locations refined in segregating F4/5 populations. Results In this population we found a moderate correlation between testa thickness and permeability, and identified loci that affect them independently, suggesting no close functional association. However, the major loci affecting both testa thickness and permeability collocated closely with Mendel's pigmentation locus A, suggesting flavonoid compounds under its control might contribute significantly to both traits. We also show that seed coat roughness is oligogenic in this population, with the major locus independent of both testa thickness and permeability, suggesting selection for smooth seed was unlikely to be due to effects on either of these traits. Discussion Results indicate loss of seed coat dormancy during domestication was not primarily driven by reduced testa thickness or smooth seededness. The close association between major permeability and thickness QTL and Mendel's 'A' warrant further study, particularly regarding the role of flavonoids.
Collapse
Affiliation(s)
- Owen R. Williams
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Jacqueline K. Vander Schoor
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Jakob B. Butler
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Tasmania, Hobart, TAS, Australia
| | | | - James L. Weller
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
11
|
Jaganathan GK, Harrison RJ. Decoding the decisive role of seed moisture content in physical dormancy break: filling the missing links. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:3-10. [PMID: 38031719 DOI: 10.1111/plb.13602] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Species producing seeds with a water-impermeable seed coat, i.e., physical dormancy (PY), dominate the dry tropical forests. Despite increasing interest and understanding of the germination ecology of a PY species, less is known about how PY break occurs, particularly what changes lead to the opening of the 'water gap'. Based on the moisture conent (MC) attained, two ranges of PY may exist: shallow PY, a state with higher MC and seeds could reverse to a permeable state when the relative humidity increases; and absolute PY, a completely dry state. Here, we demonstrate that this MC variation between seeds affects preconditioning and the 'water-gap' opening stages. A conceptual model developed shows a strong relationship between temperature and duration, with high temperature breaking PY in seconds, but seasonal temperature fluctuations and constant temperatures require a longer time. The duration required at any conditions to break PY is purported to depend on the hydrophobic bonds of the lipids, which are likely weakened during the preconditioning, and the amount of water influences hydrolysis, leading to the 'water-gap' opening. We argue that the moisture content of the seeds and its interaction with biochemical compounds are a possible explanation for why only a proportion of PY seeds become permeable to water each year. Nonetheless, empirical investigations must validate these notions.
Collapse
Affiliation(s)
- G K Jaganathan
- Germplasm Conservation Laboratory, University of Shanghai for Science and Technology, Shanghai, China
| | - R J Harrison
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
- Legume and Rhizobium Studies, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Jia P, Wang Y, Sharif R, Dong QL, Liu Y, Luan HA, Zhang XM, Guo SP, Qi GH. KNOTTED1-like homeobox (KNOX) transcription factors - Hubs in a plethora of networks: A review. Int J Biol Macromol 2023; 253:126878. [PMID: 37703987 DOI: 10.1016/j.ijbiomac.2023.126878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
KNOX (KNOTTED1-like HOMEOBOX) belongs to a class of important homeobox genes, which encode the homeodomain proteins binding to the specific element of target genes, and widely participate in plant development. Advancements in genetics and molecular biology research generate a large amount of information about KNOX genes in model and non-model plants, and their functions in different developmental backgrounds are gradually becoming clear. In this review, we summarize the known and presumed functions of the KNOX gene in plants, focusing on horticultural plants and crops. The classification and structural characteristics, expression characteristics and regulation, interacting protein factors, functions, and mechanisms of KNOX genes are systematically described. Further, the current research gaps and perspectives were discussed. These comprehensive data can provide a reference for the directional improvement of agronomic traits through KNOX gene regulation.
Collapse
Affiliation(s)
- Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Qing-Long Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Yang Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Hao-An Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xue-Mei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Sup-Ping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Guo-Hui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
13
|
Tilhou N, Kucek LK, Carr B, Marion A, Douglas J, Englert J, Ali S, Raasch J, Bhamidimarri S, Mirsky SB, Monteros MJ, Krogman S, Hayes R, Azevedo M, Riday H. Genome-wide association mapping in hairy vetch ( Vicia villosa) discovers a large effect locus controlling seed dormancy. FRONTIERS IN PLANT SCIENCE 2023; 14:1282187. [PMID: 37941659 PMCID: PMC10628312 DOI: 10.3389/fpls.2023.1282187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Hairy vetch (Vicia villosa Roth), a winter-hardy annual legume, is a promising cover crop. To fully leverage its potential, seed production and field performance of V. villosa must be improved to facilitate producer adoption. Two classic domestication traits, seed dormancy (hard seed) and dehiscence (pod shatter), are selection targets in an ongoing breeding program. This study reports a genome-wide association study of 1,019 V. villosa individuals evaluated at two sites (Knox City, Texas and Corvallis, Oregon) for the proportion of dormant seed, visual pod dehiscence scores, and two dehiscence surrogate measures (force to dehiscence and pod spiraling score). Trait performance varied between sites, but reliability (related to heritability) across sites was strong (dormant seed proportion: 0.68; dehiscence score: 0.61; spiraling score: 0.42; force to dehiscence: 0.41). A major locus controlling seed dormancy was found (q-value: 1.29 × 10-5; chromosome 1: position: 63611165), which can be used by breeding programs to rapidly reduce dormancy in breeding populations. No significant dehiscence score QTL was found, primarily due to the high dehiscence rates in Corvallis, Oregon. Since Oregon is a potentially major V. villosa seed production region, further dehiscence resistance screening is necessary.
Collapse
Affiliation(s)
- Neal Tilhou
- US Dairy Forage Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Madison, WI, United States
| | - Lisa Kissing Kucek
- US Dairy Forage Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Madison, WI, United States
| | - Brandon Carr
- James E. “Bud” Smith Plant Materials Center, United States Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS), Knox City, TX, United States
| | - Annie Marion
- Corvallis Plant Materials Center, USDA-NRCS, Corvallis, OR, United States
| | - Joel Douglas
- Central National Technology Support Center, USDA-NRCS, Fort Worth, TX, United States
| | - John Englert
- National Plant Materials Program, USDA-NRCS, Washington, DC, United States
| | - Shahjahan Ali
- US Dairy Forage Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Madison, WI, United States
| | - John Raasch
- US Dairy Forage Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Madison, WI, United States
| | | | - Steven Brian Mirsky
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture-Natural Resources Conservation Service (USDA-ARS), Beltsville, MD, United States
| | | | - Sarah Krogman
- School of Medicine in Kansas, University of Kansas Medical Center, Wichita, KS, United States
| | - Ryan Hayes
- Forage Seed and Cereal Research Unit, USDA-ARS, Corvaillis, OR, United States
| | - Mark Azevedo
- Forage Seed and Cereal Research Unit, USDA-ARS, Corvaillis, OR, United States
| | - Heathcliffe Riday
- US Dairy Forage Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Madison, WI, United States
| |
Collapse
|
14
|
Wang X, Zhang J, Chai M, Han L, Cao X, Zhang J, Kong Y, Fu C, Wang ZY, Mysore KS, Wen J, Zhou C. The role of Class Ⅱ KNOX family in controlling compound leaf patterning in Medicago truncatula. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2279-2291. [PMID: 37526388 DOI: 10.1111/jipb.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Compound leaf development requires the coordination of genetic factors, hormones, and other signals. In this study, we explored the functions of Class Ⅱ KNOTTED-like homeobox (KNOXII) genes in the model leguminous plant Medicago truncatula. Phenotypic and genetic analyses suggest that MtKNOX4, 5 are able to repress leaflet formation, while MtKNOX3, 9, 10 are not involved in this developmental process. Further investigations have shown that MtKNOX4 represses the CK signal transduction, which is downstream of MtKNOXⅠ-mediated CK biosynthesis. Additionally, two boundary genes, FUSED COMPOUND LEAF1 (orthologue of Arabidopsis Class M KNOX) and NO APICAL MERISTEM (orthologue of Arabidopsis CUP-SHAPED COTYLEDON), are necessary for MtKNOX4-mediated compound leaf formation. These findings suggest, that among the members of MtKNOXⅡ, MtKNOX4 plays a crucial role in integrating the CK pathway and boundary regulators, providing new insights into the roles of MtKNOXⅡ in regulating the elaboration of compound leaves in M. truncatula.
Collapse
Affiliation(s)
- Xiao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Juanjuan Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Maofeng Chai
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiaohua Cao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yiming Kong
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kirankumar S Mysore
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, 73401, Oklahoma, USA
| | - Jiangqi Wen
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, 73401, Oklahoma, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
15
|
Dwivedi SL, Heslop-Harrison P, Spillane C, McKeown PC, Edwards D, Goldman I, Ortiz R. Evolutionary dynamics and adaptive benefits of deleterious mutations in crop gene pools. TRENDS IN PLANT SCIENCE 2023; 28:685-697. [PMID: 36764870 DOI: 10.1016/j.tplants.2023.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 12/03/2022] [Accepted: 01/18/2023] [Indexed: 05/13/2023]
Abstract
Mutations with deleterious consequences in nature may be conditionally deleterious in crop plants. That is, while some genetic variants may reduce fitness under wild conditions and be subject to purifying selection, they can be under positive selection in domesticates. Such deleterious alleles can be plant breeding targets, particularly for complex traits. The difficulty of distinguishing favorable from unfavorable variants reduces the power of selection, while favorable trait variation and heterosis may be attributable to deleterious alleles. Here, we review the roles of deleterious mutations in crop breeding and discuss how they can be used as a new avenue for crop improvement with emerging genomic tools, including HapMaps and pangenome analysis, aiding the identification, removal, or exploitation of deleterious mutations.
