1
|
Sereno-Uribe AL, López-Jiménez A, González-García MT, Ortega-Olivares MP, García-Varela M. A phylogeographic approach of three species of Clinostomum Leidy, 1856, (Trematoda: Clinostomidae) from the Neotropical region of Mexico, with the description of a new species from Ardea herodias (Ardeidae). Parasitol Int 2025; 108:103067. [PMID: 40122452 DOI: 10.1016/j.parint.2025.103067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/13/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Clinostomum Leidy, 1856 is a globally distributed group of endoparasites that reside attached to the mucosa of the mouth cavity and oesophagus of fish-eating birds (mainly herons) in the adult stage, whereas larvae known as metacercariae ("yellow grubs") damage freshwater fish and amphibians that serve as secondary intermediate hosts. In the Nearctic and Neotropical regions of Mexico, species of the genus Clinostomum have been intensively studied, revealing seven species that share a common ancestor. In the present study, sequences of the ITS from nuclear ribosomal DNA and cox 1 from mitochondrial DNA were generated for C. tataxumui, C. cichlidorum, and an unidentified species identified as lineage 3 sensu Pérez-Ponce de León et al. 2026, which is distributed sympatrically in Mexico and Middle America. The objectives of the present study were to 1) describe a new species of Clinostomum, named herein as Clinostomum chaacci n. sp., which combines morphological and molecular characters; 2) analyse the population genetic structure of two previously described species in addition to C. chaacci n. sp.; and 3) infer phylogeographic patterns using cox 1 sequences. The inferred phylogeographic results indicated that the populations of C. tataxumui, and C. cichlidorum lack a geographic structure with high haplotype diversity, low nucleotide diversity, and low Fst values among the populations with negative values on the neutrality test, suggesting that the populations are expanding. In contrast, the populations of C. chaacci n. sp., are less connected and subdivided into smaller populations, leading to slight genetic differentiation, suggesting that the populations have undergone significant demographic changes, such as recent expansion or selection effects.
Collapse
Affiliation(s)
- Ana Lucia Sereno-Uribe
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria C.P. 04510, Ciudad de México, Mexico
| | - Alejandra López-Jiménez
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria C.P. 04510, Ciudad de México, Mexico
| | - Marcelo Tonatiuh González-García
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria C.P. 04510, Ciudad de México, Mexico
| | - Mirza Patricia Ortega-Olivares
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria C.P. 04510, Ciudad de México, Mexico
| | - Martín García-Varela
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria C.P. 04510, Ciudad de México, Mexico.
| |
Collapse
|
2
|
Fonseca EM, Carstens BC. Artificial intelligence enables unified analysis of historical and landscape influences on genetic diversity. Mol Phylogenet Evol 2024; 198:108116. [PMID: 38871263 DOI: 10.1016/j.ympev.2024.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
While genetic variation in any species is potentially shaped by a range of processes, phylogeography and landscape genetics are largely concerned with inferring how environmental conditions and landscape features impact neutral intraspecific diversity. However, even as both disciplines have come to utilize SNP data over the last decades, analytical approaches have remained for the most part focused on either broad-scale inferences of historical processes (phylogeography) or on more localized inferences about environmental and/or landscape features (landscape genetics). Here we demonstrate that an artificial intelligence model-based analytical framework can consider both deeper historical factors and landscape-level processes in an integrated analysis. We implement this framework using data collected from two Brazilian anurans, the Brazilian sibilator frog (Leptodactylus troglodytes) and granular toad (Rhinella granulosa). Our results indicate that historical demographic processes shape most the genetic variation in the sibulator frog, while landscape processes primarily influence variation in the granular toad. The machine learning framework used here allows both historical and landscape processes to be considered equally, rather than requiring researchers to make an a priori decision about which factors are important.
Collapse
Affiliation(s)
- Emanuel M Fonseca
- Museum of Biological Diversity & Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 1315 Kinnear Rd., Columbus OH 43212, USA
| | - Bryan C Carstens
- Museum of Biological Diversity & Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 1315 Kinnear Rd., Columbus OH 43212, USA.
| |
Collapse
|
3
|
Alexander N, de Flamingh A, Cosentino BJ, Schooley RL. Phylogenetic assessment within a species complex of a subterranean rodent (Geomys bursarius) with conservation implications for isolated subspecies. J Hered 2024; 115:565-574. [PMID: 38982643 PMCID: PMC11334213 DOI: 10.1093/jhered/esae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
Range contraction and expansion from glaciation have led to genetic divergence that may be particularly pronounced in fossorial species with low dispersal. The plains pocket gopher (Geomys bursarius) is a fossorial species that ranges widely across North America but has a poorly understood phylogeny. We used mitogenomes (14,996 base pairs) from 56 individuals across seven subspecies, plus two outgroup species, to assess genetic divergence from minimum spanning trees, measure genetic distances, and infer phylogenetic trees using BEAST. We found G. b. wisconsinensis was monophyletic with recent divergence. Further assessment is needed for G. b. major because it was paraphyletic and exhibited inconsistent groupings with other clades. Importantly, we identified G. b. illinoensis as being genetically distinct and monophyletic likely due to a unique colonization event eastward across the Mississippi River. Because G. b. illinoensis faces continued pressures from niche reduction and habitat loss, we recommend that G. b. illinoensis be considered an evolutionary significant unit warranting conservation actions to promote connectivity and restore suitable habitat. Such conservation efforts should benefit other grassland species including those originating from clades west of the Mississippi River that may also be evolutionary significant units.
Collapse
Affiliation(s)
- Nathan Alexander
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL, United States
| | - Alida de Flamingh
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, United States
| | - Bradley J Cosentino
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, United States
| | - Robert L Schooley
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
4
|
Shi CM, Zhang XS, Liu L, Ji YJ, Zhang DX. Phylogeography of the desert scorpion illuminates a route out of Central Asia. Curr Zool 2023; 69:442-455. [PMID: 37614924 PMCID: PMC10443618 DOI: 10.1093/cz/zoac061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/27/2022] [Indexed: 08/25/2023] Open
Abstract
A comprehensive understanding of phylogeography requires the integration of knowledge across different organisms, ecosystems, and geographic regions. However, a critical knowledge gap exists in the arid biota of the vast Asian drylands. To narrow this gap, here we test an "out-of-Central Asia" hypothesis for the desert scorpion Mesobuthus mongolicus by combining Bayesian phylogeographic reconstruction and ecological niche modeling. Phylogenetic analyses of one mitochondrial and three nuclear loci and molecular dating revealed that M. mongolicus represents a coherent lineage that diverged from its most closely related lineage in Central Asia about 1.36 Ma and underwent radiation ever since. Bayesian phylogeographic reconstruction indicated that the ancestral population dispersed from Central Asia gradually eastward to the Gobi region via the Junggar Basin, suggesting that the Junggar Basin has severed as a corridor for Quaternary faunal exchange between Central Asia and East Asia. Two major dispersal events occurred probably during interglacial periods (around 0.8 and 0.4 Ma, respectively) when climatic conditions were analogous to present-day status, under which the scorpion achieved its maximum distributional range. M. mongolicus underwent demographic expansion during the Last Glacial Maximum, although the predicted distributional areas were smaller than those at present and during the Last Interglacial. Development of desert ecosystems in northwest China incurred by intensified aridification might have opened up empty habitats that sustained population expansion. Our results extend the spatiotemporal dimensions of trans-Eurasia faunal exchange and suggest that species' adaptation is an important determinant of their phylogeographic and demographic responses to climate changes.
