1
|
Liu C, Li X. Role of leptin and adiponectin in immune response and inflammation. Int Immunopharmacol 2025; 161:115082. [PMID: 40516255 DOI: 10.1016/j.intimp.2025.115082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 05/29/2025] [Accepted: 06/09/2025] [Indexed: 06/16/2025]
Abstract
Adipose tissue has gained significant attention for its role in immune response and inflammation through the secretion of adipokines. Adipokines, such as leptin and adiponectin, are secreted by adipose tissue and have been implicated in various physiological processes, with a focus on their role in modulating immune responses and inflammation. Leptin and adiponectin are the most abundant adipokines in human, playing a crucial role in regulating functions of the heart, skeletal muscle, growth, and inflammation. Leptin, a pro-inflammatory adipokine, is involved in controlling food intake and energy expenditure, and it influences immune cell activation and cytokine production. In contrast, adiponectin, an anti-inflammatory adipokine, circulates at high levels in the plasma and modulates immune cell functions, counteracting the effects of leptin. Here we provided an overview of the role of adipokines in immune response and inflammation. In addition,The leptin-adiponectin ratio (Adpn/Lep) has emerged as a significant indicator of various metabolic diseases and conditions. Further research is needed to fully elucidate the mechanisms by which adipokines influence immune responses and to identify potential therapeutic targets for inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Chang Liu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong, Shanghai 200120, China.
| | - Xiaojiao Li
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
Hart DA. Lithium Ions as Modulators of Complex Biological Processes: The Conundrum of Multiple Targets, Responsiveness and Non-Responsiveness, and the Potential to Prevent or Correct Dysregulation of Systems during Aging and in Disease. Biomolecules 2024; 14:905. [PMID: 39199293 PMCID: PMC11352090 DOI: 10.3390/biom14080905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Lithium is one of the lightest elements on Earth and it has been in the environment since the formation of the galaxy. While a common element, it has not been found to be an essential element in biological processes, ranging from single cell organisms to Homo sapiens. Instead, at an early stage of evolution, organisms committed to a range of elements such as sodium, potassium, calcium, magnesium, zinc, and iron to serve essential functions. Such ions serve critical functions in ion channels, as co-factors in enzymes, as a cofactor in oxygen transport, in DNA replication, as a storage molecule in bone and liver, and in a variety of other roles in biological processes. While seemingly excluded from a major essential role in such processes, lithium ions appear to be able to modulate a variety of biological processes and "correct" deviation from normal activity, as a deficiency of lithium can have biological consequences. Lithium salts are found in low levels in many foods and water supplies, but the effectiveness of Li salts to affect biological systems came to recent prominence with the work of Cade, who reported that administrating Li salts calmed guinea pigs and was subsequently effective at relatively high doses to "normalize" a subset of patients with bipolar disorders. Because of its ability to modulate many biological pathways and processes (e.g., cyclic AMP, GSK-3beta, inositol metabolism, NaK ATPases, neuro processes and centers, immune-related events, respectively) both in vitro and in vivo and during development and adult life, Li salts have become both a useful tool to better understand the molecular regulation of such processes and to also provide insights into altered biological processes in vivo during aging and in disease states. While the range of targets for lithium action supports its possible role as a modulator of biological dysregulation, it presents a conundrum for researchers attempting to elucidate its specific primary target in different tissues in vivo. This review will discuss aspects of the state of knowledge regarding some of the systems that can be influenced, focusing on those involving neural and autoimmunity as examples, some of the mechanisms involved, examples of how Li salts can be used to study model systems, as well as suggesting areas where the use of Li salts could lead to additional insights into both disease mechanisms and natural processes at the molecular and cell levels. In addition, caveats regarding lithium doses used, the strengths and weaknesses of rodent models, the background genetics of the strain of mice or rats employed, and the sex of the animals or the cells used, are discussed. Low-dose lithium may have excellent potential, alone or in combination with other interventions to prevent or alleviate aging-associated conditions and disease progression.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
3
|
Wang B, Zuo L, Fan J, Ji Y, Xu L, Xu M, An Y, Zhang Y, Ji G, Yu D. Association between higher intermuscular adipose tissue and decreased renal function in patients with systemic lupus erythematosus mediated by insulin resistance. Insights Imaging 2024; 15:144. [PMID: 38886276 PMCID: PMC11182995 DOI: 10.1186/s13244-024-01722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVES To quantify the relationship between abdominal computed tomography (CT)-based body composition parameters and renal function in systemic lupus erythematosus (SLE) patients and evaluate the potential effect of insulin resistance on this relationship. METHODS SLE patients from institutions A and B between January 2017 and August 2023 were enrolled. Areas and attenuation values of subcutaneous adipose tissue, visceral adipose tissue, intermuscular adipose tissue (IMAT), and skeletal muscle index on CT images were measured at the L3 vertebral level. Logistic regression analysis was used to identify risk factors associated with decreased renal function. Linear regression models were used to describe the relationships between body composition parameters and estimated glomerular filtration rate (eGFR). Finally, we used a single-point insulin sensitivity estimator to indirectly reflect the degree of insulin resistance and assess its mediating effect on the association between IMAT area and decreased renal function. RESULTS Three-hundred thirty-nine SLE patients from institution A (internal dataset) and 114 SLE patients from institution B (external validation dataset) were included. Multivariate logistic regression revealed that IMAT area (odds ratio (OR)institution A: 1.05 (95% confidence intervals (95% CI): 1.01, 1.10), and ORinstitution B: 1.19 (95% CI: 1.03, 1.39)) was an independent risk factor for decreased renal function in SLE patients. In the adjusted linear regression model, high IMAT area was significantly associated with reduced eGFR (βinstitution A = -1.15, Pinstitution A = 0.005; βinstitution B = -0.98, Pinstitution B = 0.049). Additionally, insulin resistance contributed a mediating role of 22.8% to the association. CONCLUSION High IMAT area was associated with decreased renal function in SLE patients and insulin resistance mediated this relationship. CRITICAL RELEVANCE STATEMENT High intermuscular adipose tissue area is associated with decreased renal function in systemic lupus erythematosus patients mediated by insulin resistance and is correlated with chronicity index in lupus nephritis patients. KEY POINTS High intramuscular adipose tissue (IMAT) area was associated with decreased renal function in systemic lupus erythematosus (SLE) patients. Insulin resistance mediated the association between IMAT area and eGFR. IMAT area was associated with chronicity index in lupus nephritis patients.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Liping Zuo
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jinlei Fan
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yu Ji
- Department of Radiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Lei Xu
- Medical Imaging Department, Shengli Oilfield Central Hospital, Dongying, Shandong, 257100, China
| | - Min Xu
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, China
| | - Yueming An
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yuting Zhang
- Department of Arrhythmia, Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Guanming Ji
- Medical Imaging Department, Shengli Oilfield Central Hospital, Dongying, Shandong, 257100, China
| | - Deixin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Singh AK, Duddempudi PK, Kenchappa DB, Srivastava N, Amdare NP. Immunological landscape of solid cancer: Interplay between tumor and autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:163-235. [PMID: 39396847 DOI: 10.1016/bs.ircmb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The immune system, a central player in maintaining homeostasis, emerges as a pivotal factor in the pathogenesis and progression of two seemingly disparate yet interconnected categories of diseases: autoimmunity and cancer. This chapter delves into the intricate and multifaceted role of the immune system, particularly T cells, in orchestrating responses that govern the delicate balance between immune surveillance and self-tolerance. T cells, pivotal immune system components, play a central role in both diseases. In autoimmunity, aberrant T cell activation drives damaging immune responses against normal tissues, while in cancer, T cells exhibit suppressed responses, allowing the growth of malignant tumors. Immune checkpoint receptors, example, initially explored in autoimmunity, now revolutionize cancer treatment via immune checkpoint blockade (ICB). Though effective in various tumors, ICB poses risks of immune-related adverse events (irAEs) akin to autoimmunity. This chapter underscores the importance of understanding tumor-associated antigens and their role in autoimmunity, immune checkpoint regulation, and their implications for both diseases. It also explores autoimmunity resulting from cancer immunotherapy and shared molecular pathways in solid tumors and autoimmune diseases, highlighting their interconnectedness at the molecular level. Additionally, it sheds light on common pathways and epigenetic features shared by autoimmunity and cancer, and the potential of repurposing drugs for therapeutic interventions. Delving deeper into these insights could unlock therapeutic strategies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
5
|
Duan P, Tian S. Mendelian randomization analyses reveal no genetic causal effects of major adipokines on systemic lupus erythematosus. PLoS One 2024; 19:e0301699. [PMID: 38805491 PMCID: PMC11132459 DOI: 10.1371/journal.pone.0301699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/20/2024] [Indexed: 05/30/2024] Open
Abstract
Epidemiological studies have shown that the levels of serum adipokine such as leptin and resistin are associated with the risk of developing systemic lupus erythematosus (SLE). Nevertheless, whether either leptin or resistin has causal impacts on the risk of SLE is still unknown. In this study, two-sample univariable MR analyses and multivariable MR analysis were performed to explore the causal relationships between adipokines and SLE. Additionally, the potential causal effects of SLE on major adipokines were evaluated using reverse MR analyses. The results of inverse-variance weighted (IVW), weighted median, weighted mode and MR‒Egger methods concordantly supported that major adipokines have no causal effects on the risk of SLE. In the multivariable MR IVW analysis with leptin and resistin as covariates, neither leptin (odds ratio (OR) = 3.093, P = 0.067) nor resistin (OR = 0.477, P = 0.311) was identified as an independent risk factor for SLE, which is in line with the univariable MR results. In conclusion, our analyses revealed no evidence to support that these three major adipokines are risk factors for SLE.