Collapse
Affiliation(s)
| | - Pat Heslop-Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Peter C McKeown
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Irwin Goldman
- Department of Horticulture, College of Agricultural and Life Sciences, University of Wisconsin Madison, WI 53706, USA
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, SE 23053, Sweden.
| |
Collapse
|
16
|
Ali S, Kucek LK, Riday H, Krom N, Krogman S, Cooper K, Jacobs L, Mehta P, Trammell M, Bhamidimarri S, Butler T, Saha MC, Monteros MJ. Transcript profiling of hairy vetch (Vicia villosa Roth) identified interesting genes for seed dormancy. THE PLANT GENOME 2023; 16:e20330. [PMID: 37125613 DOI: 10.1002/tpg2.20330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Hairy vetch, a diploid annual legume species, has a robust growth habit, high biomass yield, and winter hardy characteristics. Seed hardness is a major constraint for growing hairy vetch commercially. Hard seeded cultivars are valuable as forages, whereas soft seeded and shatter resistant cultivars have advantages for their use as a cover crop. Transcript analysis of hairy vetch was performed to understand the genetic mechanisms associated with important hairy vetch traits. RNA was extracted from leaves, flowers, immature pods, seed coats, and cotyledons of contrasting soft and hard seeded "AU Merit" plants. A range of 31.22-79.18 Gb RNA sequence data per tissue sample were generated with estimated coverage of 1040-2639×. RNA sequence assembly and mapping of the contigs against the Medicago truncatula (V4.0) genome identified 76,422 gene transcripts. A total of 24,254 transcripts were constitutively expressed in hairy vetch tissues. Key genes, such as KNOX4 (a class II KNOTTED-like homeobox KNOXII gene), qHs1 (endo-1,4-β-glucanase), GmHs1-1 (calcineurin-like metallophosphoesterase), chitinase, shatterproof 1 and 2 (SHP1, SHP2), shatter resistant 1-5 (SHAT1-5)(NAC transcription factor), PDH1 (prephenate dehydrogenase 1), and pectin methylesterases with a potential role in seed hardness and pod shattering, were further explored based on genes involved in seed hardness from other species to query the hairy vetch transcriptome data. Identification of interesting candidate genes in hairy vetch can facilitate the development of improved cultivars with desirable seed characteristics for use as a forage and as a cover crop.
Collapse
Affiliation(s)
- Shahjahan Ali
- USDA-ARS, US Dairy Forage Research Center, Madison, Wisconsin, USA
| | | | | | - Nick Krom
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | - Sarah Krogman
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | | | - Lynne Jacobs
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | - Perdeep Mehta
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | - Michael Trammell
- Oklahoma State University Cooperative Extension, Shawnee, Oklahoma, USA
| | | | - Twain Butler
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | - Malay C Saha
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | | |
Collapse
|
17
|
Sun R, Qin T, Wall SB, Wang Y, Guo X, Sun J, Liu Y, Wang Q, Zhang B. Genome-wide identification of KNOX transcription factors in cotton and the role of GhKNOX4-A and GhKNOX22-D in response to salt and drought stress. Int J Biol Macromol 2023; 226:1248-1260. [PMID: 36442570 DOI: 10.1016/j.ijbiomac.2022.11.238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Cotton is one of the most important economic and fiber crops in the world. KNOX is one class of universal transcription factors, which plays important roles in plant growth and development as well as response to different stresses. Although there are many researches on KNOXs in other plant species, there are few reports on cotton. In this study, we systematically and comprehensively identified all KNOX genes in upland cotton and its two ancestral species; we also studied their functions by employing RNA-seq analysis and virus-induced gene silence (VIGS). A total of 89 KNOX genes were identified from three cotton species. Among them, 44 were from upland cotton, 22 and 23 were found in its ancestral species G. raimondii and G. arboreum, respectively. Plant polyploidization and domestication play a selective force driving KNOX gene evolution. Phylogenetic analysis displayed that KNOX genes were evolved into three Classes. The intron length and exon number differed in each Class. Transcriptome data showed that KNOX genes of Class II were widely expressed in multiple tissues, including fiber. The majority of KNOX genes were induced by different abiotic stresses. Additionally, we found multiple cis-elements related to stress in the promoter region of KNOX genes. VIGS silence of GhKNOX4-A and GhKNOX22-D genes showed significant growth and development effect in cotton seedlings under salt and drought treatments. Both GhKNOX4-A and GhKNOX22-D regulated plant tolerance; silencing both genes induced oxidative stresses, evidenced by reduced SOD activity and induced leave cell death, and also enhanced stomatal open and water loss. Thus, GhKNOX4-A and GhKNOX22-D may contribute to drought response by regulating stomata opening and oxidative stresses.
Collapse
Affiliation(s)
- Runrun Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Tengfei Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Sarah Brooke Wall
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Yuanyuan Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Xinlei Guo
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Jialiang Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Qinglian Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
18
|
Takahashi Y, Sakai H, Ariga H, Teramoto S, Shimada TL, Eun H, Muto C, Naito K, Tomooka N. Domesticating Vigna stipulacea: Chromosome-Level genome assembly reveals VsPSAT1 as a candidate gene decreasing hard-seededness. FRONTIERS IN PLANT SCIENCE 2023; 14:1119625. [PMID: 37139108 PMCID: PMC10149957 DOI: 10.3389/fpls.2023.1119625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023]
Abstract
To increase food production under the challenges presented by global climate change, the concept of de novo domestication-utilizing stress-tolerant wild species as new crops-has recently gained considerable attention. We had previously identified mutants with desired domestication traits in a mutagenized population of the legume Vigna stipulacea Kuntze (minni payaru) as a pilot for de novo domestication. Given that there are multiple stress-tolerant wild legume species, it is important to establish efficient domestication processes using reverse genetics and identify the genes responsible for domestication traits. In this study, we identified VsPSAT1 as the candidate gene responsible for decreased hard-seededness, using a Vigna stipulacea isi2 mutant that takes up water from the lens groove. Scanning electron microscopy and computed tomography revealed that the isi2 mutant has lesser honeycomb-like wax sealing the lens groove than the wild-type, and takes up water from the lens groove. We also identified the pleiotropic effects of the isi2 mutant: accelerating leaf senescence, increasing seed size, and decreasing numbers of seeds per pod. While doing so, we produced a V. stipulacea whole-genome assembly of 441 Mbp in 11 chromosomes and 30,963 annotated protein-coding sequences. This study highlights the importance of wild legumes, especially those of the genus Vigna with pre-existing tolerance to biotic and abiotic stresses, for global food security during climate change.
Collapse
Affiliation(s)
- Yu Takahashi
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
- *Correspondence: Yu Takahashi,
| | - Hiroaki Sakai
- Research Center of Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hirotaka Ariga
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Shota Teramoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takashi L. Shimada
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Science Center, Chiba University, Inage-ku, Japan
| | - Heesoo Eun
- Research Center of Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Chiaki Muto
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ken Naito
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Norihiko Tomooka
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
19
|
Genome-Wide Identification of Wheat KNOX Gene Family and Functional Characterization of TaKNOX14-D in Plants. Int J Mol Sci 2022; 23:ijms232415918. [PMID: 36555558 PMCID: PMC9784718 DOI: 10.3390/ijms232415918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
The KNOX genes play important roles in maintaining SAM and regulating the development of plant leaves. However, the TaKNOX genes in wheat are still not well understood, especially their role in abiotic stress. In this study, a total of 36 KNOX genes were identified, and we demonstrated the function of the TaKNOX14-D gene under mechanical injury and cold stress. Thirty-six TaKNOX genes were divided into two groups, and thirty-four TaKNOX genes were predicted to be located in the nucleus by Cell-PLoc. These genes contained five tandem duplications. Fifteen collinear gene pairs were exhibited in wheat and rice, one collinear gene pair was exhibited in wheat and Arabidopsis. The phylogenetic tree and motif analysis suggested that the TaKNOX gene appeared before C3 and C4 diverged. Gene structure showed that the numbers of exons and introns in TaKNOX gene are different. Wheat TaKNOX genes showed different expression patterns during the wheat growth phase, with seven TaKNOX genes being highly expressed in the whole growth period. These seven genes were also highly expressed in most tissues, and also responded to most abiotic stress. Eleven TaKNOX genes were up-regulated in the tillering node during the leaf regeneration period after mechanical damage. When treating the wheat with different hormones, the expression patterns of TaKNOX were changed, and results showed that ABA promoted TaKNOX expression and seven TaKNOX genes were up-regulated under cytokinin and auxin treatment. Overexpression of the TaKNOX14-D gene in Arabidopsis could increase the leaf size, plant height and seed size. This gene overexpression in Arabidopsis also increased the compensatory growth capacity after mechanical damage. Overexpression lines also showed high resistance to cold stress. This study provides a better understanding of the TaKNOX genes.
