1
|
D’Agostino M, Rol-Moreno J, Bec G, Kuhn L, Ennifar E, Simonetti A. A structural element within the 5'UTR of β-catenin mRNA modulates its translation under hypoxia. Nucleic Acids Res 2025; 53:gkaf321. [PMID: 40309781 PMCID: PMC12044334 DOI: 10.1093/nar/gkaf321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
Tight regulation of translation initiation is crucial for cellular adaptation to environmental changes. Stress conditions like hypoxia trigger translational reprogramming of mRNAs encoding proteins essential for stress recovery and cell survival. Recent studies highlight alternative translation initiation pathways based on specific motifs in mRNA 5' untranslated regions (5'UTRs). Notably, β-catenin is of particular interest since maintaining its translation promotes cancer cell persistence and plasticity. β-Catenin, an oncogenic protein, plays a key role in Wnt signalling. Besides dysregulation of the β-catenin/Wnt pathway, chemotherapy-induced hypoxia leads to abnormal nuclear β-catenin accumulation, modulating gene expression linked to cancer progression and metastasis. However, the mechanism sustaining β-catenin translation in stressed cells remains elusive. To explore how β-catenin mRNA evades global translational blockade in hypoxic cancer cells, we analysed its 5'UTR and identified a translation regulatory element in cellulo. We discovered a GC-rich three-way junction (TWJ) structure within the β-catenin 5'UTR enhancing its hypoxia-driven translation. A polypurine region within the TWJ anchors eIF4B, eIF4A, and eIF4G2. Importantly, the TWJ makes β-catenin mRNA translation eIF4A-dependent and sensitive to silvestrol, a selective eIF4A inhibitor and promising anticancer agent. This study elucidates the 5'UTR-driven β-catenin mechanism under hypoxia, paving the way to inhibit its translation in cancer.
Collapse
Affiliation(s)
- Mattia D’Agostino
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 Allée Konrad Roetgen, Strasbourg 67084, France
| | - Javier Rol-Moreno
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 Allée Konrad Roetgen, Strasbourg 67084, France
- Sanofi-Aventis R&D, Strasbourg 67000, France
| | - Guillaume Bec
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 Allée Konrad Roetgen, Strasbourg 67084, France
| | - Lauriane Kuhn
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Plateforme protéomique Strasbourg-Esplanade, Université de Strasbourg, 2 Allée Konrad Roentgen, Strasbourg 67084, France
| | - Eric Ennifar
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 Allée Konrad Roetgen, Strasbourg 67084, France
| | - Angelita Simonetti
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 Allée Konrad Roetgen, Strasbourg 67084, France
| |
Collapse
|
2
|
Cheng Q, Guo Q, Zhang X, Zhu Y, Liu C, Wang H, Zhu C, Ni L, Li B, Yang H. An "EVs-in-ECM" mimicking system orchestrates transcription and translation of RUNX1 for in-situ cartilage regeneration. Mater Today Bio 2025; 31:101569. [PMID: 40040797 PMCID: PMC11876752 DOI: 10.1016/j.mtbio.2025.101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/06/2025] Open
Abstract
The self-repair ability of articular cartilage is limited, which is one of the most difficult diseases to treat clinically. Kartogenin (KGN) induces chondrogenesis by regulating RUNX1 mRNA translation and the small molecule compound TD-198946 (TD) promotes chondrogenic differentiation of mesenchymal stem cells (MSCs) through increasing the transcription of RUNX1 mRNA. GelMA hydrogel and liposomes are respectively similar to the extracellular matrix (ECM) and extracellular vesicles (EVs). So, we developed an "EVs-in-ECM" mimicking system by incorporating GelMA and KGN/TD-loaded liposomes to investigate the repair effects of cartilage defect. First, western-blot, RNA fluorescence in situ hybridization (FISH), cellular immuno-fluorescence, co-immuno-precipitation (CO-IP), and qRT-PCR techniques showed that KGN regulated RUNX1 mRNA expression, and then promote chondrogenic differentiation of MSCs. Second, the role of RUNX1 was amplified by orchestrating RUNX1 transcription and translation through TD-198946 (TD) and KGN respectively, and the synergistic effects of TD and KGN on chondrogenesis of MSCs in vitro were discovered. Finally, an "EVs-in-ECM" mimicking system was designed for in situ cartilage repair. When GelMA loaded with KGN and TD liposomes, the hydrogel (KGN + TD@ GelMA) showed biological functions by the continuously controlled release of KGN and TD while maintaining its porous structure and mechanical strength, which enhanced the chondrogenesis of MSCs in one system. The repair performance of "EVs-in-ECM" in vivo was assessed using the articular osteochondral defect model of rat. The implantation of KGN + TD@ GelMA hydrogels effectively exerted favorable osteochondral repair effects showing structures similar to the native tissue, and prevented chondrocyte hypertrophy. The study indicate that the "EVs-in-ECM" mimicking system can act as a highly efficient and potent scaffold for osteochondral defect regeneration.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
- Orthopaedic Department, Xuzhou Central Hospital, No. 199, The Jiefang South Road, Xuzhou, 221009, Jiangsu, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xiaoyu Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yuanchen Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Chengyuan Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Li Ni
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
3
|
Shuvalova E, Shuvalov A, Al Sheikh W, Ivanov A, Biziaev N, Egorova T, Dmitriev S, Terenin I, Alkalaeva E. Eukaryotic initiation factors eIF4F and eIF4B promote translation termination upon closed-loop formation. Nucleic Acids Res 2025; 53:gkaf161. [PMID: 40066881 PMCID: PMC11894530 DOI: 10.1093/nar/gkaf161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/11/2025] [Accepted: 02/18/2024] [Indexed: 03/15/2025] Open
Abstract
Eukaryotic translation initiation factor 4F (eIF4F), comprising subunits eIF4G, eIF4E, and eIF4A, plays a pivotal role in the 48S preinitiation complex assembly and ribosomal scanning. Additionally, eIF4B enhances the helicase activity of eIF4A. eIF4F also interacts with poly (A)-binding protein (PABP) bound to the poly (A) tail of messenger RNA (mRNA), thereby forming a closed-loop structure. PABP, in turn, interacts with eukaryotic release factor 3 (eRF3), stimulating translation termination. Here, we employed a reconstituted mammalian system to directly demonstrate that eIF4F potently enhances translation termination. Specifically, eIF4A and eIF4B promote the loading of eRF1 into the A site of the ribosome, while eIF4G1 stimulates the GTPase activity of eRF3 and facilitates the dissociation of release factors following peptide release. We also identified MIF4G as the minimal domain required for this activity and showed that eIF4G2/DAP5 can also promote termination. Our findings provide compelling evidence that the closed-loop mRNA structure facilitates translation termination, with PABP and eIF4F directly involved in this process.
Collapse
Affiliation(s)
- Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Walaa Al Sheikh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nikita Biziaev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana V Egorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
4
|
Datey A, Sharma P, Khaja FT, Rahil H, Hussain T. Yeast Eukaryotic Initiation Factor 4B Remodels the MRNA Entry Site on the Small Ribosomal Subunit. Biochemistry 2025; 64:600-608. [PMID: 39847343 DOI: 10.1021/acs.biochem.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Eukaryotic Initiation Factor 4 (eIF4) is a group of factors that activates mRNA for translation and recruit 43S preinitiation complex (PIC) to the mRNA 5' end, forming the 48S PIC. The eIF4 factors include mRNA 5' cap-binding protein eIF4E, ATP-dependent RNA helicase eIF4A, and scaffold protein eIF4G, which anchors eIF4A and eIF4E. Another eIF4 factor, eIF4B, stimulates the RNA helicase activity of eIF4A and facilitates mRNA recruitment. However, the mechanisms by which eIF4B binds the 40S ribosomal subunit and promotes mRNA recruitment remain poorly understood. Using cryo-Eletron Microscopy (cryo-EM), we obtained a map of the yeast 40S ribosomal subunit in a complex with eIF4B (40S-eIF4B complex). An extra density, tentatively assigned to yeast eIF4B, was observed near the mRNA entry channel of the 40S, contacting ribosomal proteins uS10, uS3, and eS10 as well as rRNA helix h16. Predictive modeling of the 40S-eIF4B complex suggests that the N-terminal domain of eIF4B binds near the mRNA entry channel, overlapping with the extra density observed in the 40S-eIF4B map. The partially open conformation of 40S in the 40S-eIF4B map is incompatible with eIF3j binding observed in the 48S PIC. Additionally, the extra density at the mRNA entry channel poses steric hindrance for eIF3g binding in the 48S PIC. Thus, structural insights suggest that eIF4B facilitates the release of eIF3j and the relocation of the eIF3b-g-i module during mRNA recruitment, thereby advancing our understanding of eIF4B's role in translation initiation.
Collapse
Affiliation(s)
- Ayushi Datey
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Prafful Sharma
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Faisal Tarique Khaja
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Huma Rahil
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Tanweer Hussain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
5
|
Koubek J, Kaur J, Bhandarkar S, Lewis CJT, Niederer RO, Stanciu A, Aitken CE, Gilbert WV. Cellular translational enhancer elements that recruit eukaryotic initiation factor 3. RNA (NEW YORK, N.Y.) 2025; 31:193-207. [PMID: 39626887 PMCID: PMC11789482 DOI: 10.1261/rna.080310.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024]
Abstract
Translation initiation is a highly regulated process that broadly affects eukaryotic gene expression. Eukaryotic initiation factor 3 (eIF3) is a central player in canonical and alternative pathways for ribosome recruitment. Here, we have investigated how direct binding of eIF3 contributes to the large and regulated differences in protein output conferred by different 5'-untranslated regions (5' UTRs) of cellular mRNAs. Using an unbiased high-throughput approach to determine the affinity of budding yeast eIF3 for native 5' UTRs from 4252 genes, we demonstrate that eIF3 binds specifically to a subset of 5' UTRs that contain a short unstructured binding motif, AMAYAA. eIF3-binding mRNAs have higher ribosome density in growing cells and are preferentially translated under certain stress conditions, supporting the functional relevance of this interaction. Our results reveal a new class of translational enhancers and suggest a mechanism by which changes in core initiation factor activity enact mRNA-specific translation programs.
Collapse
Affiliation(s)
- Jiří Koubek
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Jaswinder Kaur
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Shivani Bhandarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Cole J T Lewis
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Rachel O Niederer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Andrei Stanciu
- Biology Department and Biochemistry Program, Vassar College, Poughkeepsie, New York 12604, USA
| | - Colin Echeverría Aitken
- Biology Department and Biochemistry Program, Vassar College, Poughkeepsie, New York 12604, USA
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
6
|
Wakabayashi H, Zhu M, Grayhack EJ, Mathews DH, Ermolenko DN. 40S ribosomal subunits scan mRNA for the start codon by one-dimensional diffusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.30.630811. [PMID: 39803544 PMCID: PMC11722282 DOI: 10.1101/2024.12.30.630811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
During eukaryotic translation initiation, the small (40S) ribosomal subunit is recruited to the 5' cap and subsequently scans the 5' untranslated region (5' UTR) of mRNA in search of the start codon. The molecular mechanism of mRNA scanning remains unclear. Here, using GFP reporters in Saccharomyces cerevisiae cells, we show that order-of-magnitude variations in the lengths of unstructured 5' UTRs have a modest effect on protein synthesis. These observations indicate that mRNA scanning is not rate limiting in yeast cells. Conversely, the presence of secondary structures in the 5' UTR strongly inhibits translation. Loss-of-function mutations in translational RNA helicases eIF4A and Ded1, as well as mutations in other initiation factors implicated in mRNA scanning, namely eIF4G, eIF4B, eIF3g and eIF3i, produced a similar decrease in translation of GFP reporters with short and long unstructured 5' UTRs. As expected, mutations in Ded1, eIF4B and eIF3i severely diminished translation of the reporters with structured 5' UTRs. Evidently, while RNA helicases eIF4A and Ded1 facilitate 40S recruitment and secondary structure unwinding, they are not rate-limiting for the 40S movement along the 5' UTR. Hence, our data indicate that, instead of helicase-driven translocation, one-dimensional diffusion predominately drives mRNA scanning by the 40S subunits in yeast cells.
