1
|
Dasgupta P, Puduvalli VK. Diversity of metabolic features and relevance to clinical subtypes of gliomas. Semin Cancer Biol 2025; 112:126-134. [PMID: 40194749 DOI: 10.1016/j.semcancer.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/13/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Gliomas carry a dismal prognosis and have proven difficult to treat. Current treatments and efforts to target individual signaling pathways have failed. This is thought to be due to genetic and epigenetic heterogeneity and resistance. Therefore, interest has grown in developing a deeper understanding of the metabolic alterations that represent drivers and dependencies in gliomas. Therapies that target glioma-specific metabolic dependencies overcome the challenges of disease heterogeneity. Here, we present the diverse metabolic features of each current clinical subtype of glioma. We believe that this approach will enable the development of novel strategies to specifically target the various clinical and molecular subtypes of glioma using these metabolic features.
Collapse
Affiliation(s)
- Pushan Dasgupta
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Feng Y, Qiu H, Chen D. Regulation of Stem Cell Function by NAD . Physiology (Bethesda) 2025; 40:0. [PMID: 39907078 DOI: 10.1152/physiol.00052.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+), a coenzyme in cellular metabolism, has never ceased to capture the fascination of scientists since its discovery in 1906. The expansion of NAD+'s function from cellular metabolism to DNA repair, gene regulation, cell signaling, and aging reflects the central role of cellular metabolism in orchestrating the diverse cellular pathways. In the past decade, NAD+ has emerged as a key regulator of stem cells, opening the door to potential approaches for regenerative medicine. Here we reflect on how the field of NAD+ regulation of stem cells has evolved since a decade ago, when sirtuins, NAD+-dependent enzymes, were shown to be critical regulators of stem cells. We review the recent development on how NAD+ is regulated in stem cells to influence fate decision. We discuss the difference in NAD+ regulation of normal and cancer stem cells. Finally, we consider the consequences of NAD+ regulation of stem cells for health and diseases.
Collapse
Affiliation(s)
- Yufan Feng
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States
| | - Huixian Qiu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States
| |
Collapse
|
3
|
Saito J, Onishi N, Yamasaki J, Koike N, Hata Y, Kimura K, Otsuki Y, Nobusue H, Sampetrean O, Shimizu T, Okazaki S, Sugihara E, Saya H. Benzaldehyde suppresses epithelial-mesenchymal plasticity and overcomes treatment resistance in cancer by targeting the interaction of 14-3-3ζ with H3S28ph. Br J Cancer 2025:10.1038/s41416-025-03006-4. [PMID: 40316727 DOI: 10.1038/s41416-025-03006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Benzaldehyde (BA) is an aromatic aldehyde found in fruits that has been studied as a potential anticancer agent on the basis of its ability to inhibit transformation in mouse embryo cells and to suppress metastasis in mice. METHODS We investigated the cytotoxic effects of BA on cancer cells, and probed its effects on intracellular signaling pathways. The anticancer effects of BA in vivo were studied by using a mouse orthotopic transplantation model of pancreatic cancer. RESULTS BA inhibited the growth of osimertinib- or radiation-resistant cancer cells as well as the interaction between 14-3-3ζ and its client proteins. The interaction of 14-3-3ζ with the Ser28-phosphorylated form of histone H3 (H3S28ph) was implicated in treatment resistance and the transcriptional regulation of genes related to epithelial-mesenchymal transition and stemness, including E2F2, SRSF1, and ID1. Treatment of mice with a BA derivative inhibited pancreatic tumor growth and lung metastasis, as well as suppressed a state of epithelial-mesenchymal plasticity (EMP) of tumor cells. CONCLUSION The interaction between 14-3-3ζ and H3S28ph plays a key role in EMP and treatment resistance in cancer. The ability of BA to inhibit this and other interactions of 14-3-3ζ offers the potential to overcome treatment resistance and to suppress metastasis.
Collapse
Affiliation(s)
- Jun Saito
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
- Department of Pathophysiology, Hoshi University, Shinagawa, Tokyo, 142-0063, Japan
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-0062, Japan
- Department of Applied Physics and Chemistry, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan
- Ichijokai Hospital, Ichikawa, Chiba, 272-0836, Japan
| | - Nobuyuki Onishi
- Department of Clinical Diagnostics Oncology, Clinical Research Institute for Clinical Pharmacology and Therapy, Showa University, Shinagawa, Tokyo, 142-8555, Japan
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Juntaro Yamasaki
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Naoyoshi Koike
- Department of Radiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Yukie Hata
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kiyomi Kimura
- Department of Pathophysiology, Hoshi University, Shinagawa, Tokyo, 142-0063, Japan
- Department of Breast Oncology Juntendo University School of Medicine, Bunkyo, Tokyo, 113-0033, Japan
| | - Yuji Otsuki
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Hiroyuki Nobusue
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Oltea Sampetrean
- Keio University Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Shinjuku, Tokyo, 160-8582, Japan
| | - Takatsune Shimizu
- Department of Pathophysiology, Hoshi University, Shinagawa, Tokyo, 142-0063, Japan
| | - Shogo Okazaki
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-0062, Japan
| | - Eiji Sugihara
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Hideyuki Saya
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
4
|
Abukhiran IM, Masaadeh AH, Byrne JD, Bosch DE. Mucosal Microbiome Markers of Complete Pathologic Response to Neoadjuvant Therapy in Rectal Carcinoma. CANCER RESEARCH COMMUNICATIONS 2025; 5:756-766. [PMID: 40259625 PMCID: PMC12051095 DOI: 10.1158/2767-9764.crc-25-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/10/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Abstract The intestinal microbiome contributes to colorectal carcinogenesis, disease progression, and response to therapy. Pathologic complete response is the therapeutic goal of neoadjuvant chemoradiation in rectal carcinoma. Nonoperative management has become an accepted strategy, and markers of complete treatment response are needed. Intestinal commensal bacteria contribute to treatment response and radiation colitis, and microbiome-targeted therapies have shown promise in clinical trials. We investigated the relationship among mucosa-associated bacteria, neoadjuvant therapy response, and radiation colitis symptoms in 57 patients who received neoadjuvant regimens with no therapy, chemotherapy only, or chemoradiation. The design was a retrospective cohort study. Microbiome profiling was performed by 16S rDNA sequencing of formalin-fixed, paraffin-embedded tissue at the proximal margin of resection. Global β diversity differed according to neoadjuvant therapy modality and was associated with radiation colitis. Taxonomic differences were detectable at phylum and lower classification levels, and radiation-induced colitis was associated with enrichment of the Bacillaceae family. Taxonomic features, including reduced Streptococcus, Lachnospiraceae, and Bacillaceae, were enriched in complete histopathologic responders to neoadjuvant therapy. Taxon-based prediction of metabolic pathways identified enrichment of prokaryotic NAD+ biosynthesis and salvage pathways in complete responders. Mucosal microbiome responses to multimodal neoadjuvant therapy reflect symptomatic radiation colitis, histopathologic evidence of radiation injury, and pathologic treatment response. Posttreatment microbiome β diversity markers of complete pathologic response may be useful in decisions to manage rectal carcinoma nonoperatively. Significance Posttreatment markers of the complete response of rectal carcinoma to neoadjuvant chemoradiation are needed to guide decisions about surgical resection. We found that mucosal microbiome β diversity, bacterial metabolic capacities, and specific taxonomic groups distinguished between complete and incomplete responders. The mucosal microbiome provides markers for complete pathologic response.
Collapse
Affiliation(s)
- Ibrahim M. Abukhiran
- Department of Pathology, Roy J. and Lucilla A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Amr H. Masaadeh
- Department of Pathology, Roy J. and Lucilla A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - James D. Byrne
- Department of Radiation Oncology, Roy J. and Lucilla A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Dustin E. Bosch
- Department of Pathology, Roy J. and Lucilla A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
5
|
Narayanan A, Saurty-Seerunghen MS, Michieletto J, Delaunay V, Bruneel A, Dupré T, Ottolenghi C, Pontoizeau C, Ciccone L, De La Vara A, Idbaih A, Turchi L, Virolle T, Chneiweiss H, Junier MP, El-Habr EA. Nicotinamide metabolism reprogramming drives reversible senescence of glioblastoma cells. Cell Mol Life Sci 2025; 82:126. [PMID: 40116940 PMCID: PMC11928343 DOI: 10.1007/s00018-025-05641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/12/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025]
Abstract
Recent studies show that metabolites, beyond their metabolic roles, can induce significant changes in cell behavior. Herein, we investigate the non-canonical role of nicotinamide (vitamin B3) on glioblastoma (GB) cell behavior. Nicotinamide induced senescence in GB cells, characterized by reduced proliferation, chromatin reorganization, increased DNA damage, enhanced beta-galactosidase activity, and decreased Lamin B1 expression. Nicotinamide-induced senescence was accompanied by an unexpected reprogramming of its metabolism, marked by simultaneous downregulated transcription of NNMT (nicotinamide N-methyltransferase) and NAMPT (nicotinamide phosphoribosyl-transferase). Nicotinamide effects on GB cells were mediated by decreased levels of SOX2. Consistently, analyses of patients' single cell transcriptome datasets showed that GB cells with low NNMT and NAMPT expression levels were enriched in gene modules related to senescence. Remarkably, senescent GB cells retained tumor-forming ability in vivo, albeit to a lesser extent compared to control cells. Further experiments at the single-cell level and transcriptomic analyses demonstrated that nicotinamide-induced senescence in GB cells is fully reversible. Overall, our findings identify a novel reversible senescent state in GB tumors and highlight the non-canonical role of nicotinamide as a key driver of cancer cell plasticity.
Collapse
Affiliation(s)
- Ashwin Narayanan
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France
- QV Bioelectronics Ltd., 21LGA, Alderley Park, Nether Alderley, Cheshire, SK10 4TG, UK
| | - Mirca S Saurty-Seerunghen
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Jessica Michieletto
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France
| | - Virgile Delaunay
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France
| | - Arnaud Bruneel
- Service de Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude-Bernard, Paris, France
- INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, 91400, Orsay, France
| | - Thierry Dupré
- Service de Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude-Bernard, Paris, France
| | - Chris Ottolenghi
- France Paris Cité University, Imagine Institute -Inserm U1163, Metabolic Biochemistry Laboratory, Necker Hospital (APHP), Paris, France
| | - Clément Pontoizeau
- France Paris Cité University, Imagine Institute -Inserm U1163, Metabolic Biochemistry Laboratory, Necker Hospital (APHP), Paris, France
| | - Lucrezia Ciccone
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France
| | - Andreas De La Vara
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France
| | - Ahmed Idbaih
- Sorbonne Université, AP-HP, Institut du Cerveau -Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, F-75013, Paris, France
| | - Laurent Turchi
- Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", 06108, Nice, France
| | - Thierry Virolle
- Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", 06108, Nice, France
| | - Hervé Chneiweiss
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France
| | - Marie-Pierre Junier
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France
| | - Elias A El-Habr
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Center for Neuroscience at Sorbonne Université, 7 Quai Saint-Bernard, 75005, Paris, France.
| |
Collapse
|
6
|
Wei J, Gao C, Lu C, Wang L, Dong D, Sun M. The E2F family: a ray of dawn in cardiomyopathy. Mol Cell Biochem 2025; 480:825-839. [PMID: 38985251 DOI: 10.1007/s11010-024-05063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Cardiomyopathies are a group of heterogeneous diseases, characterized by abnormal structure and function of the myocardium. For many years, it has been a hot topic because of its high morbidity and mortality as well as its complicated pathogenesis. The E2Fs, a group of transcription factors found extensively in eukaryotes, play a crucial role in governing cell proliferation, differentiation, and apoptosis, meanwhile their deregulated activity can also cause a variety of diseases. Based on accumulating evidence, E2Fs play important roles in cardiomyopathies. In this review, we describe the structural and functional characteristics of the E2F family and its role in cardiomyocyte processes, with a focus on how E2Fs are associated with the onset and development of cardiomyopathies. Moreover, we discuss the great potential of E2Fs as biomarkers and therapeutic targets, aiming to provide a reference for future research.