Collapse
|
20
|
Ou X, Wang Y, Li J, Zhang J, Xie Z, He B, Jiang Z, Wang Y, Su W, Song S, Hao Y, Chen R. Genome-wide identification of the KNOTTED HOMEOBOX gene family and their involvement in stalk development in flowering Chinese cabbage. FRONTIERS IN PLANT SCIENCE 2022; 13:1019884. [PMID: 36438132 PMCID: PMC9686407 DOI: 10.3389/fpls.2022.1019884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Gibberellin and cytokinin synergistically regulate the stalk development in flowering Chinese cabbage. KNOX proteins were reported to function as important regulators of the shoot apex to promote meristem activity by synchronously inducing CTK and suppressing GA biosynthesis, while their regulatory mechanism in the bolting and flowering is unknown. In this study, 9 BcKNOX genes were identified and mapped unevenly on 6 out of 10 flowering Chinese cabbage chromosomes. The BcKNOXs were divided into three subfamilies on the basis of sequences and gene structure. The proteins contain four conserved domains except for BcKNATM. Three BcKNOX TFs (BcKNOX1, BcKNOX3, and BcKNOX5) displayed high transcription levels on tested tissues at various stages. The major part of BcKNOX genes showed preferential expression patterns in response to low-temperature, zeatin (ZT), and GA3 treatment, indicating that they were involved in bud differentiation and bolting. BcKNOX1 and BcKNOX5 showed high correlation level with gibberellins synthetase, and CTK metabolic genes. BcKONX1 also showed high correlation coefficients within BcRGA1 and BcRGL1 which are negative regulators of GA signaling. In addition, BcKNOX1 interacted with BcRGA1 and BcRGL1, as confirmed by yeast two-hybrid (Y2H) and biomolecular fluorescence complementation assay (BiFC). This analysis has provided useful foundation for the future functional roles' analysis of flowering Chinese cabbage KNOX genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yanwei Hao
- *Correspondence: Yanwei Hao, ; Riyuan Chen,
| | | |
Collapse
|
21
|
Verma SK, Singh CK, Taunk J, Gayacharan, Chandra Joshi D, Kalia S, Dey N, Singh AK. Vignette of Vigna domestication: From archives to genomics. Front Genet 2022; 13:960200. [PMID: 36338960 PMCID: PMC9634637 DOI: 10.3389/fgene.2022.960200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/27/2022] [Indexed: 06/26/2024] Open
Abstract
The genus Vigna comprises fast-growing, diploid legumes, cultivated in tropical and subtropical parts of the world. It comprises more than 200 species among which Vigna angularis, Vigna radiata, Vigna mungo, Vigna aconitifolia, Vigna umbellata, Vigna unguiculata, and Vigna vexillata are of enormous agronomic importance. Human selection along with natural variability within these species encompasses a vital source for developing new varieties. The present review convokes the early domestication history of Vigna species based on archeological pieces of evidence and domestication-related traits (DRTs) together with genetics of domestication. Traces of early domestication of Vigna have been evidenced to spread across several temperate and tropical regions of Africa, Eastern Asia, and few parts of Europe. Several DRTs of Vigna species, such as pod shattering, pod and seed size, dormancy, seed coat, seed color, maturity, and pod dehiscence, can clearly differentiate wild species from their domesticates. With the advancement in next-generation high-throughput sequencing techniques, exploration of genetic variability using recently released reference genomes along with de novo sequencing of Vigna species have provided a framework to perform genome-wide association and functional studies to figure out different genes related to DRTs. In this review, genes and quantitative trait loci (QTLs) related to DRTs of different Vigna species have also been summarized. Information provided in this review will enhance the in-depth understanding of the selective pressures that causes crop domestication along with nature of evolutionary selection made in unexplored Vigna species. Furthermore, correlated archeological and domestication-related genetic evidence will facilitate Vigna species to be considered as suitable model plants.
Collapse
Affiliation(s)
| | | | - Jyoti Taunk
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dinesh Chandra Joshi
- ICAR-Vivekananda Institute of Hill Agriculture (Vivekananda Parvatiya Krishi Anusandhan Sansthan), Uttarakhand, Almora, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, New Delhi, India
| | - Nrisingha Dey
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
22
|
The Identification and Characterization of the KNOX Gene Family as an Active Regulator of Leaf Development in Trifolium repens. Genes (Basel) 2022; 13:genes13101778. [PMID: 36292663 PMCID: PMC9601826 DOI: 10.3390/genes13101778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022] Open
Abstract
Leaves are the primary and critical feed for herbivores. They directly determine the yield and quality of legume forage. Trifolium repens (T. repens) is an indispensable legume species, widely cultivated in temperate pastures due to its nutritional value and nitrogen fixation. Although the leaves of T. repens are typical trifoliate, they have unusual patterns to adapt to herbivore feeding. The number of leaflets in T. repens affects its production and utilization. The KNOX gene family encodes transcriptional regulators that are vital in regulating and developing leaves. Identification and characterization of TrKNOX gene family as an active regulator of leaf development in T. repens were studied. A total of 21 TrKNOX genes were identified from the T. repens genome database and classified into three subgroups (Class I, Class II, and Class M) based on phylogenetic analysis. Nineteen of the genes identified had four conserved domains, except for KNOX5 and KNOX9, which belong to Class M. Varying expression levels of TrKNOX genes were observed at different developmental stages and complexities of leaves. KNOX9 was observed to upregulate the leaf complexity of T. repens. Research on TrKNOX genes could be novel and further assist in exploring their functions and cultivating high-quality T. repens varieties.
Collapse
|
23
|
The Seed Coat’s Impact on Crop Performance in Pea (Pisum sativum L.). PLANTS 2022; 11:plants11152056. [PMID: 35956534 PMCID: PMC9370168 DOI: 10.3390/plants11152056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Seed development in angiosperms produces three genetically and developmentally distinct sub-compartments: the embryo, endosperm, and seed coat. The maternally derived seed coat protects the embryo and interacts closely with the external environment especially during germination and seedling establishment. Seed coat is a key contributor to seed composition and an important determinant of nutritional value for humans and livestock. In this review, we examined pea crop productivity through the lens of the seed coat, its contribution to several valued nutritional traits of the pea crop, and its potential as a breeding target. Key discoveries made in advancing the knowledge base for sensing and transmission of external signals, the architecture and chemistry of the pea seed coat, and relevant insights from other important legumes were discussed. Furthermore, for selected seed coat traits, known mechanisms of genetic regulation and efforts to modulate these mechanisms to facilitate composition and productivity improvements in pea were discussed, alongside opportunities to support the continued development and improvement of this underutilized crop. This review describes the most important features of seed coat development in legumes and highlights the key roles played by the seed coat in pea seed development, with a focus on advances made in the genetic and molecular characterization of pea and other legumes and the potential of this key seed tissue for targeted improvement and crop optimization.
Collapse
|
24
|
Somta P, Laosatit K, Yuan X, Chen X. Thirty Years of Mungbean Genome Research: Where Do We Stand and What Have We Learned? FRONTIERS IN PLANT SCIENCE 2022; 13:944721. [PMID: 35909762 PMCID: PMC9335052 DOI: 10.3389/fpls.2022.944721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Mungbean is a socioeconomically important legume crop in Asia that is currently in high demand by consumers and industries both as dried beans and in plant-based protein foods. Marker-assisted and genomics-assisted breeding are promising approaches to efficiently and rapidly develop new cultivars with improved yield, quality, and resistance to biotic and abiotic stresses. Although mungbean was at the forefront of research at the dawn of the plant genomics era 30 years ago, the crop is a "slow runner" in genome research due to limited genomic resources, especially DNA markers. Significant progress in mungbean genome research was achieved only within the last 10 years, notably after the release of the VC1973A draft reference genome constructed using next-generation sequencing technology, which enabled fast and efficient DNA marker development, gene mapping, and identification of candidate genes for complex traits. Resistance to biotic stresses has dominated mungbean genome research to date; however, research is on the rise. In this study, we provide an overview of the past progress and current status of mungbean genomics research. We also discuss and evaluate some research results to provide a better understanding of mungbean genomics.
Collapse
Affiliation(s)
- Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
25
|
Zhang C, Zhang XI, Cheng B, Wu J, Zhang L, Xiao X, Zhang D, Zhao C, An N, Han M, Xing L. MdNup54 Interactions With MdHSP70 Involved in Flowering in Apple. FRONTIERS IN PLANT SCIENCE 2022; 13:903808. [PMID: 35865288 PMCID: PMC9296068 DOI: 10.3389/fpls.2022.903808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Flowering-related problems in "Fuji" apple have severely restricted the development of China's apple industry. Nuclear pore complexes (NPCs) control nucleoplasmic transport and play an important role in the regulation of plant growth and development. However, the effects of NPCs on apple flowering have not been reported. Here, we analysed the expression and function of MdNup54, a component of apple NPC. MdNup54 expression was the highest in flower buds and maintained during 30-70 days after flowering. MdNup54-overexpressing (OE) Arabidopsis lines displayed significantly earlier flowering than that of the wild type. We further confirmed that MdNup54 interacts with MdHSP70, MdMYB11, and MdKNAT4/6. Consistent with these observations, flowering time of MdHSP70-OE Arabidopsis lines was also significantly earlier. Therefore, our findings suggest a possible interaction of MdNup54 with MdHSP70 to mediate its nuclear and cytoplasmic transport and to regulate apple flowering. The results enhance the understanding of the flowering mechanism in apple and propose a novel strategy to study nucleoporins.