Collapse
Affiliation(s)
- Hironao Wakabayashi
- Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Mingyi Zhu
- Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Elizabeth J Grayhack
- Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
7
|
Sun F, Zhang RJ, Fang Y, Yan CY, Zhang CR, Wu FY, Yang RM, Han B, Song HD, Zhao SX. Identification of Eukaryotic Translation Initiation Factor 4B as a Novel Candidate Gene for Congenital Hypothyroidism. J Clin Endocrinol Metab 2024; 109:3282-3292. [PMID: 38654471 DOI: 10.1210/clinem/dgae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
CONTEXT Congenital hypothyroidism (CH) is the most common endocrine disorder in neonates, but its etiology is still poorly understood. OBJECTIVE We performed whole exome sequencing to identify a novel causative gene for CH and functional studies to validate its role in the occurrence of CH. METHODS Whole exome sequencing in 98 CH patients not harboring known CH candidate genes and bioinformatic analysis were performed. Functional analysis was performed using morpholino, a synthetic short antisense oligonucleotide that contains 25 DNA bases on a methylene morpholine backbone, in zebrafish and CRISPR-Cas9-mediated gene knockout in mice. RESULTS Eukaryotic translation initiation factor 4B (EIF4B) was identified as the most promising candidate gene. The EIF4B gene was inherited in an autosomal recessive model, and 1 patient with thyroid dysgenesis carried EIF4B biallelic variants (p.S430F/p.P328L). In zebrafish, the knockdown of eif4ba/b expression caused thyroid dysgenesis and growth retardation. Thyroid hormone levels were significantly decreased in morphants compared with controls. Thyroxine treatment in morphants partially rescued growth retardation. In mice, the homozygous conceptuses of Eif4b+/- parents did not survive. Eif4b knockout embryos showed severe growth retardation, including thyroid dysgenesis and embryonic lethality before E18.5. CONCLUSION These experimental data support a role for EIF4B function in the pathogenesis of the hypothyroid phenotype seen in CH patients. Our work indicates that EIF4B was identified as a novel candidate gene in CH. EIF4B is essential for animal survival, but further studies are needed to validate its role in the pathogenesis of CH.
Collapse
Affiliation(s)
- Feng Sun
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rui-Jia Zhang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ya Fang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Cheng-Yan Yan
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chang-Run Zhang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Feng-Yao Wu
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rui-Meng Yang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bing Han
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Huai-Dong Song
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
8
|
Al-gafari M, Jagadeesan SK, Kazmirchuk TDD, Takallou S, Wang J, Hajikarimlou M, Ramessur NB, Darwish W, Bradbury-Jost C, Moteshareie H, Said KB, Samanfar B, Golshani A. Investigating the Activities of CAF20 and ECM32 in the Regulation of PGM2 mRNA Translation. BIOLOGY 2024; 13:884. [PMID: 39596839 PMCID: PMC11592143 DOI: 10.3390/biology13110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Translation is a fundamental process in biology, and understanding its mechanisms is crucial to comprehending cellular functions and diseases. The regulation of this process is closely linked to the structure of mRNA, as these regions prove vital to modulating translation efficiency and control. Thus, identifying and investigating these fundamental factors that influence the processing and unwinding of structured mRNAs would be of interest due to the widespread impact in various fields of biology. To this end, we employed a computational approach and identified genes that may be involved in the translation of structured mRNAs. The approach is based on the enrichment of interactions and co-expression of genes with those that are known to influence translation and helicase activity. The in silico prediction found CAF20 and ECM32 to be highly ranked candidates that may play a role in unwinding mRNA. The activities of neither CAF20 nor ECM32 have previously been linked to the translation of PGM2 mRNA or other structured mRNAs. Our follow-up investigations with these two genes provided evidence of their participation in the translation of PGM2 mRNA and several other synthetic structured mRNAs.
Collapse
Affiliation(s)
- Mustafa Al-gafari
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Sasi Kumar Jagadeesan
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Thomas David Daniel Kazmirchuk
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Sarah Takallou
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Jiashu Wang
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Maryam Hajikarimlou
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Nishka Beersing Ramessur
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
| | - Waleed Darwish
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
| | - Calvin Bradbury-Jost
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Houman Moteshareie
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Kamaledin B. Said
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Hail P.O. Box 2240, Saudi Arabia
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1A 0C6, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
9
|
Quintas A, Harvey R, Horvilleur E, Garland G, Schmidt T, Kalmar L, Dezi V, Marini A, Fulton A, Pöyry TA, Cole C, Turner M, Sawarkar R, Chapman M, Bushell M, Willis A. Eukaryotic initiation factor 4B is a multi-functional RNA binding protein that regulates histone mRNAs. Nucleic Acids Res 2024; 52:12039-12054. [PMID: 39225047 PMCID: PMC11514447 DOI: 10.1093/nar/gkae767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
RNA binding proteins drive proliferation and tumorigenesis by regulating the translation and stability of specific subsets of messenger RNAs (mRNAs). We have investigated the role of eukaryotic initiation factor 4B (eIF4B) in this process and identify 10-fold more RNA binding sites for eIF4B in tumour cells from patients with diffuse large B-cell lymphoma compared to control B cells and, using individual-nucleotide resolution UV cross-linking and immunoprecipitation, find that eIF4B binds the entire length of mRNA transcripts. eIF4B stimulates the helicase activity of eIF4A, thereby promoting the unwinding of RNA structure within the 5' untranslated regions of mRNAs. We have found that, in addition to its well-documented role in mRNA translation, eIF4B additionally interacts with proteins associated with RNA turnover, including UPF1 (up-frameshift protein 1), which plays a key role in histone mRNA degradation at the end of S phase. Consistent with these data, we locate an eIF4B binding site upstream of the stem-loop structure in histone mRNAs and show that decreased eIF4B expression alters histone mRNA turnover and delays cell cycle progression through S phase. Collectively, these data provide insight into how eIF4B promotes tumorigenesis.
Collapse
Affiliation(s)
- Ana Quintas
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Robert F Harvey
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Emilie Horvilleur
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Gavin D Garland
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Tobias Schmidt
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Lajos Kalmar
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Veronica Dezi
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alberto Marini
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alexander M Fulton
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Tuija A A Pöyry
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Cameron H Cole
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Martin Turner
- Immunology Programme, Babraham Institute, Babraham Science Campus, Cambridgeshire CB22 3AT, UK
| | - Ritwick Sawarkar
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
10
|
Swain BC, Sarkis P, Ung V, Rousseau S, Fernandez L, Meltonyan A, Aho VE, Mercadante D, Mackereth CD, Aznauryan M. Disordered regions of human eIF4B orchestrate a dynamic self-association landscape. Nat Commun 2024; 15:8766. [PMID: 39384813 PMCID: PMC11464913 DOI: 10.1038/s41467-024-53136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024] Open
Abstract
Eukaryotic translation initiation factor eIF4B is required for efficient cap-dependent translation, it is overexpressed in cancer cells, and may influence stress granule formation. Due to the high degree of intrinsic disorder, eIF4B is rarely observed in cryo-EM structures of translation complexes and only ever by its single structured RNA recognition motif domain, leaving the molecular details of its large intrinsically disordered region (IDR) unknown. By integrating experiments and simulations we demonstrate that eIF4B IDR orchestrates and fine-tunes an intricate transition from monomers to a condensed phase, in which large-size dynamic oligomers form before mesoscopic phase separation. Single-molecule spectroscopy combined with molecular simulations enabled us to characterize the conformational ensembles and underlying intra- and intermolecular dynamics across the oligomerization transition. The observed sensitivity to ionic strength and molecular crowding in the self-association landscape suggests potential regulation of eIF4B nanoscopic and mesoscopic behaviors such as driven by protein modifications, binding partners or changes to the cellular environment.
Collapse
Affiliation(s)
- Bikash Chandra Swain
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
| | - Pascale Sarkis
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
| | - Vanessa Ung
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Sabrina Rousseau
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
| | - Laurent Fernandez
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
| | - Ani Meltonyan
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
| | - V Esperance Aho
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
- Institut de Biologie Structurale (IBS), UMR 5075, F-38044, Grenoble, France
| | - Davide Mercadante
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Cameron D Mackereth
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, F-33000, Bordeaux, France.
| | - Mikayel Aznauryan
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France.
| |
Collapse
|
11
|
Wegman R, Langberg M, Davis RB, Liu X, Luo M, Yu MC, Walker SE. Protein Arginine Methylation of the Translation Initiation Factor eIF1A Increases Usage of a Near-cognate Start Codon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608280. [PMID: 39185183 PMCID: PMC11343201 DOI: 10.1101/2024.08.16.608280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Protein arginine methylation has emerged as a key post-translational modification responsible for many facets of eukaryotic gene expression. To better understand the extent of this modification in cellular pathways, we carried out bioorthogonal methylation profiling in Saccharomyces cerevisiae to comprehensively identify the in vivo substrates of the major yeast protein arginine methyltransferase Hmt1. Gene ontology analysis of candidate substrates revealed an enrichment of proteins involved in the process of translation. We verified one such factor, eIF1A, by in vitro methylation. Three sites on eIF1A were found to be responsible for its methylation: R13, R14, and R62, with varied capacity by which each site contributed to the overall methylation capacity in vitro. To determine the role of methylation in eIF1A function, we used a battery of arginine-to-alanine substitution mutants to evaluate translation fidelity in these mutants. Our data show that substitution mutants at R13 and R14 in the N-terminal tail improved the fidelity of start codon recognition in an initiation fidelity assay. Overall, our data suggest that Hmt1-mediated methylation of eIF1A fine-tunes the fidelity of start codon recognition for proper translation initiation.
Collapse
Affiliation(s)
| | - Michael Langberg
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Richoo B. Davis
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York, United States of America
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Xiaozhuo Liu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York, United States of America
| | - Michael C. Yu
- Address correspondence to: M.L, M.C.Y., and S.E.W., Minkui Luo, Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY. 10065, Fax: 646-888-3166, ; Sarah E. Walker, Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY. 14260, Fax: 716-645-2975, ; Michael C. Yu, Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY. 14260, Fax: 716-645-2975,
| | - Sarah E. Walker
- Address correspondence to: M.L, M.C.Y., and S.E.W., Minkui Luo, Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY. 10065, Fax: 646-888-3166, ; Sarah E. Walker, Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY. 14260, Fax: 716-645-2975, ; Michael C. Yu, Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY. 14260, Fax: 716-645-2975,
| |
Collapse
|
12
|
Diamond PD, McGlincy NJ, Ingolia NT. Depletion of cap-binding protein eIF4E dysregulates amino acid metabolic gene expression. Mol Cell 2024; 84:2119-2134.e5. [PMID: 38848691 DOI: 10.1016/j.molcel.2024.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024]
Abstract
Protein synthesis is metabolically costly and must be tightly coordinated with changing cellular needs and nutrient availability. The cap-binding protein eIF4E makes the earliest contact between mRNAs and the translation machinery, offering a key regulatory nexus. We acutely depleted this essential protein and found surprisingly modest effects on cell growth and recovery of protein synthesis. Paradoxically, impaired protein biosynthesis upregulated genes involved in the catabolism of aromatic amino acids simultaneously with the induction of the amino acid biosynthetic regulon driven by the integrated stress response factor GCN4. We further identified the translational control of Pho85 cyclin 5 (PCL5), a negative regulator of Gcn4, that provides a consistent protein-to-mRNA ratio under varied translation environments. This regulation depended in part on a uniquely long poly(A) tract in the PCL5 5' UTR and poly(A) binding protein. Collectively, these results highlight how eIF4E connects protein synthesis to metabolic gene regulation, uncovering mechanisms controlling translation during environmental challenges.