Collapse
Affiliation(s)
- Cheng-Min Shi
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Xue-Shu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya-Jie Ji
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Xing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
5
|
Polic D, Yıldırım Y, Lee KM, Franzén M, Mutanen M, Vila R, Forsman A. Linking large-scale genetic structure of three Argynnini butterfly species to geography and environment. Mol Ecol 2022; 31:4381-4401. [PMID: 35841126 PMCID: PMC9544544 DOI: 10.1111/mec.16594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022]
Abstract
Understanding which factors and processes are associated with genetic differentiation within and among species remains a major goal in evolutionary biology. To explore differences and similarities in genetic structure and its association with geographical and climatic factors in sympatric sister species, we conducted a large‐scale (>32° latitude and >36° longitude) comparative phylogeographical study on three Argynnini butterfly species (Speyeria aglaja, Fabriciana adippe and F. niobe) that have similar life histories, but differ in ecological generalism and dispersal abilities. Analyses of nuclear (ddRAD‐sequencing derived SNP markers) and mitochondrial (COI sequences) data revealed differences between species in genetic structure and how genetic differentiation was associated with climatic factors (temperature, solar radiation, precipitation, wind speed). Geographical proximity accounted for much of the variation in nuclear and mitochondrial structure and evolutionary relationships in F. adippe and F. niobe, but only explained the pattern observed in the nuclear data in S. aglaja, for which mitonuclear discordance was documented. In all species, Iberian and Balkan individuals formed genetic clusters, suggesting isolation in glacial refugia and limited postglacial expansion. Solar radiation and precipitation were associated with the genetic structure on a regional scale in all species, but the specific combinations of environmental and geographical factors linked to variation within species were unique, pointing to species‐specific responses to common environments. Our findings show that the species share similar colonization histories, and that the same ecological factors, such as niche breadth and dispersal capacity, covary with genetic differentiation within these species to some extent, thereby highlighting the importance of comparative phylogeographical studies in sympatric sister species.
Collapse
Affiliation(s)
- Daniela Polic
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yeşerin Yıldırım
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.,Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Kyung Min Lee
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland.,Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Markus Franzén
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Marko Mutanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Anders Forsman
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
6
|
Böhnert T, Luebert F, Merklinger FF, Harpke D, Stoll A, Schneider JV, Blattner FR, Quandt D, Weigend M. Plant migration under long-lasting hyperaridity - phylogenomics unravels recent biogeographic history in one of the oldest deserts on Earth. THE NEW PHYTOLOGIST 2022; 234:1863-1875. [PMID: 35274308 DOI: 10.1111/nph.18082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The post-Miocene climatic histories of arid environments have been identified as key drivers of dispersal and diversification. Here, we investigate how climatic history correlates with the historical biogeography of the Atacama Desert genus Cristaria (Malvaceae). We analyze phylogenetic relationships and historical biogeography by using next-generation sequencing (NGS), molecular clock dating, Dispersal Extinction Cladogenesis and Bayesian sampling approaches. We employ a novel way to identify biogeographically meaningful regions as well as a rarely utilized program permitting the use of dozens of ancestral areas. Partial incongruence between the established taxonomy and our phylogenetic data argue for a complex historical biogeography with repeated introgression and incomplete lineage sorting. Cristaria originated in the central southern part of the Atacama Desert, from there the genus colonized other areas from the late Miocene onwards. The more recently diverged lineages appear to have colonized different habitats in the Atacama Desert during pluvial phases of the Pliocene and early Pleistocene. We show that NGS combined with near-comprehensive sampling can provide an unprecedented degree of phylogenetic resolution and help to correlate the historical biogeography of plant communities with cycles of arid and pluvial phases.
Collapse
Affiliation(s)
- Tim Böhnert
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
| | - Federico Luebert
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
- Facultad de Ciencias Agronómicas and Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, 8820000, Santiago, Chile
| | - Felix F Merklinger
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
- Sukkulenten-Sammlung Zürich/Grün Stadt Zürich, 8002, Zürich, Switzerland
| | - Dörte Harpke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Alexandra Stoll
- Centro de Estudios Avanzados en Zonas Áridas Ceaza, 1720256, La Serena, Chile
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de la Serena, 1720170, La Serena, Chile
| | - Julio V Schneider
- Botany and Molecular Evolution and Entomology III, Senckenberg Research Institute and Natural History Museum, Frankfurt, 60325, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Dietmar Quandt
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Maximilian Weigend
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
7
|
Ye Z, Yuan J, Damgaard J, Berchi GM, Cianferoni F, Pintar MR, Olosutean H, Zhu X, Jiang K, Yang X, Fu S, Bu W. Climate Warming Since the Holocene Accelerates West-East Communication for the Eurasian Temperate Water Strider Species Aquarius paludum. Mol Biol Evol 2022; 39:6575397. [PMID: 35482393 PMCID: PMC9087890 DOI: 10.1093/molbev/msac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Holocene climate warming has dramatically altered biological diversity and distributions. Recent human-induced emissions of greenhouse gases will exacerbate global warming and thus induce threats to cold-adapted taxa. However, the impacts of this major climate change on transcontinental temperate species are still poorly understood. Here, we generated extensive genomic datasets for a water strider, Aquarius paludum, which was sampled across its entire distribution in Eurasia and used these datasets in combination with ecological niche modeling (ENM) to elucidate the influence of the Holocene and future climate warming on its population structure and demographic history. We found that A. paludum consisted of two phylogeographic lineages that diverged in the middle Pleistocene, which resulted in a “west–east component” genetic pattern that was probably triggered by Central Asia-Mongoxin aridification and Pleistocene glaciations. The diverged western and eastern lineages had a second contact in the Holocene, which shaped a temporary hybrid zone located at the boundary of the arid–semiarid regions of China. Future predictions detected a potentially novel northern corridor to connect the western and eastern populations, indicating west–east gene flow would possibly continue to intensify under future warming climate conditions. Further integrating phylogeographic and ENM analyses of multiple Eurasian temperate taxa based on published studies reinforced our findings on the “west–east component” genetic pattern and the predicted future northern corridor for A. paludum. Our study provided a detailed paradigm from a phylogeographic perspective of how transcontinental temperate species differ from cold-adapted taxa in their response to climate warming.