Collapse
Affiliation(s)
- Chenguang Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, China
| | - XIaoshuang Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, China
| | - Bo Cheng
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Junkai Wu
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, China
| | - Libin Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, China
| | - Xiao Xiao
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
26
|
Nile SH, Thiruvengadam M, Wang Y, Samynathan R, Shariati MA, Rebezov M, Nile A, Sun M, Venkidasamy B, Xiao J, Kai G. Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives. J Nanobiotechnology 2022; 20:254. [PMID: 35659295 PMCID: PMC9164476 DOI: 10.1186/s12951-022-01423-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/17/2022] [Indexed: 12/04/2022] Open
Abstract
Nano-priming is an innovative seed priming technology that helps to improve seed germination, seed growth, and yield by providing resistance to various stresses in plants. Nano-priming is a considerably more effective method compared to all other seed priming methods. The salient features of nanoparticles (NPs) in seed priming are to develop electron exchange and enhanced surface reaction capabilities associated with various components of plant cells and tissues. Nano-priming induces the formation of nanopores in shoot and helps in the uptake of water absorption, activates reactive oxygen species (ROS)/antioxidant mechanisms in seeds, and forms hydroxyl radicals to loosen the walls of the cells and acts as an inducer for rapid hydrolysis of starch. It also induces the expression of aquaporin genes that are involved in the intake of water and also mediates H2O2, or ROS, dispersed over biological membranes. Nano-priming induces starch degradation via the stimulation of amylase, which results in the stimulation of seed germination. Nano-priming induces a mild ROS that acts as a primary signaling cue for various signaling cascade events that participate in secondary metabolite production and stress tolerance. This review provides details on the possible mechanisms by which nano-priming induces breaking seed dormancy, promotion of seed germination, and their impact on primary and secondary metabolite production. In addition, the use of nano-based fertilizer and pesticides as effective materials in nano-priming and plant growth development were also discussed, considering their recent status and future perspectives.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yao Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Ramkumar Samynathan
- R&D Division, Alchem Diagnostics, No. 1/1, Gokhale Street, Ram Nagar, Coimbatore, 641009, Tamil Nadu, India
| | - Mohammad Ali Shariati
- Scientific Department, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow, 109004, Russian Federation
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhina St., Moscow, 109316, Russian Federation
| | - Arti Nile
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Meihong Sun
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, 641062, Tamil Nadu, India.
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| |
Collapse
|
27
|
Sheng M, Ma X, Wang J, Xue T, Li Z, Cao Y, Yu X, Zhang X, Wang Y, Xu W, Su Z. KNOX II transcription factor HOS59 functions in regulating rice grain size. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:863-880. [PMID: 35167131 DOI: 10.1111/tpj.15709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Plant Knotted1-like homeobox (KNOX) genes encode homeodomain-containing transcription factors. In rice (Oryza sativa L.), little is known about the downstream target genes of KNOX Class II subfamily proteins. Here we generated chromatin immunoprecipitation (ChIP)-sequencing datasets for HOS59, a member of the rice KNOX Class II subfamily, and characterized the genome-wide binding sites of HOS59. We conducted trait ontology (TO) analysis of 9705 identified downstream target genes, and found that multiple TO terms are related to plant structure morphology and stress traits. ChIP-quantitative PCR (qPCR) was conducted to validate some key target genes. Meanwhile, our IP-MS datasets showed that HOS59 was closely associated with BELL family proteins, some grain size regulators (OsSPL13, OsSPL16, OsSPL18, SLG, etc.), and some epigenetic modification factors such as OsAGO4α and OsAGO4β, proteins involved in small interfering RNA-mediated gene silencing. Furthermore, we employed CRISPR/Cas9 editing and transgenic approaches to generate hos59 mutants and overexpression lines, respectively. Compared with wild-type plants, the hos59 mutants have longer grains and increased glume cell length, a loose plant architecture, and drooping leaves, while the overexpression lines showed smaller grain size, erect leaves, and lower plant height. The qRT-PCR results showed that mutation of the HOS59 gene led to upregulation of some grain size-related genes such as OsSPL13, OsSPL18, and PGL2. In summary, our results indicate that HOS59 may be a repressor of the downstream target genes, negatively regulating glume cell length, rice grain size, plant architecture, etc. The identified downstream target genes and possible interaction proteins of HOS59 improve our understanding of the KNOX regulatory networks.
Collapse
Affiliation(s)
- Minghao Sheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuelian Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiyao Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianxi Xue
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhongqiu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yaxin Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyue Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
28
|
Laosatit K, Amkul K, Yimram T, Chen J, Lin Y, Yuan X, Wang L, Chen X, Somta P. A Class II KNOX Gene, KNAT7-1, Regulates Physical Seed Dormancy in Mungbean [ Vigna radiata (L.) Wilczek]. FRONTIERS IN PLANT SCIENCE 2022; 13:852373. [PMID: 35371162 PMCID: PMC8965505 DOI: 10.3389/fpls.2022.852373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Seed dormancy in wild mungbean (Vigna radiata var. sublobata) may be useful for the breeding of cultivated mungbean (var. radiata) with pre-harvest sprouting resistance. Previous studies have identified two major quantitative trait loci (QTLs) for seed dormancy, HsA and Sdwa5.1.1+, in wild mungbean that are possibly having the same locus or linked. However, these QTLs have not been confirmed/verified and a molecular basis of seed dormancy in mungbean is not yet known. In this study, we aimed to finely map the Sdwa5.1.1+ and identify candidate gene(s) for this locus. Microscopic observations revealed that wild mungbean "ACC41" seeds had a palisade cuticle layer, while cultivated mungbean "Kamphaeng Saen 2" (KPS2) seeds lacked this layer. Fine mapping using an F2 population developed from a cross between ACC41 and KPS2 revealed two linked QTLs, Sdwa5.1.1+ and Sdwa5.1.2+, controlling seed dormancy. The Sdwa5.1.1+ was confirmed in an F2:3 population derived from the same cross and mapped to a 3.298-Kb region containing only one gene LOC106767068, designated as VrKNAT7-1, which encodes the transcription factor KNOTTED ARABIDOPSIS THALIANA7 (KNAT7), a class II KNOTTED1-LIKE HOMEOBOX (KNOX II) protein. VrKNAX7 sequence alignment between ACC41 and KPS2 revealed several polymorphisms in the coding, untranslated, and promoter regions. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of VrKNAT7-1 and VrCYP86A, a putative downstream regulation of VrKNAT7-1, in the seed coat of ACC41 is statistically much higher than that of KPS2. Altogether, these results indicate that VrKNAT7-1 controls physical seed dormancy in the wild mungbean ACC41.
Collapse
Affiliation(s)
- Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Tarika Yimram
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lixia Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Nakhon Pathom, Thailand
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, Thailand
| |
Collapse
|
29
|
Li H, Teng K, Yue Y, Teng W, Zhang H, Wen H, Wu J, Fan X. Seed Germination Mechanism of Carex rigescens Under Variable Temperature Determinded Using Integrated Single-Molecule Long-Read and Illumina Sequence Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:818458. [PMID: 35310626 PMCID: PMC8928477 DOI: 10.3389/fpls.2022.818458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The turfgrass species Carex rigescens has broad development and utilization prospects in landscaping construction. However, seed dormancy and a low germination rate have inhibited its application. Furthermore, the molecular mechanisms of seed germination in C. rigescens have not been thoroughly studied. Therefore, in the present study, PacBio full-length transcriptome sequencing combined with Illumina sequencing was employed to elucidate the germination mechanism of C. rigescens seeds under variable temperatures. In general, 156,750 full-length non-chimeric sequences, including those for 62,086 high-quality transcripts, were obtained using single-molecule long read sequencing. In total, 40,810 high-quality non-redundant, 1,675 alternative splicing, 28,393 putative coding sequences, and 1,052 long non-coding RNAs were generated. Based on the newly constructed full-length reference transcriptome, 23,147 differentially expressed genes were identified. We screened four hub genes participating in seed germination using weighted gene co-expression network analysis. Combining these results with the physiological observations, the important roles of sucrose and starch metabolic pathways in germination are further discussed. In conclusion, we report the first full-length transcriptome of C. rigescens, and investigated the physiological and transcriptional mechanisms of seed germination under variable temperatures. Our results provide valuable information for future transcriptional analyses and gene function studies of C. rigescens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juying Wu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xifeng Fan
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
30
|
Wang C, Liu Z, Wang Z, Pang W, Zhang L, Wen Z, Zhao Y, Sun J, Wang ZY, Yang C. Effects of autotoxicity and allelopathy on seed germination and seedling growth in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 13:908426. [PMID: 35909791 PMCID: PMC9335049 DOI: 10.3389/fpls.2022.908426] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/24/2022] [Indexed: 05/13/2023]
Abstract
Autotoxicity is a form of intraspecific allelopathy, in which a plant species inhibits the establishment or growth of the same species through the release of toxic chemical compounds into the environment. The phenomenon of autotoxicity in crops is best traced in alfalfa (Medicago sativa). A close relative of alfalfa, M. truncatula, has been developed into an excellent model species for leguminous plants. However, it is not known whether M. truncatula has autotoxicity. In this study, M. truncatula root exudates showed a negative impact on the growth of M. truncatula seedlings, indicating autotoxicity. Detailed analyses with plant extracts from M. truncatula and alfalfa revealed varying degrees of suppression effects in the two species. The extracts negatively affected seed germination potential, germination rate, radicle length, hypocotyl length, synthetic allelopathic effect index, plant height, root growth, fresh weight, dry weight, net photosynthetic rate, transpiration rate, and stomatal conductance in both M. truncatula and alfalfa. The results demonstrated that autotoxicity and allelopathic effects exist in M. truncatula. This opens up a new way to use M. truncatula as a model species to carry out in-depth studies of autotoxicity and allelopathy to elucidate biochemical pathways of allelochemicals and molecular networks controlling biosynthesis of the chemicals.