Collapse
Affiliation(s)
- Paige D Diamond
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas J McGlincy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Volegova MP, Brown LE, Banerjee U, Dries R, Sharma B, Kennedy A, Porco JA, George RE. The MYCN 5' UTR as a therapeutic target in neuroblastoma. Cell Rep 2024; 43:114134. [PMID: 38662542 PMCID: PMC11284644 DOI: 10.1016/j.celrep.2024.114134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/07/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024] Open
Abstract
Tumor MYCN amplification is seen in high-risk neuroblastoma, yet direct targeting of this oncogenic transcription factor has been challenging. Here, we take advantage of the dependence of MYCN-amplified neuroblastoma cells on increased protein synthesis to inhibit the activity of eukaryotic translation initiation factor 4A1 (eIF4A1) using an amidino-rocaglate, CMLD012824. Consistent with the role of this RNA helicase in resolving structural barriers in 5' untranslated regions (UTRs), CMLD012824 increased eIF4A1 affinity for polypurine-rich 5' UTRs, including that of the MYCN and associated transcripts with critical roles in cell proliferation. CMLD012824-mediated clamping of eIF4A1 spanned the full lengths of mRNAs, while translational inhibition was mediated through 5' UTR binding in a cap-dependent and -independent manner. Finally, CMLD012824 led to growth inhibition in MYCN-amplified neuroblastoma models without generalized toxicity. Our studies highlight the key role of eIF4A1 in MYCN-amplified neuroblastoma and demonstrate the therapeutic potential of disrupting its function.
Collapse
Affiliation(s)
- Marina P Volegova
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Lauren E Brown
- Boston University, Center for Molecular Discovery (BU-CMD), Boston, MA, USA; Boston University, Department of Chemistry, Boston, MA, USA
| | - Ushashi Banerjee
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ruben Dries
- Boston University School of Medicine, Computational Biomedicine, Boston, MA, USA
| | - Bandana Sharma
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alyssa Kennedy
- Boston Children's Cancer and Blood Disorders Center, Pediatric Hematology/Oncology, Boston, MA, USA
| | - John A Porco
- Boston University, Center for Molecular Discovery (BU-CMD), Boston, MA, USA; Boston University, Department of Chemistry, Boston, MA, USA
| | - Rani E George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Brito Querido J, Sokabe M, Díaz-López I, Gordiyenko Y, Fraser CS, Ramakrishnan V. The structure of a human translation initiation complex reveals two independent roles for the helicase eIF4A. Nat Struct Mol Biol 2024; 31:455-464. [PMID: 38287194 PMCID: PMC10948362 DOI: 10.1038/s41594-023-01196-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024]
Abstract
Eukaryotic translation initiation involves recruitment of the 43S pre-initiation complex to the 5' end of mRNA by the cap-binding complex eIF4F, forming the 48S translation initiation complex (48S), which then scans along the mRNA until the start codon is recognized. We have previously shown that eIF4F binds near the mRNA exit channel of the 43S, leaving open the question of how mRNA secondary structure is removed as it enters the mRNA channel on the other side of the 40S subunit. Here we report the structure of a human 48S that shows that, in addition to the eIF4A that is part of eIF4F, there is a second eIF4A helicase bound at the mRNA entry site, which could unwind RNA secondary structures as they enter the 48S. The structure also reveals conserved interactions between eIF4F and the 43S, probaby explaining how eIF4F can promote mRNA recruitment in all eukaryotes.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Masaaki Sokabe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | | | | | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| | | |
Collapse
|
15
|
Brito Querido J, Díaz-López I, Ramakrishnan V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat Rev Mol Cell Biol 2024; 25:168-186. [PMID: 38052923 DOI: 10.1038/s41580-023-00624-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 12/07/2023]
Abstract
The regulation of gene expression is fundamental for life. Whereas the role of transcriptional regulation of gene expression has been studied for several decades, it has been clear over the past two decades that post-transcriptional regulation of gene expression, of which translation regulation is a major part, can be equally important. Translation can be divided into four main stages: initiation, elongation, termination and ribosome recycling. Translation is controlled mainly during its initiation, a process which culminates in a ribosome positioned with an initiator tRNA over the start codon and, thus, ready to begin elongation of the protein chain. mRNA translation has emerged as a powerful tool for the development of innovative therapies, yet the detailed mechanisms underlying the complex process of initiation remain unclear. Recent studies in yeast and mammals have started to shed light on some previously unclear aspects of this process. In this Review, we discuss the current state of knowledge on eukaryotic translation initiation and its regulation in health and disease. Specifically, we focus on recent advances in understanding the processes involved in assembling the 43S pre-initiation complex and its recruitment by the cap-binding complex eukaryotic translation initiation factor 4F (eIF4F) at the 5' end of mRNA. In addition, we discuss recent insights into ribosome scanning along the 5' untranslated region of mRNA and selection of the start codon, which culminates in joining of the 60S large subunit and formation of the 80S initiation complex.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Irene Díaz-López
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
16
|
Wang J, Zhang G, Qian W, Li K. Decoding the Heterogeneity and Specialized Function of Translation Machinery Through Ribosome Profiling in Yeast Mutants of Initiation Factors. Adv Biol (Weinh) 2024; 8:e2300494. [PMID: 37997253 DOI: 10.1002/adbi.202300494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/24/2023] [Indexed: 11/25/2023]
Abstract
The nuanced heterogeneity and specialized functions of translation machinery are increasingly recognized as crucial for precise translational regulation. Here, high-throughput ribosomal profiling (ribo-seq) is used to analyze the specialized roles of eukaryotic initiation factors (eIFs) in the budding yeast. By examining changes in ribosomal distribution across the genome resulting from knockouts of eIF4A, eIF4B, eIF4G1, CAF20, or EAP1, or knockdowns of eIF1, eIF1A, eIF4E, or PAB1, two distinct initiation-factor groups, the "looping" and "scanning" groups are discerned, based on similarities in the ribosomal landscapes their perturbation induced. The study delves into the cis-regulatory sequence features of genes influenced predominantly by each group, revealing that genes more dependent on the looping-group factors generally have shorter transcripts and poly(A) tails. In contrast, genes more dependent on the scanning-group factors often possess upstream open reading frames and exhibit a higher GC content in their 5' untranslated regions. From the ribosomal RNA fragments identified in the ribo-seq data, ribosomal heterogeneity associated with perturbation of specific initiation factors is further identified, suggesting their potential roles in regulating ribosomal components. Collectively, the study illuminates the complexity of translational regulation driven by heterogeneity and specialized functions of translation machinery, presenting potential approaches for targeted gene translation manipulation.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Geyu Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
17
|
Ando R, Ishikawa Y, Kamada Y, Izawa S. Contribution of the yeast bi-chaperone system in the restoration of the RNA helicase Ded1 and translational activity under severe ethanol stress. J Biol Chem 2023; 299:105472. [PMID: 37979914 PMCID: PMC10746526 DOI: 10.1016/j.jbc.2023.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Preexposure to mild stress often improves cellular tolerance to subsequent severe stress. Severe ethanol stress (10% v/v) causes persistent and pronounced translation repression in Saccharomyces cerevisiae. However, it remains unclear whether preexposure to mild stress can mitigate translation repression in yeast cells under severe ethanol stress. We found that the translational activity of yeast cells pretreated with 6% (v/v) ethanol was initially significantly repressed under subsequent 10% ethanol but was then gradually restored even under severe ethanol stress. We also found that 10% ethanol caused the aggregation of Ded1, which plays a key role in translation initiation as a DEAD-box RNA helicase. Pretreatment with 6% ethanol led to the gradual disaggregation of Ded1 under subsequent 10% ethanol treatment in wild-type cells but not in fes1Δhsp104Δ cells, which are deficient in Hsp104 with significantly reduced capacity for Hsp70. Hsp104 and Hsp70 are key components of the bi-chaperone system that play a role in yeast protein quality control. fes1Δhsp104Δ cells did not restore translational activity under 10% ethanol, even after pretreatment with 6% ethanol. These results indicate that the regeneration of Ded1 through the bi-chaperone system leads to the gradual restoration of translational activity under continuous severe stress. This study provides new insights into the acquired tolerance of yeast cells to severe ethanol stress and the resilience of their translational activity.
Collapse
Affiliation(s)
- Ryoko Ando
- Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | - Yu Ishikawa
- Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | | | - Shingo Izawa
- Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
18
|
Mondal S, Rousseau S, Talenton V, Thiam CAB, Aznauryan M, Mackereth CD. Backbone resonance assignments of the C-terminal region of human translation initiation factor eIF4B. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:199-203. [PMID: 37368134 DOI: 10.1007/s12104-023-10141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Translation initiation in eukaryotes is an early step in protein synthesis, requiring multiple factors to recruit the ribosomal small subunit to the mRNA 5' untranslated region. One such protein factor is the eukaryotic translation initiation factor 4B (eIF4B), which increases the activity of the eIF4A RNA helicase, and is linked to cell survival and proliferation. We report here the protein backbone chemical shift assignments corresponding to the C-terminal 279 residues of human eIF4B. Analysis of the chemical shift values identifies one main helical region in the area previously linked to RNA binding, and confirms that the overall C-terminal region is intrinsically disordered.
Collapse
Affiliation(s)
- Somnath Mondal
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, Institut Européen de Chimie et Biologie, Pessac, F-33600, France
| | - Sabrina Rousseau
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, Institut Européen de Chimie et Biologie, Pessac, F-33600, France
| | - Vincent Talenton
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, Institut Européen de Chimie et Biologie, Pessac, F-33600, France
| | - Cheikh Ahmadou Bamba Thiam
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, Institut Européen de Chimie et Biologie, Pessac, F-33600, France
| | - Mikayel Aznauryan
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, Institut Européen de Chimie et Biologie, Pessac, F-33600, France.
| | - Cameron D Mackereth
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, Institut Européen de Chimie et Biologie, Pessac, F-33600, France.
| |
Collapse
|
19
|
Ruggiero V, Fagioli C, de Pretis S, Di Carlo V, Landsberger N, Zacchetti D. Complex CDKL5 translational regulation and its potential role in CDKL5 deficiency disorder. Front Cell Neurosci 2023; 17:1231493. [PMID: 37964795 PMCID: PMC10642286 DOI: 10.3389/fncel.2023.1231493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
CDKL5 is a kinase with relevant functions in correct neuronal development and in the shaping of synapses. A decrease in its expression or activity leads to a severe neurodevelopmental condition known as CDKL5 deficiency disorder (CDD). CDD arises from CDKL5 mutations that lie in the coding region of the gene. However, the identification of a SNP in the CDKL5 5'UTR in a patient with symptoms consistent with CDD, together with the complexity of the CDKL5 transcript leader, points toward a relevant translational regulation of CDKL5 expression with important consequences in physiological processes as well as in the pathogenesis of CDD. We performed a bioinformatics and molecular analysis of the 5'UTR of CDKL5 to identify translational regulatory features. We propose an important role for structural cis-acting elements, with the involvement of the eukaryotic translational initiation factor eIF4B. By evaluating both cap-dependent and cap-independent translation initiation, we suggest the presence of an IRES supporting the translation of CDKL5 mRNA and propose a pathogenic effect of the C>T -189 SNP in decreasing the translation of the downstream protein.