Collapse
Affiliation(s)
- Peng Duan
- Intensive Care Unit (ICU), The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Suyan Tian
- Division of Clinical Research, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
6
|
Huang XS, Dai N, Xu JX, Xiang JY, Zheng XZ, Ke TY, Ma LY, Shi QH, Fan SF. MRI quantitative assessment of the effects of low-carbohydrate therapy on Hashimoto's thyroiditis. Endocr Connect 2024; 13:e230477. [PMID: 38552311 PMCID: PMC11046326 DOI: 10.1530/ec-23-0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/28/2024] [Indexed: 04/24/2024]
Abstract
Objective Hashimoto's thyroiditis is an inflammatory disease, and research suggests that a low-carbohydrate diet may have potential anti-inflammatory effects. This study aims to utilize Dixon-T2-weighted imaging (WI) sequence for a semi-quantitative assessment of the impact of a low-carbohydrate diet on the degree of thyroid inflammation in patients with Hashimoto's thyroiditis. Methods Forty patients with Hashimoto's thyroiditis were recruited for this study and randomly divided into two groups: one with a normal diet and the other with a low-carbohydrate diet. Antibodies against thyroid peroxidase (TPOAb) and thyroglobulin (TgAb) were measured for all participants. Additionally, thyroid water content was semi-quantitatively measured using Dixon-T2WI. The same tests and measurements were repeated for all participants after 6 months. Results After 6 months of a low-carbohydrate diet, patients with Hashimoto's thyroiditis showed a significant reduction in thyroid water content (94.84 ± 1.57% vs 93.07 ± 2.05%, P < 0.05). Concurrently, a decrease was observed in levels of TPOAb and TgAb (TPOAb: 211.30 (92.63-614.62) vs 89.45 (15.9-215.67); TgAb: 17.05 (1.47-81.64) vs 4.1 (0.51-19.42), P < 0.05). In contrast, there were no significant differences in thyroid water content or TPOAb and TgAb levels for patients with Hashimoto's thyroiditis following a normal diet after 6 months (P < 0.05). Conclusion Dixon-T2WI can quantitatively assess the degree of thyroid inflammation in patients with Hashimoto's thyroiditis. Following a low-carbohydrate diet intervention, there is a significant reduction in thyroid water content and a decrease in levels of TPOAb and TgAb. These results suggest that a low-carbohydrate diet may help alleviate inflammation in patients with Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Xiao-Shan Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ning Dai
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian-Xia Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun-Yi Xiang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao-Zhong Zheng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Tian-Yu Ke
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin-Ying Ma
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi-Hao Shi
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Shu-Feng Fan
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Yu Y, Lu C, Yu W, Lei Y, Sun S, Liu P, Bai F, Chen Y, Chen J. B Cells Dynamic in Aging and the Implications of Nutritional Regulation. Nutrients 2024; 16:487. [PMID: 38398810 PMCID: PMC10893126 DOI: 10.3390/nu16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Aging negatively affects B cell production, resulting in a decrease in B-1 and B-2 cells and impaired antibody responses. Age-related B cell subsets contribute to inflammation. Investigating age-related alterations in the B-cell pool and developing targeted therapies are crucial for combating autoimmune diseases in the elderly. Additionally, optimal nutrition, including carbohydrates, amino acids, vitamins, and especially lipids, play a vital role in supporting immune function and mitigating the age-related decline in B cell activity. Research on the influence of lipids on B cells shows promise for improving autoimmune diseases. Understanding the aging B-cell pool and considering nutritional interventions can inform strategies for promoting healthy aging and reducing the age-related disease burden.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (Y.Y.)
| |
Collapse
|
8
|
Avtanski D, Stojchevski R. Significance of Adipose Tissue as an Endocrine Organ. CONTEMPORARY ENDOCRINOLOGY 2024:1-46. [DOI: 10.1007/978-3-031-72570-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Kalusche W, Case C, Taylor E. Leptin antagonism attenuates hypertension and renal injury in an experimental model of autoimmune disease. Clin Sci (Lond) 2023; 137:1771-1785. [PMID: 38031726 PMCID: PMC10721433 DOI: 10.1042/cs20230924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder that is characterized by B- and T-lymphocyte dysfunction and altered cytokine production, including elevated levels of the adipocytokine leptin. Leptin has various immunomodulatory properties, including promoting the expansion of proinflammatory T lymphocytes and the proliferation and survival of B cells. In the present study, we hypothesized that leptin antagonism would improve B- and T-cell dysfunction and attenuate hypertension in an experimental model of SLE, the NZBWF1 mouse. To test this hypothesis, 28-week-old female control and SLE mice were administered 5 mg/kg of murine leptin superantagonist (LA) or vehicle via ip injection every other day for four weeks. Analysis of peripheral blood immune cell populations showed no changes in total CD45R+ B and CD3+ T cell percentages after treatment with LA. However, SLE mice treated with LA had an improved CD4/CD8 ratio and decreased CD3+CD4-CD8- double negative (DN) T cells. Blood pressure was higher in SLE than in control, and treatment with LA decreased blood pressure in SLE mice. Treatment with LA also delayed the onset of albuminuria and decreased glomerulosclerosis in SLE mice. Renal immune cell infiltration was significantly higher in SLE mice as compared with control, but LA treatment was associated with decreased levels of renal CD4+ T cells. In conclusion, these data suggest that leptin plays a pathogenic role in the development of hypertension in SLE, in part, by promoting the expansion of inflammatory DN T cells and the infiltration of T cells into the kidneys.
Collapse
Affiliation(s)
- William J. Kalusche
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Clinton T. Case
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Erin B. Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| |
Collapse
|
10
|
Hu JQ, Yan YH, Xie H, Feng XB, Ge WH, Zhou H, Yu LL, Sun LY, Xie Y. Targeting abnormal lipid metabolism of T cells for systemic lupus erythematosus treatment. Biomed Pharmacother 2023; 165:115198. [PMID: 37536033 DOI: 10.1016/j.biopha.2023.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which the immune system attacks its own tissues and organs. However, the causes of SLE remain unknown. Dyslipidemia is a common symptom observed in SLE patients and animal models and is closely correlated to disease activity. Lipid metabolic reprogramming has been considered as a hallmark of the dysfunction of T cells in patients with SLE, therefore, manipulating lipid metabolism provides a potential therapeutic target for treating SLE. A better understanding of the underlying mechanisms for the metabolic events of immune cells under pathological conditions is crucial for tuning immunometabolism to manage autoimmune diseases such as SLE. In this review, we aim to summarize the cross-link between lipid metabolism and the function of T cells as well as the underlying mechanisms, and provide light on the novel therapeutic strategies of active compounds from herbals for the treatment of SLE by targeting lipid metabolism in immune cells.
Collapse
Affiliation(s)
- Jia-Qin Hu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China
| | - Yan-Hua Yan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China; The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Xue-Bing Feng
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Wei-Hong Ge
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Hua Zhou
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Li Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China.
| | - Ling-Yun Sun
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China.
| | - Ying Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
11
|
Grammatikopoulou MG, Syrmou V, Lioliopoulou ML, Gkiouras K, Simopoulou T, Katsiari CG, Vassilakou T, Bogdanos DP. Anorexia Nervosa in Juvenile Systemic Lupus Erythematosus (SLE): A Causality Dilemma. CHILDREN (BASEL, SWITZERLAND) 2023; 10:697. [PMID: 37189946 PMCID: PMC10137086 DOI: 10.3390/children10040697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
Juvenile-onset systemic lupus erythematosus (jSLE) is an autoimmune disorder with multifaceted clinical findings in different organ systems. Neuropsychiatric manifestations affect more than half of SLE patients, and there is increasing evidence that anorexia nervosa (AN), a feeding and eating disorder (FED) characterized by significantly reduced energy intake, is among them. Herein, a review of the literature on the potential association between jSLE and AN was performed. Reported clinical cases were identified, and putative pathophysiological mechanisms were sought that could potentially explain the observed relationship between these two pathological entities. Four reports of isolated cases and a case series including seven patients were identified. In this limited patient pool, the diagnosis of AN preceded that of SLE in the majority of cases, whereas in all cases both entities were diagnosed within a time span of two years. Many explanations for the observed relationships have been proposed. AN has been associated with the stress of chronic disease diagnosis; on the other hand, the chronic inflammation associated with AN may contribute to the development/appearance of SLE. Adverse childhood experiences, concentrations of leptin, shared autoantibodies, and genetic traits appear to be important factors in this well-established interplay. In essence, it seems important to increase clinician awareness of the concomitant development of AN and SLE and invite further research on the subject.
Collapse
Affiliation(s)
- Maria G. Grammatikopoulou
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Vasiliki Syrmou
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Maria-Lydia Lioliopoulou
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Konstantinos Gkiouras
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Theodora Simopoulou
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Christina G. Katsiari
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Tonia Vassilakou
- Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, GR-11521 Athens, Greece
| | - Dimitrios P. Bogdanos
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| |
Collapse
|
12
|
Liu T, Zheng M, Jia L, Wang M, Tang L, Wen Z, Zhang M, Yuan F. Deficient leptin receptor signaling in T cells of human SLE. Front Immunol 2023; 14:1157731. [PMID: 37006245 PMCID: PMC10063787 DOI: 10.3389/fimmu.2023.1157731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease mainly mediated by IgG autoantibody. While follicular helper T (Tfh) cells are crucial for supporting IgG autoantibody generation in human SLE, underlying mechanisms for Tfh cell mal-differentiation remain unclear. METHODS In total, 129 SLE patients and 37 healthy donors were recruited for this study. Circulating leptin was determined by ELISA from patients with SLE and healthy individuals. CD4 T cells isolated from SLE patients and healthy donors were activated with anti-CD3/CD28 beads under cytokine-unbiased conditions in the presence or absence of recombinant leptin protein, followed by detection for Tfh cell differentiation by quantifying intracellular transcription factor Bcl-6 and cytokine IL-21. AMPK activation was assessed by analyzing phosphor-AMPK using phosflow cytometry and immunoblots. Leptin receptor expression was determined using flow cytometry and its overexpression was achieved by transfection with an expression vector. Humanized SLE chimeras were induced by injecting patients' immune cells into immune-deficient NSG mice and used for translational studies. RESULTS Circulating leptin was elevated in patients with SLE, inversely associated with disease activity. In healthy individuals, leptin efficiently inhibited Tfh cell differentiation through inducing AMPK activation. Meanwhile, leptin receptor deficiency was a feature of CD4 T cells in SLE patients, impairing the inhibitory effect of leptin on the differentiation of Tfh cells. As a result, we observed the coexistence of high circulating leptin and increased Tfh cell frequencies in SLE patients. Accordingly, overexpression of leptin receptor in SLE CD4 T cells abrogated Tfh cell mal-differentiation and IgG anti-dsDNA generation in humanized lupus chimeras. CONCLUSION Leptin receptor deficiency blocks the inhibitory effect of leptin on SLE Tfh cell differentiation, serving as a promising therapeutic target for lupus management.