Collapse
|
31
|
Zhao Z, Chai M, Sun L, Cong L, Jiang Q, Zhang Z, Wang ZY. Identification of a gene responsible for seedpod spine formation and other phenotypic alterations using whole-genome sequencing analysis in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7769-7777. [PMID: 34329408 DOI: 10.1093/jxb/erab359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 05/27/2023]
Abstract
In nature, some plant species produce seedpods with spines, which is an adaptive biological trait for protecting the seed and helping seed dispersal. However, the molecular mechanism of spine formation is still unclear. While conducting routine tissue culture and transformation in the model legume Medicago truncatula, we identified a smooth seedpod (ssp1) mutant with a suite of other phenotypic changes. Preliminary analysis showed that the mutation was derived from the tissue culture process. Genetic segregation analysis suggested that ssp1 is a recessive mutant. By combining whole-genome sequencing and bioinformatics analysis, we found that the mutant phenotype was caused by a single nucleotide polymorphism and a 30 bp deletion in the gene locus Medtr4g039430, named SSP1. Complementation of the M. truncatula ssp1 and Arabidopsis twd1 mutants showed complete restoration, indicating that SSP1 is an ortholog of Arabidopsis TWD1 which encodes an immunophilin-like FK506-binding protein 42. The formation of spines on seedpods is associated with auxin transport. The method used in this study offers an effective way for detecting genes responsible for somaclonal variations. The results demonstrate, for the first time, that SSP1 plays a crucial role in the determination of spine formation on seedpods.
Collapse
Affiliation(s)
- Zhili Zhao
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Noble Research Institute, Ardmore, OK, USA
| | - Maofeng Chai
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Noble Research Institute, Ardmore, OK, USA
| | - Liang Sun
- Noble Research Institute, Ardmore, OK, USA
- Research Computing, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lili Cong
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | | | - Zhifei Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Noble Research Institute, Ardmore, OK, USA
| |
Collapse
|
32
|
Thiruppathi D. Why so stubborn? MtKNOX4-regulated MtKCS12 manifests hardseededness. PLANT PHYSIOLOGY 2021; 186:1367-1368. [PMID: 34624110 PMCID: PMC8260128 DOI: 10.1093/plphys/kiab214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
|
33
|
Chai M, Queralta Castillo I, Sonntag A, Wang S, Zhao Z, Liu W, Du J, Xie H, Liao F, Yun J, Jiang Q, Sun J, Molina I, Wang ZY. A seed coat-specific β-ketoacyl-CoA synthase, KCS12, is critical for preserving seed physical dormancy. PLANT PHYSIOLOGY 2021; 186:1606-1615. [PMID: 33779764 PMCID: PMC8260136 DOI: 10.1093/plphys/kiab152] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/08/2021] [Indexed: 05/21/2023]
Abstract
Physical dormancy in seeds exists widely in seed plants and plays a vital role in maintaining natural seed banks. The outermost cuticle of the seed coat forms a water-impermeable layer, which is critical for establishing seed physical dormancy. We previously set up the legume plant Medicago truncatula as an excellent model for studying seed physical dormancy, and our studies revealed that a class II KNOTTED-like homeobox, KNOX4, is a transcription factor critical for controlling hardseededness. Here we report the function of a seed coat β-ketoacyl-CoA synthase, KCS12. The expression level of KCS12 is significantly downregulated in the knox4 mutant. The KCS12 gene is predominantly expressed in the seed coat, and seed development in the M. truncatula kcs12 mutant is altered. Further investigation demonstrated that kcs12 mutant seeds lost physical dormancy and were able to absorb water without scarification treatment. Chemical analysis revealed that concentrations of C24:0 lipid polyester monomers are significantly decreased in mutant seeds, indicating that KCS12 is an enzyme that controls the production of very long chain lipid species in the seed coat. A chromatin immunoprecipitation assay demonstrated that the expression of KCS12 in the seed coat is directly regulated by the KNOX4 transcription factor. These findings define a molecular mechanism by which KNOX4 and KCS12 control formation of the seed coat and seed physical dormancy.
Collapse
Affiliation(s)
- Maofeng Chai
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Noble Research Institute, Ardmore, OK 73401, USA
| | | | - Annika Sonntag
- Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada, P6A 2G4
| | - Shixing Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhili Zhao
- Noble Research Institute, Ardmore, OK 73401, USA
| | - Wei Liu
- Noble Research Institute, Ardmore, OK 73401, USA
| | - Juan Du
- Noble Research Institute, Ardmore, OK 73401, USA
| | - Hongli Xie
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Fuqi Liao
- Noble Research Institute, Ardmore, OK 73401, USA
| | - Jianfei Yun
- Noble Research Institute, Ardmore, OK 73401, USA
| | | | - Juan Sun
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada, P6A 2G4
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Noble Research Institute, Ardmore, OK 73401, USA
| |
Collapse
|
34
|
Renard J, Martínez-Almonacid I, Queralta Castillo I, Sonntag A, Hashim A, Bissoli G, Campos L, Muñoz-Bertomeu J, Niñoles R, Roach T, Sánchez-León S, Ozuna CV, Gadea J, Lisón P, Kranner I, Barro F, Serrano R, Molina I, Bueso E. Apoplastic lipid barriers regulated by conserved homeobox transcription factors extend seed longevity in multiple plant species. THE NEW PHYTOLOGIST 2021; 231:679-694. [PMID: 33864680 DOI: 10.1111/nph.17399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Cutin and suberin are lipid polyesters deposited in specific apoplastic compartments. Their fundamental roles in plant biology include controlling the movement of gases, water and solutes, and conferring pathogen resistance. Both cutin and suberin have been shown to be present in the Arabidopsis seed coat where they regulate seed dormancy and longevity. In this study, we use accelerated and natural ageing seed assays, glutathione redox potential measures, optical and transmission electron microscopy and gas chromatography-mass spectrometry to demonstrate that increasing the accumulation of lipid polyesters in the seed coat is the mechanism by which the AtHB25 transcription factor regulates seed permeability and longevity. Chromatin immunoprecipitation during seed maturation revealed that the lipid polyester biosynthetic gene long-chain acyl-CoA synthetase 2 (LACS2) is a direct AtHB25 binding target. Gene transfer of this transcription factor to wheat and tomato demonstrated the importance of apoplastic lipid polyesters for the maintenance of seed viability. Our work establishes AtHB25 as a trans-species regulator of seed longevity and has identified the deposition of apoplastic lipid barriers as a key parameter to improve seed longevity in multiple plant species.
Collapse
Affiliation(s)
- Joan Renard
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Irene Martínez-Almonacid
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Indira Queralta Castillo
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, P6A 2G4, Canada
| | - Annika Sonntag
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, P6A 2G4, Canada
| | - Aseel Hashim
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, P6A 2G4, Canada
| | - Gaetano Bissoli
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Laura Campos
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Jesús Muñoz-Bertomeu
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Regina Niñoles
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Thomas Roach
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Susana Sánchez-León
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS-CSIC), Córdoba, 14004, Spain
| | - Carmen V Ozuna
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS-CSIC), Córdoba, 14004, Spain
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Ilse Kranner
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS-CSIC), Córdoba, 14004, Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Isabel Molina
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, P6A 2G4, Canada
| | - Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| |
Collapse
|
35
|
Zablatzká L, Balarynová J, Klčová B, Kopecký P, Smýkal P. Anatomy and Histochemistry of Seed Coat Development of Wild ( Pisum sativum subsp. elatius (M. Bieb.) Asch. et Graebn. and Domesticated Pea ( Pisum sativum subsp. sativum L.). Int J Mol Sci 2021; 22:4602. [PMID: 33925728 PMCID: PMC8125792 DOI: 10.3390/ijms22094602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
In angiosperms, the mature seed consists of embryo, endosperm, and a maternal plant-derived seed coat (SC). The SC plays a role in seed filling, protects the embryo, mediates dormancy and germination, and facilitates the dispersal of seeds. SC properties have been modified during the domestication process, resulting in the removal of dormancy, mediated by SC impermeability. This study compares the SC anatomy and histochemistry of two wild (JI64 and JI1794) and two domesticated (cv. Cameor and JI92) pea genotypes. Histochemical staining of five developmental stages: 13, 21, 27, 30 days after anthesis (DAA), and mature dry seeds revealed clear differences between both pea types. SC thickness is established early in the development (13 DAA) and is primarily governed by macrosclereid cells. Polyanionic staining by Ruthenium Red indicated non homogeneity of the SC, with a strong signal in the hilum, the micropyle, and the upper parts of the macrosclereids. High peroxidase activity was detected in both wild and cultivated genotypes and increased over the development peaking prior to desiccation. The detailed knowledge of SC anatomy is important for any molecular or biochemical studies, including gene expression and proteomic analysis, especially when comparing different genotypes and treatments. Analysis is useful for other crop-to-wild-progenitor comparisons of economically important legume crops.
Collapse
Affiliation(s)
- Lenka Zablatzká
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
| | - Jana Balarynová
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
| | - Barbora Klčová
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
| | - Pavel Kopecký
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
- Genetic Resources for Vegetables and Specialty Crops, Crop Research Institute, Šlechtitelů 29, 783 71 Olomouc, Czech Republic
| | - Petr Smýkal
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
| |
Collapse
|
36
|
Du J, Lu S, Chai M, Zhou C, Sun L, Tang Y, Nakashima J, Kolape J, Wen Z, Behzadirad M, Zhong T, Sun J, Zhang Y, Wang Z. Functional characterization of PETIOLULE-LIKE PULVINUS (PLP) gene in abscission zone development in Medicago truncatula and its application to genetic improvement of alfalfa. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:351-364. [PMID: 32816361 PMCID: PMC7868985 DOI: 10.1111/pbi.13469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 05/05/2023]
Abstract
Alfalfa (Medicago sativa L.) is one of the most important forage crops throughout the world. Maximizing leaf retention during the haymaking process is critical for achieving superior hay quality and maintaining biomass yield. Leaf abscission process affects leaf retention. Previous studies have largely focused on the molecular mechanisms of floral organ, pedicel and seed abscission but scarcely touched on leaf and petiole abscission. This study focuses on leaf and petiole abscission in the model legume Medicago truncatula and its closely related commercial species alfalfa. By analysing the petiolule-like pulvinus (plp) mutant in M. truncatula at phenotypic level (breakstrength and shaking assays), microscopic level (scanning electron microscopy and cross-sectional analyses) and molecular level (expression level and expression pattern analyses), we discovered that the loss of function of PLP leads to an absence of abscission zone (AZ) formation and PLP plays an important role in leaflet and petiole AZ differentiation. Microarray analysis indicated that PLP affects abscission process through modulating genes involved in hormonal homeostasis, cell wall remodelling and degradation. Detailed analyses led us to propose a functional model of PLP in regulating leaflet and petiole abscission. Furthermore, we cloned the PLP gene (MsPLP) from alfalfa and produced RNAi transgenic alfalfa plants to down-regulate the endogenous MsPLP. Down-regulation of MsPLP results in altered pulvinus structure with increased leaflet breakstrength, thus offering a new approach to decrease leaf loss during alfalfa haymaking process.