Collapse
Affiliation(s)
- Valeria Ruggiero
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Fagioli
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano de Pretis
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valerio Di Carlo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy
| | - Nicoletta Landsberger
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy
| | - Daniele Zacchetti
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
20
|
Diamond PD, McGlincy NJ, Ingolia NT. Dysregulation of amino acid metabolism upon rapid depletion of cap-binding protein eIF4E. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540079. [PMID: 37214807 PMCID: PMC10197679 DOI: 10.1101/2023.05.11.540079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein synthesis is a crucial but metabolically costly biological process that must be tightly coordinated with cellular needs and nutrient availability. In response to environmental stress, translation initiation is modulated to control protein output while meeting new demands. The cap-binding protein eIF4E-the earliest contact between mRNAs and the translation machinery-serves as one point of control, but its contributions to mRNA-specific translation regulation remain poorly understood. To survey eIF4E-dependent translational control, we acutely depleted eIF4E and determined how this impacts protein synthesis. Despite its essentiality, eIF4E depletion had surprisingly modest effects on cell growth and protein synthesis. Analysis of transcript-level changes revealed that long-lived transcripts were downregulated, likely reflecting accelerated turnover. Paradoxically, eIF4E depletion led to simultaneous upregulation of genes involved in catabolism of aromatic amino acids, which arose as secondary effects of reduced protein biosynthesis on amino acid pools, and genes involved in the biosynthesis of amino acids. These futile cycles of amino acid synthesis and degradation were driven, in part, by translational activation of GCN4, a transcription factor typically induced by amino acid starvation. Furthermore, we identified a novel regulatory mechanism governing translation of PCL5, a negative regulator of Gcn4, that provides a consistent protein-to-mRNA ratio under varied translation environments. This translational control was partial dependent on a uniquely long poly-(A) tract in the PCL5 5' UTR and on poly-(A) binding protein. Collectively, these results highlight how eIF4E connects translation to amino acid homeostasis and stress responses and uncovers new mechanisms underlying how cells tightly control protein synthesis during environmental challenges.
Collapse
Affiliation(s)
- Paige D. Diamond
- Department of Molecular and Cell Biology, University of California, Berkeley
| | | | - Nicholas T. Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley
| |
Collapse
|
21
|
Gong Z, Shen P, Wang H, Zhu J, Liang K, Wang K, Mi Y, Shen S, Fang X, Liu G. A novel circular RNA circRBMS3 regulates proliferation and metastasis of osteosarcoma by targeting miR-424-eIF4B/YRDC axis. Aging (Albany NY) 2023; 15:1564-1590. [PMID: 36897170 PMCID: PMC10042691 DOI: 10.18632/aging.204567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/23/2023] [Indexed: 03/11/2023]
Abstract
Circular RNAs (circRNAs) have been demonstrated to have critical regulatory roles in tumorigenesis. However, the contribution of circRNAs to OS (osteosarcoma) remains largely unknown. circRNA deep sequencing was performed to the expression of circRNAs between OS and chondroma tissues. The regulatory and functional role of circRBMS3 (a circRNA derived from exons 7 to 10 of the RBMS3 gene, hsa_circ_0064644) upregulation was examined in OS and was validated in vitro and in vivo, upstream regulator and downstream target of circRBMS3 were both explored. RNA pull down, a luciferase reporter assay, biotin-coupled microRNA capture and fluorescence in situ hybridization were used to evaluate the interaction between circRBMS3 and micro (mi)-R-424-5p. For in vivo tumorigenesis experiments, Subcutaneous and Orthotopic xenograft OS mouse models were built. Expression of circRBMS3 was higher in OS tissues due to the regulation of adenosine deaminase 1-acting on RNA (ADAR1), an abundant RNA editing enzyme. Our in vitro data indicated that ShcircRBMS3 inhibits the proliferation and migration of osteosarcoma cells. Mechanistically, we showed that circRBMS3 could regulate eIF4B and YRDC, through 'sponging' miR-424-5p. Furthermore, knockdown of circRBMS3 inhibited malignant phenotypes and bone destruction of OS in vivo. Our results reveal an important role for a novel circRBMS3 in the growth and metastasis of malignant tumor cells and offer a fresh perspective on circRNAs in OS progression.
Collapse
Affiliation(s)
- Zhe Gong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Panyang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jinjin Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Kaiyu Liang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Kefan Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yunfeng Mi
- Department of Orthopaedic Surgery, Ningbo First Hospital, Ningbo 315010, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Gang Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
22
|
Zhang Y, Kang JY, Liu M, Huang Y. Diverse roles of biomolecular condensation in eukaryotic translational regulation. RNA Biol 2023; 20:893-907. [PMID: 37906632 PMCID: PMC10730148 DOI: 10.1080/15476286.2023.2275108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
Biomolecular condensates, forming membrane-less organelles, orchestrate the sub-cellular compartment to execute designated biological processes. An increasing body of evidence demonstrates the involvement of these biomolecular condensates in translational regulation. This review summarizes recent discoveries concerning biomolecular condensates associated with translational regulation, including their composition, assembly, and functions. Furthermore, we discussed the common features among these biomolecular condensates and the critical questions in the translational regulation areas. These emerging discoveries shed light on the enigmatic translational machinery, refine our understanding of translational regulation, and put forth potential therapeutic targets for diseases born out of translation dysregulation.
Collapse
Grants
- 32171186 AND 91940302 National Natural Science Foundation of China
- 91940305, 31830109, 31821004, 31961133022, 91640201, 32170815, AND 32101037 TO M.L., AND 32201058 National Natural Science Foundation of China
- 2022YFC2702600 National Key R&D Program of China
- 17JC1420100, 2017SHZDZX01, 19JC1410200, 21ZR1470200, 21PJ1413800, 21YF1452700, AND 21ZR1470500 Science and Technology Commission of Shanghai Municipality
- 2022YFC2702600 National Key R&D Program of China
- 2022T150425 China Postdoctoral Science Foundation
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Yan Kang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mofang Liu
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Scarpin MR, Simmons CH, Brunkard JO. Translating across kingdoms: target of rapamycin promotes protein synthesis through conserved and divergent pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7016-7025. [PMID: 35770874 PMCID: PMC9664230 DOI: 10.1093/jxb/erac267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
mRNA translation is the growth rate-limiting step in genome expression. Target of rapamycin (TOR) evolved a central regulatory role in eukaryotes as a signaling hub that monitors nutrient availability to maintain homeostasis and promote growth, largely by increasing the rate of translation initiation and protein synthesis. The dynamic pathways engaged by TOR to regulate translation remain debated even in well-studied yeast and mammalian models, however, despite decades of intense investigation. Recent studies have firmly established that TOR also regulates mRNA translation in plants through conserved mechanisms, such as the TOR-LARP1-5'TOP signaling axis, and through pathways specific to plants. Here, we review recent advances in our understanding of the regulation of mRNA translation in plants by TOR.
Collapse
Affiliation(s)
- M Regina Scarpin
- Laboratory of Genetics, University of Wisconsin, Madison, WI, USA
- Department of Plant and Microbial Biology, University of California, Berkeley,CA, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, USA
| | - Carl H Simmons
- Laboratory of Genetics, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
24
|
Roles of RNA-binding proteins in immune diseases and cancer. Semin Cancer Biol 2022; 86:310-324. [PMID: 35351611 DOI: 10.1016/j.semcancer.2022.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023]
Abstract
Genetic information that is transcribed from DNA to mRNA, and then translated from mRNA to protein, is regulated by complex and sophisticated post-transcriptional mechanisms. Recently, it has become clear that mRNA degradation not only acts to remove unnecessary mRNA, but is also closely associated with the regulation of translation initiation, and is essential for maintaining cellular homeostasis. Various RNA-binding proteins (RBPs) have been reported to play central roles in the mechanisms of mRNA stability and translation initiation through various signal transduction pathways, and to modulate gene expression faster than the transcription process via post-transcriptional modifications in response to intracellular and extracellular stimuli, without de novo protein synthesis. On the other hand, inflammation is necessary for the elimination of pathogens associated with infection, and is tightly controlled to avoid the overexpression of inflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor (TNF). It is increasingly becoming clear that RBPs play important roles in the post-transcriptional regulation of these immune responses. Furthermore, it has been shown that the aberrant regulation of RBPs leads to chronic inflammation and autoimmune diseases. Although it has been recognized since the time of Rudolf Virchow in the 19th century that cancer-associated inflammation contributes to tumor onset and progression, involvement of the disruption of the balance between anti-tumor immunity via the immune surveillance system and pro-tumor immunity by cancer-associated inflammation in the malignant transformation of cancer remains elusive. Recently, the dysregulated expression and activation of representative RBPs involved in regulation of the production of pro-inflammatory cytokines have been shown to be involved in tumor progression. In this review, we summarize the recent progress in our understanding of the functional roles of these RBPs in several types of immune responses, and the involvement of RBP dysregulation in the pathogenesis of immune diseases and cancer, and discuss possible therapeutic strategies against cancer by targeting RBPs, coupled with immunotherapy.
Collapse
|
25
|
Çetin B, O’Leary SE. mRNA- and factor-driven dynamic variability controls eIF4F-cap recognition for translation initiation. Nucleic Acids Res 2022; 50:8240-8261. [PMID: 35871304 PMCID: PMC9371892 DOI: 10.1093/nar/gkac631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
mRNA 5′ cap recognition by eIF4F is a key element of eukaryotic translational control. Kinetic differences in eIF4F–mRNA interactions have long been proposed to mediate translation-efficiency differences between mRNAs, and recent transcriptome-wide studies have revealed significant heterogeneity in eIF4F engagement with differentially-translated mRNAs. However, detailed kinetic information exists only for eIF4F interactions with short model RNAs. We developed and applied single-molecule fluorescence approaches to directly observe real-time Saccharomyces cerevisiae eIF4F subunit interactions with full-length polyadenylated mRNAs. We found that eIF4E–mRNA association rates linearly anticorrelate with mRNA length. eIF4G–mRNA interaction accelerates eIF4E–mRNA association in proportion to mRNA length, as does an eIF4F-independent activity of eIF4A, though cap-proximal secondary structure still plays an important role in defining the final association rates. eIF4F–mRNA interactions remained dominated by effects of eIF4G, but were modulated to different extents for different mRNAs by the presence of eIF4A and ATP. We also found that eIF4A-catalyzed ATP hydrolysis ejects eIF4E, and likely eIF4E•eIF4G from the mRNA after initial eIF4F•mRNA complex formation, suggesting a mechanism to prepare the mRNA 5′ end for ribosome recruitment. Our results support a role for mRNA-specific, factor-driven eIF4F association rates in kinetically controlling translation.