Collapse
Affiliation(s)
- Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Juanjuan Yuan
- College of Life Sciences, Zaozhuang University, 1 Beian Road, Shandong 277000, China
| | - Jakob Damgaard
- Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Gavril Marius Berchi
- Department of Taxonomy & Ecology, Faculty of Biology & Geology, Babeş-Bolyai University, 5-7 Clinicilor Street, 400015 Cluj-Napoca, Romania.,Institute for Advanced Environmental Research, West University of Timișoara, 4 Oituz Street, 300086 Timișoara, Romania
| | - Fabio Cianferoni
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy.,Zoology, "La Specola", Natural History Museum, University of Florence, Via Romana 17, I-50125 Florence, Italy
| | - Matthew R Pintar
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Horea Olosutean
- Applied Ecology Research Center, Lucian Blaga University of Sibiu, 5-7 Ion Ratiu Street, 550012 Sibiu, Romania
| | - Xiuxiu Zhu
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Kun Jiang
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xin Yang
- School of Sports, Taiyuan University of Science and Technology, 66 Waliu Road, Shanxi 030024, China
| | - Siying Fu
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
8
|
Titus BM, Daly M. Population genomics for symbiotic anthozoans: can reduced representation approaches be used for taxa without reference genomes? Heredity (Edinb) 2022; 128:338-351. [PMID: 35418670 PMCID: PMC9076904 DOI: 10.1038/s41437-022-00531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022] Open
Abstract
Population genetic studies of symbiotic anthozoans have been historically challenging because their endosymbioses with dinoflagellates have impeded marker development. Genomic approaches like reduced representation sequencing alleviate marker development issues but produce anonymous loci, and without a reference genome, it is unknown which organism is contributing to the observed patterns. Alternative methods such as bait-capture sequencing targeting Ultra-Conserved Elements are now possible but costly. Thus, RADseq remains attractive, but how useful are these methods for symbiotic anthozoan taxa without a reference genome to separate anthozoan from algal sequences? We explore this through a case-study using a double-digest RADseq dataset for the sea anemone Bartholomea annulata. We assembled a holobiont dataset (3854 loci) for 101 individuals, then used a reference genome to create an aposymbiotic dataset (1402 loci). For both datasets, we investigated population structure and used coalescent simulations to estimate demography and population parameters. We demonstrate complete overlap in the spatial patterns of genetic diversity, demographic histories, and population parameter estimates for holobiont and aposymbiotic datasets. We hypothesize that the unique combination of anthozoan biology, diversity of the endosymbionts, and the manner in which assembly programs identify orthologous loci alleviates the need for reference genomes in some circumstances. We explore this hypothesis by assembling an additional 21 datasets using the assembly programs pyRAD and Stacks. We conclude that RADseq methods are more tractable for symbiotic anthozoans without reference genomes than previously realized.
Collapse
Affiliation(s)
- Benjamin M Titus
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA.
- Dauphin Island Sea Lab, Dauphin Island, AL, USA.
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA.
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Buckley SJ, Brauer CJ, Unmack PJ, Hammer MP, Beheregaray LB. Variation in intraspecific demography drives localised concordance but species-wide discordance in response to past climatic change. BMC Ecol Evol 2022; 22:35. [PMID: 35317750 PMCID: PMC8941757 DOI: 10.1186/s12862-022-01990-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/11/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Understanding how species biology may facilitate resilience to climate change remains a critical factor in detecting and protecting species at risk of extinction. Many studies have focused on the role of particular ecological traits in driving species responses, but less so on demographic history and levels of standing genetic variation. Additionally, spatial variation in the interaction of demographic and adaptive factors may further complicate prediction of species responses to environmental change. We used environmental and genomic datasets to reconstruct the phylogeographic histories of two ecologically similar and largely co-distributed freshwater fishes, the southern (Nannoperca australis) and Yarra (N. obscura) pygmy perches, to assess the degree of concordance in their responses to Plio-Pleistocene climatic changes. We described contemporary genetic diversity, phylogenetic histories, demographic histories, and historical species distributions across both species, and statistically evaluated the degree of concordance in co-occurring populations. RESULTS Marked differences in contemporary genetic diversity, historical distribution changes and historical migration were observed across the species, with a distinct lack of genetic diversity and historical range expansion suggested for N. obscura. Although several co-occurring populations within a shared climatic refugium demonstrated concordant demographic histories, idiosyncratic population size changes were found at the range edges of the more spatially restricted species. Discordant responses between species were associated with low standing genetic variation in peripheral populations. This might have hindered adaptive potential, as documented in recent demographic declines and population extinctions for the two species. CONCLUSION Our results highlight both the role of spatial scale in the degree of concordance in species responses to climate change, and the importance of standing genetic variation in facilitating range shifts. Even when ecological traits are similar between species, long-term genetic diversity and historical population demography may lead to discordant responses to ongoing and future climate change.
Collapse
Affiliation(s)
- Sean James Buckley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Chris J Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Michael P Hammer
- Natural Sciences, Museum and Art Gallery of the Northern Territory, Darwin, NT, 0801, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia.
| |
Collapse
|
10
|
Vázquez-Miranda H, Zink RM, Pinto BJ. Comparative phylogenomic patterns in the Baja California avifauna, their conservation implications, and the stages in lineage divergence. Mol Phylogenet Evol 2022; 171:107466. [DOI: 10.1016/j.ympev.2022.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/22/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
|
11
|
Al-Jumaili AS, Hanotte O. The usefulness of maternally inherited genetic markers for phylogeographic studies in village chicken. Anim Biotechnol 2022:1-19. [PMID: 35073494 DOI: 10.1080/10495398.2021.2000429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Phylogeography plays a major role in understanding micro and macroevolutionary processes dealing with evolutionary interpretations of geographical distribution. This field integrates information from molecular genetics, population genetics, demography, and phylogeny for the interpretation of the geographical distribution of lineages. The full mtDNA sequence and W chromosome polymorphisms were exploited to assess the usefulness of two maternally-inherited genetic markers for phylogeographic studies of village chickens. We studied 243 full mtDNA sequences from three countries (Iraq, n = 27; Ethiopia, n = 211; and Saudi Arabia, n = 5) and a 13-kb fragment of the W chromosome from 20 Iraqi and 137 Ethiopian female chickens. The results show a high level of genetic diversity for the mtDNA within and among countries as well as within populations. On the other hand, sequence analysis of the W chromosome shows low genetic diversity both within and among populations. Six full mtDNA haplogroups (A, B, C1, C2, D1, and E1) were observed and 25 distinct W haplotypes. The results support the effectiveness of full mtDNA sequences but not the W chromosome in tracing the maternal historical genome background with, however, weak within a country phylogeographic signal.