Collapse
Affiliation(s)
- Juan Du
- Noble Research InstituteArdmoreOKUSA
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOKUSA
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Shaoyun Lu
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Maofeng Chai
- Noble Research InstituteArdmoreOKUSA
- Grassland Agri‐Husbandry Research CenterCollege of Grassland ScienceQingdao Agricultural UniversityQingdaoChina
| | - Chuanen Zhou
- School of Life ScienceShandong UniversityQingdaoChina
| | - Liang Sun
- Noble Research InstituteArdmoreOKUSA
| | | | | | - Jaydeep Kolape
- Noble Research InstituteArdmoreOKUSA
- Morrison Microscopy Core Research FacilityCenter for BiotechnologyUniversity of Nebraska‐LincolnNEUSA
| | - Zhaozhu Wen
- Noble Research InstituteArdmoreOKUSA
- College of AgricultureHunan Agricultural UniversityHunanChina
| | - Marjan Behzadirad
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOKUSA
| | - Tianxiu Zhong
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Juan Sun
- Grassland Agri‐Husbandry Research CenterCollege of Grassland ScienceQingdao Agricultural UniversityQingdaoChina
| | - Yunwei Zhang
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Zeng‐Yu Wang
- Noble Research InstituteArdmoreOKUSA
- Grassland Agri‐Husbandry Research CenterCollege of Grassland ScienceQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
37
|
Zhang X, Zhao J, Wu X, Hu G, Fan S, Ma Q. Evolutionary Relationships and Divergence of KNOTTED1-Like Family Genes Involved in Salt Tolerance and Development in Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:774161. [PMID: 34970288 PMCID: PMC8712452 DOI: 10.3389/fpls.2021.774161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/25/2021] [Indexed: 05/16/2023]
Abstract
The KNOX (KNOTTED1-like homeobox) transcription factors play an important role in leaf, shoot apical meristem and seed development and respond to biotic and abiotic stresses. In this study, we analyzed the diversity and evolutionary history of the KNOX gene family in the genome of tetraploid cotton (Gossypium hirsutum). Forty-four putative KNOX genes were identified. All KNOX genes from seven higher plant species were classified into KNOXI, KNOXII, and KNATM clades based on a phylogenetic analysis. Chromosomal localization and collinearity analysis suggested that whole-genome duplication and a polyploidization event contributed to the expansion of the cotton KNOX gene family. Analyses of expression profiles revealed that the GhKNOX genes likely responded to diverse stresses and were involved in cotton growth developmental processes. Silencing of GhKNOX2 enhanced the salt tolerance of cotton seedlings, whereas silencing of GhKNOX10 and GhKNOX14 reduced seedling tolerance to salt stress. Silencing of GhSTM3 influenced the cotton flowering time and plant development. These findings clarify the evolution of the cotton KNOX gene family and provide a foundation for future functional studies of KNOX proteins in cotton growth and development and response to abiotic stresses.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Xiangyuan Wu
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Genhai Hu
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- *Correspondence: Shuli Fan,
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Qifeng Ma,
| |
Collapse
|
38
|
Zhang C, An N, Jia P, Zhang W, Liang J, Zhang X, Zhou H, Ma W, Han M, Xing L, Ren X. Genomic identification and expression analysis of nuclear pore proteins in Malus domestica. Sci Rep 2020; 10:17426. [PMID: 33060661 PMCID: PMC7566457 DOI: 10.1038/s41598-020-74171-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
The nuclear pore complex (NPC), comprised of individual nucleoporin (Nup) proteins, controls nucleo-cytoplasmic transport of RNA and protein, and is important for regulating plant growth and development. However, there are no reports on this complex in fruit tree species. In this study, we identified 38 apple Nups and named them based on the known Arabidopsis thaliana homologs. We also completed bioinformatics analyses of the intron and exon structural data for apple Nups. The proteins encoded by the apple Nups lacked a universally conserved domain. Moreover, a phylogenetic analysis separated the apple and A. thaliana Nups into three groups. The phylogenetic tree indicated that MdNup54 and MdNup62 are most closely related to genes in other Rosaceae species. To characterize the 38 candidate Malus domestica Nups, we measured their stage-specific expression levels. Our tests revealed these proteins were differentially expressed among diverse tissues. We analyzed the expression levels of seven apple Nups in response to an indole-3-acetic acid (IAA) treatment. The phytohormone treatment significantly inhibited apple flowering. A qRT-PCR analysis proved that an IAA treatment significantly inhibited the expression of these seven genes. A preliminary study regarding two members of the Nup62 subcomplex, MdNup54 and MdNup62, confirmed these two proteins can interact with each other. A yeast two-hybrid assay verified that MdNup54 can interact with MdKNAT4 and MdKNAT6. On the basis of the study results, we identified apple NPC and predicted its structure and function. The data generated in this investigation provide important reference material for follow-up research.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Peng Jia
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Wei Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiayan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xu Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Hua Zhou
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Wenchun Ma
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, China.
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, China.
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, China.
| |
Collapse
|
39
|
Zhang Y, Song X, Zhang P, Gao H, Ou C, Kong X. Production of activated carbons from four wastes via one-step activation and their applications in Pb 2+ adsorption: Insight of ash content. CHEMOSPHERE 2020; 245:125587. [PMID: 31864062 DOI: 10.1016/j.chemosphere.2019.125587] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Natural biomass is a renewable source for precursors of porous carbon. Four agriculture wastes of corn cob (CC), wheat bran (WB), rice husk (RH), and soybean shell (SS) were applied to produce activated carbons (ACs) via one-step activation by sodium hydroxide. The effects of ash contents and NaOH dosage ratio (1-5) on surface area for ACs were investigated. Owing to ash etching, the high ash precursor (like RH) exhibited less alkali consumption and larger surface area than low ash one (like CC). All four ACs expressed developed pore structure and outstanding surface area of ∼2500 m2g-1. During adsorption of lead ions in simulated wastewater, RH-based AC revealed superior capture capacity of 492 ± 15 mgg-1. One-step activation had the potential to deliver savings around 1/3 of energy consumption, enabling the cost performance of high ash RH-based AC reaching 194 ± 12 g Pb2+$-1, 76% larger than low ash CC-based AC. High ash biomass is a promising candidate to obtain eco-friendly carbon products.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory for Mineral Materials and Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Xiaolan Song
- Key Laboratory for Mineral Materials and Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Pu Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, United States
| | - Hongpeng Gao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, United States
| | - Cuiyun Ou
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, 510275, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
| | - Xiaodong Kong
- Key Laboratory for Mineral Materials and Application of Hunan Province, School of Mineral Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
40
|
Desta ZA, de Koning DJ, Ortiz R. Molecular mapping and identification of quantitative trait loci for domestication traits in the field cress (Lepidium campestre L.) genome. Heredity (Edinb) 2020; 124:579-591. [PMID: 32076125 PMCID: PMC7080786 DOI: 10.1038/s41437-020-0296-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 01/08/2023] Open
Abstract
Lepidium campestre (L.) or field cress is a multifaceted oilseed plant, which is not yet domesticated. Moreover, the molecular and genetic mechanisms underlying the domestication traits of field cress remain largely elusive. The overarching goal of this study is to identify quantitative trait loci (QTL) that are fundamental for domestication of field cress. Mapping and dissecting quantitative trait variation may provide important insights into genomic trajectories underlying field cress domestication. We used 7624 single nucleotide polymorphism (SNP) markers for QTL mapping in 428 F2 interspecific hybrid individuals, while field phenotyping was conducted in F2:3 segregating families. We applied multiple QTL mapping algorithms to detect and estimate the QTL effects for seven important domestication traits of field cress. Verification of pod shattering across sites revealed that the non-shattering lines declined drastically whereas the shattering lines increased sharply, possibly due to inbreeding followed by selection events. In total, 1461 of the 7624 SNP loci were mapped to eight linkage groups (LGs), spanning 571.9 cM map length. We identified 27 QTL across all LGs of field cress genome, which captured medium to high heritability, implying that genomics-assisted selection could deliver domesticated lines in field cress breeding. The use of high throughput genotyping can accelerate the process of domestication in novel crop species. This is the first QTL mapping analysis in the field cress genome that may lay a foundational framework for positional or functional QTL cloning, introgression as well as genomics-assisted breeding in field cress domestication.