Collapse
Affiliation(s)
- Burak Çetin
- Graduate Program in Cell, Molecular, and Developmental Biology, University of California Riverside , Riverside, CA 92521, USA
| | - Seán E O’Leary
- Graduate Program in Cell, Molecular, and Developmental Biology, University of California Riverside , Riverside, CA 92521, USA
- Department of Biochemistry, University of California Riverside , Riverside, CA 92521, USA
| |
Collapse
|
26
|
Biziaev NS, Egorova TV, Alkalaeva EZ. Dynamics of Eukaryotic mRNA Structure during Translation. Mol Biol 2022. [DOI: 10.1134/s0026893322030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Liu X, Moshiri H, He Q, Sahoo A, Walker SE. Deletion of the N-Terminal Domain of Yeast Eukaryotic Initiation Factor 4B Reprograms Translation and Reduces Growth in Urea. Front Mol Biosci 2022; 8:787781. [PMID: 35047555 PMCID: PMC8762332 DOI: 10.3389/fmolb.2021.787781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
The yeast eukaryotic initiation factor 4B binds the 40S subunit in translation preinitiation complexes (PICs), promoting mRNA recruitment. Recent evidence indicates yeast mRNAs have variable dependence on eIF4B under optimal growth conditions. Given the ability of eIF4B to promote translation as a function of nutrient conditions in mammalian cells, we wondered if eIF4B activities in translation could alter phenotypes in yeast through differential mRNA selection for translation. Here we compared the effects of disrupting yeast eIF4B RNA- and 40S-binding motifs under ∼1400 growth conditions. The RNA-Recognition Motif (RRM) was dispensable for stress responses, but the 40S-binding N-terminal Domain (NTD) promoted growth in response to stressors requiring robust cellular integrity. In particular, the NTD conferred a strong growth advantage in the presence of urea, which may be important for pathogenesis of related fungal species. Ribosome profiling indicated that similar to complete eIF4B deletion, deletion of the NTD dramatically reduced translation, particularly of those mRNAs with long and highly structured 5-prime untranslated regions. This behavior was observed both with and without urea exposure, but the specific mRNA pool associated with ribosomes in response to urea differed. Deletion of the NTD led to relative increases in ribosome association of shorter transcripts with higher dependence on eIF4G, as was noted previously for eIF4B deletion. Gene ontology analysis indicated that proteins encoded by eIF4B NTD-dependent transcripts were associated with the cellular membrane system and the cell wall, while NTD-independent transcripts encoded proteins associated with cytoplasmic proteins and protein synthesis. This analysis highlighted the difference in structure content of mRNAs encoding membrane versus cytoplasmic housekeeping proteins and the variable reliance of specific gene ontology classes on various initiation factors promoting otherwise similar functions. Together our analyses suggest that deletion of the eIF4B NTD prevents cellular stress responses by affecting the capacity to translate a diverse mRNA pool.
Collapse
Affiliation(s)
- Xiaozhuo Liu
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Houtan Moshiri
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Qian He
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Ansuman Sahoo
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Sarah E Walker
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| |
Collapse
|
28
|
Stanciu A, Luo J, Funes L, Galbokke Hewage S, Kulkarni SD, Aitken CE. eIF3 and Its mRNA-Entry-Channel Arm Contribute to the Recruitment of mRNAs With Long 5′-Untranslated Regions. Front Mol Biosci 2022; 8:787664. [PMID: 35087868 PMCID: PMC8787345 DOI: 10.3389/fmolb.2021.787664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 01/21/2023] Open
Abstract
Translation initiation in eukaryotes is a multi-step pathway and the most regulated phase of translation. Eukaryotic initiation factor 3 (eIF3) is the largest and most complex of the translation initiation factors, and it contributes to events throughout the initiation pathway. In particular, eIF3 appears to play critical roles in mRNA recruitment. More recently, eIF3 has been implicated in driving the selective translation of specific classes of mRNAs. However, unraveling the mechanism of these diverse contributions—and disentangling the roles of the individual subunits of the eIF3 complex—remains challenging. We employed ribosome profiling of budding yeast cells expressing two distinct mutations targeting the eIF3 complex. These mutations either disrupt the entire complex or subunits positioned near the mRNA-entry channel of the ribosome and which appear to relocate during or in response to mRNA binding and start-codon recognition. Disruption of either the entire eIF3 complex or specific targeting of these subunits affects mRNAs with long 5′-untranslated regions and whose translation is more dependent on eIF4A, eIF4B, and Ded1 but less dependent on eIF4G, eIF4E, and PABP. Disruption of the entire eIF3 complex further affects mRNAs involved in mitochondrial processes and with structured 5′-untranslated regions. Comparison of the suite of mRNAs most sensitive to both mutations with those uniquely sensitive to disruption of the entire complex sheds new light on the specific roles of individual subunits of the eIF3 complex.
Collapse
Affiliation(s)
- Andrei Stanciu
- Computer Science Department, Vassar College, Poughkeepsie, NY, United States
| | - Juncheng Luo
- Biochemistry Program, Vassar College, Poughkeepsie, NY, United States
| | - Lucy Funes
- Biology Department, Vassar College, Poughkeepsie, NY, United States
| | | | - Shardul D. Kulkarni
- Department of Biochemistry and Molecular Biology, Penn State Eberly College of Medicine, University Park, PA, United States
| | - Colin Echeverría Aitken
- Biochemistry Program, Vassar College, Poughkeepsie, NY, United States
- Biology Department, Vassar College, Poughkeepsie, NY, United States
- *Correspondence: Colin Echeverría Aitken,
| |
Collapse
|
29
|
Down-Regulation of Yeast Helicase Ded1 by Glucose Starvation or Heat-Shock Differentially Impairs Translation of Ded1-Dependent mRNAs. Microorganisms 2021; 9:microorganisms9122413. [PMID: 34946015 PMCID: PMC8706886 DOI: 10.3390/microorganisms9122413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Ded1 is an essential DEAD-box helicase in yeast that broadly stimulates translation initiation and is critical for mRNAs with structured 5′UTRs. Recent evidence suggests that the condensation of Ded1 in mRNA granules down-regulates Ded1 function during heat-shock and glucose starvation. We examined this hypothesis by determining the overlap between mRNAs whose relative translational efficiencies (TEs), as determined by ribosomal profiling, were diminished in either stressed WT cells or in ded1 mutants examined in non-stress conditions. Only subsets of the Ded1-hyperdependent mRNAs identified in ded1 mutant cells exhibited strong TE reductions in glucose-starved or heat-shocked WT cells, and those down-regulated by glucose starvation also exhibited hyper-dependence on initiation factor eIF4B, and to a lesser extent eIF4A, for efficient translation in non-stressed cells. These findings are consistent with recent proposals that the dissociation of Ded1 from mRNA 5′UTRs and the condensation of Ded1 contribute to reduced Ded1 function during stress, and they further suggest that the down-regulation of eIF4B and eIF4A functions also contributes to the translational impairment of a select group of Ded1 mRNA targets with heightened dependence on all three factors during glucose starvation.
Collapse
|
30
|
Saba JA, Liakath-Ali K, Green R, Watt FM. Translational control of stem cell function. Nat Rev Mol Cell Biol 2021; 22:671-690. [PMID: 34272502 DOI: 10.1038/s41580-021-00386-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.
Collapse
Affiliation(s)
- James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kifayathullah Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK.
| |
Collapse
|
31
|
Andreev DE, Smirnova VV, Shatsky IN. Modifications of Ribosome Profiling that Provide New Data on the Translation Regulation. BIOCHEMISTRY (MOSCOW) 2021; 86:1095-1106. [PMID: 34565313 DOI: 10.1134/s0006297921090054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribosome profiling (riboseq) has opened the possibilities for the genome-wide studies of translation in all living organisms. This method is based on deep sequencing of mRNA fragments protected by the ribosomes from hydrolysis by ribonucleases, the so-called ribosomal footprints (RFPs). Ribosomal profiling together with RNA sequencing allows not only to identify with a reasonable accuracy translated reading frames in the transcriptome, but also to track changes in gene expression in response to various stimuli. Notably, ribosomal profiling in its classical version has certain limitations. The size of the selected mRNA fragments is 25-35 nts, while RFPs of other sizes are usually omitted from analysis. Also, ribosomal profiling "averages" the data from all ribosomes and does not allow to study specific ribosomal complexes associated with particular translation factors. However, recently developed modifications of ribosomal profiling provide answers to a number of questions. Thus, it has become possible to analyze not only elongating, but also scanning and reinitiating ribosomes, to study events associated with the collision of ribosomes during mRNA translation, to discover new ways of cotranslational assembly of multisubunit protein complexes during translation, and to selectively isolate ribosomal complexes associated with certain protein factors. New data obtained using these modified approaches provide a better understanding of the mechanisms of translation regulation and the functional roles of translational apparatus components.
Collapse
Affiliation(s)
- Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Viktoriya V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
32
|
Bettegazzi B, Sebastian Monasor L, Bellani S, Codazzi F, Restelli LM, Colombo AV, Deigendesch N, Frank S, Saito T, Saido TC, Lammich S, Tahirovic S, Grohovaz F, Zacchetti D. Casein Kinase 2 dependent phosphorylation of eIF4B regulates BACE1 expression in Alzheimer's disease. Cell Death Dis 2021; 12:769. [PMID: 34349120 PMCID: PMC8339060 DOI: 10.1038/s41419-021-04062-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Increased Aβ production plays a fundamental role in the pathogenesis of the disease and BACE1, the protease that triggers the amyloidogenic processing of APP, is a key protein and a pharmacological target in AD. Changes in neuronal activity have been linked to BACE1 expression and Aβ generation, but the underlying mechanisms are still unclear. We provide clear evidence for the role of Casein Kinase 2 in the control of activity-driven BACE1 expression in cultured primary neurons, organotypic brain slices, and murine AD models. More specifically, we demonstrate that neuronal activity promotes Casein Kinase 2 dependent phosphorylation of the translation initiation factor eIF4B and this, in turn, controls BACE1 expression and APP processing. Finally, we show that eIF4B expression and phosphorylation are increased in the brain of APPPS1 and APP-KI mice, as well as in AD patients. Overall, we provide a definition of a mechanism linking brain activity with amyloid production and deposition, opening new perspectives from the therapeutic standpoint.
Collapse
Affiliation(s)
- Barbara Bettegazzi
- Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy.
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| | | | - Serena Bellani
- Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Franca Codazzi
- Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Lisa Michelle Restelli
- Basel University Hospital, Institute of Medical Genetics and Pathology, Schoenbeinstrasse 40, 4031, Basel (CH), Switzerland
| | | | - Nikolaus Deigendesch
- Basel University Hospital, Institute of Medical Genetics and Pathology, Schoenbeinstrasse 40, 4031, Basel (CH), Switzerland
| | - Stephan Frank
- Basel University Hospital, Institute of Medical Genetics and Pathology, Schoenbeinstrasse 40, 4031, Basel (CH), Switzerland
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department of Neurocognitive Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Sven Lammich
- BMC - Biochemistry, Ludwig Maximilians University Munich, 81377, Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377, Munich, Germany
| | - Fabio Grohovaz
- Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Daniele Zacchetti
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
33
|
Calviello L, Venkataramanan S, Rogowski KJ, Wyler E, Wilkins K, Tejura M, Thai B, Krol J, Filipowicz W, Landthaler M, Floor SN. DDX3 depletion represses translation of mRNAs with complex 5' UTRs. Nucleic Acids Res 2021; 49:5336-5350. [PMID: 33905506 PMCID: PMC8136831 DOI: 10.1093/nar/gkab287] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
DDX3 is an RNA chaperone of the DEAD-box family that regulates translation. Ded1, the yeast ortholog of DDX3, is a global regulator of translation, whereas DDX3 is thought to preferentially affect a subset of mRNAs. However, the set of mRNAs that are regulated by DDX3 are unknown, along with the relationship between DDX3 binding and activity. Here, we use ribosome profiling, RNA-seq, and PAR-CLIP to define the set of mRNAs that are regulated by DDX3 in human cells. We find that while DDX3 binds highly expressed mRNAs, depletion of DDX3 particularly affects the translation of a small subset of the transcriptome. We further find that DDX3 binds a site on helix 16 of the human ribosomal rRNA, placing it immediately adjacent to the mRNA entry channel. Translation changes caused by depleting DDX3 levels or expressing an inactive point mutation are different, consistent with different association of these genetic variant types with disease. Taken together, this work defines the subset of the transcriptome that is responsive to DDX3 inhibition, with relevance for basic biology and disease states where DDX3 is altered.