Collapse
Affiliation(s)
- Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Changxu Lu
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110033, Liaoning, People's Republic of China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China.
| |
Collapse
|
7
|
Hu W, Cui X, Liu H, Li Z, Chen X, Wang Q, Zhang G, Wen E, Lan J, Chen J, Liu J, Kang C, Chen L. CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD +/NADH ratio. J Exp Clin Cancer Res 2025; 44:3. [PMID: 39754188 PMCID: PMC11697892 DOI: 10.1186/s13046-024-03254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/07/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive. METHODS A multi-step process of machine learning algorithms was implemented to construct the glioma stemness-related score (GScore). Further in silico and patient tissue analyses validated the predictive ability of the GScore and identified a potential target, CYP3A5. Loss-of-function or gain-of-function genetic experiments were performed to assess the impact of CYP3A5 on the self-renewal and chemoresistance of GSCs both in vitro and in vivo. Mechanistic studies were conducted using nontargeted metabolomics, RNA-seq, seahorse, transmission electron microscopy, immunofluorescence, flow cytometry, ChIP‒qPCR, RT‒qPCR, western blotting, etc. The efficacy of pharmacological inhibitors of CYP3A5 was assessed in vivo. RESULTS Based on the proposed GScore, we identify a GSC target CYP3A5, which is highly expressed in GSCs and temozolomide (TMZ)-resistant GBM patients. This elevated expression of CYP3A5 is attributed to transcription factor STAT3 activated by EGFR signaling or TMZ treatment. Depletion of CYP3A5 impairs self-renewal and TMZ resistance of GSCs. Mechanistically, CYP3A5 maintains mitochondrial fitness to promote GSC metabolic adaption through the NAD⁺/NADH-SIRT1-PGC1α axis. Additionally, CYP3A5 enhances the activity of NAD-dependent enzyme PARP to augment DNA damage repair. Treatment with CYP3A5 inhibitor alone or together with TMZ effectively suppresses tumor growth in vivo. CONCLUSION Together, this study suggests that GSCs activate STAT3 to upregulate CYP3A5 to fine-tune NAD⁺/NADH for the enhancement of mitochondrial functions and DNA damage repair, thereby fueling tumor stemness and conferring TMZ resistance, respectively. Thus, CYP3A5 represents a promising target for GBM treatment.
Collapse
Affiliation(s)
- Wentao Hu
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Xiaoteng Cui
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Hongyu Liu
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Ze Li
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Xu Chen
- China Medical University, Shenyang, Liaoning, China
| | - Qixue Wang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Guolu Zhang
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Er Wen
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jinxin Lan
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Junyi Chen
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jialin Liu
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.
| | - Ling Chen
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
8
|
Meng W, Li L, Hao Y, Tang M, Cao C, He J, Wang L, Cao B, Zhang Y, Li L, Zhu G. NAD+ Metabolism Reprogramming Mediates Irradiation-Induced Immunosuppressive Polarization of Macrophages. Int J Radiat Oncol Biol Phys 2025; 121:176-190. [PMID: 39127084 DOI: 10.1016/j.ijrobp.2024.07.2327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE Radiation therapy stands as an important complementary treatment for head and neck squamous cell carcinoma (HNSCC), yet it does not invariably result in complete tumor regression. The infiltration of immunosuppressive macrophages is believed to mediate the radiation therapy resistance, whose mechanism remains largely unexplored. This study aimed to elucidate the role of immunosuppressive macrophages during radiation therapy and the associated underlying mechanisms. METHODS AND MATERIALS Male C3H mice bearing syngeneic SCC-VII tumor received irradiation (2 × 8 Gy). The impact of irradiation on tumor-infiltrating macrophages was assessed. Bone marrow-derived macrophages were evaluated in differentiation, proliferation, migration, and inflammatory cytokines after treatment of irradiated tumor culture medium and irradiated tumor-derived extracellular vesicles (irTEVs). A comprehensive metabolomics profiling of the irTEVs was conducted using liquid chromatography-mass spectrometry, whereas key metabolites were investigated for their role in the mechanism of immunosuppression of macrophages in vitro and in vivo. RESULTS Radiation therapy on SCC-VII syngeneic graft tumors increased polarization of both M1 and M2 macrophages in the tumor microenvironment and drove infiltrated macrophages toward an immunosuppressive phenotype. Irradiation-induced polarization and immunosuppression of macrophages were dependent on irTEVs which delivered an increased amount of niacinamide (NAM) to macrophages. NAM directly bound to the nuclear factor kappa-B transcriptional activity regulator USP7, through which NAM reduced translocation of nuclear factor kappa-B into the nucleus, thereby decreasing the release of cytokines interleukin 6 and interleukin 8. Increased enzyme activity of NAM phosphoribosyl transferase which is the rate-limiting enzyme of NAD+ metabolism, contributed to the irradiation-induced accumulation levels of NAM in irradiated HNSCC and irTEVs. Inhibition of NAM phosphoribosyl transferase decreased NAM levels in irTEVs and increased radiation therapy sensitivity by alleviating the immunosuppressive function of macrophages. CONCLUSIONS Radiation therapy could induce NAD+ metabolic reprogramming of HNSCC cells, which regulate macrophages toward an immunosuppressive phenotype. Pharmacologic targeting of NAD+ metabolism might be a promising strategy for radiation therapy sensitization of HNSCC.
Collapse
Affiliation(s)
- Wanrong Meng
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Ling Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yaying Hao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Miaomiao Tang
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Cao
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Jialu He
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Linlin Wang
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Bangrong Cao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, Chengdu, China
| | - Longjiang Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China.
| | - Guiquan Zhu
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Hodeify R, Yu N, Balasubramaniam M, Godinez F, Liu Y, Aboud O. Metabolomic Profiling and Machine Learning Models for Tumor Classification in Patients with Recurrent IDH-Wild-Type Glioblastoma: A Prospective Study. Cancers (Basel) 2024; 16:3856. [PMID: 39594811 PMCID: PMC11593314 DOI: 10.3390/cancers16223856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The recurrence of glioblastoma is an inevitable event in this disease's course. In this study, we sought to identify the metabolomic signature in patients with recurrent glioblastomas undergoing surgery and radiation therapy. METHODS Blood samples collected prospectively from six patients with recurrent IDH-wildtype glioblastoma who underwent one surgery at diagnosis and a second surgery at relapse were analyzed using untargeted gas chromatography-time-of-flight mass spectrometry to measure metabolite abundance. The data analysis techniques included univariate analysis, correlation analysis, and a sample t-test. For predictive modeling, machine learning (ML) algorithms such as multinomial logistic regression, gradient boosting, and random forest were applied to predict the classification of samples in the correct treatment phase. RESULTS Comparing samples after the first surgery and after the relapse surgeries to the pre-operative samples showed a significant decrease in sorbitol and mannitol; there was a significant increase in urea, oxoproline, glucose, and alanine. After chemoradiation, two metabolites, erythritol and 6-deoxyglucitol, showed a decrease, with a cut-off of three and a significant reduction for 6-deoxyglucitol, while 2,4-difluorotoluene and 9-myristoleate showed an increase post radiation, with a fold-change cut-off of three. The gradient-boosting ML model achieved a high performance for the prediction of tumor conditions in patients with glioblastoma who had undergone relapse surgery. CONCLUSIONS We developed an ML predictor for tumor phase based on the plasma metabolomic profile. Our study suggests the potential of combining metabolomics with ML as a new tool to stratify the risk of tumor progression in patients with glioblastoma.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah 72603, United Arab Emirates
| | - Nina Yu
- School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | | | - Felipe Godinez
- UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
- Department of Radiology, University of California, Davis, Sacramento, CA 95817, USA
| | - Yin Liu
- School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA 95817, USA
- Departments of Neurology and Neurological Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | - Orwa Aboud
- School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
- Departments of Neurology and Neurological Surgery, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
10
|
Cen B, Zhang J, Pan X, Xu Z, Li R, Chen C, Wang B, Li Z, Zhang G, Ji A, Yuan Y. Stimuli-Responsive Peptide/siRNA Nanoparticles as a Radiation Sensitizer for Glioblastoma Treatment by Co-Inhibiting RELA/P65 and EGFR. Int J Nanomedicine 2024; 19:11517-11537. [PMID: 39539970 PMCID: PMC11559232 DOI: 10.2147/ijn.s483252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose To develop a novel approach for increasing radiosensitivity in glioblastoma (GBM) by using targeted nanoparticles to deliver siRNA aimed at silencing the EGFR and RELA/P65 genes, which are implicated in radioresistance. Patients and Methods We engineered biodegradable, tumor-targeted, self-assembled, and stimuli-responsive peptide nanoparticles for efficient siRNA delivery. We evaluated the nanoparticles' ability to induce gene silencing and enhance DNA damage under radiation in vitro and in vivo. The nanoparticles were designed to exhibit pH-responsive endosomal escape and αvβ3 integrin targeting, allowing for preferential accumulation at tumor sites and traversal of the blood-brain tumor barrier. Results The application of these nanoparticles resulted in significant gene silencing, increased apoptosis, and decreased cell viability. The treatment impaired DNA repair mechanisms, thereby enhancing radiosensitivity in GBM cells. In a GBM mouse model, the combination of nanoparticle treatment with radiotherapy notably prolonged survival without apparent toxicity. Conclusion Our findings suggest that nanoparticle-mediated dual gene silencing can effectively overcome GBM radioresistance. This strategy has the potential to improve clinical outcomes in GBM treatment, proposing a promising therapeutic avenue for this challenging malignancy.