Collapse
Affiliation(s)
- Zeratsion Abera Desta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundesvagen 10 Box 101, 23053, Alnarp, Sweden.
| | - Dirk-Jan de Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 75007, Uppsala, Sweden
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundesvagen 10 Box 101, 23053, Alnarp, Sweden
| |
Collapse
|
41
|
Guo C, Wang Y, Yang A, He J, Xiao C, Lv S, Han F, Yuan Y, Yuan Y, Dong X, Guo J, Yang Y, Liu H, Zuo N, Hu Y, Zhao K, Jiang Z, Wang X, Jiang T, Shen Y, Cao M, Wang Y, Long Z, Rong T, Huang L, Zhou S. The Coix Genome Provides Insights into Panicoideae Evolution and Papery Hull Domestication. MOLECULAR PLANT 2020; 13:309-320. [PMID: 31778843 DOI: 10.1016/j.molp.2019.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/24/2019] [Accepted: 11/13/2019] [Indexed: 05/20/2023]
Abstract
Coix is a grass crop domesticated as early as the Neolithic era. It is still widely cultivated for both highly nutritional food and medicinal use. However, the genetic study and breeding of this crop are hindered by the lack of a sequenced genome. Here, we report de novo sequencing and assembly of the 1619-Mb genome of Coix, and annotation of 75.39% repeats and 39 629 protein-coding genes. Comparative genomics analysis showed that Coix is more closely related to sorghum than maize, but intriguingly only Coix and maize had a recent genome duplication event, which was not detected in sorghum. We further constructed a genetic map and mapped several important traits, especially the strength of hull. Selection of papery hull (thin: easy dehulling) from the stony hull (thick: difficult dehulling) in wild progenitors was a key step in Coix domestication. The papery hull makes seed easier to process and germinate. Anatomic and global transcriptome analysis revealed that the papery hull is a result of inhibition of cell division and wall biogenesis. We also successfully demonstrated that seed hull pressure resistance is controlled by two major quantitative trait loci (QTLs), which are associated with hull thickness and color, respectively. The two QTLs were further fine mapped within intervals of 250 kb and 146 kb, respectively. These resources provide a platform for evolutionary studies and will facilitate molecular breeding of this important crop.
Collapse
Affiliation(s)
- Chao Guo
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yanan Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing 100700, China
| | - Aiguo Yang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jun He
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Shanhua Lv
- College of Agronomy, Liaocheng University, Liaocheng 252000, China
| | - Fengming Han
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Yibing Yuan
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Yuan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing 100700, China
| | - Xiaolong Dong
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing 100700, China
| | - Yawen Yang
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Hailan Liu
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Ningzhi Zuo
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yaxi Hu
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Kangxu Zhao
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengbo Jiang
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Xing Wang
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Jiang
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yaou Shen
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Moju Cao
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Wang
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Zhaobo Long
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Tingzhao Rong
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing 100700, China.
| | - Shufeng Zhou
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
42
|
Wang S, Yang H, Mei J, Liu X, Wen Z, Zhang L, Xu Z, Zhang B, Zhou Y. Rice Homeobox Protein KNAT7 Integrates the Pathways Regulating Cell Expansion and Wall Stiffness. PLANT PHYSIOLOGY 2019; 181:669-682. [PMID: 31358682 PMCID: PMC6776869 DOI: 10.1104/pp.19.00639] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 05/21/2023]
Abstract
During growth, plant cells must coordinate cell expansion and cell wall reinforcement by integrating distinct regulatory pathways in concert with intrinsic and external cues. However, the mechanism underpinning this integration is unclear, as few of the regulators that orchestrate cell expansion and wall strengthening have been identified. Here, we report a rice (Oryza sativa) Class II KNOX-like homeobox protein, KNOTTED ARABIDOPSIS THALIANA7 (KNAT7), that interacts with different partners to govern cell expansion and wall thickening. A loss-of-function mutation in KNAT7 enhanced wall mechanical strength and cell expansion, resulting in improved lodging resistance and grain size. Overexpression of KNAT7 gave rise to the opposite phenotypes, with plants having weaker cell walls and smaller grains. Biochemical and gene expression analyses revealed that rice KNAT7 interacts with a secondary wall key regulator, NAC31, and a cell growth master regulator, Growth-Regulating Factor 4 (GRF4). The KNAT7-NAC31 and KNAT7-GRF4 modules suppressed regulatory pathways of cell expansion and wall reinforcement, as we show in internode and panicle development. These modules function in sclerenchyma fiber cells and modulate fiber cell length and wall thickness. Hence, our study uncovers a mechanism for the combined control of cell size and wall strengthening, providing a tool to improve lodging resistance and yield in rice production.
Collapse
Affiliation(s)
- Shaogan Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hanlei Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiasong Mei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangling Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhao Wen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zuopeng Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Janská A, Pecková E, Sczepaniak B, Smýkal P, Soukup A. The role of the testa during the establishment of physical dormancy in the pea seed. ANNALS OF BOTANY 2019; 123:815-829. [PMID: 30534972 PMCID: PMC6526324 DOI: 10.1093/aob/mcy213] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 11/08/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND A water-impermeable testa acts as a barrier to a seed's imbibition, thereby imposing dormancy. The physical and functional properties of the macrosclereids are thought to be critical determinants of dormancy; however, the mechanisms underlying the maintenance of and release from dormancy in pea are not well understood. METHODS Seeds of six pea accessions of contrasting dormancy type were tested for their ability to imbibe and the permeability of their testa was evaluated. Release from dormancy was monitored following temperature oscillation, lipid removal and drying. Histochemical and microscopic approaches were used to characterize the structure of the testa. KEY RESULTS The strophiole was identified as representing the major site for the entry of water into non-dormant seeds, while water entry into dormant seeds was distributed rather than localized. The major barrier for water uptake in dormant seeds was the upper section of the macrosclereids, referred to as the 'light line'. Dormancy could be released by thermocycling, dehydration or chloroform treatment. Assays based on either periodic acid or ruthenium red were used to visualize penetration through the testa. Lipids were detected within a subcuticular waxy layer in both dormant and non-dormant seeds. The waxy layer and the light line both formed at the same time as the establishment of secondary cell walls at the tip of the macrosclereids. CONCLUSIONS The light line was identified as the major barrier to water penetration in dormant seeds. Its outer border abuts a waxy subcuticular layer, which is consistent with the suggestion that the light line represents the interface between two distinct environments - the waxy subcuticular layer and the cellulose-rich secondary cell wall. The mechanistic basis of dormancy break includes changes in the testa's lipid layer, along with the mechanical disruption induced by oscillation in temperature and by a decreased moisture content of the embryo.
Collapse
Affiliation(s)
- Anna Janská
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | - Eva Pecková
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | - Bogna Sczepaniak
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | - Petr Smýkal
- Department of Botany, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Aleš Soukup
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| |
Collapse
|
44
|
Wang M, Li W, Fang C, Xu F, Liu Y, Wang Z, Yang R, Zhang M, Liu S, Lu S, Lin T, Tang J, Wang Y, Wang H, Lin H, Zhu B, Chen M, Kong F, Liu B, Zeng D, Jackson SA, Chu C, Tian Z. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet 2018; 50:1435-1441. [PMID: 30250128 DOI: 10.1038/s41588-018-0229-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 08/07/2018] [Indexed: 12/27/2022]
Abstract
Domesticated species often exhibit convergent phenotypic evolution, termed the domestication syndrome, of which loss of seed dormancy is a component. To date, dormancy genes that contribute to parallel domestication across different families have not been reported. Here, we cloned the classical stay-green G gene from soybean and found that it controls seed dormancy and showed evidence of selection during soybean domestication. Moreover, orthologs in rice and tomato also showed evidence of selection during domestication. Analysis of transgenic plants confirmed that orthologs of G had conserved functions in controlling seed dormancy in soybean, rice, and Arabidopsis. Functional investigation demonstrated that G affected seed dormancy through interactions with NCED3 and PSY and in turn modulated abscisic acid synthesis. Therefore, we identified a gene responsible for seed dormancy that has been subject to parallel selection in multiple crop families. This may help facilitate the domestication of new crops.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhen Li
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chao Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fan Xu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Rui Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijia Lu
- School of Life Sciences, Guangzhou University, Guangzhou, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Tao Lin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiuyou Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yiqin Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongru Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoge Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mingsheng Chen
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Scott A Jackson
- Center for Applied Genetic Technologies, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA.