Collapse
Affiliation(s)
- Ting Liu
- Department of Rheumatology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Li Jia
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Mingyuan Wang
- Department of Research Center, Suzhou Blood Center, Suzhou, China
| | - Longhai Tang
- Department of Research Center, Suzhou Blood Center, Suzhou, China
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Miaojia Zhang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fenghong Yuan
- Department of Rheumatology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
13
|
The influence of periodontal status and serum biomarkers on salivary leptin levels in systemic lupus erythematosus patients. Saudi Dent J 2022; 34:708-714. [PMID: 36570575 PMCID: PMC9767834 DOI: 10.1016/j.sdentj.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Objective This study aimed to investigate the influence of periodontal status, clinical data, and serum markers on salivary leptin levels in patients with systemic lupus erythematosus (SLE). Methods A case-control study was conducted with 38 patients with SLE and 29 healthy controls. Periodontal data included periodontal probing depth (PPD), clinical attachment level (CAL), and gingival bleeding on probing (BOP). Stimulated saliva samples were collected to analyze salivary leptin levels. Clinical and serum data were collected from the SLE group. Statistical analysis included the t-test, Mann-Whitney test, Spearman correlation coefficient, and a structural equation model. Results The SLE group had a lower salivary leptin level than the control group (P = 0.002). The model revealed that SLE had an inverse and independent effect on salivary leptin (standardized estimate = - 0.289, P = 0.023). Moreover, salivary leptin level negatively correlated with the serum levels of triglyceride, creatinine, and leukocytes, positively correlated with the serum total cholesterol, but was not significantly correlated with the periodontal status. Conclusion These findings suggest that patients with SLE have a lower salivary leptin level. In addition, the level of salivary leptin does not appear to be related to periodontal status in patients with SLE.
Collapse
Key Words
- BMI, body mass index
- CAL, clinical attachment level
- CFI, comparative fit index
- GBI, gingival bleeding index
- GOT, glutamic oxaloacetic transaminase
- GPT, glutamate-pyruvate transaminase
- Leptin
- PPD, periodontal probing depth
- Periodontal diseases
- RMSEA, root mean square error of approximation
- SEM, structural equation model
- SLE, systemic lupus erythematosus
- SRMR, standardized root mean square residual
- Saliva
- Systemic lupus erythematosus
- TG, triglycerides
- TLI, Tucker-Lewis index
Collapse
|
14
|
González-Rodríguez M, Ruiz-Fernández C, Cordero-Barreal A, Ait Eldjoudi D, Pino J, Farrag Y, Gualillo O. Adipokines as targets in musculoskeletal immune and inflammatory diseases. Drug Discov Today 2022; 27:103352. [PMID: 36099964 DOI: 10.1016/j.drudis.2022.103352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022]
Abstract
Adipokines are the principal mediators in adipose signaling. Nevertheless, besides their role in energy storage, these molecules can be produced by other cells, such as immune cells or chondrocytes. Given their pleiotropic effects, research over the past few years has also focused on musculoskeletal diseases, showing that these adipokines might have relevant roles in worsening the disease or improving the treatment response. In this review, we summarize recent advances in our understanding of adipokines and their role in the most prevalent musculoskeletal immune and inflammatory disorders.
Collapse
Affiliation(s)
- María González-Rodríguez
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Programme in Drug Research and Development, Santiago de Compostela, Spain
| | - Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Programme in Medicine Clinical Research, Santiago de Compostela, Spain
| | - Alfonso Cordero-Barreal
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Programme in Molecular Medicine, Santiago de Compostela, Spain
| | - Djedjiga Ait Eldjoudi
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; Departamento de Cirurgía y Especialidades Médico-Cirúrgicas Área de Traumatología e Ortopedia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Yousof Farrag
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Ma H, Murphy C, Loscher CE, O’Kennedy R. Autoantibodies - enemies, and/or potential allies? Front Immunol 2022; 13:953726. [PMID: 36341384 PMCID: PMC9627499 DOI: 10.3389/fimmu.2022.953726] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 08/13/2023] Open
Abstract
Autoantibodies are well known as potentially highly harmful antibodies which attack the host via binding to self-antigens, thus causing severe associated diseases and symptoms (e.g. autoimmune diseases). However, detection of autoantibodies to a range of disease-associated antigens has enabled their successful usage as important tools in disease diagnosis, prognosis and treatment. There are several advantages of using such autoantibodies. These include the capacity to measure their presence very early in disease development, their stability, which is often much better than their related antigen, and the capacity to use an array of such autoantibodies for enhanced diagnostics and to better predict prognosis. They may also possess capacity for utilization in therapy, in vivo. In this review both the positive and negative aspects of autoantibodies are critically assessed, including their role in autoimmune diseases, cancers and the global pandemic caused by COVID-19. Important issues related to their detection are also highlighted.
Collapse
Affiliation(s)
- Hui Ma
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Caroline Murphy
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - Richard O’Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
- Research, Development and Innovation, Qatar Foundation, Doha, Qatar
- Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
16
|
Liu J, Lai F, Hou Y, Zheng R. Leptin signaling and leptin resistance. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:363-384. [PMID: 37724323 PMCID: PMC10388810 DOI: 10.1515/mr-2022-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 09/20/2023]
Abstract
With the prevalence of obesity and associated comorbidities, studies aimed at revealing mechanisms that regulate energy homeostasis have gained increasing interest. In 1994, the cloning of leptin was a milestone in metabolic research. As an adipocytokine, leptin governs food intake and energy homeostasis through leptin receptors (LepR) in the brain. The failure of increased leptin levels to suppress feeding and elevate energy expenditure is referred to as leptin resistance, which encompasses complex pathophysiological processes. Within the brain, LepR-expressing neurons are distributed in hypothalamus and other brain areas, and each population of the LepR-expressing neurons may mediate particular aspects of leptin effects. In LepR-expressing neurons, the binding of leptin to LepR initiates multiple signaling cascades including janus kinase (JAK)-signal transducers and activators of transcription (STAT) phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), extracellular regulated protein kinase (ERK), and AMP-activated protein kinase (AMPK) signaling, etc., mediating leptin actions. These findings place leptin at the intersection of metabolic and neuroendocrine regulations, and render leptin a key target for treating obesity and associated comorbidities. This review highlights the main discoveries that shaped the field of leptin for better understanding of the mechanism governing metabolic homeostasis, and guides the development of safe and effective interventions to treat obesity and associated diseases.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Futing Lai
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yujia Hou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China
- Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing 100191, China
| |
Collapse
|
17
|
Terrell M, Morel L. The Intersection of Cellular and Systemic Metabolism: Metabolic Syndrome in Systemic Lupus Erythematosus. Endocrinology 2022; 163:bqac067. [PMID: 35560001 PMCID: PMC9155598 DOI: 10.1210/endocr/bqac067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/19/2022]
Abstract
A high prevalence of metabolic syndrome (MetS) has been reported in multiple cohorts of systemic lupus erythematosus (SLE) patients, most likely as one of the consequences of autoimmune pathogenesis. Although MetS has been associated with inflammation, its consequences on the lupus immune system and on disease manifestations are largely unknown. The metabolism of immune cells is altered and overactivated in mouse models as well as in patients with SLE, and several metabolic inhibitors have shown therapeutic benefits. Here we review recent studies reporting these findings, as well as the effect of dietary interventions in clinical and preclinical studies of SLE. We also explore potential causal links between systemic and immunometabolism in the context of lupus, and the knowledge gap that needs to be addressed.
Collapse
Affiliation(s)
- Morgan Terrell
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
18
|
Villa N, Badla O, Goit R, Saddik SE, Dawood SN, Rabih AM, Mohammed A, Raman A, Uprety M, Calero MJ, Villanueva MRB, Joshaghani N, Mohammed L. The Role of Leptin in Systemic Lupus Erythematosus: Is It Still a Mystery? Cureus 2022; 14:e26751. [PMID: 35967162 PMCID: PMC9365198 DOI: 10.7759/cureus.26751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory connective tissue disease with varying clinical manifestations. Recent studies have proposed that leptin may be related to SLE development. This study aims to assess current information regarding the relationship between leptin and SLE. A systematic search was done using PubMed, Google Scholar, ScienceDirect, Epistemonikos, and Cochrane Library databases. Studies published in the English language in the last 10 years were selected based on predefined eligibility criteria. The quality of the studies was evaluated using the Newcastle-Ottawa Scale and the Assessment of Multiple Systematic Reviews 2 tool. A total of 12 studies were included in this systematic review. These included systematic reviews/meta-analyses, cross-sectional studies, and case-control studies. Based on the findings of this review, we conclude thatleptin is significantly elevated in SLE patients; however, it does not seem to correlate with disease activity. The exact mechanism of leptin in the pathogenesis of the disease remains unknown and further research is needed regarding this aspect.
Collapse
Affiliation(s)
- Nicole Villa
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Omar Badla
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Raman Goit
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Samia E Saddik
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sarah N Dawood
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ahmad M Rabih
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ahmad Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aishwarya Raman
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Manish Uprety
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maria Jose Calero
- Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Narges Joshaghani
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
19
|
Gao M, Ge M, Huo J, Ren X, Li X, Shao Y, Huang J, Zhang J, Wang M, Nie N, Jin P, Zheng Y. Leptin-mediated proinflammatory bone marrow environment in acquired aplastic anemia. Cytokine 2022; 152:155829. [PMID: 35217430 DOI: 10.1016/j.cyto.2022.155829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 11/27/2022]
Abstract
Acquired aplastic anemia (AA), a paradigm of bone marrow failure syndrome, is mainly caused by abnormal immune activation. The enhanced adipogenesis of bone marrow-derived mesenchymal stem cell (BM-MSC) results in a fatty marrow of AA. Leptin, an adipokine mainly generated by adipocytes, has powerful proinflammatory effects on immune cells and is associated with various autoimmune diseases. However, the role of leptin in the hyperimmune status of AA remains unknown. In this study, we firstly discovered the higher leptin concentration in AA-BM than that in healthy donors (HD)-BM and myelodysplastic syndrome (MDS)-BM. Then, we found AA-MSC could express high amounts of leptin during the process of adipogenesis. Compared with HD, the leptin receptor was also highly expressed on T cells in AA-BM. Furthermore, leptin significantly accelerated the proliferation and activation of T cells in AA-BM. And, leptin promoted the production of interferon-γby T cells in AA-BM. However, leptin remarkably inhibited the conversion of CD4+CD25- T cells into CD4+Foxp3+ T cells. Finally, we detected the cell signaling pathway in T cells from AA patients and found leptin could activate the STAT3 pathway. In summary, our data revealed the high expression of adipokine leptin in AA-BM which shaped a proinflammatory environment for T cells in AA-BM by activating the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Mengying Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Meili Ge
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China.