Collapse
Affiliation(s)
- Bohong Cen
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510095, People’s Republic of China
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Jian Zhang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510095, People’s Republic of China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Zhongyuan Xu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Rong Li
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510095, People’s Republic of China
| | - Chengcong Chen
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510095, People’s Republic of China
| | - Baiyao Wang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510095, People’s Republic of China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Guoqian Zhang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510095, People’s Republic of China
| | - Aimin Ji
- Department of Pharmacy, The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, 528244, People’s Republic of China
| | - Yawei Yuan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510095, People’s Republic of China
| |
Collapse
|
11
|
Lv Y, Deng Y, Feng J, Liu J, Yang M, Pu Z, Zhang S, Wu Z, Ji N, Park DM, Hao S. NAD+ Metabolic Enzyme Inhibitor as Radiosensitizer for Malignant Meningioma and its Modulation of P53 Expression. Mol Cancer Ther 2024; 23:1586-1596. [PMID: 39039948 DOI: 10.1158/1535-7163.mct-23-0632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/24/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Surgical resection followed by radiotherapy (RT) is recommended for malignant meningioma, but poor outcome is unavoidable. To improve the efficacy of RT in malignant meningioma, a targeted radiosensitizer can be added. Nicotinamide phosphoribosyltransferase (NAMPT), highly expressed in high-grade meningiomas, may play a role in determining the radioresponse. Herein, we evaluated the impact of NAMPT inhibition on radiosensitivity in malignant meningioma in vivo and in vitro. IOMM-Lee and TTMM705 cells were treated with NAMPT inhibition (FK866 or shRNA NAMPT) before irradiation. The subsequent clonogenic assay demonstrated significantly increased radiosensitivity. Combination treatment with FK866 and irradiation significantly increased the number of G2/M-phase cells, percentage of apoptotic cells, and γ-H2A.X level compared with FK866 or RT alone. We examined the effect of NAMPT inhibition on NMI and p53 expression in IOMM-Lee and TTMM705 cells. NAMPT inhibition by FK866 and shRNA treatment increased NMI, p53, CDKN1A and BAX expression. Additionally, we assessed the efficacy of FK866/RT combination treatment in vivo. The combination treatment exhibited increased antitumor efficacy compared with either treatment alone. The Ki67 level was significantly lower, and the p53 and γ-H2A.X levels were significantly higher in the combination treatment group than in the other three groups. In conclusion, these results indicate that FK866 improves radiosensitivity in malignant meningioma, an effect that may be attributed to the increase in p53 expression.
Collapse
Affiliation(s)
- Yifan Lv
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuxuan Deng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Feng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jinqiu Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Mingxu Yang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuonan Pu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shaodong Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Deric M Park
- Division of Neuro-Oncology, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Jang HJ, Shah NM, Maeng JH, Liang Y, Basri NL, Ge J, Qu X, Mahlokozera T, Tzeng SC, Williams RB, Moore MJ, Annamalai D, Chen JY, Lee HJ, DeSouza PA, Li D, Xing X, Kim AH, Wang T. Epigenetic therapy potentiates transposable element transcription to create tumor-enriched antigens in glioblastoma cells. Nat Genet 2024; 56:1903-1913. [PMID: 39223316 DOI: 10.1038/s41588-024-01880-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Inhibiting epigenetic modulators can transcriptionally reactivate transposable elements (TEs). These TE transcripts often generate unique peptides that can serve as immunogenic antigens for immunotherapy. Here, we ask whether TEs activated by epigenetic therapy could appreciably increase the antigen repertoire in glioblastoma, an aggressive brain cancer with low mutation and neoantigen burden. We treated patient-derived primary glioblastoma stem cell lines, an astrocyte cell line and primary fibroblast cell lines with epigenetic drugs, and identified treatment-induced, TE-derived transcripts that are preferentially expressed in cancer cells. We verified that these transcripts could produce human leukocyte antigen class I-presented antigens using liquid chromatography with tandem mass spectrometry pulldown experiments. Importantly, many TEs were also transcribed, even in proliferating nontumor cell lines, after epigenetic therapy, which suggests that targeted strategies like CRISPR-mediated activation could minimize potential side effects of activating unwanted genomic regions. The results highlight both the need for caution and the promise of future translational efforts in harnessing treatment-induced TE-derived antigens for targeted immunotherapy.
Collapse
Affiliation(s)
- H Josh Jang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Nakul M Shah
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ju Heon Maeng
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yonghao Liang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Noah L Basri
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiaxin Ge
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuan Qu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tatenda Mahlokozera
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
| | | | | | - Michael J Moore
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Devi Annamalai
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Justin Y Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyung Joo Lee
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick A DeSouza
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA.
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Liao G, Xie Y, Peng H, Li T, Zou X, Yue F, Guo J, Rong L. Advancements in NMN biotherapy and research updates in the field of digestive system diseases. J Transl Med 2024; 22:805. [PMID: 39215316 PMCID: PMC11363601 DOI: 10.1186/s12967-024-05614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Nicotinamide mononucleotide (NMN), a crucial intermediate in NAD + synthesis, can rapidly transform into NAD + within the body after ingestion. NMN plays a pivotal role in several important biological processes, including energy metabolism, cellular aging, circadian rhythm regulation, DNA repair, chromatin remodeling, immunity, and inflammation. NMN has emerged as a key focus of research in the fields of biomedicine, health care, and food science. Recent years have witnessed extensive preclinical studies on NMN, offering valuable insights into the pathogenesis of age- and aging-related diseases. Given the sustained global research interest in NMN and the substantial market expectations for the future, here, we comprehensively review the milestones in research on NMN biotherapy over the past 10 years. Additionally, we highlight the current research on NMN in the field of digestive system diseases, identifying existing problems and challenges in the field of NMN research. The overarching aim of this review is to provide references and insights for the further exploration of NMN within the spectrum of digestive system diseases.
Collapse
Affiliation(s)
- Guanyi Liao
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Yuchen Xie
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Hong Peng
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Tianke Li
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Xinsen Zou
- Department of Intensive Unit Care, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Faguo Yue
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China.
| | - Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China.
| |
Collapse
|
14
|
He WM, Yang JY, Zhao ZY, Xiao W, Li WH, Zhao YJ. The Fluorinated NAD Precursors Enhance FK866 Cytotoxicity by Activating SARM1 in Glioblastoma Cells. BIOLOGY 2024; 13:649. [PMID: 39336077 PMCID: PMC11429243 DOI: 10.3390/biology13090649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
Glioblastoma, a formidable brain tumor characterized by dysregulated NAD metabolism, poses a significant therapeutic challenge. The NAMPT inhibitor FK866, which induces NAD depletion, has shown promise in controlling tumor proliferation and modifying the tumor microenvironment. However, the clinical efficacy of FK866 as a single drug therapy for glioma is limited. In this study, we aim to disrupt NAD metabolism using fluorinated NAD precursors and explore their synergistic effect with FK866 in inducing cytotoxicity in glioblastoma cells. The synthesized analogue of nicotinamide riboside (NR), ara-F nicotinamide riboside (F-NR), inhibits nicotinamide ribose kinase (NRK) activity in vitro, reduces cellular NAD levels, and enhances FK866's cytotoxicity in U251 glioblastoma cells, indicating a collaborative impact on cell death. Metabolic analyses reveal that F-NR undergoes conversion to fluorinated nicotinamide mononucleotide (F-NMN) and other metabolites, highlighting the intact NAD metabolic pathway in glioma cells. The activation of SARM1 by F-NMN, a potent NAD-consuming enzyme, is supported by the synergistic effect of CZ-48, a cell-permeable SARM1 activator. Temporal analysis underscores the sequential nature of events, establishing NAD depletion as a precursor to ATP depletion and eventual massive cell death. This study not only elucidates the molecular intricacies of glioblastoma cell death but also proposes a promising strategy to enhance FK866 efficacy through fluorinated NAD precursors, offering potential avenues for innovative therapeutic interventions in the challenging landscape of glioblastoma treatment.
Collapse
Affiliation(s)
- Wei Ming He
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (W.M.H.); (Z.Y.Z.)
| | - Jian Yuan Yang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Zhi Ying Zhao
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (W.M.H.); (Z.Y.Z.)
| | - Weimin Xiao
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518110, China;
| | - Wan Hua Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (W.M.H.); (Z.Y.Z.)
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Yong Juan Zhao
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (W.M.H.); (Z.Y.Z.)
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
| |
Collapse
|
15
|
Kakkat S, Suman P, Turbat- Herrera EA, Singh S, Chakroborty D, Sarkar C. Exploring the multifaceted role of obesity in breast cancer progression. Front Cell Dev Biol 2024; 12:1408844. [PMID: 39040042 PMCID: PMC11260727 DOI: 10.3389/fcell.2024.1408844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Obesity is a multifaceted metabolic disorder characterized by excessive accumulation of adipose tissue. It is a well-established risk factor for the development and progression of breast cancer. Adipose tissue, which was once regarded solely as a passive energy storage depot, is now acknowledged as an active endocrine organ producing a plethora of bioactive molecules known as adipokines that contribute to the elevation of proinflammatory cytokines and estrogen production due to enhanced aromatase activity. In the context of breast cancer, the crosstalk between adipocytes and cancer cells within the adipose microenvironment exerts profound effects on tumor initiation, progression, and therapeutic resistance. Moreover, adipocytes can engage in direct interactions with breast cancer cells through physical contact and paracrine signaling, thereby facilitating cancer cell survival and invasion. This review endeavors to summarize the current understanding of the intricate interplay between adipocyte-associated factors and breast cancer progression. Furthermore, by discussing the different aspects of breast cancer that can be adversely affected by obesity, this review aims to shed light on potential avenues for new and novel therapeutic interventions.
Collapse
Affiliation(s)
- Sooraj Kakkat
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Prabhat Suman
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Elba A. Turbat- Herrera
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Debanjan Chakroborty
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Chandrani Sarkar
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
16
|
Sim N, Carter JM, Deka K, Tan BKT, Sim Y, Tan SM, Li Y. TWEAK/Fn14 signalling driven super-enhancer reprogramming promotes pro-metastatic metabolic rewiring in triple-negative breast cancer. Nat Commun 2024; 15:5638. [PMID: 38965263 PMCID: PMC11224303 DOI: 10.1038/s41467-024-50071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype suffering from limited targeted treatment options. Following recent reports correlating Fibroblast growth factor-inducible 14 (Fn14) receptor overexpression in Estrogen Receptor (ER)-negative breast cancers with metastatic events, we show that Fn14 is specifically overexpressed in TNBC patients and associated with poor survival. We demonstrate that constitutive Fn14 signalling rewires the transcriptomic and epigenomic landscape of TNBC, leading to enhanced tumour growth and metastasis. We further illustrate that such mechanisms activate TNBC-specific super enhancers (SE) to drive the transcriptional activation of cancer dependency genes via chromatin looping. In particular, we uncover the SE-driven upregulation of Nicotinamide phosphoribosyltransferase (NAMPT), which promotes NAD+ and ATP metabolic reprogramming critical for filopodia formation and metastasis. Collectively, our study details the complex mechanistic link between TWEAK/Fn14 signalling and TNBC metastasis, which reveals several vulnerabilities which could be pursued for the targeted treatment of TNBC patients.
Collapse
Affiliation(s)
- Nicholas Sim
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Benita Kiat Tee Tan
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Yirong Sim
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
17
|
Li L, Zhou X, Liu W, Chen Z, Xiao X, Deng G. Supplementation with NAD+ and its precursors: A rescue of female reproductive diseases. Biochem Biophys Rep 2024; 38:101715. [PMID: 38698835 PMCID: PMC11063225 DOI: 10.1016/j.bbrep.2024.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme involved in many pathophysiological processes. Supplementation with NAD+ and its precursors has been demonstrated as an emerging therapeutic strategy for the diseases. NAD+ also plays an important role in the reproductive system. Here, we summarize the function of NAD+ in various reproductive diseases and review the application of NAD+ and its precursors in the preservation of reproductive capacity and the prevention of embryonic malformations. It is shown that NAD+ shows good promise as a therapeutic approach for saving reproductive capacity.