Collapse
Affiliation(s)
- Ahmed S. Al-Jumaili
- Medical Laboratory Techniques Department, Al-Maarif University College, Anbar, Iraq
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, UK
| | - Olivier Hanotte
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, UK
- LiveGene–CTLGH, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| |
Collapse
|
12
|
Rivera-Arroyo RC, Escalante-Pliego P, Aguilar-Torres D, Úbeda-Olivas MF. Phylogeography of the white-crowned parrot (Pionus senilis). BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract The white-crowned parrot Pionus senilis (von Spix, 1824) is distributed throughout Middle America, inhabiting the Gulf of Mexico coastal area from Tamaulipas (Mexico) to northern Panama. We used mitochondrial data (COI, ND2 and ND4) from 55 specimens to infer phylogenetic relationships, and analyzed the phylogeographic structure, genetic diversity, divergence periods, and historical demography to explore phylogeographic patterns. We found three divergent lineages: two geographically separated by the Isthmus of Tehuantepec, and the third, in Costa Rica by the Nicaragua Depression. The analysis of molecular variance and statistical analyses were consistent with genetically distinct populations. The Central American lineage diverged 1.33 million years ago, whereas the other two lines branched off 1.19 million years ago. This phylogenetic pattern has been reported in other species of Middle American birds.
Collapse
|
13
|
Karabanov DP, Bekker EI, Kotov AA. Underestimation of the Effect of Biologiocal Invasions in Phylogeographic Reconstructions as Seen in Daphnia magna (Crustacea, Cladocera). BIOL BULL+ 2021. [DOI: 10.1134/s1062359021080136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Edwards SV, Robin V, Ferrand N, Moritz C. The evolution of comparative phylogeography: putting the geography (and more) into comparative population genomics. Genome Biol Evol 2021; 14:6339579. [PMID: 34347070 PMCID: PMC8743039 DOI: 10.1093/gbe/evab176] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Comparative population genomics is an ascendant field using genomic comparisons between species to draw inferences about forces regulating genetic variation. Comparative phylogeography, by contrast, focuses on the shared lineage histories of species codistributed geographically and is decidedly organismal in perspective. Comparative phylogeography is approximately 35 years old, and, by some metrics, is showing signs of reduced growth. Here, we contrast the goals and methods of comparative population genomics and comparative phylogeography and argue that comparative phylogeography offers an important perspective on evolutionary history that succeeds in integrating genomics with landscape evolution in ways that complement the suprageographic perspective of comparative population genomics. Focusing primarily on terrestrial vertebrates, we review the history of comparative phylogeography, its milestones and ongoing conceptual innovations, its increasingly global focus, and its status as a bridge between landscape genomics and the process of speciation. We also argue that, as a science with a strong “sense of place,” comparative phylogeography offers abundant “place-based” educational opportunities with its focus on geography and natural history, as well as opportunities for collaboration with local communities and indigenous peoples. Although comparative phylogeography does not yet require whole-genome sequencing for many of its goals, we conclude that it nonetheless plays an important role in grounding our interpretation of genetic variation in the fundamentals of geography and Earth history.
Collapse
Affiliation(s)
- Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Vv Robin
- Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Tirupati, Andhra Pradesh, 517507, India
| | - Nuno Ferrand
- CIBIO/InBIO, Laboratório Associado, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Portugal
| | - Craig Moritz
- Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
15
|
Garcia E, Wright D, Gatins R, Roberts MB, Pinheiro HT, Salas E, Chen JY, Winnikoff JR, Bernardi G. Haplotype network branch diversity, a new metric combining genetic and topological diversity to compare the complexity of haplotype networks. PLoS One 2021; 16:e0251878. [PMID: 34191803 PMCID: PMC8244886 DOI: 10.1371/journal.pone.0251878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/04/2021] [Indexed: 11/18/2022] Open
Abstract
A common way of illustrating phylogeographic results is through the use of haplotype networks. While these networks help to visualize relationships between individuals, populations, and species, evolutionary studies often only quantitatively analyze genetic diversity among haplotypes and ignore other network properties. Here, we present a new metric, haplotype network branch diversity (HBd), as an easy way to quantifiably compare haplotype network complexity. Our metric builds off the logic of combining genetic and topological diversity to estimate complexity previously used by the published metric haplotype network diversity (HNd). However, unlike HNd which uses a combination of network features to produce complexity values that cannot be defined in probabilistic terms, thereby obscuring the values' implication for a sampled population, HBd uses frequencies of haplotype classes to incorporate topological information of networks, keeping the focus on the population and providing easy-to-interpret probabilistic values for randomly sampled individuals. The goal of this study is to introduce this more intuitive metric and provide an R script that allows researchers to calculate diversity and complexity indices from haplotype networks. A group of datasets, generated manually (model dataset) and based on published data (empirical dataset), were used to illustrate the behavior of HBd and both of its terms, haplotype diversity, and a new index called branch diversity. Results followed a predicted trend in both model and empirical datasets, from low metric values in simple networks to high values in complex networks. In short, the new combined metric joins genetic and topological diversity of haplotype networks, into a single complexity value. Based on our analysis, we recommend the use of HBd, as it makes direct comparisons of network complexity straightforward and provides probabilistic values that can readily discriminate situations that are difficult to resolve with available metrics.