Collapse
Affiliation(s)
- Lorenzo Calviello
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Srivats Venkataramanan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karol J Rogowski
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Kevin Wilkins
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Malvika Tejura
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bao Thai
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jacek Krol
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,IRI Life Sciences, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
34
|
Witte F, Ruiz-Orera J, Mattioli CC, Blachut S, Adami E, Schulz JF, Schneider-Lunitz V, Hummel O, Patone G, Mücke MB, Šilhavý J, Heinig M, Bottolo L, Sanchis D, Vingron M, Chekulaeva M, Pravenec M, Hubner N, van Heesch S. A trans locus causes a ribosomopathy in hypertrophic hearts that affects mRNA translation in a protein length-dependent fashion. Genome Biol 2021; 22:191. [PMID: 34183069 PMCID: PMC8240307 DOI: 10.1186/s13059-021-02397-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Little is known about the impact of trans-acting genetic variation on the rates with which proteins are synthesized by ribosomes. Here, we investigate the influence of such distant genetic loci on the efficiency of mRNA translation and define their contribution to the development of complex disease phenotypes within a panel of rat recombinant inbred lines. RESULTS We identify several tissue-specific master regulatory hotspots that each control the translation rates of multiple proteins. One of these loci is restricted to hypertrophic hearts, where it drives a translatome-wide and protein length-dependent change in translational efficiency, altering the stoichiometric translation rates of sarcomere proteins. Mechanistic dissection of this locus across multiple congenic lines points to a translation machinery defect, characterized by marked differences in polysome profiles and misregulation of the small nucleolar RNA SNORA48. Strikingly, from yeast to humans, we observe reproducible protein length-dependent shifts in translational efficiency as a conserved hallmark of translation machinery mutants, including those that cause ribosomopathies. Depending on the factor mutated, a pre-existing negative correlation between protein length and translation rates could either be enhanced or reduced, which we propose to result from mRNA-specific imbalances in canonical translation initiation and reinitiation rates. CONCLUSIONS We show that distant genetic control of mRNA translation is abundant in mammalian tissues, exemplified by a single genomic locus that triggers a translation-driven molecular mechanism. Our work illustrates the complexity through which genetic variation can drive phenotypic variability between individuals and thereby contribute to complex disease.
Collapse
Affiliation(s)
- Franziska Witte
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Present Address: NUVISAN ICB GmbH, Lead Discovery-Structrual Biology, 13353, Berlin, Germany
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Camilla Ciolli Mattioli
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
- Present Address: Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Susanne Blachut
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Present Address: Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
| | - Jana Felicitas Schulz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Valentin Schneider-Lunitz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Oliver Hummel
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Michael Benedikt Mücke
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
- Charité-Universitätsmedizin, 10117, Berlin, Germany
| | - Jan Šilhavý
- Institute of Physiology of the Czech Academy of Sciences, 4, 142 20, Praha, Czech Republic
| | - Matthias Heinig
- Institute of Computational Biology (ICB), HMGU, Ingolstaedter Landstr. 1, 85764 Neuherberg, Munich, Germany
- Department of Informatics, Technische Universitaet Muenchen (TUM), Boltzmannstr. 3, 85748 Garching, Munich, Germany
| | - Leonardo Bottolo
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- The Alan Turing Institute, London, NW1 2DB, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Daniel Sanchis
- Institut de Recerca Biomedica de Lleida (IRBLLEIDA), Universitat de Lleida, Edifici Biomedicina-I. Av. Rovira Roure, 80, 25198, Lleida, Spain
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Marina Chekulaeva
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, 4, 142 20, Praha, Czech Republic
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany.
- Charité-Universitätsmedizin, 10117, Berlin, Germany.
| | - Sebastiaan van Heesch
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
- Present Address: The Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
35
|
Katan T, Xue X, Caballero-Solares A, Taylor RG, Parrish CC, Rise ML. Influence of Varying Dietary ω6 to ω3 Fatty Acid Ratios on the Hepatic Transcriptome, and Association with Phenotypic Traits (Growth, Somatic Indices, and Tissue Lipid Composition), in Atlantic Salmon ( Salmo salar). BIOLOGY 2021; 10:biology10070578. [PMID: 34202562 PMCID: PMC8301090 DOI: 10.3390/biology10070578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Plant oils are routinely used in fish feeds as a fish oil replacement. However, these terrestrial alternatives typically contain high levels of ω6 fatty acids (FA) and, thus, high ω6 to ω3 (ω6:ω3) FA ratios, which influence farmed fish and their consumers. The ω6:ω3 ratio is known to affect many biological processes (e.g., inflammation, FA metabolism) and human diseases; however, its impacts on fish physiology and the underlying molecular mechanisms are less well understood. In this study, we used 44 K microarrays to examine which genes and molecular pathways are altered by variation in dietary ω6:ω3 in Atlantic salmon. Our microarray study showed that several genes related to immune response, lipid metabolism, cell proliferation, and translation were differentially expressed between the two extreme ω6:ω3 dietary treatments. We also revealed that the PPARα activation-related transcript helz2 is a potential novel molecular biomarker of tissue variation in ω6:ω3. Further, correlation analyses illustrated the relationships between liver transcript expression and tissue (liver, muscle) lipid composition, and other phenotypic traits in salmon fed low levels of fish oil. This nutrigenomic study enhanced the current understanding of Atlantic salmon gene expression response to varying dietary ω6:ω3. Abstract The importance of dietary omega-6 to omega-3 (ω6:ω3) fatty acid (FA) ratios for human health has been extensively examined. However, its impact on fish physiology, and the underlying molecular mechanisms, are less well understood. This study investigated the influence of plant-based diets (12-week exposure) with varying ω6:ω3 (0.4–2.7) on the hepatic transcriptome of Atlantic salmon. Using 44 K microarray analysis, genes involved in immune and inflammatory response (lect2a, itgb5, helz2a, p43), lipid metabolism (helz2a), cell proliferation (htra1b), control of muscle and neuronal development (mef2d) and translation (eif2a, eif4b1, p43) were identified; these were differentially expressed between the two extreme ω6:ω3 dietary treatments (high ω6 vs. high ω3) at week 12. Eight out of 10 microarray-identified transcripts showed an agreement in the direction of expression fold-change between the microarray and qPCR studies. The PPARα activation-related transcript helz2a was confirmed by qPCR to be down-regulated by high ω6 diet compared with high ω3 diet. The transcript expression of two helz2 paralogues was positively correlated with ω3, and negatively with ω6 FA in both liver and muscle, thus indicating their potential as biomarkers of tissue ω6:ω3 variation. Mef2d expression in liver was suppressed in the high ω6 compared to the balanced diet (ω6:ω3 of 2.7 and 0.9, respectively) fed fish, and showed negative correlations with ω6:ω3 in both tissues. The hepatic expression of two lect2 paralogues was negatively correlated with viscerosomatic index, while htra1b correlated negatively with salmon weight gain and condition factor. Finally, p43 and eif2a were positively correlated with liver Σω3, while these transcripts and eif4b2 showed negative correlations with 18:2ω6 in the liver. This suggested that some aspects of protein synthesis were influenced by dietary ω6:ω3. In summary, this nutrigenomic study identified hepatic transcripts responsive to dietary variation in ω6:ω3, and relationships of transcript expression with tissue (liver, muscle) lipid composition and other phenotypic traits.
Collapse
Affiliation(s)
- Tomer Katan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
- Correspondence: (T.K.); (A.C.-S.); Tel.: +1-709-7703846 (T.K.); Tel.: +1-709-3251598 (A.C.-S.)
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
- Correspondence: (T.K.); (A.C.-S.); Tel.: +1-709-7703846 (T.K.); Tel.: +1-709-3251598 (A.C.-S.)
| | - Richard G. Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN 55330, USA;
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
| |
Collapse
|
36
|
Singh K, Lin J, Lecomte N, Mohan P, Gokce A, Sanghvi VR, Jiang M, Grbovic-Huezo O, Burčul A, Stark SG, Romesser PB, Chang Q, Melchor JP, Beyer RK, Duggan M, Fukase Y, Yang G, Ouerfelli O, Viale A, de Stanchina E, Stamford AW, Meinke PT, Rätsch G, Leach SD, Ouyang Z, Wendel HG. Targeting eIF4A-Dependent Translation of KRAS Signaling Molecules. Cancer Res 2021; 81:2002-2014. [PMID: 33632898 PMCID: PMC8137674 DOI: 10.1158/0008-5472.can-20-2929] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 11/16/2022]
Abstract
Pancreatic adenocarcinoma (PDAC) epitomizes a deadly cancer driven by abnormal KRAS signaling. Here, we show that the eIF4A RNA helicase is required for translation of key KRAS signaling molecules and that pharmacological inhibition of eIF4A has single-agent activity against murine and human PDAC models at safe dose levels. EIF4A was uniquely required for the translation of mRNAs with long and highly structured 5' untranslated regions, including those with multiple G-quadruplex elements. Computational analyses identified these features in mRNAs encoding KRAS and key downstream molecules. Transcriptome-scale ribosome footprinting accurately identified eIF4A-dependent mRNAs in PDAC, including critical KRAS signaling molecules such as PI3K, RALA, RAC2, MET, MYC, and YAP1. These findings contrast with a recent study that relied on an older method, polysome fractionation, and implicated redox-related genes as eIF4A clients. Together, our findings highlight the power of ribosome footprinting in conjunction with deep RNA sequencing in accurately decoding translational control mechanisms and define the therapeutic mechanism of eIF4A inhibitors in PDAC. SIGNIFICANCE: These findings document the coordinate, eIF4A-dependent translation of RAS-related oncogenic signaling molecules and demonstrate therapeutic efficacy of eIF4A blockade in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Kamini Singh
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jianan Lin
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Nicolas Lecomte
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Prathibha Mohan
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Askan Gokce
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Viraj R Sanghvi
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York
- Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Man Jiang
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Olivera Grbovic-Huezo
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Antonija Burčul
- Computational Biology Department, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Stefan G Stark
- Computational Biology Department, Memorial Sloan-Kettering Cancer Center, New York, New York
- Department of Computer Science, Biomedical Informatics, ETH, Zürich, Zürich, Switzerland
| | - Paul B Romesser
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Qing Chang
- Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jerry P Melchor
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Rachel K Beyer
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Mark Duggan
- Tri-Institutional Drug Development Initiative, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Yoshiyuki Fukase
- Tri-Institutional Drug Development Initiative, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Guangli Yang
- The Organic Synthesis Core Facility, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Ouathek Ouerfelli
- The Organic Synthesis Core Facility, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Agnes Viale
- Integrated Genomics Operation, Center for Molecular Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Andrew W Stamford
- Tri-Institutional Drug Development Initiative, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Peter T Meinke
- Tri-Institutional Drug Development Initiative, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Gunnar Rätsch
- Computational Biology Department, Memorial Sloan-Kettering Cancer Center, New York, New York
- Department of Computer Science, Biomedical Informatics, ETH, Zürich, Zürich, Switzerland
| | - Steven D Leach
- Molecular Systems Biology and Surgery, Geisel School of Medicine, Dartmouth, Norris Cotton Cancer Center at Dartmouth-Hitchcock, Lebanon, New Hampshire
| | - Zhengqing Ouyang
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York.