Collapse
Affiliation(s)
- Lan Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xin Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Wene Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Zhen Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiaoqin Xiao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Guiming Deng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
18
|
Perryman R, Chau TW, De-Felice J, O’Neill K, Syed N. Distinct Capabilities in NAD Metabolism Mediate Resistance to NAMPT Inhibition in Glioblastoma. Cancers (Basel) 2024; 16:2054. [PMID: 38893173 PMCID: PMC11171005 DOI: 10.3390/cancers16112054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma (GBM) cells require high levels of nicotinamide adenine dinucleotide (NAD) to fuel metabolic reactions, regulate their cell cycle and support DNA repair in response to chemotherapy and radiation. Inhibition of a key enzyme in NAD biosynthesis, NAMPT, has demonstrated significant anti-neoplastic activity. Here, we sought to characterise NAD biosynthetic pathways in GBM to determine resistance mechanisms to NAD inhibitors. GBM cells were treated with the NAMPT inhibitor FK866 with and without NAD precursors, and were analysed by qPCR, Western blot and proliferation assays (monolayer and spheroid). We also measured changes in the cell cycle, apoptosis, NAD/NADH levels and energy production. We performed orthoptic xenograft experiments in athymic nude mice to test the efficacy of FK866 in combination with temozolomide (TMZ). We show that the expression of key genes involved in NAD biosynthesis is highly variable across GBM tumours. FK866 inhibits proliferation, reduces NAD levels and limits oxidative metabolism, leading to G2/M cell cycle arrest; however, this can be reversed by supplementation with specific NAD precursors. Furthermore, FK866 potentiates the effects of radiation and TMZ in vitro and in vivo. NAMPT inhibitors should be considered for the treatment of GBM, with patients stratified based on their expression of key enzymes in other NAD biosynthetic pathways.
Collapse
Affiliation(s)
- Richard Perryman
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, London W12 0NN, UK (K.O.)
| | | | | | | | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, London W12 0NN, UK (K.O.)
| |
Collapse
|
19
|
Satomi K, Ichimura K, Shibahara J. Decoding the DNA methylome of central nervous system tumors: An emerging modality for integrated diagnosis. Pathol Int 2024; 74:51-67. [PMID: 38224248 DOI: 10.1111/pin.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
The definitive diagnosis and classification of individual cancers are crucial for patient care and cancer research. To achieve a robust diagnosis of central nervous system (CNS) tumors, a genotype-phenotype integrated diagnostic approach was introduced in recent versions of the World Health Organization classification, followed by the incorporation of a genome-wide DNA methylome-based classification. Microarray-based platforms are widely used to obtain DNA methylome data, and the German Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]) has a webtool for a DNA methylation-based classifier (DKFZ classifier). Integration of DNA methylome will further enhance the precision of CNS tumor classification, especially in diagnostically challenging cases. However, in the clinical application of DNA methylome-based classification, challenges related to data interpretation persist, in addition to technical caveats, regulations, and limited accessibility. Dimensionality reduction (DMR) can complement integrated diagnosis by visualizing a profile and comparing it with other known samples. Therefore, DNA methylome-based classification is a highly useful research tool for auxiliary analysis in challenging diagnostic and rare disease cases, and for establishing novel tumor concepts. Decoding the DNA methylome, especially by DMR in addition to DKFZ classifier, emphasizes the capability of grasping the fundamental biological principles that provide new perspectives on CNS tumors.
Collapse
Affiliation(s)
- Kaishi Satomi
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Junji Shibahara
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Du N, Yang R, Jiang S, Niu Z, Zhou W, Liu C, Gao L, Sun Q. Anti-Aging Drugs and the Related Signal Pathways. Biomedicines 2024; 12:127. [PMID: 38255232 PMCID: PMC10813474 DOI: 10.3390/biomedicines12010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Aging is a multifactorial biological process involving chronic diseases that manifest from the molecular level to the systemic level. From its inception to 31 May 2022, this study searched the PubMed, Web of Science, EBSCO, and Cochrane library databases to identify relevant research from 15,983 articles. Multiple approaches have been employed to combat aging, such as dietary restriction (DR), exercise, exchanging circulating factors, gene therapy, and anti-aging drugs. Among them, anti-aging drugs are advantageous in their ease of adherence and wide prevalence. Despite a shared functional output of aging alleviation, the current anti-aging drugs target different signal pathways that frequently cross-talk with each other. At present, six important signal pathways were identified as being critical in the aging process, including pathways for the mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), nutrient signal pathway, silent information regulator factor 2-related enzyme 1 (SIRT1), regulation of telomere length and glycogen synthase kinase-3 (GSK-3), and energy metabolism. These signal pathways could be targeted by many anti-aging drugs, with the corresponding representatives of rapamycin, metformin, acarbose, nicotinamide adenine dinucleotide (NAD+), lithium, and nonsteroidal anti-inflammatory drugs (NSAIDs), respectively. This review summarized these important aging-related signal pathways and their representative targeting drugs in attempts to obtain insights into and promote the development of mechanism-based anti-aging strategies.
Collapse
Affiliation(s)
- Nannan Du
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Ruigang Yang
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Shengrong Jiang
- The Meta-Center, 29 Xierqi Middle Rd, Beijing 100193, China;
| | - Zubiao Niu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Wenzhao Zhou
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Chenyu Liu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lihua Gao
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
| | - Qiang Sun
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| |
Collapse
|
21
|
Du Y, Pollok KE, Shen J. Unlocking Glioblastoma Secrets: Natural Killer Cell Therapy against Cancer Stem Cells. Cancers (Basel) 2023; 15:5836. [PMID: 38136381 PMCID: PMC10741423 DOI: 10.3390/cancers15245836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GBM) represents a paramount challenge as the most formidable primary brain tumor characterized by its rapid growth, aggressive invasiveness, and remarkable heterogeneity, collectively impeding effective therapeutic interventions. The cancer stem cells within GBM, GBM stem cells (GSCs), hold pivotal significance in fueling tumor advancement, therapeutic refractoriness, and relapse. Given their unique attributes encompassing self-renewal, multipotent differentiation potential, and intricate interplay with the tumor microenvironment, targeting GSCs emerges as a critical strategy for innovative GBM treatments. Natural killer (NK) cells, innate immune effectors recognized for their capacity to selectively detect and eliminate malignancies without the need for prior sensitization, offer substantial therapeutic potential. Harnessing the inherent capabilities of NK cells can not only directly engage tumor cells but also augment broader immune responses. Encouraging outcomes from clinical investigations underscore NK cells as a potentially effective modality for cancer therapy. Consequently, NK cell-based approaches hold promise for effectively targeting GSCs, thereby presenting an avenue to enhance treatment outcomes for GBM patients. This review outlines GBM's intricate landscape, therapeutic challenges, GSC-related dynamics, and elucidates the potential of NK cell as an immunotherapeutic strategy directed towards GSCs.
Collapse
Affiliation(s)
- Yuanning Du
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA;
| | - Karen E. Pollok
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Jia Shen
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA;
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
22
|
Yong J, Cai S, Zeng Z. Targeting NAD + metabolism: dual roles in cancer treatment. Front Immunol 2023; 14:1269896. [PMID: 38116009 PMCID: PMC10728650 DOI: 10.3389/fimmu.2023.1269896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is indispensable for various oxidation-reduction reactions in mammalian cells, particularly during energy production. Malignant cells increase the expression levels of NAD+ biosynthesis enzymes for rapid proliferation and biomass production. Furthermore, mounting proof has indicated that NAD-degrading enzymes (NADases) play a role in creating the immunosuppressive tumor microenvironment (TME). Interestingly, both inhibiting NAD+ synthesis and targeting NADase have positive implications for cancer treatment. Here we summarize the detrimental outcomes of increased NAD+ production, the functions of NAD+ metabolic enzymes in creating an immunosuppressive TME, and discuss the progress and clinical translational potential of inhibitors for NAD+ synthesis and therapies targeting NADase.
Collapse
Affiliation(s)
- Jiaxin Yong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Songqing Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Zhaolei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
23
|
Jane EP, Reslink MC, Gatesman TA, Halbert ME, Miller TA, Golbourn BJ, Casillo SM, Mullett SJ, Wendell SG, Obodo U, Mohanakrishnan D, Dange R, Michealraj A, Brenner C, Agnihotri S, Premkumar DR, Pollack IF. Targeting mitochondrial energetics reverses panobinostat- and marizomib-induced resistance in pediatric and adult high-grade gliomas. Mol Oncol 2023; 17:1821-1843. [PMID: 37014128 PMCID: PMC10483615 DOI: 10.1002/1878-0261.13427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023] Open
Abstract
In previous studies, we demonstrated that panobinostat, a histone deacetylase inhibitor, and bortezomib, a proteasomal inhibitor, displayed synergistic therapeutic activity against pediatric and adult high-grade gliomas. Despite the remarkable initial response to this combination, resistance emerged. Here, in this study, we aimed to investigate the molecular mechanisms underlying the anticancer effects of panobinostat and marizomib, a brain-penetrant proteasomal inhibitor, and the potential for exploitable vulnerabilities associated with acquired resistance. RNA sequencing followed by gene set enrichment analysis (GSEA) was employed to compare the molecular signatures enriched in resistant compared with drug-naïve cells. The levels of adenosine 5'-triphosphate (ATP), nicotinamide adenine dinucleotide (NAD)+ content, hexokinase activity, and tricarboxylic acid (TCA) cycle metabolites required for oxidative phosphorylation to meet their bioenergetic needs were analyzed. Here, we report that panobinostat and marizomib significantly depleted ATP and NAD+ content, increased mitochondrial permeability and reactive oxygen species generation, and promoted apoptosis in pediatric and adult glioma cell lines at initial treatment. However, resistant cells exhibited increased levels of TCA cycle metabolites, which required for oxidative phosphorylation to meet their bioenergetic needs. Therefore, we targeted glycolysis and the electron transport chain (ETC) with small molecule inhibitors, which displayed substantial efficacy, suggesting that resistant cell survival is dependent on glycolytic and ETC complexes. To verify these observations in vivo, lonidamine, an inhibitor of glycolysis and mitochondrial function, was chosen. We produced two diffuse intrinsic pontine glioma (DIPG) models, and lonidamine treatment significantly increased median survival in both models, with particularly dramatic effects in panobinostat- and marizomib-resistant cells. These data provide new insights into mechanisms of treatment resistance in gliomas.
Collapse
Affiliation(s)
- Esther P. Jane
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Matthew C. Reslink
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Taylor A. Gatesman
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Matthew E. Halbert
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Tracy A. Miller
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Brian J. Golbourn
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Stephanie M. Casillo
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Steven J. Mullett
- Department of Pharmacology and Chemical BiologyUniversity of PittsburghPAUSA
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical BiologyUniversity of PittsburghPAUSA
| | - Udochukwu Obodo
- Department of Diabetes & Cancer MetabolismCity of Hope Medical CenterDuarteCAUSA
| | | | - Riya Dange
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Antony Michealraj
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Charles Brenner
- Department of Diabetes & Cancer MetabolismCity of Hope Medical CenterDuarteCAUSA
| | - Sameer Agnihotri
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| | - Daniel R. Premkumar
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| | - Ian F. Pollack
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| |
Collapse
|
24
|
Tang H, Wang L, Wang T, Yang J, Zheng S, Tong J, Jiang S, Zhang X, Zhang K. Recent advances of targeting nicotinamide phosphoribosyltransferase (NAMPT) for cancer drug discovery. Eur J Med Chem 2023; 258:115607. [PMID: 37413882 DOI: 10.1016/j.ejmech.2023.115607] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for the biosynthesis of NAD+ in the salvage pathway. NAMPT is overexpressed in various cancers, associating with a poor prognosis and tumor progression. Beyond cancer metabolism, recent evidence unravels additional roles of NAMPT in cancer biology, including DNA repair machinery, crosstalk with oncogenic signaling pathways, cancer cell stemness, and immune responses. NAMPT is a promising therapeutic target for cancer. However, first-generation NAMPT inhibitors exhibited limited efficacy and dose-limiting toxicities in clinical trials. Multiple strategies are being exploited to improve their efficacy and minimize toxic-side effects. This review discusses the biomarkers predictive of response to NAMPT inhibitors, and summarizes the most significant advances in the evolution of structurally distinct NAMPT inhibitors, the manipulation of targeted delivery technologies via antibody-drug conjugates (ADCs), PhotoActivated ChemoTherapy (PACT) and the intratumoral delivery system, as well as the development and pharmacological outcomes of NAMPT degraders. Finally, a discussion of future perspectives and challenges in this area is also included.