Collapse
Affiliation(s)
- Eric Garcia
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| | - Daniel Wright
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Remy Gatins
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - May B. Roberts
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Hudson T. Pinheiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- California Academy of Science, San Francisco, California, United States of America
| | - Eva Salas
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Biology, Cabrillo College, Aptos, California, United States of America
| | - Jei-Ying Chen
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jacob R. Winnikoff
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Giacomo Bernardi
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
16
|
Horníková M, Marková S, Lanier HC, Searle JB, Kotlík P. A dynamic history of admixture from Mediterranean and Carpathian glacial refugia drives genomic diversity in the bank vole. Ecol Evol 2021; 11:8215-8225. [PMID: 34188881 PMCID: PMC8216894 DOI: 10.1002/ece3.7652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 01/26/2023] Open
Abstract
Understanding the historical contributions of differing glacial refugia is key to evaluating the roles of microevolutionary forces, such as isolation, introgression, and selection in shaping genomic diversity in present-day populations. In Europe, where both Mediterranean and extra-Mediterranean (e.g., Carpathian) refugia of the bank vole (Clethrionomys glareolus) have been identified, mtDNA indicates that extra-Mediterranean refugia were the main source of colonization across the species range, while Mediterranean peninsulas harbor isolated, endemic lineages. Here, we critically evaluate this hypothesis using previously generated genomic data (>6,000 SNPs) for over 800 voles, focusing on genomic contributions to bank voles in central Europe, a key geographic area in considering range-wide colonization. The results provide clear evidence that both extra-Mediterranean (Carpathian) and Mediterranean (Spanish, Calabrian, and Balkan) refugia contributed to the ancestry and genomic diversity of bank vole populations across Europe. Few strong barriers to dispersal and frequent admixture events in central Europe have led to a prominent mid-latitude peak in genomic diversity. Although the genomic contribution of the centrally located Carpathian refugium predominates, populations in different parts of Europe have admixed origins from Mediterranean (28%-47%) and the Carpathian (53%-72%) sources. We suggest that the admixture from Mediterranean refugia may have provisioned adaptive southern alleles to more northern populations, facilitating the end-glacial spread of the admixed populations and contributing to increased bank vole diversity in central Europe. This study adds critical details to the complex end-glacial colonization history of this well-studied organism and underscores the importance of genomic data in phylogeographic interpretation.
Collapse
Affiliation(s)
- Michaela Horníková
- Laboratory of Molecular Ecology Institute of Animal Physiology and Genetics of the Czech Academy of Sciences Liběchov Czech Republic
- Department of Zoology, Faculty of Science Charles University Prague Czech Republic
| | - Silvia Marková
- Laboratory of Molecular Ecology Institute of Animal Physiology and Genetics of the Czech Academy of Sciences Liběchov Czech Republic
| | - Hayley C Lanier
- Department of Biology, Program in Ecology & Evolutionary Biology University of Oklahoma Norman OK USA
- Sam Noble Museum University of Oklahoma Norman OK USA
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
| | - Petr Kotlík
- Laboratory of Molecular Ecology Institute of Animal Physiology and Genetics of the Czech Academy of Sciences Liběchov Czech Republic
| |
Collapse
|
17
|
Pârâu LG, Wink M. Common patterns in the molecular phylogeography of western palearctic birds: a comprehensive review. JOURNAL OF ORNITHOLOGY 2021; 162:937-959. [PMID: 34007780 PMCID: PMC8118378 DOI: 10.1007/s10336-021-01893-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
A plethora of studies have offered crucial insights in the phylogeographic status of Western Palearctic bird species. However, an overview integrating all this information and analyzing the combined results is still missing. In this study, we compiled all published peer-reviewed and grey literature available on the phylogeography of Western Palearctic bird species. Our literature review indicates a total number of 198 studies, with the overwhelming majority published as journal articles (n = 186). In total, these literature items offer information on 145 bird species. 85 of these species are characterized by low genetic differentiation, 46 species indicate genetic variation but no geographic structuring i.e. panmixia, while 14 species show geographically distinct lineages and haplotypes. Majority of bird species inhabiting the Western Palearctic display genetic admixture. The glaciation cycles in the past few million years were pivotal factors in shaping this situation: during warm periods many species expanded their distribution range to the north over wide areas of Eurasia; whereas, during ice ages most areas were no longer suitable and species retreated to refugia, where lineages mixed. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10336-021-01893-x.
Collapse
Affiliation(s)
- Liviu G. Pârâu
- Institute of Pharmacy and Molecular Biotechnology, Department Biology, Heidelberg University, Im Neuenheimer Feld 364, 4 OG, Heidelberg, Germany
- Present Address: SARS-CoV-2 Data Evaluation Office, Eurofins Genomics Europe Applied Genomics GmbH, Anzinger Straße 7a, 85560 Ebersberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Department Biology, Heidelberg University, Im Neuenheimer Feld 364, 4 OG, Heidelberg, Germany
| |
Collapse
|
18
|
da Silva Ribeiro T, Batalha-Filho H, Silveira LF, Miyaki CY, Maldonado-Coelho M. Life history and ecology might explain incongruent population structure in two co-distributed montane bird species of the Atlantic Forest. Mol Phylogenet Evol 2020; 153:106925. [PMID: 32771546 DOI: 10.1016/j.ympev.2020.106925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/03/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022]
Abstract
Comparative phylogeography is a powerful approach to investigate the role of historical and environmental processes in the evolution of biodiversity within a region. In this regard, comparative studies of species with similar habitat preferences are valuable to reduce the confounding influence of habitat association when interpreting phylogeographic patterns. In the Atlantic Forest of South America, phylogeographic studies of highland and lowland species have shown distinct population structure patterns so far, suggesting that such species have responded differently to Pleistocene glacial cycles. Herein, we performed a comparative analysis using molecular data and paleodistribution models of two Montane Atlantic Forest (MAF) co-distributed passerine birds with similar habitat requirements but with distinct life-history traits and ecologies: the frugivore lek-breeding Blue Manakin (Chiroxiphia caudata) and the insectivore and socially monogamous Drab-Breasted Bamboo Tyrant (Hemitriccus diops). We aimed to shed light on the role of contrasting life histories and ecologies onto the demography and population structure of MAF species. We sampled both species throughout most of their distribution range, sequenced a mitochondrial and a nuclear molecular marker, and used standard phylogeographic methods to investigate population structure and ecological niche modeling (ENM) to infer the species' paleodistributions. Our analyses recovered a phylogeographic break in H. diops in the region of the Doce River, but no genetic structure in C. caudata. We also found higher differentiation among subpopulations within each lineage of H. diops than among subpopulations of C. caudata. We suggest that these discrepancies in population structure might be due to distinct life-history traits and their impact on gene flow and generation time. For example, while H. diops is an insectivore species, C. caudata is a frugivore and the latter ecological aspect likely selects for a higher dispersion distance. Additionally, because C. caudata is a lek-breeding species, it has a longer generation time than H. diops. These traits could hinder genetic differentiation when populations become geographically isolated. Nonetheless, both species showed some common biological features, such as signatures of synchronous population expansion and larger distribution ranges during the Last Glacial Maximum, possibly due to similar cold tolerance.