| |
Collapse
|
37
|
Ueno D, Mikami M, Yamasaki S, Kaneko M, Mukuta T, Demura T, Kato K. Changes in mRNA Degradation Efficiencies under Varying Conditions Are Regulated by Multiple Determinants in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2021; 62:143-155. [PMID: 33289533 DOI: 10.1093/pcp/pcaa147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Multiple mechanisms are involved in gene expression, with mRNA degradation being critical for the control of mRNA accumulation. In plants, although some trans-acting factors and motif sequences have been identified in deadenylation-dependent mRNA degradation, endonucleolytic cleavage-dependent mRNA degradation has not been studied in detail. Previously, we developed truncated RNA-end sequencing (TREseq) in Arabidopsis thaliana and detected G-rich sequence motifs around 5' degradation intermediates. However, it remained to be elucidated whether degradation efficiencies of 5' degradation intermediates in A. thaliana vary among growth conditions and developmental stages. To address this issue, we conducted TREseq of cultured cells under heat stress and at three developmental stages (seedlings, expanding leaves and expanded leaves) and compared 5' degradation intermediates data among the samples. Although some 5' degradation intermediates had almost identical degradation efficiencies, others differed among conditions. We focused on the genes and sites whose degradation efficiencies differed. Changes in degradation efficiencies at the gene and site levels revealed an effect on mRNA accumulation in all comparisons. These changes in degradation efficiencies involved multiple determinants, including mRNA length and translation efficiency. These results suggest that several determinants govern the efficiency of mRNA degradation in plants, helping the organism to adapt to varying conditions by controlling mRNA accumulation.
Collapse
Affiliation(s)
- Daishin Ueno
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Maki Mikami
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Shotaro Yamasaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Miho Kaneko
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Takafumi Mukuta
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Ko Kato
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| |
Collapse
|
38
|
Gaikwad S, Ghobakhlou F, Young DJ, Visweswaraiah J, Zhang H, Hinnebusch AG. Reprogramming of translation in yeast cells impaired for ribosome recycling favors short, efficiently translated mRNAs. eLife 2021; 10:e64283. [PMID: 33764298 PMCID: PMC7993997 DOI: 10.7554/elife.64283] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, 43S preinitiation complex (PIC) formation is a rate-determining step of translation. Ribosome recycling following translation termination produces free 40S subunits for re-assembly of 43S PICs. Yeast mutants lacking orthologs of mammalian eIF2D (Tma64), and either MCT-1 (Tma20) or DENR (Tma22), are broadly impaired for 40S recycling; however, it was unknown whether this defect alters the translational efficiencies (TEs) of particular mRNAs. Here, we conducted ribosome profiling of a yeast tma64∆/tma20∆ double mutant and observed a marked reprogramming of translation, wherein the TEs of the most efficiently translated ('strong') mRNAs increase, while those of 'weak' mRNAs generally decline. Remarkably, similar reprogramming was seen on reducing 43S PIC assembly by inducing phosphorylation of eIF2α or by decreasing total 40S subunit levels by depleting Rps26. Our findings suggest that strong mRNAs outcompete weak mRNAs in response to 43S PIC limitation achieved in various ways, in accordance with previous mathematical modeling.
Collapse
Affiliation(s)
- Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Fardin Ghobakhlou
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - David J Young
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Jyothsna Visweswaraiah
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Hongen Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
39
|
Mechanisms of repeat-associated non-AUG translation in neurological microsatellite expansion disorders. Biochem Soc Trans 2021; 49:775-792. [PMID: 33729487 PMCID: PMC8106499 DOI: 10.1042/bst20200690] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Repeat-associated non-AUG (RAN) translation was discovered in 2011 in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1). This non-canonical form of translation occurs in all reading frames from both coding and non-coding regions of sense and antisense transcripts carrying expansions of trinucleotide to hexanucleotide repeat sequences. RAN translation has since been reported in 7 of the 53 known microsatellite expansion disorders which mainly present with neurodegenerative features. RAN translation leads to the biosynthesis of low-complexity polymeric repeat proteins with aggregating and cytotoxic properties. However, the molecular mechanisms and protein factors involved in assembling functional ribosomes in absence of canonical AUG start codons remain poorly characterised while secondary repeat RNA structures play key roles in initiating RAN translation. Here, we briefly review the repeat expansion disorders, their complex pathogenesis and the mechanisms of physiological translation initiation together with the known factors involved in RAN translation. Finally, we discuss research challenges surrounding the understanding of pathogenesis and future directions that may provide opportunities for the development of novel therapeutic approaches for this group of incurable neurodegenerative diseases.
Collapse
|
40
|
OTS167 blocks FLT3 translation and synergizes with FLT3 inhibitors in FLT3 mutant acute myeloid leukemia. Blood Cancer J 2021; 11:48. [PMID: 33658483 PMCID: PMC7930094 DOI: 10.1038/s41408-021-00433-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 12/30/2022] Open
Abstract
Internal tandem duplication (-ITD) mutations of Fms-like tyrosine kinase 3 (FLT3) provide growth and pro-survival signals in the context of established driver mutations in FLT3 mutant acute myeloid leukemia (AML). Maternal embryonic leucine zipper kinase (MELK) is an aberrantly expressed gene identified as a target in AML. The MELK inhibitor OTS167 induces cell death in AML including cells with FLT3 mutations, yet the role of MELK and mechanisms of OTS167 function are not understood. OTS167 alone or in combination with tyrosine kinase inhibitors (TKIs) were used to investigate the effect of OTS167 on FLT3 signaling and expression in human FLT3 mutant AML cell lines and primary cells. We describe a mechanism whereby OTS167 blocks FLT3 expression by blocking FLT3 translation and inhibiting phosphorylation of eukaryotic initiation factor 4E–binding protein 1 (4E-BP1) and eukaryotic translation initiation factor 4B (eIF4B). OTS167 in combination with TKIs results in synergistic induction of FLT3 mutant cell death in FLT3 mutant cell lines and prolonged survival in a FLT3 mutant AML xenograft mouse model. Our findings suggest signaling through MELK is necessary for the translation and expression of FLT3-ITD, and blocking MELK with OTS167 represents a viable therapeutic strategy for patients with FLT3 mutant AML.
Collapse
|
41
|
Bresson S, Shchepachev V, Spanos C, Turowski TW, Rappsilber J, Tollervey D. Stress-Induced Translation Inhibition through Rapid Displacement of Scanning Initiation Factors. Mol Cell 2020; 80:470-484.e8. [PMID: 33053322 PMCID: PMC7657445 DOI: 10.1016/j.molcel.2020.09.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/14/2020] [Accepted: 09/21/2020] [Indexed: 12/03/2022]
Abstract
Cellular responses to environmental stress are frequently mediated by RNA-binding proteins (RBPs). Here, we examined global RBP dynamics in Saccharomyces cerevisiae in response to glucose starvation and heat shock. Each stress induced rapid remodeling of the RNA-protein interactome without corresponding changes in RBP abundance. Consistent with general translation shutdown, ribosomal proteins contacting the mRNA showed decreased RNA association. Among translation components, RNA association was most reduced for initiation factors involved in 40S scanning (eukaryotic initiation factor 4A [eIF4A], eIF4B, and Ded1), indicating a common mechanism of translational repression. In unstressed cells, eIF4A, eIF4B, and Ded1 primarily targeted the 5′ ends of mRNAs. Following glucose withdrawal, 5′ binding was abolished within 30 s, explaining the rapid translation shutdown, but mRNAs remained stable. Heat shock induced progressive loss of 5′ RNA binding by initiation factors over ∼16 min and provoked mRNA degradation, particularly for translation-related factors, mediated by Xrn1. Taken together, these results reveal mechanisms underlying translational control of gene expression during stress. A quantitative proteomic approach reveals global stress-induced changes in RNA binding Translation shutdown is driven by rapid loss of mRNA binding by key initiation factors Heat shock induces general mRNA degradation facilitated by Xrn1
Collapse
Affiliation(s)
- Stefan Bresson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Vadim Shchepachev
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tomasz W Turowski
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
42
|
Begovich K, Wilhelm JE. An In Vitro Assembly System Identifies Roles for RNA Nucleation and ATP in Yeast Stress Granule Formation. Mol Cell 2020; 79:991-1007.e4. [PMID: 32780990 DOI: 10.1016/j.molcel.2020.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/22/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023]
Abstract
Stress granules (SGs) are condensates of mRNPs that form in response to stress. SGs arise by multivalent protein-protein, protein-RNA, and RNA-RNA interactions. However, the role of RNA-RNA interactions in SG assembly remains understudied. Here, we describe a yeast SG reconstitution system that faithfully recapitulates SG assembly in response to trigger RNAs. SGs assembled by stem-loop RNA triggers are ATP-sensitive, regulated by helicase/chaperone activity, and exhibit the hallmarks of maturation observed for SG proteins that phase-separate in vitro. Additionally, the fraction of total RNA that phase-separates in vitro is sufficient to trigger SG formation. However, condensation of NFT1 mRNA, an enriched transcript in this population, can only assemble an incomplete SG. These results suggest that networks of distinct transcripts are required to form a canonical SG and provide a platform for dissecting the interplay between the transcriptome and ATP-dependent remodeling in SG formation.
Collapse
Affiliation(s)
- Kyle Begovich
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute (HHMI) Summer Institute Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - James E Wilhelm
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute (HHMI) Summer Institute Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
43
|
Huggins HP, Keiper BD. Regulation of Germ Cell mRNPs by eIF4E:4EIP Complexes: Multiple Mechanisms, One Goal. Front Cell Dev Biol 2020; 8:562. [PMID: 32733883 PMCID: PMC7358283 DOI: 10.3389/fcell.2020.00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
Translational regulation of mRNAs is critically important for proper gene expression in germ cells, gametes, and embryos. The ability of the nucleus to control gene expression in these systems may be limited due to spatial or temporal constraints, as well as the breadth of gene products they express to prepare for the rapid animal development that follows. During development germ granules are hubs of post-transcriptional regulation of mRNAs. They assemble and remodel messenger ribonucleoprotein (mRNP) complexes for translational repression or activation. Recently, mRNPs have been appreciated as discrete regulatory units, whose function is dictated by the many positive and negative acting factors within the complex. Repressed mRNPs must be activated for translation on ribosomes to introduce novel proteins into germ cells. The binding of eIF4E to interacting proteins (4EIPs) that sequester it represents a node that controls many aspects of mRNP fate including localization, stability, poly(A) elongation, deadenylation, and translational activation/repression. Furthermore, plants and animals have evolved to express multiple functionally distinct eIF4E and 4EIP variants within germ cells, giving rise to different modes of translational regulation.