Collapse
Affiliation(s)
- He Tang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lin Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiamei Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuai Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Tong
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
25
|
Niño-Narvión J, Rojo-López MI, Martinez-Santos P, Rossell J, Ruiz-Alcaraz AJ, Alonso N, Ramos-Molina B, Mauricio D, Julve J. NAD+ Precursors and Intestinal Inflammation: Therapeutic Insights Involving Gut Microbiota. Nutrients 2023; 15:2992. [PMID: 37447318 DOI: 10.3390/nu15132992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The oxidized form of nicotinamide adenine dinucleotide (NAD+) is a critical metabolite for living cells. NAD+ may act either as a cofactor for many cellular reactions as well as a coenzyme for different NAD+-consuming enzymes involved in the physiological homeostasis of different organs and systems. In mammals, NAD+ is synthesized from either tryptophan or other vitamin B3 intermediates that act as NAD+ precursors. Recent research suggests that NAD+ precursors play a crucial role in maintaining the integrity of the gut barrier. Indeed, its deficiency has been associated with enhanced gut inflammation and leakage, and dysbiosis. Conversely, NAD+-increasing therapies may confer protection against intestinal inflammation in experimental conditions and human patients, with accumulating evidence indicating that such favorable effects could be, at least in part, mediated by concomitant changes in the composition of intestinal microbiota. However, the mechanisms by which NAD+-based treatments affect the microbiota are still poorly understood. In this context, we have focused specifically on the impact of NAD+ deficiency on intestinal inflammation and dysbiosis in animal and human models. We have further explored the relationship between NAD+ and improved host intestinal metabolism and immunity and the composition of microbiota in vivo. Overall, this comprehensive review aims to provide a new perspective on the effect of NAD+-increasing strategies on host intestinal physiology.
Collapse
Affiliation(s)
- Julia Niño-Narvión
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grupo de Obesidad y Metabolismo, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia (UMU), 30120 Murcia, Spain
| | | | | | - Joana Rossell
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 08041 Barcelona, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia (UMU), 30120 Murcia, Spain
| | - Núria Alonso
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias I Pujol, 08916 Badalona, Spain
| | - Bruno Ramos-Molina
- Grupo de Obesidad y Metabolismo, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain
| | - Didac Mauricio
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 08041 Barcelona, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Faculty of Medicine, University of Vic/Central University of Catalonia (UVIC/UCC), 08500 Vic, Spain
| | - Josep Julve
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 08041 Barcelona, Spain
| |
Collapse
|
26
|
Park JS, Perl A. Endosome Traffic Modulates Pro-Inflammatory Signal Transduction in CD4 + T Cells-Implications for the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:10749. [PMID: 37445926 DOI: 10.3390/ijms241310749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Endocytic recycling regulates the cell surface receptor composition of the plasma membrane. The surface expression levels of the T cell receptor (TCR), in concert with signal transducing co-receptors, regulate T cell responses, such as proliferation, differentiation, and cytokine production. Altered TCR expression contributes to pro-inflammatory skewing, which is a hallmark of autoimmune diseases, such as systemic lupus erythematosus (SLE), defined by a reduced function of regulatory T cells (Tregs) and the expansion of CD4+ helper T (Th) cells. The ensuing secretion of inflammatory cytokines, such as interferon-γ and interleukin (IL)-4, IL-17, IL-21, and IL-23, trigger autoantibody production and tissue infiltration by cells of the adaptive and innate immune system that induce organ damage. Endocytic recycling influences immunological synapse formation by CD4+ T lymphocytes, signal transduction from crosslinked surface receptors through recruitment of adaptor molecules, intracellular traffic of organelles, and the generation of metabolites to support growth, cytokine production, and epigenetic control of DNA replication and gene expression in the cell nucleus. This review will delineate checkpoints of endosome traffic that can be targeted for therapeutic interventions in autoimmune and other disease conditions.
Collapse
Affiliation(s)
- Joy S Park
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Andras Perl
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Microbiology and Immunology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
27
|
Panizza E, Regalado BD, Wang F, Nakano I, Vacanti NM, Cerione RA, Antonyak MA. Proteomic analysis reveals microvesicles containing NAMPT as mediators of radioresistance in glioma. Life Sci Alliance 2023; 6:e202201680. [PMID: 37037593 PMCID: PMC10087103 DOI: 10.26508/lsa.202201680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Tumor-initiating cells contained within the aggressive brain tumor glioma (glioma stem cells, GSCs) promote radioresistance and disease recurrence. However, mechanisms of resistance are not well understood. Herein, we show that the proteome-level regulation occurring upon radiation treatment of several patient-derived GSC lines predicts their resistance status, whereas glioma transcriptional subtypes do not. We identify a mechanism of radioresistance mediated by the transfer of the metabolic enzyme NAMPT to radiosensitive cells through microvesicles (NAMPT-high MVs) shed by resistant GSCs. NAMPT-high MVs rescue the proliferation of radiosensitive GSCs and fibroblasts upon irradiation, and upon treatment with a radiomimetic drug or low serum, and increase intracellular NAD(H) levels. Finally, we show that the presence of NAMPT within the MVs and its enzymatic activity in recipient cells are necessary to mediate these effects. Collectively, we demonstrate that the proteome of GSCs provides unique information as it predicts the ability of glioma to resist radiation treatment. Furthermore, we establish NAMPT transfer via MVs as a mechanism for rescuing the proliferation of radiosensitive cells upon irradiation.
Collapse
Affiliation(s)
- Elena Panizza
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | | | - Fangyu Wang
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Ichiro Nakano
- Department of Neurosurgery, Medical Institute Hokuto Hospital, Hokkaido, Japan
| | | | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
28
|
Groth B, Lee YC, Huang CC, McDaniel M, Huang K, Lee LH, Lin SJ. The Histone Deacetylases Hst1 and Rpd3 Integrate De Novo NAD + Metabolism with Phosphate Sensing in Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:ijms24098047. [PMID: 37175754 PMCID: PMC10179157 DOI: 10.3390/ijms24098047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a critical cofactor essential for various cellular processes. Abnormalities in NAD+ metabolism have also been associated with a number of metabolic disorders. The regulation and interconnection of NAD+ metabolic pathways are not yet completely understood. By employing an NAD+ intermediate-specific genetic system established in the model organism S. cerevisiae, we show that histone deacetylases (HDACs) Hst1 and Rpd3 link the regulation of the de novo NAD+ metabolism-mediating BNA genes with certain aspects of the phosphate (Pi)-sensing PHO pathway. Our genetic and gene expression studies suggest that the Bas1-Pho2 and Pho2-Pho4 transcription activator complexes play a role in this co-regulation. Our results suggest a model in which competition for Pho2 usage between the BNA-activating Bas1-Pho2 complex and the PHO-activating Pho2-Pho4 complex helps balance de novo activity with PHO activity in response to NAD+ or phosphate depletion. Interestingly, both the Bas1-Pho2 and Pho2-Pho4 complexes appear to also regulate the expression of the salvage-mediating PNC1 gene negatively. These results suggest a mechanism for the inverse regulation between the NAD+ salvage pathways and the de novo pathway observed in our genetic models. Our findings help provide a molecular basis for the complex interplay of two different aspects of cellular metabolism.
Collapse
Affiliation(s)
- Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Yi-Ching Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Chi-Chun Huang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Matilda McDaniel
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Katie Huang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Lan-Hsuan Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
29
|
Chiang YF, Huang KC, Chen HY, Huang TC, Ali M, Chang HY, Shieh TM, Shih YH, Wang KL, Huang YJ, Chung CP, Hsia SM. The Adipokine Visfatin Modulates Cancer Stem Cell Properties in Triple-Negative Breast Cancer. Biomedicines 2023; 11:biomedicines11020297. [PMID: 36830834 PMCID: PMC9953233 DOI: 10.3390/biomedicines11020297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Obesity is a cancer progression risk factor; excessive adipocytes increase adipokine secretion. Visfatin, a novel adipokine highly expressed in cancer patients, is related to breast cancer risk. The modulation of nicotinamide adenine dinucleotide (NAD+) metabolism and the induction of a tumorigenic environment plays a vital role in cancer progression. Among cancer cell types, cancer stem-like cells (CSCs) with self-renewal and chemotherapy-resistance abilities could modulate tumor progression and cancer recurrence ability. In this study, we focused on visfatin's modulation effect on stemness-related properties using the high-malignancy breast cancer cell line MDA-MB-231 in in vitro and in vivo studies. Visfatin treatment significantly increased both the sphere number and sphere diameter and increased the protein expression of NANOG homeobox (NANOG), sex-determining region Y-box 2 (SOX2), and octamer-binding transcription factor 4 (OCT4), as well as SIRT1 protein levels. The serum angiogenesis marker VEGF and extracellular nicotinamide phosphoribosyl transferase (NAMPT, visfatin) were induced after visfatin treatment, increasing the stemness and angiogenesis environment, which were significantly reduced by the visfatin inhibitor FK866. Our results demonstrate that the visfatin-activated SIRT-SOX2 axis promotes triple-negative breast cancer stemness and enriches the tumorigenic microenvironment.