Collapse
Affiliation(s)
- Tiago da Silva Ribeiro
- Laboratório de Genética e Evolução Molecular de Aves, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil.
| | - Henrique Batalha-Filho
- Laboratório de Genética e Evolução Molecular de Aves, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Luis Fábio Silveira
- Museu de Zoologia, Universidade de São Paulo, 04263-000 São Paulo, SP, Brazil
| | - Cristina Yumi Miyaki
- Laboratório de Genética e Evolução Molecular de Aves, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Marcos Maldonado-Coelho
- Laboratório de Genética e Evolução Molecular de Aves, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
19
|
Pettersson JHO, Ellström P, Ling J, Nilsson I, Bergström S, González-Acuña D, Olsen B, Holmes EC. Circumpolar diversification of the Ixodes uriae tick virome. PLoS Pathog 2020; 16:e1008759. [PMID: 32745135 PMCID: PMC7425989 DOI: 10.1371/journal.ppat.1008759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/13/2020] [Accepted: 06/29/2020] [Indexed: 11/19/2022] Open
Abstract
Ticks (order: Ixodida) are a highly diverse and ecologically important group of ectoparasitic blood-feeding organisms. One such species, the seabird tick (Ixodes uriae), is widely distributed around the circumpolar regions of the northern and southern hemispheres. It has been suggested that Ix. uriae spread from the southern to the northern circumpolar region millions of years ago and has remained isolated in these regions ever since. Such a profound biographic subdivision provides a unique opportunity to determine whether viruses associated with ticks exhibit the same evolutionary patterns as their hosts. To test this, we collected Ix. uriae specimens near a Gentoo penguin (Pygoscelis papua) colony at Neko harbour, Antarctica, and from migratory birds—the Razorbill (Alca torda) and the Common murre (Uria aalge)—on Bonden island, northern Sweden. Through meta-transcriptomic next-generation sequencing we identified 16 RNA viruses, seven of which were novel. Notably, we detected the same species, Ronne virus, and two closely related species, Bonden virus and Piguzov virus, in both hemispheres indicating that there have been at least two cross-circumpolar dispersal events. Similarly, we identified viruses discovered previously in other locations several decades ago, including Gadgets Gully virus, Taggert virus and Okhotskiy virus. By identifying the same or closely related viruses in geographically disjunct sampling locations we provide evidence for virus dispersal within and between the circumpolar regions. In marked contrast, our phylogenetic analysis revealed no movement of the Ix. uriae tick hosts between the same locations. Combined, these data suggest that migratory birds are responsible for the movement of viruses at both local and global scales. As host populations diverge, so may those microorganisms, including viruses, that are dependent on those hosts. To examine this key issue in host-microbe evolution we compared the co-phylogenies of the seabird tick, Ixodes uriae, and their RNA viruses sampled from the far northern and southern hemispheres. Despite the huge geographic distance between them, phylogeographic analysis reveals that the same and closely related viruses were found both within and between the northern and southern circumpolar regions, most likely reflecting transfer by virus-infected migratory birds. In contrast, genomic data suggested that the Ix. uriae populations were phylogenetically distinct between the northern and southern hemispheres. This work emphasises the importance of migratory birds and ticks as vectors and sources of virus dispersal and introduction at both the local and global scales.
Collapse
Affiliation(s)
- John H.-O. Pettersson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (JHOP); (ECH)
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jiaxin Ling
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ingela Nilsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Daniel González-Acuña
- Laboratorio de Parásitos y Enfermedades de Fauna silvestre, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (JHOP); (ECH)
| |
Collapse
|
20
|
Koch MA, Möbus J, Klöcker CA, Lippert S, Ruppert L, Kiefer C. The Quaternary evolutionary history of Bristol rock cress (Arabis scabra, Brassicaceae), a Mediterranean element with an outpost in the north-western Atlantic region. ANNALS OF BOTANY 2020; 126:103-118. [PMID: 32211750 PMCID: PMC7304472 DOI: 10.1093/aob/mcaa053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/19/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Bristol rock cress is among the few plant species in the British Isles considered to have a Mediterranean-montane element. Spatiotemporal patterns of colonization of the British Isles since the last interglacial and after the Last Glacial Maximum (LGM) from mainland Europe are underexplored and have not yet included such floristic elements. Here we shed light on the evolutionary history of a relic and outpost metapopulation of Bristol rock cress in the south-western UK. METHODS Amplified fragment length polymorphisms (AFLPs) were used to identify distinct gene pools. Plastome assembly and respective phylogenetic analysis revealed the temporal context. Herbarium material was largely used to exemplify the value of collections to obtain a representative sampling covering the entire distribution range. KEY RESULTS The AFLPs recognized two distinct gene pools, with the Iberian Peninsula as the primary centre of genetic diversity and the origin of lineages expanding before and after the LGM towards mountain areas in France and Switzerland. No present-day lineages are older than 51 ky, which is in sharp contrast to the species stem group age of nearly 2 My, indicating severe extinction and bottlenecks throughout the Pleistocene. The British Isles were colonized after the LGM and feature high genetic diversity. CONCLUSIONS The short-lived perennial herb Arabis scabra, which is restricted to limestone, has expanded its distribution range after the LGM, following corridors within an open landscape, and may have reached the British Isles via the desiccated Celtic Sea at about 16 kya. This study may shed light on the origin of other rare and peculiar species co-occurring in limestone regions in the south-western British Isles.