| | - Jiali Huo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Xiang Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Xingxin Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Yingqi Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Jinbo Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Jing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Neng Nie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Peng Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Yizhou Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
20
|
Bruno A, Ferrante G, Di Vincenzo S, Pace E, La Grutta S. Leptin in the Respiratory Tract: Is There a Role in SARS-CoV-2 Infection? Front Physiol 2022; 12:776963. [PMID: 35002761 PMCID: PMC8727443 DOI: 10.3389/fphys.2021.776963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022] Open
Abstract
Leptin is a pleiotropic adipocytokine involved in several physiologic functions, with a known role in innate and adaptive immunity as well as in tissue homeostasis. Long- and short-isoforms of leptin receptors are widely expressed in many peripheral tissues and organs, such as the respiratory tract. Similar to leptin, microbiota affects the immune system and may interfere with lung health through the bidirectional crosstalk called the “gut-lung axis.” Obesity leads to impaired protective immunity and altered susceptibility to pulmonary infections, as those by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although it is known that leptin and microbiota link metabolism and lung health, their role within the SARS-CoV2 coronavirus disease 2019 (COVID-19) deserves further investigations. This review aimed to summarize the available evidence about: (i) the role of leptin in immune modulation; (ii) the role of gut microbiota within the gut-lung axis in modulating leptin sensitivity; and (iii) the role of leptin in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Andreina Bruno
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Giuliana Ferrante
- Pediatric Division, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Serena Di Vincenzo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Elisabetta Pace
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Stefania La Grutta
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| |
Collapse
|
21
|
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by tumor-like hyperplasia and inflammation of the synovium, which causes synovial cell invasion into the bone and cartilage. In RA pathogenesis, various molecules in effector cells (i.e., immune cells and mesenchymal cells) are dysregulated by genetic and environmental factors. Consistent with the early stages of RA, these pathogenic cells cooperate and activate each other directly by cell-to-cell contact or indirectly via humoral factors. Recently, growing evidence has revealed essential role of adipokines, which are multifunctional signal transduction molecules, in the immune system. In this review, we summarize the current understanding of the cross-talk between leptin, one of the most well-known and best-characterized adipokines, and osteoimmunology. Furthermore, we discuss the contribution of leptin to the pathogenesis of RA and its potential mechanisms.
Collapse
Affiliation(s)
- Haruka Tsuchiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Schäfer AL, Eichhorst A, Hentze C, Kraemer AN, Amend A, Sprenger DTL, Fluhr C, Finzel S, Daniel C, Salzer U, Rizzi M, Voll RE, Chevalier N. Low Dietary Fiber Intake Links Development of Obesity and Lupus Pathogenesis. Front Immunol 2021; 12:696810. [PMID: 34335609 PMCID: PMC8320762 DOI: 10.3389/fimmu.2021.696810] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Changed dietary habits in Western countries such as reduced fiber intake represent an important lifestyle factor contributing to the increase in inflammatory immune-mediated diseases. The mode of action of beneficial fiber effects is not fully elucidated, but short-chain fatty acids (SCFA) and gut microbiota have been implicated. The aim of this study was to explore the impact of dietary fiber on lupus pathology and to understand underlying mechanisms. Here, we show that in lupus-prone NZB/WF1 mice low fiber intake deteriorates disease progression reflected in accelerated mortality, autoantibody production and immune dysregulation. In contrast to our original assumption, microbiota suppression by antibiotics or direct SCFA feeding did not influence the course of lupus-like disease. Mechanistically, our data rather indicate that in low fiber-fed mice, an increase in white adipose tissue mass, fat-inflammation and a disrupted intestinal homeostasis go along with systemic, low-grade inflammation driving autoimmunity. The links between obesity, intestinal leakage and low-grade inflammation were confirmed in human samples, while adaptive immune activation predominantly correlated with lupus activity. We further propose that an accelerated gastro-intestinal passage along with energy dilution underlies fiber-mediated weight regulation. Thus, our data highlight the often-overlooked effects of dietary fiber on energy homeostasis and obesity prevention. Further, they provide insight into how intricately the pathologies of inflammatory immune-mediated conditions, such as obesity and autoimmunity, might be interlinked, possibly sharing common pathways.
Collapse
MESH Headings
- Adaptive Immunity
- Adipose Tissue, White/immunology
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Adiposity
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Animal Feed
- Animals
- Autoantibodies/blood
- Autoimmunity
- Case-Control Studies
- Dietary Fiber/administration & dosage
- Dietary Fiber/deficiency
- Disease Models, Animal
- Disease Progression
- Energy Metabolism
- Female
- Humans
- Inflammation Mediators/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Lupus Erythematosus, Systemic/etiology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/pathology
- Male
- Mice, Inbred NZB
- Middle Aged
- Nutritive Value
- Obesity/etiology
- Obesity/immunology
- Obesity/metabolism
- Obesity/pathology
- Permeability
- Young Adult
- Mice
Collapse
Affiliation(s)
- Anna-Lena Schäfer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Alexandra Eichhorst
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Carolin Hentze
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Antoine N. Kraemer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Anaïs Amend
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Dalina T. L. Sprenger
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Cara Fluhr
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Stephanie Finzel
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) of Erlangen-Nuremberg, Erlangen, Germany
| | - Ulrich Salzer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Ahn SS, Yoon T, Song JJ, Park YB, Lee SW. Serum adipokine profiles in patients with microscopic polyangiitis and granulomatosis with polyangiitis: An exploratory analysis. PLoS One 2021; 16:e0254226. [PMID: 34242326 PMCID: PMC8270208 DOI: 10.1371/journal.pone.0254226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Previous studies have shown that adipokines may serve as potential biomarkers reflecting disease activity in various autoimmune diseases. Here, we investigated the relationship between four adipokines and clinical/laboratory findings in patients with microscopic polyangiitis (MPA) and granulomatosis with polyangiitis (GPA). METHODS Sera from 63 patients with MPA and GPA who were registered in a prospective cohort were used to detect serum levels of adiponectin, chemerin, resistin, and vaspin using commercial enzyme-linked immunosorbent assay kits. Associations between adipokines and clinical and laboratory data was assessed using Pearson's correlation analysis. RESULTS The median age was 65.0 years, 24 patients were male, and 42 patients were diagnosed with MPA. The median levels of adiponectin, chemerin, resistin, and vaspin in patient sera were 13.9 ng/mL, 9.2 ng/mL, 23.7 ng/mL, and 0.1 ng/mL, respectively. A significant correlation between chemerin level and five-factor score (FFS) was found (r = 0.320, p = 0.011), and resistin was correlated with both Birmingham vasculitis activity score and FFS (r = 0.256, p = 0.043 and r = 0.320, p = 0.011). Regarding laboratory data, adiponectin level was associated with creatinine, and chemerin level was associated with creatinine, albumin, and erythrocyte sedimentation rate (ESR). On the other hand, resistin was found to be associated with white blood cell count, creatinine, ESR, and C-reactive protein. Age did not have a significant impact on the levels of adipokines. CONCLUSIONS The expression of adipokines in the sera of patients with MPA and GPA differs depending on clinical and laboratory features, and serum resistin may be suggested as a potential biomarker reflecting disease activity.
Collapse
Affiliation(s)
- Sung Soo Ahn
- Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Taejun Yoon
- Department of Medical Science, BK21 Plus Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
24
|
The metabolic hormone leptin promotes the function of T FH cells and supports vaccine responses. Nat Commun 2021; 12:3073. [PMID: 34031386 PMCID: PMC8144586 DOI: 10.1038/s41467-021-23220-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Follicular helper T (TFH) cells control antibody responses by supporting antibody affinity maturation and memory formation. Inadequate TFH function has been found in individuals with ineffective responses to vaccines, but the mechanism underlying TFH regulation in vaccination is not understood. Here, we report that lower serum levels of the metabolic hormone leptin associate with reduced vaccine responses to influenza or hepatitis B virus vaccines in healthy populations. Leptin promotes mouse and human TFH differentiation and IL-21 production via STAT3 and mTOR pathways. Leptin receptor deficiency impairs TFH generation and antibody responses in immunisation and infection. Similarly, leptin deficiency induced by fasting reduces influenza vaccination-mediated protection for the subsequent infection challenge, which is mostly rescued by leptin replacement. Our results identify leptin as a regulator of TFH cell differentiation and function and indicate low levels of leptin as a risk factor for vaccine failure. T follicular helper (TFH) cell numbers are increased after vaccination and fewer of these cells might result in reduced vaccine responses. Here the authors show in mice and humans that leptin promotes TFH differentiation and that low leptin levels can impair TFH response to vaccines and virus protection in mice.
Collapse
|
25
|
de Candia P, Prattichizzo F, Garavelli S, Alviggi C, La Cava A, Matarese G. The pleiotropic roles of leptin in metabolism, immunity, and cancer. J Exp Med 2021; 218:211994. [PMID: 33857282 PMCID: PMC8056770 DOI: 10.1084/jem.20191593] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The discovery of the archetypal adipocytokine leptin and how it regulates energy homeostasis have represented breakthroughs in our understanding of the endocrine function of the adipose tissue and the biological determinants of human obesity. Investigations on leptin have also been instrumental in identifying physio-pathological connections between metabolic regulation and multiple immunological functions. For example, the description of the promoting activities of leptin on inflammation and cell proliferation have recognized the detrimental effects of leptin in connecting dysmetabolic conditions with cancer and with onset and/or progression of autoimmune disease. Here we review the multiple biological functions and complex framework of operations of leptin, discussing why and how the pleiotropic activities of this adipocytokine still pose major hurdles in the development of effective leptin-based therapeutic opportunities for different clinical conditions.
Collapse
Affiliation(s)
- Paola de Candia
- Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, Milan, Italy
| | | | - Silvia Garavelli
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Carlo Alviggi
- Department of Neuroscience, Reproductive Science and Odontostomatology, Università di Napoli "Federico II," Naples, Italy
| | - Antonio La Cava
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Naples, Italy.,T reg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II," Naples, Italy
| |
Collapse
|
26
|
Hamijoyo L, Putri M, Alita VR, Atik N, Syamsunarno MRA. Fatty acid binding protein 4 (FABP4) and metabolic-related parameters in systemic lupus erythematosus active and non-active episode. Lupus 2021; 30:1133-1139. [PMID: 33840283 DOI: 10.1177/09612033211006908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To assess serum FABP4 and other metabolic-related parameters in Systemic Lupus Erythematosus (SLE) active and non-active episode. METHODS Fifty-four SLE patients in Hasan Sadikin General Hospital, Bandung, Indonesia in 2018-2019 were recruited and serum samples were collected in their active and non-active episode status. Serum was analyzed for FABP4, leptin, glucose, and triglycerides. The clinical characteristics were analyzed from medical records. Disease activity was assessed with the SLEDAI-2K (≥4 defined as an active; <4 as non-active episode). RESULTS Significantly correlation of Systolic Blood Pressure (SBP) (p = 0.001, r = 0.59) and C3 (p = 0.04, r = 0.47) between active and non-active episode. In non-active episode, there was significant correlation of FABP4 with Diastolic Blood Pressure (DBP) (p = 0.04, r = 0.26) and blood glucose (p = 0.01, r = -0.39). In active episode, there was significant correlation FABP4 with SBP (p = 0.04, r = -0.28) and triglyceride (p = 0.002, r = 0.55). CONCLUSION FABP4 correlates with high DBP in the non-active and high triglyceride serum in the active episode.