| | - Chengcai Chu
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
45
|
Deng Y, Zheng H, Yan Z, Liao D, Li C, Zhou J, Liao H. Full-Length Transcriptome Survey and Expression Analysis of Cassia obtusifolia to Discover Putative Genes Related to Aurantio-Obtusin Biosynthesis, Seed Formation and Development, and Stress Response. Int J Mol Sci 2018; 19:ijms19092476. [PMID: 30134624 PMCID: PMC6163539 DOI: 10.3390/ijms19092476] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
The seed is the pharmaceutical and breeding organ of Cassia obtusifolia, a well-known medical herb containing aurantio-obtusin (a kind of anthraquinone), food, and landscape. In order to understand the molecular mechanism of the biosynthesis of aurantio-obtusin, seed formation and development, and stress response of C. obtusifolia, it is necessary to understand the genomics information. Although previous seed transcriptome of C. obtusifolia has been carried out by short-read next-generation sequencing (NGS) technology, the vast majority of the resulting unigenes did not represent full-length cDNA sequences and supply enough gene expression profile information of the various organs or tissues. In this study, fifteen cDNA libraries, which were constructed from the seed, root, stem, leaf, and flower (three repetitions with each organ) of C. obtusifolia, were sequenced using hybrid approach combining single-molecule real-time (SMRT) and NGS platform. More than 4,315,774 long reads with 9.66 Gb sequencing data and 361,427,021 short reads with 108.13 Gb sequencing data were generated by SMRT and NGS platform, respectively. 67,222 consensus isoforms were clustered from the reads and 81.73% (61,016) of which were longer than 1000 bp. Furthermore, the 67,222 consensus isoforms represented 58,106 nonredundant transcripts, 98.25% (57,092) of which were annotated and 25,573 of which were assigned to specific metabolic pathways by KEGG. CoDXS and CoDXR genes were directly used for functional characterization to validate the accuracy of sequences obtained from transcriptome. A total of 658 seed-specific transcripts indicated their special roles in physiological processes in seed. Analysis of transcripts which were involved in the early stage of anthraquinone biosynthesis suggested that the aurantio-obtusin in C. obtusifolia was mainly generated from isochorismate and Mevalonate/methylerythritol phosphate (MVA/MEP) pathway, and three reactions catalyzed by Menaquinone-specific isochorismate synthase (ICS), 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and isopentenyl diphosphate (IPPS) might be the limited steps. Several seed-specific CYPs, SAM-dependent methyltransferase, and UDP-glycosyltransferase (UDPG) supplied promising candidate genes in the late stage of anthraquinone biosynthesis. In addition, four seed-specific transcriptional factors including three MYB Transcription Factor (MYB) and one MADS-box Transcription Factor (MADS) transcriptional factors) and alternative splicing might be involved with seed formation and development. Meanwhile, most members of Hsp20 genes showed high expression level in seed and flower; seven of which might have chaperon activities under various abiotic stresses. Finally, the expressional patterns of genes with particular interests showed similar trends in both transcriptome assay and qRT-PCR. In conclusion, this is the first full-length transcriptome sequencing reported in Caesalpiniaceae family, and thus providing a more complete insight into aurantio-obtusin biosynthesis, seed formation and development, and stress response as well in C. obtusifolia.
Collapse
Affiliation(s)
- Yin Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hui Zheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zicheng Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dongying Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Chaolin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
46
|
Gou J, Debnath S, Sun L, Flanagan A, Tang Y, Jiang Q, Wen J, Wang Z. From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:951-962. [PMID: 28941083 PMCID: PMC5866946 DOI: 10.1111/pbi.12841] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 05/05/2023]
Abstract
Biomass yield, salt tolerance and drought tolerance are important targets for alfalfa (Medicago sativa L.) improvement. Medicago truncatula has been developed into a model plant for alfalfa and other legumes. By screening a Tnt1 retrotransposon-tagged M. truncatula mutant population, we identified three mutants with enhanced branching. Branch development determines shoot architecture which affects important plant functions such as light acquisition, resource use and ultimately impacts biomass production. Molecular analyses revealed that the mutations were caused by Tnt1 insertions in the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 8 (SPL8) gene. The M. truncatula spl8 mutants had increased biomass yield, while overexpression of SPL8 in M. truncatula suppressed branching and reduced biomass yield. Scanning electron microscopy (SEM) analysis showed that SPL8 inhibited branching by directly suppressing axillary bud formation. Based on the M. truncatula SPL8 sequence, alfalfa SPL8 (MsSPL8) was cloned and transgenic alfalfa plants were produced. MsSPL8 down-regulated or up-regulated alfalfa plants exhibited similar phenotypes to the M. truncatula mutants or overexpression lines, respectively. Specifically, the MsSPL8 down-regulated alfalfa plants showed up to 43% increase in biomass yield in the first harvest. The impact was even more prominent in the second harvest, with up to 86% increase in biomass production compared to the control. Furthermore, down-regulation of MsSPL8 led to enhanced salt and drought tolerance in transgenic alfalfa. Results from this research offer a valuable approach to simultaneously improve biomass production and abiotic stress tolerance in legumes.
Collapse
Affiliation(s)
- Jiqing Gou
- Noble Research InstituteArdmoreOKUSA
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
| | | | - Liang Sun
- Noble Research InstituteArdmoreOKUSA
| | - Amy Flanagan
- Noble Research InstituteArdmoreOKUSA
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
| | - Yuhong Tang
- Noble Research InstituteArdmoreOKUSA
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
| | | | | | - Zeng‐Yu Wang
- Noble Research InstituteArdmoreOKUSA
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
47
|
Steinbrecher T, Leubner-Metzger G. Tissue and cellular mechanics of seeds. Curr Opin Genet Dev 2018; 51:1-10. [PMID: 29571069 DOI: 10.1016/j.gde.2018.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 01/17/2023]
Abstract
Distinct plant seed/fruit structures evolved to support reproduction and dispersal in distinct environments. Appropriate biomechanical properties and interactions of the various seed compartments are indispensable to plant survival. Most seeds are dispersed in a dry state generated during seed development/maturation for which novel aspects of endosperm-embryo interaction were discovered. The various layers covering the embryo of a mature seed define the patterns of water uptake during germination. Their biomechanical weakening together with embryo cell expansion is mediated by cell wall remodelling to facilitate radicle protrusion. Recent work with different species has revealed mechanisms underpinning specific embryo growth zones. Abiotic and biotic factors were shown to release different types of seed and fruit coat-mediated constraints to water uptake and germination.
Collapse
Affiliation(s)
- Tina Steinbrecher
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK(1).
| | - Gerhard Leubner-Metzger
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK(1).
| |
Collapse
|
48
|
Ingram G, Nawrath C. The roles of the cuticle in plant development: organ adhesions and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5307-5321. [PMID: 28992283 DOI: 10.1093/jxb/erx313] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cuticles, which are composed of a variety of aliphatic molecules, impregnate epidermal cell walls forming diffusion barriers that cover almost all the aerial surfaces in higher plants. In addition to revealing important roles for cuticles in protecting plants against water loss and other environmental stresses and aggressions, mutants with permeable cuticles show major defects in plant development, such as abnormal organ formation as well as altered seed germination and viability. However, understanding the mechanistic basis for these developmental defects represents a significant challenge due to the pleiotropic nature of phenotypes and the altered physiological status/viability of some mutant backgrounds. Here we discuss both the basis of developmental phenotypes associated with defects in cuticle function and mechanisms underlying developmental processes that implicate cuticle modification. Developmental abnormalities in cuticle mutants originate at early developmental time points, when cuticle composition and properties are very difficult to measure. Nonetheless, we aim to extract principles from existing data in order to pinpoint the key cuticle components and properties required for normal plant development. Based on our analysis, we will highlight several major questions that need to be addressed and technical hurdles that need to be overcome in order to advance our current understanding of the developmental importance of plant cuticles.
Collapse
Affiliation(s)
- Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, CNRS, INRA, UCB Lyon 1, Ecole Normale Supérieure de Lyon, F-69342 Lyon, France
| | - Christiane Nawrath
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
49
|
Cechová M, Válková M, Hradilová I, Janská A, Soukup A, Smýkal P, Bednář P. Towards Better Understanding of Pea Seed Dormancy Using Laser Desorption/Ionization Mass Spectrometry. Int J Mol Sci 2017; 18:E2196. [PMID: 29065445 PMCID: PMC5666877 DOI: 10.3390/ijms18102196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023] Open
Abstract
Seed coats of six pea genotypes contrasting in dormancy were studied by laser desorption/ionization mass spectrometry (LDI-MS). Multivariate statistical analysis discriminated dormant and non-dormant seeds in mature dry state. Separation between dormant and non-dormant types was observed despite important markers of particular dormant genotypes differ from each other. Normalized signals of long-chain hydroxylated fatty acids (HLFA) in dormant JI64 genotype seed coats were significantly higher than in other genotypes. These compounds seem to be important markers likely influencing JI64 seed imbibition and germination. HLFA importance was supported by study of recombinant inbred lines (JI64xJI92) contrasting in dormancy but similar in other seed properties. Furthemore HLFA distribution in seed coat was studied by mass spectrometry imaging. HLFA contents in strophiole and hilum are significantly lower compared to other parts indicating their role in water uptake. Results from LDI-MS experiments are useful in understanding (physical) dormancy (first phases of germination) mechanism and properties related to food processing technologies (e.g., seed treatment by cooking).
Collapse
Affiliation(s)
- Monika Cechová
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Markéta Válková
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Iveta Hradilová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Anna Janská
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic.
| | - Aleš Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic.
| | - Petr Smýkal
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Petr Bednář
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic.
| |
Collapse
|
50
|
Steinbrecher T, Leubner-Metzger G. The biomechanics of seed germination. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:765-783. [PMID: 27927995 DOI: 10.1093/jxb/erw428] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
From a biomechanical perspective, the completion of seed (and fruit) germination depends on the balance of two opposing forces: the growth potential of the embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed-covering layers (endosperm, testa, and pericarp). The diverse seed tissues are composite materials which differ in their dynamic properties based on their distinct cell wall composition and water uptake capacities. The biomechanics of embryo cell growth during seed germination depend on irreversible cell wall loosening followed by water uptake due to the decreasing turgor, and this leads to embryo elongation and eventually radicle emergence. Endosperm weakening as a prerequisite for radicle emergence is a widespread phenomenon among angiosperms. Research into the biochemistry and biomechanics of endosperm weakening has demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen. The endosperm-weakening biomechanics and its underlying cell wall biochemistry differ between the micropylar (ME) and chalazal (CE) endosperm domains. In the ME, they involve cell wall loosening, cell separation, and programmed cell death to provide decreased and localized ME tissue resistance, autolysis, and finally the formation of an ME hole required for radicle emergence. Future work will further unravel the molecular mechanisms, environmental regulation, and evolution of the diverse biomechanical cell wall changes underpinning the control of germination by endosperm weakening.
Collapse
Affiliation(s)
- Tina Steinbrecher
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|