Collapse
Affiliation(s)
- Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, Heidelberg, Germany
| | - Johanna Möbus
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, Heidelberg, Germany
| | - Clara A Klöcker
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, Heidelberg, Germany
| | - Stephanie Lippert
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, Heidelberg, Germany
| | - Laura Ruppert
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, Heidelberg, Germany
| | - Christiane Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, Heidelberg, Germany
| |
Collapse
|
21
|
Xue AT, Hickerson MJ. Comparative phylogeographic inference with genome‐wide data from aggregated population pairs. Evolution 2020; 74:808-830. [DOI: 10.1111/evo.13945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Alexander T. Xue
- Subprogram in Ecology, Evolutionary Biology, and Behavior, Department of BiologyGraduate Center of City University of New York New York NY 10016
- Subprogram in Ecology, Evolutionary Biology, and Behavior, Department of BiologyCity College of City University of New York New York NY 10031
- Human Genetics Institute of New Jersey and Department of GeneticsRutgers University Piscataway NJ 08854
- Simons Center for Quantitative BiologyCold Spring Harbor Laboratory Cold Spring Harbor NY 11724
| | - Michael J. Hickerson
- Subprogram in Ecology, Evolutionary Biology, and Behavior, Department of BiologyGraduate Center of City University of New York New York NY 10016
- Subprogram in Ecology, Evolutionary Biology, and Behavior, Department of BiologyCity College of City University of New York New York NY 10031
- Division of Invertebrate ZoologyAmerican Museum of Natural History New York NY 10024
| |
Collapse
|
22
|
Rincon-Sandoval M, Betancur-R R, Maldonado-Ocampo JA. Comparative phylogeography of trans-Andean freshwater fishes based on genome-wide nuclear and mitochondrial markers. Mol Ecol 2019; 28:1096-1115. [PMID: 30714250 DOI: 10.1111/mec.15036] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 01/06/2023]
Abstract
The Neotropical region represents one of the greatest biodiversity hot spots on earth. Despite its unparalleled biodiversity, regional comparative phylogeographic studies are still scarce, with most focusing on model clades (e.g. birds) and typically examining a handful of loci. Here, we apply a genome-wide comparative phylogeographic approach to test hypotheses of codiversification of freshwater fishes in the trans-Andean region. Using target capture methods, we examined exon data for over 1,000 loci combined with complete mitochondrial genomes to study the phylogeographic history of five primary fish species (>150 individuals) collected from eight major river basins in Northwestern South America and Lower Central America. To assess their patterns of genetic structure, we inferred genealogical concordance taking into account all major aspects of phylogeography (within loci, across multiple genes, across species and among biogeographic provinces). Based on phylogeographic concordance factors, we tested four a priori biogeographic hypotheses, finding support for three of them and uncovering a novel, unexpected pattern of codiversification. The four emerging inter-riverine patterns are as follows: (a) Tuira + Atrato, (b) Ranchería + Catatumbo, (c) Magdalena system and (d) Sinú + Atrato. These patterns are interpreted as shared responses to the complex uplifting and orogenic processes that modified or sundered watersheds, allowing codiversification and speciation over geological time. We also find evidence of cryptic speciation in one of the species examined and instances of mitochondrial introgression in others. These results help further our knowledge of the historical geographic factors shaping the outstanding biodiversity of the Neotropics.
Collapse
Affiliation(s)
- Melissa Rincon-Sandoval
- Laboratorio de Ictiología, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Ricardo Betancur-R
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico.,Department of Biology, The University of Oklahoma, Norman, Oklahoma
| | - Javier A Maldonado-Ocampo
- Laboratorio de Ictiología, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
23
|
Riddle BR, Jezkova T. How is phylogeography shaping our understanding of the geography of diversity, diversification, and range dynamics in mammals? J Mammal 2019. [DOI: 10.1093/jmammal/gyz027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Brett R Riddle
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Tereza Jezkova
- Department of Biology, Miami University of Ohio, Oxford, OH, USA
| |
Collapse
|
24
|
Sullivan J, Smith ML, Espíndola A, Ruffley M, Rankin A, Tank D, Carstens B. Integrating life history traits into predictive phylogeography. Mol Ecol 2019; 28:2062-2073. [DOI: 10.1111/mec.15029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Jack Sullivan
- Department of Biological Sciences University of Idaho Moscow Idaho
- Institute for Bioinformatics and Evolutionary Studies University of Idaho Moscow Idaho
| | - Megan L. Smith
- Department of Ecology, Evolution and Organismal Biology The Ohio State University Columbus Ohio
| | - Anahí Espíndola
- Department of Biological Sciences University of Idaho Moscow Idaho
- Department of Entomology University of Maryland College Park Maryland
| | - Megan Ruffley
- Department of Biological Sciences University of Idaho Moscow Idaho
- Institute for Bioinformatics and Evolutionary Studies University of Idaho Moscow Idaho
| | - Andrew Rankin
- Department of Biological Sciences University of Idaho Moscow Idaho
- Institute for Bioinformatics and Evolutionary Studies University of Idaho Moscow Idaho
| | - David Tank
- Department of Biological Sciences University of Idaho Moscow Idaho
- Institute for Bioinformatics and Evolutionary Studies University of Idaho Moscow Idaho
| | - Bryan Carstens
- Department of Ecology, Evolution and Organismal Biology The Ohio State University Columbus Ohio
| |
Collapse
|
25
|
Abstract
Improved understanding of tick phylogeny has allowed testing of some biogeographical patterns. On the basis of both literature data and a meta-analysis of available sequence data, there is strong support for a Gondwanan origin of Ixodidae, and probably Ixodida. A particularly strong pattern is observed for the genus Amblyomma, which appears to have originated in Antarctica/southern South America, with subsequent dispersal to Australia. The endemic Australian lineages of Ixodidae (no other continent has such a pattern) appear to result from separate dispersal events, probably from Antarctica. Minimum ages for a number of divergences are determined as part of an updated temporal framework for tick evolution. Alternative hypotheses for tick evolution, such as a very old Pangean group, a Northern hemisphere origin, or an Australian origin, fit less well with observed phylogeographic patterns.
Collapse
Affiliation(s)
- Lorenza Beati
- Institute for Coastal Plain Science and US National Tick Collection, Georgia Southern University, Statesboro, Georgia 30460, USA;
| | - Hans Klompen
- Department of Evolution, Ecology, and Organismal Biology and Museum of Biological Diversity, The Ohio State University, Columbus, Ohio 43212, USA
| |
Collapse
|
26
|
Klimova A, Ortega‐Rubio A, Vendrami DLJ, Hoffman JI. Genotyping by sequencing reveals contrasting patterns of population structure, ecologically mediated divergence, and long-distance dispersal in North American palms. Ecol Evol 2018; 8:5873-5890. [PMID: 29938100 PMCID: PMC6010798 DOI: 10.1002/ece3.4125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
Comparative studies can provide powerful insights into processes that affect population divergence and thereby help to elucidate the mechanisms by which contemporary populations may respond to environmental change. Furthermore, approaches such as genotyping by sequencing (GBS) provide unprecedented power for resolving genetic differences among species and populations. We therefore used GBS to provide a genomewide perspective on the comparative population structure of two palm genera, Washingtonia and Brahea, on the Baja California peninsula, a region of high landscape and ecological complexity. First, we used phylogenetic analysis to address taxonomic uncertainties among five currently recognized species. We resolved three main clades, the first corresponding to W. robusta and W. filifera, the second to B. brandegeei and B. armata, and the third to B. edulis from Guadalupe Island. Focusing on the first two clades, we then delved deeper by investigating the underlying population structure. Striking differences were found, with GBS uncovering four distinct Washingtonia populations and identifying a suite of loci associated with temperature, consistent with ecologically mediated divergence. By contrast, individual mountain ranges could be resolved in Brahea and few loci were associated with environmental variables, implying a more prominent role of neutral divergence. Finally, evidence was found for long-distance dispersal events in Washingtonia but not Brahea, in line with knowledge of the dispersal mechanisms of these palms including the possibility of human-mediated dispersal. Overall, our study demonstrates the power of GBS together with a comparative approach to elucidate markedly different patterns of genomewide divergence mediated by multiple effectors.