Collapse
Affiliation(s)
- Hayden P Huggins
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
44
|
Singh J. Phase Separation of RNA Helicase Triggers Stress-Responsive Translational Switch. Trends Biochem Sci 2020; 45:726-728. [PMID: 32622749 DOI: 10.1016/j.tibs.2020.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
A swift response to stress requires global translational suppression, excepting stress proteins. Recently, Iserman et al. uncovered that stress-induced phase separation of the RNA helicase Ded1p results in translational suppression of housekeeping transcripts that contain complex 5' untranslated regions (UTRs). Stress-response transcripts with simpler 5' UTRs escape this global translational suppression.
Collapse
Affiliation(s)
- Jogender Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India.
| |
Collapse
|
45
|
General and Target-Specific DExD/H RNA Helicases in Eukaryotic Translation Initiation. Int J Mol Sci 2020; 21:ijms21124402. [PMID: 32575790 PMCID: PMC7352612 DOI: 10.3390/ijms21124402] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
DExD (DDX)- and DExH (DHX)-box RNA helicases, named after their Asp-Glu-x-Asp/His motifs, are integral to almost all RNA metabolic processes in eukaryotic cells. They play myriad roles in processes ranging from transcription and mRNA-protein complex remodeling, to RNA decay and translation. This last facet, translation, is an intricate process that involves DDX/DHX helicases and presents a regulatory node that is highly targetable. Studies aimed at better understanding this family of conserved proteins have revealed insights into their structures, catalytic mechanisms, and biological roles. They have also led to the development of chemical modulators that seek to exploit their essential roles in diseases. Herein, we review the most recent insights on several general and target-specific DDX/DHX helicases in eukaryotic translation initiation.
Collapse
|
46
|
Translational profiling of macrophages infected with Leishmania donovani identifies mTOR- and eIF4A-sensitive immune-related transcripts. PLoS Pathog 2020; 16:e1008291. [PMID: 32479529 PMCID: PMC7310862 DOI: 10.1371/journal.ppat.1008291] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/23/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022] Open
Abstract
The protozoan parasite Leishmania donovani (L. donovani) causes visceral leishmaniasis, a chronic infection which is fatal when untreated. Herein, we investigated whether in addition to altering transcription, L. donovani modulates host mRNA translation to establish a successful infection. Polysome-profiling revealed that one third of protein-coding mRNAs expressed in primary mouse macrophages are differentially translated upon infection with L. donovani promastigotes or amastigotes. Gene ontology analysis identified key biological processes enriched for translationally regulated mRNAs and were predicted to be either activated (e.g. chromatin remodeling and RNA metabolism) or inhibited (e.g. intracellular trafficking and antigen presentation) upon infection. Mechanistic in silico and biochemical analyses showed selective activation mTOR- and eIF4A-dependent mRNA translation, including transcripts encoding central regulators of mRNA turnover and inflammation (i.e. PABPC1, EIF2AK2, and TGF-β). L. donovani survival within macrophages was favored under mTOR inhibition but was dampened by pharmacological blockade of eIF4A. Overall, this study uncovers a vast yet selective reprogramming of the host cell translational landscape early during L. donovani infection, and suggests that some of these changes are involved in host defense mechanisms while others are part of parasite-driven survival strategies. Further in vitro and in vivo investigation will shed light on the contribution of mTOR- and eIF4A-dependent translational programs to the outcome of visceral leishmaniasis.
Collapse
|
47
|
Iserman C, Desroches Altamirano C, Jegers C, Friedrich U, Zarin T, Fritsch AW, Mittasch M, Domingues A, Hersemann L, Jahnel M, Richter D, Guenther UP, Hentze MW, Moses AM, Hyman AA, Kramer G, Kreysing M, Franzmann TM, Alberti S. Condensation of Ded1p Promotes a Translational Switch from Housekeeping to Stress Protein Production. Cell 2020; 181:818-831.e19. [PMID: 32359423 PMCID: PMC7237889 DOI: 10.1016/j.cell.2020.04.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/16/2019] [Accepted: 04/06/2020] [Indexed: 11/24/2022]
Abstract
Cells sense elevated temperatures and mount an adaptive heat shock response that involves changes in gene expression, but the underlying mechanisms, particularly on the level of translation, remain unknown. Here we report that, in budding yeast, the essential translation initiation factor Ded1p undergoes heat-induced phase separation into gel-like condensates. Using ribosome profiling and an in vitro translation assay, we reveal that condensate formation inactivates Ded1p and represses translation of housekeeping mRNAs while promoting translation of stress mRNAs. Testing a variant of Ded1p with altered phase behavior as well as Ded1p homologs from diverse species, we demonstrate that Ded1p condensation is adaptive and fine-tuned to the maximum growth temperature of the respective organism. We conclude that Ded1p condensation is an integral part of an extended heat shock response that selectively represses translation of housekeeping mRNAs to promote survival under conditions of severe heat stress.
Collapse
Affiliation(s)
- Christiane Iserman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Christine Desroches Altamirano
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; BIOTEC and CMCB, Technische Universität Dresden, Tatzberg 47/48, 01307 Dresden, Germany
| | - Ceciel Jegers
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Ulrike Friedrich
- Center for Molecular Biology of the University of Heidelberg, German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Taraneh Zarin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Anatol W Fritsch
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Matthäus Mittasch
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Antonio Domingues
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Lena Hersemann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Marcus Jahnel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; BIOTEC and CMCB, Technische Universität Dresden, Tatzberg 47/48, 01307 Dresden, Germany
| | - Doris Richter
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; BIOTEC and CMCB, Technische Universität Dresden, Tatzberg 47/48, 01307 Dresden, Germany
| | - Ulf-Peter Guenther
- DKMS Life Science Lab GmbH, St. Petersburger Str. 2, 01069 Dresden, Germany
| | - Matthias W Hentze
- EMBL Heidelberg, Director's Research Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Alan M Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Günter Kramer
- Center for Molecular Biology of the University of Heidelberg, German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Moritz Kreysing
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Titus M Franzmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; BIOTEC and CMCB, Technische Universität Dresden, Tatzberg 47/48, 01307 Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; BIOTEC and CMCB, Technische Universität Dresden, Tatzberg 47/48, 01307 Dresden, Germany.
| |
Collapse
|
48
|
Zhou F, Zhang H, Kulkarni SD, Lorsch JR, Hinnebusch AG. eIF1 discriminates against suboptimal initiation sites to prevent excessive uORF translation genome-wide. RNA (NEW YORK, N.Y.) 2020; 26:419-438. [PMID: 31915290 PMCID: PMC7075259 DOI: 10.1261/rna.073536.119] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/06/2020] [Indexed: 05/22/2023]
Abstract
The translation preinitiation complex (PIC) scans the mRNA for an AUG codon in a favorable context. Previous findings suggest that the factor eIF1 discriminates against non-AUG start codons by impeding full accommodation of Met-tRNAi in the P site of the 40S ribosomal subunit, necessitating eIF1 dissociation for start codon selection. Consistent with this, yeast eIF1 substitutions that weaken its binding to the PIC increase initiation at UUG codons on a mutant his4 mRNA and particular synthetic mRNA reporters; and also at the AUG start codon of the mRNA for eIF1 itself owing to its poor Kozak context. It was not known however whether such eIF1 mutants increase initiation at suboptimal start codons genome-wide. By ribosome profiling, we show that the eIF1-L96P variant confers increased translation of numerous upstream open reading frames (uORFs) initiating with either near-cognate codons (NCCs) or AUGs in poor context. The increased uORF translation is frequently associated with the reduced translation of the downstream main coding sequences (CDS). Initiation is also elevated at certain NCCs initiating amino-terminal extensions, including those that direct mitochondrial localization of the GRS1 and ALA1 products, and at a small set of main CDS AUG codons with especially poor context, including that of eIF1 itself. Thus, eIF1 acts throughout the yeast translatome to discriminate against NCC start codons and AUGs in poor context; and impairing this function enhances the repressive effects of uORFs on CDS translation and alters the ratios of protein isoforms translated from near-cognate versus AUG start codons.
Collapse
Affiliation(s)
- Fujun Zhou
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hongen Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shardul D Kulkarni
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jon R Lorsch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
49
|
Sen ND, Gupta N, K Archer S, Preiss T, Lorsch JR, Hinnebusch AG. Functional interplay between DEAD-box RNA helicases Ded1 and Dbp1 in preinitiation complex attachment and scanning on structured mRNAs in vivo. Nucleic Acids Res 2019; 47:8785-8806. [PMID: 31299079 DOI: 10.1093/nar/gkz595] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 01/03/2023] Open
Abstract
RNA structures that impede ribosome binding or subsequent scanning of the 5'-untranslated region (5'-UTR) for the AUG initiation codon reduce translation efficiency. Yeast DEAD-box RNA helicase Ded1 appears to promote translation by resolving 5'-UTR structures, but whether its paralog, Dbp1, performs similar functions is unknown. Furthermore, direct in vivo evidence was lacking that Ded1 or Dbp1 resolves 5'-UTR structures that impede attachment of the 43S preinitiation complex (PIC) or scanning. Here, profiling of translating 80S ribosomes reveals that the translational efficiencies of many more mRNAs are reduced in a ded1-ts dbp1Δ double mutant versus either single mutant, becoming highly dependent on Dbp1 or Ded1 only when the other helicase is impaired. Such 'conditionally hyperdependent' mRNAs contain unusually long 5'-UTRs with heightened propensity for secondary structure and longer transcript lengths. Consistently, overexpressing Dbp1 in ded1 cells improves the translation of many such Ded1-hyperdependent mRNAs. Importantly, Dbp1 mimics Ded1 in conferring greater acceleration of 48S PIC assembly in a purified system on mRNAs harboring structured 5'-UTRs. Profiling 40S initiation complexes in ded1 and dbp1 mutants provides direct evidence that Ded1 and Dbp1 cooperate to stimulate both PIC attachment and scanning on many Ded1/Dbp1-hyperdependent mRNAs in vivo.
Collapse
Affiliation(s)
- Neelam Dabas Sen
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neha Gupta
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stuart K Archer
- Monash Bioinformatics Platform, Monash University, Clayton, VIC 3800, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Jon R Lorsch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
50
|
Goodman LD, Bonini NM. Repeat-associated non-AUG (RAN) translation mechanisms are running into focus for GGGGCC-repeat associated ALS/FTD. Prog Neurobiol 2019; 183:101697. [PMID: 31550516 DOI: 10.1016/j.pneurobio.2019.101697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/31/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Many human diseases are associated with the expansion of repeat sequences within the genes. It has become clear that expressed disease transcripts bearing such long repeats can undergo translation, even in the absence of a canonical AUG start codon. Termed "RAN translation" for repeat associated non-AUG translation, this process is becoming increasingly prominent as a contributor to these disorders. Here we discuss mechanisms and variables that impact translation of the repeat sequences associated with the C9orf72 gene. Expansions of a G4C2 repeat within intron 1 of this gene are associated with the motor neuron disease ALS and dementia FTD, which comprise a clinical and pathological spectrum. RAN translation of G4C2 repeat expansions has been studied in cells in culture (ex vivo) and in the fly in vivo. Cellular states that lead to RAN translation, like stress, may be critical contributors to disease progression. Greater elucidation of the mechanisms that impact this process and the factors contributing will lead to greater understanding of the repeat expansion diseases, to the potential development of novel approaches to therapeutics, and to a greater understanding of how these players impact biological processes in the absence of disease.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M Bonini
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|