Collapse
Affiliation(s)
- Laniyati Hamijoyo
- Rheumatology Division, Department of Internal Medicine, Faculty of Medicine Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia.,Lupus Study Group, Immunology Study Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Mirasari Putri
- Lupus Study Group, Immunology Study Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.,Department of Biochemistry, Nutrition, and Biomolecular, Faculty of Medicine Universitas Islam Bandung, Bandung, Indonesia
| | - Vilya Rizkiyanti Alita
- Lupus Study Group, Immunology Study Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Nur Atik
- Lupus Study Group, Immunology Study Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.,Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Mas Rizky Aa Syamsunarno
- Lupus Study Group, Immunology Study Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.,Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
27
|
The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin Sci (Lond) 2021; 135:731-752. [PMID: 33729498 PMCID: PMC7969664 DOI: 10.1042/cs20200895] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
The global obesity epidemic is a major contributor to chronic disease and disability in the world today. Since the discovery of leptin in 1994, a multitude of studies have characterized the pathological changes that occur within adipose tissue in the obese state. One significant change is the dysregulation of adipokine production. Adipokines are an indispensable link between metabolism and optimal immune system function; however, their dysregulation in obesity contributes to chronic low-grade inflammation and disease pathology. Herein, I will highlight current knowledge on adipokine structure and physiological function, and focus on the known roles of these factors in the modulation of the immune response. I will also discuss adipokines in rheumatic and autoimmune diseases.
Collapse
|
28
|
Cordero-Barreal A, González-Rodríguez M, Ruiz-Fernández C, Eldjoudi DA, AbdElHafez YRF, Lago F, Conde J, Gómez R, González-Gay MA, Mobasheri A, Pino J, Gualillo O. An Update on the Role of Leptin in the Immuno-Metabolism of Cartilage. Int J Mol Sci 2021; 22:ijms22052411. [PMID: 33673730 PMCID: PMC7957536 DOI: 10.3390/ijms22052411] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Since its discovery in 1994, leptin has been considered as an adipokine with pleiotropic effects. In this review, we summarize the actual information about the impact of this hormone on cartilage metabolism and pathology. Leptin signalling depends on the interaction with leptin receptor LEPR, being the long isoform of the receptor (LEPRb) the one with more efficient intracellular signalling. Chondrocytes express the long isoform of the leptin receptor and in these cells, leptin signalling, alone or in combination with other molecules, induces the expression of pro-inflammatory molecules and cartilage degenerative enzymes. Leptin has been shown to increase the proliferation and activation of immune cells, increasing the severity of immune degenerative cartilage diseases. Leptin expression in serum and synovial fluid are related to degenerative diseases such as osteoarthritis (OA), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Inhibition of leptin signalling showed to have protective effects in these diseases showing the key role of leptin in cartilage degeneration.
Collapse
Affiliation(s)
- Alfonso Cordero-Barreal
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (A.C.-B.); (M.G.-R.); (C.R.-F.); (D.A.E.); (Y.R.F.A.)
| | - María González-Rodríguez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (A.C.-B.); (M.G.-R.); (C.R.-F.); (D.A.E.); (Y.R.F.A.)
| | - Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (A.C.-B.); (M.G.-R.); (C.R.-F.); (D.A.E.); (Y.R.F.A.)
| | - Djedjiga Ait Eldjoudi
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (A.C.-B.); (M.G.-R.); (C.R.-F.); (D.A.E.); (Y.R.F.A.)
| | - Yousof Ramadan Farrag AbdElHafez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (A.C.-B.); (M.G.-R.); (C.R.-F.); (D.A.E.); (Y.R.F.A.)
| | - Francisca Lago
- Molecular and Cellular Cardiology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 7, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain; (F.L.); (J.C.)
| | - Javier Conde
- Molecular and Cellular Cardiology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 7, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain; (F.L.); (J.C.)
| | - Rodolfo Gómez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The Muscle-Skeletal Pathology Group, Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain;
| | - Miguel Angel González-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Universidad de Cantabria and IDIVAL, Hospital Universitario Marqués de Valdecilla, Av. Valdecilla, 39008 Santander, Spain;
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FIN-90230 Oulu, Finland;
- Department of Regenerative Medicine, State Research Institute, Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (A.C.-B.); (M.G.-R.); (C.R.-F.); (D.A.E.); (Y.R.F.A.)
- Correspondence: (J.P.); (O.G.); Tel./Fax: +34-981950905 (O.G.)
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (A.C.-B.); (M.G.-R.); (C.R.-F.); (D.A.E.); (Y.R.F.A.)
- Correspondence: (J.P.); (O.G.); Tel./Fax: +34-981950905 (O.G.)
| |
Collapse
|
29
|
Kono M, Nagafuchi Y, Shoda H, Fujio K. The Impact of Obesity and a High-Fat Diet on Clinical and Immunological Features in Systemic Lupus Erythematosus. Nutrients 2021; 13:nu13020504. [PMID: 33557015 PMCID: PMC7913625 DOI: 10.3390/nu13020504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with multiple organ involvement predominantly affecting women of childbearing age. Environmental factors, as well as genetic predisposition, can cause immunological disturbances that manifest as SLE. A habitual high-fat diet and obesity have recently been reported to play a role in the pathogenesis of autoimmune diseases. The frequency of obesity is higher in patients with SLE than in general populations. Vitamin D and adipokines, such as leptin and adiponectin, are possible mediators connecting obesity and SLE. Serum leptin and adiponectin levels are elevated in patients with SLE and can impact innate and adaptive immunity. Vitamin D deficiency is commonly observed in SLE. Because vitamin D can modulate the functionality of various immune cells, we review vitamin D supplementation and its effects on the course of clinical disease in this work. We also discuss high-fat diets coinciding with alterations of the gut microbiome, or dysbiosis. Contingent upon dietary habits, microbiota can be conducive to the maintenance of immune homeostasis. A high-fat diet can give rise to dysbiosis, and patients who are affected by obesity and/or have SLE possess less diverse microbiota. Interestingly, a hypothesis about dysbiosis and the development of SLE has been suggested and reviewed here.
Collapse
|
30
|
Sadras T, Chan LN, Xiao G, Müschen M. Metabolic Gatekeepers of Pathological B Cell Activation. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:323-349. [DOI: 10.1146/annurev-pathol-061020-050135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unlike other cell types, B cells undergo multiple rounds of V(D)J recombination and hypermutation to evolve high-affinity antibodies. Reflecting high frequencies of DNA double-strand breaks, adaptive immune protection by B cells comes with an increased risk of malignant transformation. In addition, the vast majority of newly generated B cells express an autoreactive B cell receptor (BCR). Thus, B cells are under intense selective pressure to remove autoreactive and premalignant clones. Despite stringent negative selection, B cells frequently give rise to autoimmune disease and B cell malignancies. In this review, we discuss mechanisms that we term metabolic gatekeepers to eliminate pathogenic B cell clones on the basis of energy depletion. Chronic activation signals from autoreactive BCRs or transforming oncogenes increase energy demands in autoreactive and premalignant B cells. Thus, metabolic gatekeepers limit energy supply to levels that are insufficient to fuel either a transforming oncogene or hyperactive signaling from an autoreactive BCR.
Collapse
Affiliation(s)
- Teresa Sadras
- Center of Molecular and Cellular Oncology, Yale Cancer Center, and Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA
| | - Lai N. Chan
- Center of Molecular and Cellular Oncology, Yale Cancer Center, and Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA
| | - Gang Xiao
- Current affiliation: Department of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale Cancer Center, and Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
31
|
Giardullo L, Corrado A, Maruotti N, Cici D, Mansueto N, Cantatore FP. Adipokine role in physiopathology of inflammatory and degenerative musculoskeletal diseases. Int J Immunopathol Pharmacol 2021; 35:20587384211015034. [PMID: 33983056 PMCID: PMC8127732 DOI: 10.1177/20587384211015034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/05/2021] [Indexed: 12/16/2022] Open
Abstract
We performed a systematic literature review to summarize the underlying pathogenic mechanisms by which adipokines influence rheumatological diseases and the resulting clinical manifestations. Increasing evidence display that numerous adipokines may significantly influence the development or clinical course of various rheumatological diseases. Despite the normal anti- or pro-inflammatory role of the cytokines, the serum level varies enormously in various rheumatological diseases. The expression of high levels of pro-inflammatory cytokines such as leptin or visfatin, respectively in systemic lupus erythematosus and in rheumatoid arthritis, represents a negative prognostic factor; other adipokines such as adiponectin, broadly known for their anti-inflammatory effects, showed a correlation with disease activity in rheumatoid arthritis. In the near future pro-inflammatory cytokines may represent a potential therapeutic target to restrain the severity of rheumatological diseases. Further studies on adipokines may provide important information on the pathogenesis of these diseases, which are not yet fully understood. The mechanisms by which adipokines induce, worsen, or suppress inflammatory and degenerative musculoskeletal pathologies and their clinical significance will be discussed in this review.