Collapse
Affiliation(s)
- Anastasia Klimova
- Centro de Investigaciones Biologicas del Noroeste S.C.La PazBaja California SurMexico
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
| | - Alfredo Ortega‐Rubio
- Centro de Investigaciones Biologicas del Noroeste S.C.La PazBaja California SurMexico
| | | | | |
Collapse
|
27
|
Zhang JQ, Zhong DL, Song WJ, Zhu RW, Sun WY. Climate Is Not All: Evidence From Phylogeography of Rhodiola fastigiata (Crassulaceae) and Comparison to Its Closest Relatives. FRONTIERS IN PLANT SCIENCE 2018; 9:462. [PMID: 29713330 PMCID: PMC5912201 DOI: 10.3389/fpls.2018.00462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/23/2018] [Indexed: 05/25/2023]
Abstract
How geological events and climate oscillations in the Pleistocene glaciation shaped the geographic distribution of genetic variation of species on the Qinghai-Tibetan Plateau (QTP) and its adjacent areas has been extensively studied. However, little studies have investigated whether closely related species in the same genus with similar physiological and life history traits responded similarly to the glacial climatic oscillations. If this is not the case, we would expect that the population histories of studied species were not driven by extrinsic environmental changes alone. Here we conducted a phylogeographic study of a succulent alpine plant Rhodiola fastigiata, using sequences from chloroplast genome and nrITS region, as well as ecological niche modeling. The results of R. fastigiata were compared to other congeneric species that have been studied, especially to R. alsia and R. crenulata. We found that for both markers, two geographic groups could be revealed, corresponding to the QTP plateau and the Hengduan Mountains, respectively, indicating isolated refugia in those two areas. The two groups diverged 1.23 Mya during the Pleistocene. We detected no significant population expansion by mismatch distribution analysis and Bayesian Skyline Plot. We found that even these similar species with similar physiological and life history traits have had different demographic histories in the Quaternary glacial periods. Our comparative phylogeographic study sheds new lights into phylogeographic research that extrinsic environmental changes are not the only factor that can drive population demography, and other factors, such as coevolved interactions between plants and their specialized pathogens, that probably played a role need to be examined with more case studies.
Collapse
Affiliation(s)
- Jian-Qiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | | | | | | | | |
Collapse
|
28
|
Bai WN, Yan PC, Zhang BW, Woeste KE, Lin K, Zhang DY. Demographically idiosyncratic responses to climate change and rapid Pleistocene diversification of the walnut genus Juglans (Juglandaceae) revealed by whole-genome sequences. THE NEW PHYTOLOGIST 2018; 217:1726-1736. [PMID: 29178135 DOI: 10.1111/nph.14917] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/24/2017] [Indexed: 05/18/2023]
Abstract
Whether species demography and diversification are driven primarily by extrinsic environmental changes such as climatic oscillations in the Quaternary or by intrinsic biological interactions like coevolution between antagonists is a matter of active debate. In fact, their relative importance can be assessed by tracking past population fluctuations over considerable time periods. We applied the pairwise sequentially Markovian coalescent approach on the genomes of 11 temperate Juglans species to estimate trajectories of changes in effective population size (Ne ) and used a Bayesian-coalescent based approach that simultaneously considers multiple genomes (G-PhoCS) to estimate divergence times between lineages. Ne curves of all study species converged 1.0 million yr ago, probably reflecting the time when the walnut genus last shared a common ancestor. This estimate was confirmed by the G-PhoCS estimates of divergence times. But all species did not react similarly to the dramatic climatic oscillations following early Pleistocene cooling, so the timing and amplitude of changes in Ne differed among species and even among conspecific lineages. The population histories of temperate walnut species were not driven by extrinsic environmental changes alone, and a key role was probably played by species-specific factors such as coevolutionary interactions with specialized pathogens.
Collapse
Affiliation(s)
- Wei-Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Peng-Cheng Yan
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Cloud Computing Key Technology and Application, Beijing Computing Center, Beijing, 100094, China
| | - Bo-Wen Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Keith E Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA
| | - Kui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
29
|
|
30
|
Potter S, Xue AT, Bragg JG, Rosauer DF, Roycroft EJ, Moritz C. Pleistocene climatic changes drive diversification across a tropical savanna. Mol Ecol 2017; 27:520-532. [DOI: 10.1111/mec.14441] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/20/2017] [Accepted: 10/31/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Sally Potter
- Research School of Biology The Australian National University Acton ACT Australia
- Centre for Biodiversity Analysis Acton ACT Australia
| | - Alexander T. Xue
- Department of Biology City University of New York New York NY USA
- Department of Genetics Rutgers University Piscataway NJ USA
| | - Jason G. Bragg
- Research School of Biology The Australian National University Acton ACT Australia
- Centre for Biodiversity Analysis Acton ACT Australia
| | - Dan F. Rosauer
- Research School of Biology The Australian National University Acton ACT Australia
- Centre for Biodiversity Analysis Acton ACT Australia
| | - Emily J. Roycroft
- School of Biosciences The University of Melbourne Parkville Vic. Australia
- Sciences Department Museums Victoria Melbourne Vic. Australia
| | - Craig Moritz
- Research School of Biology The Australian National University Acton ACT Australia
- Centre for Biodiversity Analysis Acton ACT Australia
| |
Collapse
|
31
|
Hutama A, Dahruddin H, Busson F, Sauri S, Keith P, Hadiaty RK, Hanner R, Suryobroto B, Hubert N. Identifying spatially concordant evolutionary significant units across multiple species through DNA barcodes: Application to the conservation genetics of the freshwater fishes of Java and Bali. Glob Ecol Conserv 2017. [DOI: 10.1016/j.gecco.2017.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
32
|
Phylogeographic structure without pre-mating barriers: Do habitat fragmentation and low mobility preserve song and chorus diversity in a European bushcricket? Evol Ecol 2017. [DOI: 10.1007/s10682-017-9914-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Allendorf FW. Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol 2017; 26:420-430. [DOI: 10.1111/mec.13948] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Fred W. Allendorf
- Division of Biological Sciences University of Montana Missoula MT 59812 USA
| |
Collapse
|