Collapse
Affiliation(s)
- Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Hsin-Yi Chang
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114201, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Kai-Lee Wang
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung 20301, Taiwan
| | - Yun-Ju Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan City 710301, Taiwan
| | - Cheng-Pei Chung
- Department of Nutrition and Health Sciences, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
- School of Food and Safety, Taipei Medical University, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 6558)
| |
Collapse
|
30
|
Perez-Castro L, Garcia R, Venkateswaran N, Barnes S, Conacci-Sorrell M. Tryptophan and its metabolites in normal physiology and cancer etiology. FEBS J 2023; 290:7-27. [PMID: 34687129 PMCID: PMC9883803 DOI: 10.1111/febs.16245] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Within the growing field of amino acid metabolism, tryptophan (Trp) catabolism is an area of increasing interest. Trp is essential for protein synthesis, and its metabolism gives rise to biologically active catabolites including serotonin and numerous metabolites in the kynurenine (Kyn) pathway. In normal tissues, the production of Trp metabolites is directly regulated by the tissue-specific expression of Trp-metabolizing enzymes. Alterations of these enzymes in cancers can shift the balance and lead to an increased production of specific byproducts that can function as oncometabolites. For example, increased expression of the enzyme indoleamine 2,3-dioxygenase, which converts Trp into Kyn, leads to an increase in Kyn levels in numerous cancers. Kyn functions as an oncometabolite in cancer cells by promoting the activity of the transcription factor aryl hydrocarbon receptor, which regulates progrowth genes. Moreover, Kyn also inhibits T-cell activity and thus allows cancer cells to evade clearance by the immune system. Therefore, targeting the Kyn pathway has become a therapeutic focus as a novel means to abrogate tumor growth and immune resistance. This review summarizes the biological role and regulation of Trp metabolism and its catabolites with an emphasis on tumor cell growth and immune evasion and outlines areas for future research focus.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roy Garcia
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Niranjan Venkateswaran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Spencer Barnes
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
31
|
Chen A, Jing W, Qiu J, Zhang R. Prediction of Cervical Cancer Outcome by Identifying and Validating a NAD+ Metabolism-Derived Gene Signature. J Pers Med 2022; 12:jpm12122031. [PMID: 36556252 PMCID: PMC9781171 DOI: 10.3390/jpm12122031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) is the second most common female cancer. Excellent clinical outcomes have been achieved with current screening tests and medical treatments in the early stages, while the advanced stage has a poor prognosis. Nicotinamide adenine dinucleotide (NAD+) metabolism is implicated in cancer development and has been enhanced as a new therapeutic concept for cancer treatment. This study set out to identify an NAD+ metabolic-related gene signature for the prospect of cervical cancer survival and prognosis. Tissue profiles and clinical characteristics of 293 cervical cancer patients and normal tissues were downloaded from The Cancer Genome Atlas database to obtain NAD+ metabolic-related genes. Based on the differentially expressed NAD+ metabolic-related genes, cervical cancer patients were divided into two subgroups (Clusters 1 and 2) using consensus clustering. In total, 1404 differential genes were acquired from the clinical data of these two subgroups. From the NAD+ metabolic-related genes, 21 candidate NAD+ metabolic-related genes (ADAMTS10, ANGPTL5, APCDD1L, CCDC85A, CGREF1, CHRDL2, CRP, DENND5B, EFS, FGF8, P4HA3, PCDH20, PCDHAC2, RASGRF2, S100P, SLC19A3, SLC6A14, TESC, TFPI, TNMD, ZNF229) were considered independent indicators of cervical cancer prognosis through univariate and multivariate Cox regression analyses. The 21-gene signature was significantly different between the low- and high-risk groups in the training and validation datasets. Our work revealed the promising clinical prediction value of NAD+ metabolic-related genes in cervical cancer.
Collapse
Affiliation(s)
| | | | - Jin Qiu
- Correspondence: (J.Q.); (R.Z.)
| | | |
Collapse
|
32
|
Zuniga O, Byrum S, Wolfe AR. Discovery of the inhibitor of DNA binding 1 as a novel marker for radioresistance in pancreatic cancer using genome-wide RNA-seq. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:926-938. [PMID: 36627902 PMCID: PMC9771737 DOI: 10.20517/cdr.2022.60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/02/2022] [Accepted: 08/30/2022] [Indexed: 12/23/2022]
Abstract
Purpose/Objective(s): Discovery of genetic drivers of radioresistance is critical for developing novel therapeutic strategies to combine with radiotherapy of radioresistant PDAC. In this study, we used genome-wide RNA-seq to identify genes upregulated in generated radioresistant PDAC cell lines and discovered the Inhibitor of DNA Binding 1 (ID1) gene as a potential regulator of radioresistance in PDAC. Materials/Methods: Radioresistant clones of the PDAC cell lines MIA PaCa-2 and PANC-1 were generated by delivering daily ionizing irradiation (IR) (2 Gy/day) in vitro over two weeks (total 20 Gy) followed by standard clonogenic assays following one week from the end of IR. The generated RR and parental cell lines were submitted for RNA-seq analysis to identify differentially expressed genes. The Limma R package was used to calculate differential expression among genes. Log2 fold change values were calculated for each sample compared to the control. Genes with an absolute fold change > 1 were considered significant. RNA sequencing expression data from the Cancer Genome Atlas (TCGA) database was analyzed through the online databases GEPIA, cBioPortal, and the Human Protein Atlas. Results: Following exposure to two weeks of 2 Gy daily IR in vitro, the two PDAC cell lines showed significantly greater clonogenic cell survival than their parental cell lines, indicating enhanced RR in these cells. RNA-seq analysis comparing parental and RR cell lines found upregulated seven genes (TNS4, ZDHHC8P1, APLNR, AQP3, SPP1, ID1, ID2) and seven genes downregulated (PTX3, ITGB2, EPS8L1, ALDH1L2, KCNT2, ARHGAP9, IFI16) in both RR cell lines. Western blotting confirmed increased expression of the ID1 protein in the RR cell lines compared to their parental cell lines. We found that ID1 mRNA was significantly higher in PDAC tumors compared to matched normal and high ID1 expression correlated with significantly worse disease-free survival (DFS) in PDAC patients (HR = 2.2, log rank P = 0.009). ID1 mRNA expression was also strongly correlated in tumors with TP53 mutation, a known driver of radioresistance. Conclusion: Our analysis indicates a novel role of ID1 in PDAC radioresistance. ID1 expression is higher in tumor tissue compared to normal, and high expression correlates with both worse DFS and association with the TP53 mutation, suggesting that targeting ID1 prior to IR is an attractive strategy for overcoming radioresistance in PDAC.
Collapse
Affiliation(s)
- Oscar Zuniga
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephanie Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Adam R. Wolfe
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
33
|
A bioluminescent-based probe for in vivo non-invasive monitoring of nicotinamide riboside uptake reveals a link between metastasis and NAD+ metabolism. Biosens Bioelectron 2022; 220:114826. [DOI: 10.1016/j.bios.2022.114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 02/03/2023]
|
34
|
Lu Z, Zheng X, Ding C, Zou Z, Liang Y, Zhou Y, Li X. Deciphering the Biological Effects of Radiotherapy in Cancer Cells. Biomolecules 2022; 12:biom12091167. [PMID: 36139006 PMCID: PMC9496570 DOI: 10.3390/biom12091167] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy remains an effective conventional method of treatment for patients with cancer. However, the clinical efficacy of radiotherapy is compromised by the development of radioresistance of the tumor cells during the treatment. Consequently, there is need for a comprehensive understanding of the regulatory mechanisms of tumor cells in response to radiation to improve radiotherapy efficacy. The current study aims to highlight new developments that illustrate various forms of cancer cell death after exposure to radiation. A summary of the cellular pathways and important target proteins that are responsible for tumor radioresistance and metastasis is also provided. Further, the study outlines several mechanistic descriptions of the interaction between ionizing radiation and the host immune system. Therefore, the current review provides a reference for future research studies on the biological effects of new radiotherapy technologies, such as ultra-high-dose-rate (FLASH) radiotherapy, proton therapy, and heavy-ion therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhou
- Correspondence: (Y.Z.); (X.L.); Tel.: +86-0816-225-2295 (Y.Z.); +86-0816-220-6272 (X.L.)
| | - Xiaoan Li
- Correspondence: (Y.Z.); (X.L.); Tel.: +86-0816-225-2295 (Y.Z.); +86-0816-220-6272 (X.L.)
| |
Collapse
|
35
|
Vallejo FA, Sanchez A, Cuglievan B, Walters WM, De Angulo G, Vanni S, Graham RM. NAMPT Inhibition Induces Neuroblastoma Cell Death and Blocks Tumor Growth. Front Oncol 2022; 12:883318. [PMID: 35814452 PMCID: PMC9261286 DOI: 10.3389/fonc.2022.883318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
High-risk neuroblastoma (NB) portends very poor prognoses in children. Targeting tumor metabolism has emerged as a novel therapeutic strategy. High levels of nicotinamide-adenine-dinucleotide (NAD+) are required for rapid cell proliferation. Nicotinamide phosphoribosyl transferase (NAMPT) is the rate-limiting enzyme for NAD+ salvage and is overexpressed in several cancers. Here, we determine the potential of NAMPT as a therapeutic target for NB treatment. NAMPT inhibition cytotoxicity was determined by trypan blue exclusion and LDH assays. Neuroblastoma stem cell self-renewal was evaluated by neurosphere assay. Protein expression was evaluated via Western blot. The effect of targeting NAMPT in vivo was determined using an NB1691-xenografted mouse model. Robust NAMPT expression was demonstrated in multiple N-MYC amplified, high-risk neuroblastoma cell lines. NAMPT inhibition with STF-118804 (STF) decreased ATP, induced apoptosis, and reduced NB stem cell neurosphere formation. STF treatment down-regulated N-MYC levels and abrogated AKT activation. AKT and glycolytic pathway inhibitors in combination with NAMPT inhibition induced robust, greater-than-additive neuroblastoma cell death. Lastly, STF treatment blocked neuroblastoma tumor growth in mouse xenograft models. NAMPT is a valid therapeutic target as inhibition promoted neuroblastoma cell death in vitro and prevented tumor growth in vivo. Further investigation is warranted to establish this therapy’s role as an adjunctive modality.
Collapse
Affiliation(s)
- Frederic A. Vallejo
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anthony Sanchez
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Radiology and Imaging Sciences, University of Utah Hospital, Salt Lake City, UT, United States
| | - Branko Cuglievan
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Pediatrics Patient Care, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Winston M. Walters
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Guillermo De Angulo
- Department of Hematology/Oncology and Immunology, Nicklaus Children’s Hospital, Miami, FL, United States
| | - Steven Vanni
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurosurgery, HCA Florida University Hospital, Davie, FL, United States
- Dr. Kiran C. Patel College of Allopathic Medicine, Davie, FL, United States
| | - Regina M. Graham
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, United States
- *Correspondence: Regina M. Graham,
| |
Collapse
|
36
|
Mittal A, Nenwani M, Sarangi I, Achreja A, Lawrence TS, Nagrath D. Radiotherapy-induced metabolic hallmarks in the tumor microenvironment. Trends Cancer 2022; 8:855-869. [PMID: 35750630 DOI: 10.1016/j.trecan.2022.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
Radiation is frequently administered for cancer treatment, but resistance or remission remains common. Cancer cells alter their metabolism after radiotherapy to reduce its cytotoxic effects. The influence of altered cancer metabolism extends to the tumor microenvironment (TME), where components of the TME exchange metabolites to support tumor growth. Combining radiotherapy with metabolic targets in the TME can improve therapy response. We review the metabolic rewiring of cancer cells following radiotherapy and put these observations in the context of the TME to describe the metabolic hallmarks of radiotherapy in the TME.