Collapse
Affiliation(s)
- Liberato Giardullo
- Rheumatology Clinic “Mario Carrozzo”, Department of Medical and Surgical Sciences, University of Foggia, “Policlinico Riuniti” University Hospital, Foggia, Italy
| | - Addolorata Corrado
- Rheumatology Clinic “Mario Carrozzo”, Department of Medical and Surgical Sciences, University of Foggia, “Policlinico Riuniti” University Hospital, Foggia, Italy
| | - Nicola Maruotti
- Rheumatology Clinic “Mario Carrozzo”, Department of Medical and Surgical Sciences, University of Foggia, “Policlinico Riuniti” University Hospital, Foggia, Italy
| | - Daniela Cici
- Rheumatology Clinic “Mario Carrozzo”, Department of Medical and Surgical Sciences, University of Foggia, “Policlinico Riuniti” University Hospital, Foggia, Italy
| | - Natalia Mansueto
- Rheumatology Clinic “Mario Carrozzo”, Department of Medical and Surgical Sciences, University of Foggia, “Policlinico Riuniti” University Hospital, Foggia, Italy
| | - Francesco Paolo Cantatore
- Rheumatology Clinic “Mario Carrozzo”, Department of Medical and Surgical Sciences, University of Foggia, “Policlinico Riuniti” University Hospital, Foggia, Italy
| |
Collapse
|
32
|
Żelechowska P, Brzezińska-Błaszczyk E, Kusowska A, Kozłowska E. The role of adipokines in the modulation of lymphoid lineage cell development and activity: An overview. Obes Rev 2020; 21:e13055. [PMID: 32638520 DOI: 10.1111/obr.13055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022]
Abstract
Adipokines are predominantly known to play a vital role in the control of food intake, energy homeostasis and regulation of glucose and lipid metabolism. However, evidence supporting the concept of their extensive involvement in immune system defence mechanisms and inflammatory processes continues to grow. Some of the adipokines, that is, leptin and resistin, have been recognized to exhibit mainly pro-inflammatory properties, whereas others such as visfatin, chemerin, apelin and vaspin have been found to exert regulatory effects. In contrast, adiponectin or omentin are known for their anti-inflammatory activities. Hence, adipokines influence the activity of various cells engaged in innate immune response and inflammatory processes mainly by affecting adhesion molecule expression, chemotaxis, apoptosis and phagocytosis, as well as mediators production and release. However, much less is known about the role of adipokines in processes involving lymphoid lineage cells. This review summarizes the current knowledge regarding the importance of different adipokines in the lymphopoiesis, recirculation, differentiation and polarization of lymphoid lineage cells. It also provides insight into the influence of selected adipokines on the activity of those cells in tissues.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Faculty of Health Sciences, Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - Ewa Brzezińska-Błaszczyk
- Faculty of Health Sciences, Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | | | - Elżbieta Kozłowska
- Faculty of Health Sciences, Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
33
|
Packer M, Lam CS, Lund LH, Maurer MS, Borlaug BA. Characterization of the inflammatory-metabolic phenotype of heart failure with a preserved ejection fraction: a hypothesis to explain influence of sex on the evolution and potential treatment of the disease. Eur J Heart Fail 2020; 22:1551-1567. [PMID: 32441863 PMCID: PMC7687188 DOI: 10.1002/ejhf.1902] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence points to the existence of an inflammatory-metabolic phenotype of heart failure with a preserved ejection fraction (HFpEF), which is characterized by biomarkers of inflammation, an expanded epicardial adipose tissue mass, microvascular endothelial dysfunction, normal-to-mildly increased left ventricular volumes and systolic blood pressures, and possibly, altered activity of adipocyte-associated inflammatory mediators. A broad range of adipogenic metabolic and systemic inflammatory disorders - e.g. obesity, diabetes and metabolic syndrome as well as rheumatoid arthritis and psoriasis - can cause this phenotype, independent of the presence of large vessel coronary artery disease. Interestingly, when compared with men, women are both at greater risk of and may suffer greater cardiac consequences from these systemic inflammatory and metabolic disorders. Women show disproportionate increases in left ventricular filling pressures following increases in central blood volume and have greater arterial stiffness than men. Additionally, they are particularly predisposed to epicardial and intramyocardial fat expansion and imbalances in adipocyte-associated proinflammatory mediators. The hormonal interrelationships seen in inflammatory-metabolic phenotype may explain why mineralocorticoid receptor antagonists and neprilysin inhibitors may be more effective in women than in men with HFpEF. Recognition of the inflammatory-metabolic phenotype may improve an understanding of the pathogenesis of HFpEF and enhance the ability to design clinical trials of interventions in this heterogeneous syndrome.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular InstituteBaylor University Medical CenterDallasTXUSA
- Imperial College LondonLondonUK
| | - Carolyn S.P. Lam
- National Heart Centre Singapore and Duke‐National University of SingaporeSingapore
- University Medical Centre GroningenGroningenThe Netherlands
- The George Institute for Global HealthSydneyAustralia
| | - Lars H. Lund
- Department of Medicine, Karolinska Institutet and Heart and Vascular ThemeKarolinska University HospitalStockholmSweden
| | | | | |
Collapse
|
34
|
Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, Sánchez-Margalet V. Role of Leptin in Inflammation and Vice Versa. Int J Mol Sci 2020; 21:E5887. [PMID: 32824322 PMCID: PMC7460646 DOI: 10.3390/ijms21165887] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is an essential immune response for the maintenance of tissue homeostasis. In a general sense, acute and chronic inflammation are different types of adaptive response that are called into action when other homeostatic mechanisms are insufficient. Although considerable progress has been made in understanding the cellular and molecular events that are involved in the acute inflammatory response to infection and tissue injury, the causes and mechanisms of systemic chronic inflammation are much less known. The pathogenic capacity of this type of inflammation is puzzling and represents a common link of the multifactorial diseases, such as cardiovascular diseases and type 2 diabetes. In recent years, interest has been raised by the discovery of novel mediators of inflammation, such as microRNAs and adipokines, with different effects on target tissues. In the present review, we discuss the data emerged from research of leptin in obesity as an inflammatory mediator sustaining multifactorial diseases and how this knowledge could be instrumental in the design of leptin-based manipulation strategies to help restoration of abnormal immune responses. On the other direction, chronic inflammation, either from autoimmune or infectious diseases, or impaired microbiota (dysbiosis) may impair the leptin response inducing resistance to the weight control, and therefore it may be a cause of obesity. Thus, we are reviewing the published data regarding the role of leptin in inflammation, and the other way around, the role of inflammation on the development of leptin resistance and obesity.
Collapse
Affiliation(s)
- Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (F.S.-J.); (T.V.-G.)
| | | | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (F.S.-J.); (T.V.-G.)
| |
Collapse
|
35
|
Zimering MB, Grinberg M, Burton J, Pang KCH. Circulating Agonist Autoantibody to 5-Hydroxytryptamine 2A Receptor in Lean and Diabetic Fatty Zucker Rat Strains. ENDOCRINOLOGY, DIABETES AND METABOLISM JOURNAL 2020; 4:413. [PMID: 33052255 PMCID: PMC7550200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
AIMS Circulating neurotoxic autoantibodies to the 5-hydroxytryptamine 2A receptor were increased in older adult type 2 diabetes in association with certain neurodegenerative complications. The male Zucker diabetic fatty (ZDF) rat is a model system for studies of obese, type 2 diabetes mellitus. The aim of the current study was to test for (and compare) circulating neurotoxic autoantibodies to the 5-hydroxytryptamine 2A receptor in the Zucker diabetic fatty rat and age-matched lean Zucker rat strains. METHODS Plasma from lean and Zucker diabetic fatty rat (obtained at different developmental stages) was subjected to protein G affinity chromatography. The resulting immunoglobulin G fraction was tested for neurotoxicity (acute neurite retraction, accelerated neuron loss) in N2A mouse neuroblastoma cells and for binding to a linear synthetic peptide corresponding to the second extracellular loop of the 5-hydroxytryptamine 2A receptor. RESULTS The male Zucker diabetic fatty rat (fa/fa) and two Zucker lean strains (+/?) and (fa/+) harbored autoantibodies to the 5-hydroxytryptamine 2A receptor which appeared spontaneously around 7-8.5 weeks of age. The circulating autoantibodies persisted until at least 25 weeks of age in the Zucker diabetic fatty rat and in the Zucker heterozygote (fa/+), but were no longer detectable in 25-week-old lean (+/?) Zucker rats. Autoantibody-induced acute neurite retraction and accelerated loss in mouse neuroblastoma N2A cells was dose-dependently prevented by selective antagonists of the 5-hydroxytryptamine 2A receptor. It was also substantially prevented by co-incubation with antagonists of RhoA/Rho kinase-mediated signaling (Y27632) or Gq11/phospholipase C/inositol triphosphate receptor-coupled signaling. CONCLUSIONS These data suggest that neurotoxic 5-hydroxytryptamine 2A receptor-targeting autoantibodies increase in the aging male Zucker diabetic fatty rat and in male Zucker lean rats harboring a heterozygous mutation, but not in age-matched, older Zucker lean rats lacking a known leptin receptor mutation. The Zucker genetic strain may be useful in studies of the role of humoral and/or innate immunity in late neurodegeneration.
Collapse
Affiliation(s)
- MB Zimering
- Medical Service, Veterans Affairs New Jersey Healthcare
System, East Orange, New Jersey, USA
- Rutgers-Robert Wood Johnson Medical School, New Brunswick,
NJ
| | - M Grinberg
- Medical Service, Veterans Affairs New Jersey Healthcare
System, East Orange, New Jersey, USA
| | - J Burton
- Medical Service, Veterans Affairs New Jersey Healthcare
System, East Orange, New Jersey, USA
| | - KCH Pang
- Medical Service, Veterans Affairs New Jersey Healthcare
System, East Orange, New Jersey, USA
- Rutgers-New Jersey Medical School, Newark, New Jersey,
USA
| |
Collapse
|
36
|
DNA vaccine encoding heat shock protein 90 protects from murine lupus. Arthritis Res Ther 2020; 22:152. [PMID: 32571400 PMCID: PMC7310240 DOI: 10.1186/s13075-020-02246-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/12/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the presence of autoantibodies to multiple self-antigens, including heat shock proteins (HSP). Because of the increased expression of HSP90 and abnormal immune responses to it in SLE, we investigated whether an HSP90 DNA vaccine could modulate the development and clinical manifestations of SLE in lupus-prone mice. METHODS (NZB x NZW)F1 (NZB/W) mice were vaccinated with DNA constructs encoding HSP90 or control plasmids or vehicle. The mice were then monitored for survival, circulating anti-dsDNA autoantibodies, and immune phenotypes. Renal disease was evaluated by immunohistochemistry and by the measurement of proteinuria. RESULTS Vaccination with HSP90 DNA reduced lupus disease manifestations and prolonged the survival of NZB/W mice. The protective effects of the HSP90 DNA vaccine associated with the induction of tolerogenic dendritic cells (DCs) and an expansion of T regulatory cells (Tregs). CONCLUSIONS The beneficial effects of DNA vaccination with HSP90 in murine SLE support the possibility of HSP90-based therapeutic modalities of intervention in SLE.
Collapse
|
37
|
Liu A, Ferretti C, Shi FD, Cohen IR, Quintana FJ, La Cava A. DNA Vaccination With Hsp70 Protects Against Systemic Lupus Erythematosus in (NZB × NZW)F1 Mice. Arthritis Rheumatol 2020; 72:997-1002. [PMID: 31943822 DOI: 10.1002/art.41202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To address whether a targeted modulation of the abnormal expression of Hsp70 and autoantibodies against this molecule in systemic lupus erythematosus can influence disease. METHODS Lupus-prone (NZB × NZW)F1 mice that had been DNA-vaccinated with plasmids encoding Hsp70 and controls were monitored for lupus disease parameters including anti-double stranded DNA (anti-dsDNA) autoantibodies and cytokines using enzyme-linked immunosorbent assay, and for kidney function and pathology. The phenotypic and numerical changes in relevant immune cells were evaluated by flow cytometry, and cell function was assessed. RESULTS Mice that had been DNA-vaccinated with Hsp70 displayed marked suppression of anti-dsDNA antibody production, reduced renal disease, and antiinflammatory responses that are associated with a significantly extended survival, compared to controls. These protective effects in Hsp70-vaccinated mice were associated with an induction of tolerogenic immune responses and an expansion of functional Treg cells. CONCLUSION DNA vaccination with Hsp70 suppresses murine lupus by inducing tolerogenic immune responses and antiinflammatory immune responses associated with reduced disease manifestations and increased mouse survival.
Collapse
Affiliation(s)
| | | | - Fu-Dong Shi
- Barrow Neurological Institute, Phoenix, Arizona
| | - Irun R Cohen
- The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
38
|
Teng X, Brown J, Choi SC, Li W, Morel L. Metabolic determinants of lupus pathogenesis. Immunol Rev 2020; 295:167-186. [PMID: 32162304 DOI: 10.1111/imr.12847] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
The metabolism of healthy murine and more recently human immune cells has been investigated with an increasing amount of details. These studies have revealed the challenges presented by immune cells to respond rapidly to a wide variety of triggers by adjusting the amount, type, and utilization of the nutrients they import. A concept has emerged that cellular metabolic programs regulate the size of the immune response and the plasticity of its effector functions. This has generated a lot of enthusiasm with the prediction that cellular metabolism could be manipulated to either enhance or limit an immune response. In support of this hypothesis, studies in animal models as well as human subjects have shown that the dysregulation of the immune system in autoimmune diseases is associated with a skewing of the immunometabolic programs. These studies have been mostly conducted on autoimmune CD4+ T cells, with the metabolism of other immune cells in autoimmune settings still being understudied. Here we discuss systemic metabolism as well as cellular immunometabolism as novel tools to decipher fundamental mechanisms of autoimmunity. We review the contribution of each major metabolic pathway to autoimmune diseases, with a focus on systemic lupus erythematosus (SLE), with the relevant translational opportunities, existing or predicted from results obtained with healthy immune cells. Finally, we review how targeting metabolic programs may present novel therapeutic venues.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
39
|
Packer M. Link Between Synovial and Myocardial Inflammation: Conceptual Framework to Explain the Pathogenesis of Heart Failure with Preserved Ejection Fraction in Patients with Systemic Rheumatic Diseases. Card Fail Rev 2020; 6:e10. [PMID: 40191105 PMCID: PMC11969686 DOI: 10.15420/cfr.2019.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/07/2020] [Indexed: 11/04/2022] Open
Abstract
Patients with a broad range of systemic rheumatic diseases are at increased risk of heart failure (HF), an event that is not related to traditional cardiovascular risk factors or underlying ischaemic heart disease. The magnitude of risk is linked to the severity of arthritic activity, and HF is typically accompanied by a preserved ejection fraction. Subclinical evidence for myocardial fibrosis, microcirculatory dysfunction and elevated cardiac filling pressures is present in a large proportion of patients with rheumatic diseases, particularly those with meaningful systemic inflammation. Drugs that act to attenuate pro-inflammatory pathways (methotrexate and antagonists of tumour necrosis factor and interleukin-1) may ameliorate myocardial inflammation and cardiac structural abnormalities and reduce the risk of HF events.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, US and Imperial College London, UK
| |
Collapse
|
40
|
Lal D, Thakur M, Bihari C. Serum Leptin Serves as an Inflammatory Activity Marker and Predicts Steroid Response in Autoimmune Hepatitis. J Clin Exp Hepatol 2020; 10:574-580. [PMID: 33311894 PMCID: PMC7719975 DOI: 10.1016/j.jceh.2020.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIM Adipocytokines, especially leptin is involved in a wide spectrum of proinflammatory functions, in various tissues. This study was carried out to assess the role of serum leptin in autoimmune hepatitis. METHODS Serum leptin was analyzed in treatment naïve autoimmune hepatitis (AIH, n = 48) patients and compared with the primary biliary cholangitis (PBC, n = 16), chronic hepatitis C (CHC, n = 16) and healthy controls (n = 15). Serum leptin correlation was assessed on liver function tests, disease activity, T regulatory cells (Tregs), and Th17 cells in the liver biopsies and on steroid treatment response in AIH. RESULTS Serum leptin was higher in AIH than in PBC, CHC, and HC {AIH: 335 (106.2-580), PBC: 126 (52-381.2), CH: 67 (3.7-133.5) and HC: 66 (40-157.5) ng/ml; P = 0.001}. In AIH cases; serum leptin correlated with hepatic activity index (r = 0.896; P < 0.001); serum transaminases (aspartate aminotransferases (AST) = 0.615, P < 0.001, alanine aminotransferases (ALT) = 0.551, P < 0.001). It had inverse correlation with Treg cells (P = -0.711, P < 0.001) and positively correlated with Th17 cells (r = 0.650, P < 0.001) in the liver biopsy tissue. High serum leptin was found to be associated with steroid partial or nonresponsiveness at 4 weeks (P = 0.002). CONCLUSION Serum leptin is indicative of higher AIH activity and a reduced number of Tregs cells in liver biopsy tissue. Leptin negative cases have more chances of steroid responsiveness and could help in the selection of AIH cases for appropriate therapy.
Collapse
Affiliation(s)
| | | | - Chhagan Bihari
- Address for correspondence. Chhagan Bihari, Associate Professor, Department of Pathology Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, Delhi, 110070, India.
| |
Collapse
|
41
|
Ma L, Yu W, Dai X, Yin M, Wang Y, Sun Y, Kong X, Cui X, Wu S, Ji Z, Ma L, Chen H, Lin J, Jiang L. Serum leptin, a potential predictor of long-term angiographic progression in Takayasu's arteritis. Int J Rheum Dis 2019; 22:2134-2142. [PMID: 31595672 PMCID: PMC6916353 DOI: 10.1111/1756-185x.13718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/01/2019] [Accepted: 09/10/2019] [Indexed: 11/27/2022]
Abstract
Aim In patients with Takayasu's arteritis (TA), current biomarkers that properly reflect the progression of the vascular structure remain absent. We aimed to determine the serum leptin level to investigate its relationship with imaging changes and assess its value as a predictor for long‐term radiological progression. Method This study included 34 untreated TA patients and 40 age‐matched healthy controls. At baseline and during the 5‐year follow‐up, we assessed disease activity using Kerr's criteria and Indian Takayasu Clinical Activity Score (ITAS2010) and monitored laboratory biomarkers as well as imaging findings. Serum leptin levels were measured by enzyme‐linked immunosorbent assay. Results The baseline serum leptin levels were significantly higher in TA patients than in healthy controls. Leptin was significantly positively correlated with triglyceride and high‐density lipoprotein cholesterol levels and negatively correlated with fibrinogen and C‐reactive protein levels. Patients were subdivided into three groups based on their baseline leptin level. During a 5‐year follow‐up, patients in the high and medium leptin groups showed more radiological progression compared to those in the low leptin group. Cox proportional hazard regression analysis showed that a high serum leptin level was a positive predictor of radiological progression. Conclusion Leptin is a potential biomarker for assessing TA structural progression. Untreated patients with elevated serum leptin levels are at a higher risk of progression in the aorta. Thus, the leptin level can be a predictor of long‐term radiological progression.
Collapse
Affiliation(s)
- Lili Ma
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Evidence-based medicine center, Fudan University, Shanghai, China
| | - Wensu Yu
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaomin Dai
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengmeng Yin
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yujiao Wang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Sun
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiufang Kong
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaomeng Cui
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sifan Wu
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zongfei Ji
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingying Ma
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huiyong Chen
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiang Lin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lindi Jiang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Evidence-based medicine center, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Borba VV, Zandman-Goddard G, Shoenfeld Y. Exacerbations of autoimmune diseases during pregnancy and postpartum. Best Pract Res Clin Endocrinol Metab 2019; 33:101321. [PMID: 31564626 DOI: 10.1016/j.beem.2019.101321] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Autoimmune diseases represent a complex heterogeneous group of disorders that occur as a results of immune homeostasis dysregulation and loss of self-tolerance. Interestingly, more than 80% of the cases are found among women at reproductive age. Normal pregnancy is associated with remarkable changes in the immune and endocrine signaling required to tolerate and support the development and survival of the placenta and the semi-allogenic fetus in the hostile maternal immune system environment. Gravidity and postpartum represent an extremely challenge period, and likewise the general population, women suffering from autoimmune disorders attempt pregnancy. Effective preconception counseling and subsequent gestation and postpartum follow-up are crucial for improving mother and child outcomes. This comprehensive review provides information about the different pathways modulating autoimmune diseases activity and severity, such as the influence hormones, microbiome, infections, vaccines, among others, as well as updated recommendations were needed, in order to offer those women better medical care and life quality.
Collapse
Affiliation(s)
- Vânia Vieira Borba
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Gisele Zandman-Goddard
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Department of Medicine C, Wolfson Medical Center, Tel Aviv, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Russia.
| |
Collapse
|
43
|
Yu Y, Fu S, Zhang X, Wang L, Zhao L, Wan W, Xue Y, Lv L. Leptin facilitates the differentiation of Th17 cells from MRL/Mp-Fas lpr lupus mice by activating NLRP3 inflammasome. Innate Immun 2019; 26:294-300. [PMID: 31752571 PMCID: PMC7251789 DOI: 10.1177/1753425919886643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Both NLRP3 inflammasome and Th17 cells play important roles in the pathogenesis
of systemic lupus erythematosus (SLE). Here we tried to investigate whether
leptin promotes the differentiation of Th17 cells from lupus mice by activating
the NLRP3 inflammasome. Th17 cells induced from MRL/Mp-Fas lpr mice splenocytes
under Th17 polarizing condition were treated with leptin at scalar doses during
the last 18 h of culture. The mRNA levels of IL-17A, IL-17F, RORγt, IL-1β,
IL-18, NLRP3, ASC, and IL-1R1 were detected by quantitative PCR. IL-17A, IL-17F,
IL-1β, and IL-18 were tested by ELISA, while the activity of caspase-1 and
number of Th17 cells were counted by flow cytometry before/after inhibition of
the NLRP3 inflammasome. We found that leptin pushed up the expression of IL-17A,
IL-17F, NLRP3, and IL-1β and increased the number of Th17 cells in lupus mice,
while the expression of IL-17A, RORγt, and IL-1β and the number of Th17 cells
were decreased after inhibition of the NLRP3 inflammasome. Leptin promoted the
differentiation of Th17 cells from lupus mice by activating the NLRP3
inflammasome.