Collapse
Affiliation(s)
- Anjali Mittal
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Minal Nenwani
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Itisam Sarangi
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
37
|
Ruszkiewicz JA, Bürkle A, Mangerich A. Fueling genome maintenance: On the versatile roles of NAD + in preserving DNA integrity. J Biol Chem 2022; 298:102037. [PMID: 35595095 PMCID: PMC9194868 DOI: 10.1016/j.jbc.2022.102037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
NAD+ is a versatile biomolecule acting as a master regulator and substrate in various cellular processes, including redox regulation, metabolism, and various signaling pathways. In this article, we concisely and critically review the role of NAD+ in mechanisms promoting genome maintenance. Numerous NAD+-dependent reactions are involved in the preservation of genome stability, the cellular DNA damage response, and other pathways regulating nucleic acid metabolism, such as gene expression and cell proliferation pathways. Of note, NAD+ serves as a substrate to ADP-ribosyltransferases, sirtuins, and potentially also eukaryotic DNA ligases, all of which regulate various aspects of DNA integrity, damage repair, and gene expression. Finally, we critically analyze recent developments in the field as well as discuss challenges associated with therapeutic actions intended to raise NAD+ levels.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
38
|
Different Effects of RNAi-Mediated Downregulation or Chemical Inhibition of NAMPT in an Isogenic IDH Mutant and Wild-Type Glioma Cell Model. Int J Mol Sci 2022; 23:ijms23105787. [PMID: 35628596 PMCID: PMC9143996 DOI: 10.3390/ijms23105787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
The IDH1R132H mutation in glioma results in the neoenzymatic function of IDH1, leading to the production of the oncometabolite 2-hydroxyglutarate (2-HG), alterations in energy metabolism and changes in the cellular redox household. Although shifts in the redox ratio NADPH/NADP+ were described, the consequences for the NAD+ synthesis pathways and potential therapeutic interventions were largely unexplored. Here, we describe the effects of heterozygous IDH1R132H on the redox system in a CRISPR/Cas edited glioblastoma model and compare them with IDH1 wild-type (IDH1wt) cells. Besides an increase in 2-HG and decrease in NADPH, we observed an increase in NAD+ in IDH1R132H glioblastoma cells. RT-qPCR analysis revealed the upregulation of the expression of the NAD+ synthesis enzyme nicotinamide phosphoribosyltransferase (NAMPT). Knockdown of NAMPT resulted in significantly reduced viability in IDH1R132H glioblastoma cells. Given this dependence of IDH1R132H cells on NAMPT expression, we explored the effects of the NAMPT inhibitors FK866, GMX1778 and GNE-617. Surprisingly, these agents were equally cytotoxic to IDH1R132H and IDH1wt cells. Altogether, our results indicate that targeting the NAD+ synthesis pathway is a promising therapeutic strategy in IDH mutant gliomas; however, the agent should be carefully considered since three small-molecule inhibitors of NAMPT tested in this study were not suitable for this purpose.
Collapse
|
39
|
Deng Y, Hu B, Miao Y, Wang J, Zhang S, Wan H, Wu Z, Lv Y, Feng J, Ji N, Park D, Hao S. A Nicotinamide Phosphoribosyltransferase Inhibitor, FK866, Suppresses the Growth of Anaplastic Meningiomas and Inhibits Immune Checkpoint Expression by Regulating STAT1. Front Oncol 2022; 12:836257. [PMID: 35515130 PMCID: PMC9065474 DOI: 10.3389/fonc.2022.836257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
Anaplastic meningioma is classified as a World Health Organization (WHO) grade III tumor and shows a strong tendency to recur. Although the incidence of anaplastic meningioma is low, the high rate of recurrence and death still makes treatment a challenge. A proteomics analysis was performed to investigate the differentially expressed proteins between anaplastic meningiomas and fibrous meningiomas by micro-LC-MS/MS. The key metabolic enzyme nicotinamide phosphoribosyltransferase (NAMPT) showed upregulated expression in anaplastic meningiomas. However, targeting NAMPT to treat anaplastic meningiomas has not been reported. In vitro, NAMPT inhibitor -FK866 reduced the viability of anaplastic meningiomas by inducing cell cycle arrest at the G2/M phase. Intriguingly, the NAMPT inhibitor -FK866 decreased the protein expression of immune checkpoints PD-L1 and B7-H3 by down-regulating the STAT1 and p-STAT1 expression in vitro. Furthermore, FK866 suppressed the growth of anaplastic meningiomas in an in vivo xenograft model. The expression of Ki-67 and immune checkpoint proteins (PD-L1 and B7-H3) showed significant differences between the group treated with FK866 and the control group treated with DMSO. In conclusion, the expression of NAMPT, which plays a crucial role in energy metabolism, was upregulated in anaplastic meningiomas. The NAMPT inhibitor -FK866 significantly suppressed the growth of anaplastic meningiomas in vitro and in vivo. More strikingly, FK866 potently inhibited immune checkpoint protein (PD-L1 and B7-H3) expression by regulating STAT1 in vitro and in vivo. Our results demonstrated that NAMPT inhibitors could potentially be an effective treatment method for patients suffering from anaplastic meningiomas.
Collapse
Affiliation(s)
- Yuxuan Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Boyi Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhou Miao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shaodong Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hong Wan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifan Lv
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Feng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Deric Park
- Department of Neurology, University of Chicago Medical Center, Chicago, IL, United States
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Gasparrini M, Audrito V. NAMPT: A critical driver and therapeutic target for cancer. Int J Biochem Cell Biol 2022; 145:106189. [PMID: 35219878 DOI: 10.1016/j.biocel.2022.106189] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) possesses a vital role in mammalian cells due to its activity as a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. NAD is an essential redox cofactor, but it also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain tumor growth and survival and energetic needs. A common strategy that several tumor types adopt to sustain NAD synthesis is to over-express NAMPT. However, beside its intracellular functions, this enzyme has a second life outside of cells exerting cytokine-like functions and mediating pro-inflammatory conditions activating signaling pathways. While the effects of NAMPT/NAD axis on energetic metabolism in tumors has been well-established, increasing evidence demonstrated the impact of NAMPT over-expression (intra-/extra-cellular) on several tumor cellular processes, including DNA repair, gene expression, signaling pathways, proliferation, invasion, stemness, phenotype plasticity, metastatization, angiogenesis, immune regulation, and drug resistance. For all these reasons, NAMPT targeting has emerged as promising anti-cancer strategy to deplete NAD and impair cellular metabolism, but also to counteract the other NAMPT-related functions. In this review, we summarize the key role of NAMPT in multiple biological processes implicated in cancer biology and the impact of NAMPT inhibition as therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Valentina Audrito
- Department of Molecular Biotechnology and Health Sciences & Molecular Biotechnology Center, University of Torino, Torino, Italy.
| |
Collapse
|
41
|
Hirota K, Ooka M, Shimizu N, Yamada K, Tsuda M, Ibrahim MA, Yamada S, Sasanuma H, Masutani M, Takeda S. XRCC1 counteracts PARP poisons, Olaparib and Talazoparib, and a clinical alkylating agent, Temozolomide, by promoting the removal of trapped PARP1 from broken DNA. Genes Cells 2022; 27:331-344. [PMID: 35194903 PMCID: PMC9310723 DOI: 10.1111/gtc.12929] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
Base excision repair (BER) removes damaged bases by generating single‐strand breaks (SSBs), gap‐filling by DNA polymerase β (POLβ), and resealing SSBs. A base‐damaging agent, methyl methanesulfonate (MMS) is widely used to study BER. BER increases cellular tolerance to MMS, anti‐cancer base‐damaging drugs, temozolomide, carmustine, and lomustine, and to clinical poly(ADP ribose)polymerase (PARP) poisons, olaparib and talazoparib. The poisons stabilize PARP1/SSB complexes, inhibiting access of BER factors to SSBs. PARP1 and XRCC1 collaboratively promote SSB resealing by recruiting POLβ to SSBs, but XRCC1−/− cells are much more sensitive to MMS than PARP1−/− cells. We recently report that the PARP1 loss in XRCC1−/− cells restores their MMS tolerance and conclude that XPCC1 facilitates the release of PARP1 from SSBs by maintaining its autoPARylation. We here show that the PARP1 loss in XRCC1−/− cells also restores their tolerance to the three anti‐cancer base‐damaging drugs, although they and MMS induce different sets of base damage. We reveal the synthetic lethality of the XRCC1−/− mutation, but not POLβ−/−, with olaparib and talazoparib, indicating that XRCC1 is a unique BER factor in suppressing toxic PARP1/SSB complex and can suppress even when PARP1 catalysis is inhibited. In conclusion, XRCC1 suppresses the PARP1/SSB complex via PARP1 catalysis‐dependent and independent mechanisms.
Collapse
Affiliation(s)
- Kouji Hirota
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, Japan.,Department of Chemistry, Graduate school of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji- shi, Tokyo, Japan
| | - Masato Ooka
- Department of Chemistry, Graduate school of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji- shi, Tokyo, Japan
| | - Naoto Shimizu
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, Japan
| | - Kousei Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, Japan
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, Japan.,Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Mahmoud Abdelghany Ibrahim
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, Japan
| | - Shintaro Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, Japan
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, CBMM, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shunichi Takeda
- Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
42
|
She J, Sheng R, Qin ZH. Pharmacology and Potential Implications of Nicotinamide Adenine Dinucleotide Precursors. Aging Dis 2021; 12:1879-1897. [PMID: 34881075 PMCID: PMC8612620 DOI: 10.14336/ad.2021.0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/23/2021] [Indexed: 12/21/2022] Open
Abstract
Coenzyme I (nicotinamide adenine dinucleotide, NAD+/NADH) and coenzyme II (nicotinamide adenine dinucleotide phosphate, NADP+/NADPH) are involved in various biological processes in mammalian cells. NAD+ is synthesised through the de novo and salvage pathways, whereas coenzyme II cannot be synthesised de novo. NAD+ is a precursor of coenzyme II. Although NAD+ is synthesised in sufficient amounts under normal conditions, shortage in its supply due to over consumption and its decreased synthesis has been observed with increasing age and under certain disease conditions. Several studies have proved that in a wide range of tissues, such as liver, skin, muscle, pancreas, and fat, the level of NAD+ decreases with age. However, in the brain tissue, the level of NADH gradually increases and that of NAD+ decreases in aged people. The ratio of NAD+/NADH indicates the cellular redox state. A decrease in this ratio affects the cellular anaerobic glycolysis and oxidative phosphorylation functions, which reduces the ability of cells to produce ATP. Therefore, increasing the exogenous NAD+ supply under certain disease conditions or in elderly people may be beneficial. Precursors of NAD+ have been extensively explored and have been reported to effectively increase NAD+ levels and possess a broad range of functions. In this review article, we discuss the pharmacokinetics and pharmacodynamics of NAD+ precursors.
Collapse
Affiliation(s)
- Jing She
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
43
|
Luo H, Tao C, Long X, Zhu X, Huang K. Early 2 factor (E2F) transcription factors contribute to malignant progression and have clinical prognostic value in lower-grade glioma. Bioengineered 2021; 12:7765-7779. [PMID: 34617871 PMCID: PMC8806968 DOI: 10.1080/21655979.2021.1985340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Early 2 factor (E2F) genes encoding a family of transcription factors are significantly associated with apoptosis, metabolism, and angiogenesis in several tumor types. However, the biological functions of E2F transcription factors (E2Fs) and their potential involvement in the malignancy of lower-grade glioma (LGG) remain unclear. We explored the effects of the expression of eight E2F family members on the clinical characteristics of LGG based on the Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and GSE16011 datasets. Two LGG subgroups were identified according to the consensus clustering of the eight E2Fs. We employed the least absolute shrinkage and selection operator (LASSO) Cox regression algorithm for further functional experiments and the development of a potential risk score. Two categories of patients with LGG were identified based on the median risk scores. We then developed a nomogram based on the results of the multivariate analysis. Real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry were performed to validate the bioinformatics results. Our results indicated that E2F family members were significantly involved in the malignancy of LGG and might serve as effective prognostic biomarkers of the disease.