Collapse
Affiliation(s)
- Yiyun Yu
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Sisi Fu
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Xianglin Zhang
- Division of Endocrinology, Renhe Hospital, Shanghai, China
| | - Lingbiao Wang
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Li Zhao
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Weiguo Wan
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Yu Xue
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Ling Lv
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| |
Collapse
|
44
|
Leptin: an unappreciated key player in SLE. Clin Rheumatol 2019; 39:305-317. [PMID: 31707542 DOI: 10.1007/s10067-019-04831-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/08/2023]
Abstract
Leptin is the forerunner of the adipokine superfamily and plays a key role in regulating energy expenditure and neuroendocrine function. Researches into leptin put emphasize not only on the metabolic role but also its immunoregulatory effect on immune response through immunocyte activation and cytokine secretion. Leptin acts on receptors that are widespread throughout the body and that are expressed across many tissue types. As a consequence, the abnormal expression of leptin has been found to correlate with a number of diseases, including cancers, autoimmune diseases, and cardiovascular diseases. The significance of leptin in the development of autoimmune diseases is becoming increasingly prominent. Systemic lupus erythematosus (SLE) is a severe atypical autoimmune disease that causes damage to multiple organ systems. It is characterised by the following: impaired clearance of apoptotic cells, loss of tolerance to self-antigens, aberrant activation of T cells and B cells, and chronic inflammation. The heightened immunocyte response in SLE means that these physiological systems are particularly vulnerable to regulation by leptin in addition to being of great significance to the research field. Our current review provides insight into the regulatory roles that leptin plays on immune effector cells in SLE.
Collapse
|
45
|
Frasca D, Diaz A, Romero M, Blomberg BB. Leptin induces immunosenescence in human B cells. Cell Immunol 2019; 348:103994. [PMID: 31831137 DOI: 10.1016/j.cellimm.2019.103994] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022]
Abstract
Leptin is an adipokine secreted primarily by the adipocytes. Leptin has endocrine and immune functions and increases the secretion of pro-inflammatory cytokines by immune cells. Here we show that incubation of B cells from young lean individuals with leptin increases the frequencies of pro-inflammatory B cells and induces intrinsic B cell inflammation, characterized by mRNA expression of pro-inflammatory cytokines (TNF-α and IL-6), chemokines (IL-8), micro-RNAs (miR-155 and miR-16), TLR4 and p16, a cell cycle regulator associated with immunosenescence. We have previously shown that the expression of these pro-inflammatory markers in unstimulated B cells is negatively associated with the response of the same B cells after in vivo or in vitro stimulation. B cells from young lean individuals, after in vitro incubation with leptin, show reduced class switch and influenza vaccine-specific IgG production. Our results altogether show that leptin makes B cells from youn lean individuals similar to those from young obese and elderly lean individuals, suggesting that leptin may be a mechanisms of immunosenescence in human B cells.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
46
|
Song RH, Wang B, Yao QM, Li Q, Jia X, Zhang JA. The Impact of Obesity on Thyroid Autoimmunity and Dysfunction: A Systematic Review and Meta-Analysis. Front Immunol 2019; 10:2349. [PMID: 31681268 PMCID: PMC6797838 DOI: 10.3389/fimmu.2019.02349] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Background: To help inform decision making in the clinical setting, we carried out a systematic review and meta-analysis to estimate the association of thyroid disease risks with obesity. Methods: Pubmed, Embase, Web of Science, Cochrane database and Google Scholar electronic databases were searched from inception to October 31, 2018 without language restrictions to explore the relationship between thyroid disorders and obesity. The relative risk (RR) or odds risk (OR) for thyroid disorders were pooled using the SPSS and STATA software. Results: A total of 22 studies were included in the study. (1) Meta-analysis showed that obesity was significantly associated with an increased risk of hypothyroidism (RR = 1.86, 95% CI 1.63–2.11, P < 0.001). Meta-analyses after stratification further showed that obese population had increased risks of overt hypothyroidism (RR = 3.21, 95% CI 2.12–4.86, P < 0.001) and subclinical hypothyroidism (RR = 1.70, 95% CI 1.42–2.03, P < 0.001). (2) Further meta-analysis also showed obesity was clearly associated with Hashimoto's thyroiditis (RR = 1.91, 95% CI 1.10–3.32, P = 0.022), but not with Graves' disease. (3) In the meta-analysis of antibodies, obesity was correlated with positive thyroid peroxidase antibody (TPOAb) (RR = 1.93, 95% CI 1.31–2.85, P = 0.001), but not with positive thyroglobulin antibody (TGAb). Conclusions: Obesity was significantly related to hypothyroidism, HT, and TPOAb, implying that prevention of obesity is crucial for thyroid disorders. Systematic Review Registration: PROSPERO: CRD42018096897.
Collapse
Affiliation(s)
- Rong-Hua Song
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Bin Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Qiu-Ming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Qian Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jin-An Zhang
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
47
|
Cortese L, Terrazzano G, Pelagalli A. Leptin and Immunological Profile in Obesity and Its Associated Diseases in Dogs. Int J Mol Sci 2019; 20:2392. [PMID: 31091785 PMCID: PMC6566566 DOI: 10.3390/ijms20102392] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022] Open
Abstract
Growing scientific evidence has unveiled increased incidences of obesity in domestic animals and its influence on a plethora of associated disorders. Leptin, an adipokine regulating body fat mass, represents a key molecule in obesity, able to modulate immune responses and foster chronic inflammatory response in peripheral tissues. High levels of cytokines and inflammatory markers suggest an association between inflammatory state and obesity in dogs, highlighting the parallelism with humans. Canine obesity is a relevant disease always accompanied with several health conditions such as inflammation, immune-dysregulation, insulin resistance, pancreatitis, orthopaedic disorders, cardiovascular disease, and neoplasia. However, leptin involvement in many disease processes in veterinary medicine is poorly understood. Moreover, hyperleptinemia as well as leptin resistance occur with cardiac dysfunction as a consequence of altered cardiac mitochondrial metabolism in obese dogs. Similarly, leptin dysregulation seems to be involved in the pancreatitis pathophysiology. This review aims to examine literature concerning leptin and immunological status in obese dogs, in particular for the aspects related to obesity-associated diseases.
Collapse
Affiliation(s)
- Laura Cortese
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy.
| | - Giuseppe Terrazzano
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
48
|
Müschen M. Metabolic gatekeepers to safeguard against autoimmunity and oncogenic B cell transformation. Nat Rev Immunol 2019; 19:337-348. [DOI: 10.1038/s41577-019-0154-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Horwitz DA, Bickerton S, Koss M, Fahmy TM, La Cava A. Suppression of Murine Lupus by CD4+ and CD8+ Treg Cells Induced by T Cell-Targeted Nanoparticles Loaded With Interleukin-2 and Transforming Growth Factor β. Arthritis Rheumatol 2019; 71:632-640. [PMID: 30407752 DOI: 10.1002/art.40773] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/01/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To develop a nanoparticle (NP) platform that can expand both CD4+ and CD8+ Treg cells in vivo for the suppression of autoimmune responses in systemic lupus erythematosus (SLE). METHODS Poly(lactic-co-glycolic acid) (PLGA) NPs encapsulating interleukin-2 (IL-2) and transforming growth factor β (TGFβ) were coated with anti-CD2/CD4 antibodies and administered to mice with lupus-like disease induced by the transfer of DBA/2 T cells into (C57BL/6 × DBA/2)F1 (BDF1) mice. The peripheral frequency of Treg cells was monitored ex vivo by flow cytometry. Disease progression was assessed by measuring serum anti-double-stranded DNA antibody levels by enzyme-linked immunosorbent assay. Kidney disease was defined as the presence of proteinuria or renal histopathologic features. RESULTS Anti-CD2/CD4 antibody-coated, but not noncoated, NPs encapsulating IL-2 and TGFβ induced CD4+ and CD8+ FoxP3+ Treg cells in vitro. The optimal dosing regimen of NPs for expansion of CD4+ and CD8+ Treg cells was determined in in vivo studies in mice without lupus and then tested in BDF1 mice with lupus. The administration of anti-CD2/CD4 antibody-coated NPs encapsulating IL-2 and TGFβ resulted in the expansion of CD4+ and CD8+ Treg cells, a marked suppression of anti-DNA antibody production, and reduced renal disease. CONCLUSION This study shows for the first time that T cell-targeted PLGA NPs encapsulating IL-2 and TGFβ can expand both CD4+ and CD8+ Treg cells in vivo and suppress murine lupus. This approach, which enables the expansion of Treg cells in vivo and inhibits pathogenic immune responses in SLE, could represent a potential new therapeutic modality in autoimmune conditions characterized by impaired Treg cell function associated with IL-2 deficiency.
Collapse
Affiliation(s)
| | | | - Michael Koss
- Keck School of Medicine at the University of Southern California, Los Angeles
| | | | - Antonio La Cava
- David Geffen School of Medicine at the University of California, Los Angeles
| |
Collapse
|
50
|
Żółkiewicz J, Stochmal A, Rudnicka L. The role of adipokines in systemic sclerosis: a missing link? Arch Dermatol Res 2019; 311:251-263. [PMID: 30806766 PMCID: PMC6469644 DOI: 10.1007/s00403-019-01893-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/27/2018] [Accepted: 02/12/2019] [Indexed: 12/28/2022]
Abstract
Systemic sclerosis is a multiorgan autoimmune disease characterized by vasculopathy and tissue fibrosis of unknown etiology. Recently, adipokines (cell signaling proteins secreted by adipose tissue) have attracted much attention as a cytokine family contributing to the various pathological processes of systemic sclerosis. Adipokines, such as leptin, adiponectin, resistin, adipsin, visfatin or chemerin are a heterogenic group of molecules. Adiponectin exhibits anti-fibrotic features and affects inflammatory reactions. Leptin promotes fibrosis and inflammation. Resistin was linked to vascular involvement in systemic sclerosis. Visfatin was associated with regression of skin lesions in late-stage systemic sclerosis. Chemerin appears as a marker of increased risk of impaired renal function and development of skin sclerosis in the early stage of systemic sclerosis. Vaspin was indicated to have a protective role in digital ulcers development. Novel adipokines-adipsin, apelin, omentin and CTRP-3-are emerging as molecules potentially involved in SSc pathogenesis. Serum adipokine levels may be used as predictive and diagnostic factors in systemic sclerosis. However, further investigations are required to establish firm correlations between distinct adipokines and systemic sclerosis.
Collapse
Affiliation(s)
- Jakub Żółkiewicz
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008, Warszawa, Poland
| | - Anna Stochmal
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008, Warszawa, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008, Warszawa, Poland.
| |
Collapse
|