Collapse
Affiliation(s)
- Haitao Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Chuming Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.,Scientific Research Center, East China Institute of Digital Medical Engineering, Shangrao, Jiangxi Province, China
| | - Xiaoyan Long
- Scientific Research Center, East China Institute of Digital Medical Engineering, Shangrao, Jiangxi Province, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.,Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.,Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
44
|
Xiang B, Wang XY, Liu KJ. Dual Roles of Nicotinamide Phosphoribosyltransferase as a Promising Target for Cancer Radiotherapy. Radiat Res 2021; 196:429-435. [PMID: 34399423 DOI: 10.1667/rade-20-00273.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 07/31/2021] [Indexed: 11/03/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the key rate-limiting enzyme in the regulation of nicotinamide adenine dinucleotide (NAD) biosynthesis, and its activity is critical for the replenishment of NAD level as well as cell survival or death. As one of the most important components in the electron transport chain of complex I in mitochondrion, sustained supply of NAD is essential to the maintenance of energy metabolism both in normal and cancer cells. Recent research showed that X-ray radiation sharply downregulated the expression of NAMPT, which may be the main cause of radiation damage in salivary gland. Consistently, upregulation of NAMPT by phenylephrine restored the function and tissue structure of salivary gland, indicating the cytoprotective role of NAMPT in preventing radiation damage in normal tissues of patients with head and neck cancer during radiotherapy. On the other hand, NAMPT downregulation and NAD depletion could induce cell death in oral squamous cell cancer, suggesting that a combination of NAMPT inhibitor and radiotherapy presents a promising therapeutic strategy for cancer treatment. Based on our and other's studies, NAMPT may have dual roles in cancer radiotherapy: the upregulation of NAMPT could serve to suppress radiotherapy complications such as radiation sialadenitis, and combination regimens that involve NAMPT inhibitors may enhance efficacy of radiotherapy for cancer treatment.
Collapse
Affiliation(s)
- Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Xin Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
45
|
Xie D, Pei Q, Li J, Wan X, Ye T. Emerging Role of E2F Family in Cancer Stem Cells. Front Oncol 2021; 11:723137. [PMID: 34476219 PMCID: PMC8406691 DOI: 10.3389/fonc.2021.723137] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The E2F family of transcription factors (E2Fs) consist of eight genes in mammals. These genes encode ten proteins that are usually classified as transcriptional activators or transcriptional repressors. E2Fs are important for many cellular processes, from their canonical role in cell cycle regulation to other roles in angiogenesis, the DNA damage response and apoptosis. A growing body of evidence demonstrates that cancer stem cells (CSCs) are key players in tumor development, metastasis, drug resistance and recurrence. This review focuses on the role of E2Fs in CSCs and notes that many signals can regulate the activities of E2Fs, which in turn can transcriptionally regulate many different targets to contribute to various biological characteristics of CSCs, such as proliferation, self-renewal, metastasis, and drug resistance. Therefore, E2Fs may be promising biomarkers and therapeutic targets associated with CSCs pathologies. Finally, exploring therapeutic strategies for E2Fs may result in disruption of CSCs, which may prevent tumor growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Dan Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Qin Pei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jingyuan Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xue Wan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| |
Collapse
|
46
|
Kynurenine Monooxygenase Expression and Activity in Human Astrocytomas. Cells 2021; 10:cells10082028. [PMID: 34440798 PMCID: PMC8393384 DOI: 10.3390/cells10082028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. The enzyme indoleamine-2,3-dioxygenase (IDO), which participates in the rate-limiting step of tryptophan catabolism through the kynurenine pathway (KP), is associated with poor prognosis in patients with GBM. The metabolites produced after tryptophan oxidation have immunomodulatory properties that can support the immunosuppressor environment. In this study, mRNA expression, protein expression, and activity of the enzyme kynurenine monooxygenase (KMO) were analyzed in GBM cell lines (A172, LN-18, U87, U373) and patient-derived astrocytoma samples. KMO mRNA expression was assessed by real-time RT-qPCR, KMO protein expression was evaluated by flow cytometry and immunofluorescence, and KMO activity was determined by quantifying 3-hydroxykynurenine by HPLC. Heterogenous patterns of both KMO expression and activity were observed among the GBM cell lines, with the A172 cell line showing the highest KMO expression and activity. Higher KMO mRNA expression was observed in glioma samples than in patients diagnosed with only a neurological disease; high KMO mRNA expression was also observed when using samples from patients with GBM in the TCGA program. The KMO protein expression was localized in GFAP+ cells in tumor tissue. These results suggest that KMO is a relevant target to be explored in glioma since it might play a role in supporting tumor metabolism and immune suppression.
Collapse
|
47
|
Sharma P, Xu J, Williams K, Easley M, Elder JB, Lonser R, Lang FF, Lapalombella R, Sampath D, Puduvalli VK. Inhibition of nicotinamide phosphoribosyltransferase, the rate-limiting enzyme of the nicotinamide adenine dinucleotide salvage pathway, to target glioma heterogeneity through mitochondrial oxidative stress. Neuro Oncol 2021; 24:229-244. [PMID: 34260721 PMCID: PMC8804900 DOI: 10.1093/neuonc/noab175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Tumor-specific metabolic processes essential for cell survival are promising targets to potentially circumvent intratumoral heterogeneity, a major resistance factor in gliomas. Tumor cells preferentially using nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the salvage pathway for synthesis of NAD, a critical cofactor for diverse biological processes including cellular redox reactions, energy metabolism and biosynthesis. NAMPT is overexpressed in most malignancies, including gliomas, and can serve as a tumor-specific target. METHODS Effects of pharmacological inhibition of NAMPT on cellular oxygen consumption rate, extracellular acidification, mitochondrial respiration, cell proliferation, invasion and survival were assessed through in vitro and ex vivo studies on genetically heterogeneous glioma cell lines, glioma stem-like cells (GSCs) and mouse and human ex vivo organotypic glioma slice culture models. RESULTS Pharmacological inhibition of the NAD salvage biosynthesis pathway using a highly specific inhibitor, KPT-9274, resulted in reduction of NAD levels and related downstream metabolites, inhibited proliferation, and induced apoptosis in vitro in cell lines and ex vivo in human glioma tissue. These effects were mediated by mitochondrial dysfunction, DNA damage and increased oxidative stress leading to apoptosis in GSCs independent of genotype, IDH status or MGMT promoter methylation status. Conversely, NAMPT inhibition had minimal in vitro effects on normal human astrocytes (NHA) and no apparent in vivo toxicity in non-tumor-bearing mice. CONCLUSIONS Pharmacological NAMPT inhibition by KPT9274 potently targeted genetically heterogeneous gliomas by activating mitochondrial dysfunction. Our preclinical results provide a rationale for targeting the NAMPT-dependent alternative NAD biosynthesis pathway as a novel clinical strategy against gliomas.
Collapse
Affiliation(s)
- Pratibha Sharma
- Division of Neurooncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jihong Xu
- Division of Neurooncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katie Williams
- Division of Hematology Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michelle Easley
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - J Brad Elder
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Russell Lonser
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosa Lapalombella
- Division of Hematology Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Deepa Sampath
- Division of Hematology Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vinay K Puduvalli
- Division of Neurooncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
48
|
Lang F, Liu Y, Chou FJ, Yang C. Genotoxic therapy and resistance mechanism in gliomas. Pharmacol Ther 2021; 228:107922. [PMID: 34171339 DOI: 10.1016/j.pharmthera.2021.107922] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Glioma is one of the most common and lethal brain tumors. Surgical resection followed by radiotherapy plus chemotherapy is the current standard of care for patients with glioma. The existence of resistance to genotoxic therapy, as well as the nature of tumor heterogeneity greatly limits the efficacy of glioma therapy. DNA damage repair pathways play essential roles in many aspects of glioma biology such as cancer progression, therapy resistance, and tumor relapse. O6-methylguanine-DNA methyltransferase (MGMT) repairs the cytotoxic DNA lesion generated by temozolomide (TMZ), considered as the main mechanism of drug resistance. In addition, mismatch repair, base excision repair, and homologous recombination DNA repair also play pivotal roles in treatment resistance as well. Furthermore, cellular mechanisms, such as cancer stem cells, evasion from apoptosis, and metabolic reprogramming, also contribute to TMZ resistance in gliomas. Investigations over the past two decades have revealed comprehensive mechanisms of glioma therapy resistance, which has led to the development of novel therapeutic strategies and targeting molecules.
Collapse
Affiliation(s)
- Fengchao Lang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yang Liu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Fu-Ju Chou
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Alonso-Lavin AJ, Bajić D, Poyatos JF. Tolerance to NADH/NAD + imbalance anticipates aging and anti-aging interventions. iScience 2021; 24:102697. [PMID: 34195572 PMCID: PMC8239738 DOI: 10.1016/j.isci.2021.102697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/26/2021] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
Redox couples coordinate cellular function, but the consequences of their imbalances are unclear. This is somewhat associated with the limitations of their experimental quantification. Here we circumvent these difficulties by presenting an approach that characterizes fitness-based tolerance profiles to redox couple imbalances using an in silico representation of metabolism. Focusing on the NADH/NAD+ redox couple in yeast, we demonstrate that reductive disequilibria generate metabolic syndromes comparable to those observed in cancer cells. The tolerance of yeast mutants to redox disequilibrium can also explain 30% of the variability in their experimentally measured chronological lifespan. Moreover, by predicting the significance of some metabolites to help stand imbalances, we correctly identify nutrients underlying mechanisms of pathology, lifespan-protecting molecules, or caloric restriction mimetics. Tolerance to redox imbalances becomes, in this way, a sound framework to recognize properties of the aging phenotype while providing a consistent biological rationale to assess anti-aging interventions. We simulate how imbalances in NADH/NAD+ ratio modify cellular metabolic behavior This reveals a mechanism to understand metabolic alterations at low growth rates Tolerance to imbalance explains experimentally measured lifespan in yeast We predict lifespan-protecting metabolites in yeast, animal, and human models
Collapse
Affiliation(s)
- Alvar J. Alonso-Lavin
- Logic of Genomic Systems Laboratory (CNB-CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Djordje Bajić
- Logic of Genomic Systems Laboratory (CNB-CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Juan F. Poyatos
- Logic of Genomic Systems Laboratory (CNB-CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, USA
- Corresponding author
| |
Collapse
|
50
|
Acetylation of PAX7 controls muscle stem cell self-renewal and differentiation potential in mice. Nat Commun 2021; 12:3253. [PMID: 34059674 PMCID: PMC8167170 DOI: 10.1038/s41467-021-23577-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 05/06/2021] [Indexed: 11/15/2022] Open
Abstract
Muscle stem cell function has been suggested to be regulated by Acetyl-CoA and NAD+ availability, but the mechanisms remain unclear. Here we report the identification of two acetylation sites on PAX7 that positively regulate its transcriptional activity. Lack of PAX7 acetylation reduces DNA binding, specifically to the homeobox motif. The acetyltransferase MYST1 stimulated by Acetyl-CoA, and the deacetylase SIRT2 stimulated by NAD +, are identified as direct regulators of PAX7 acetylation and asymmetric division in muscle stem cells. Abolishing PAX7 acetylation in mice using CRISPR/Cas9 mutagenesis leads to an expansion of the satellite stem cell pool, reduced numbers of asymmetric stem cell divisions, and increased numbers of oxidative IIA myofibers. Gene expression analysis confirms that lack of PAX7 acetylation preferentially affects the expression of target genes regulated by homeodomain binding motifs. Therefore, PAX7 acetylation status regulates muscle stem cell function and differentiation potential to facilitate metabolic adaptation of muscle tissue. The acetyltransferase MYST1 stimulated by acetyl-CoA, and the deacetylase SIRT2 stimulated by NAD+, regulate PAX7 acetylation in muscle stem cells, which in turn, regulates stem cell self-renewal and regeneration following injury in mouse skeletal muscle.
Collapse
|