1
|
Narasimhan BN, Fraley SI. Matrix degradation enhances stress relaxation, regulating cell adhesion and spreading. Proc Natl Acad Sci U S A 2025; 122:e2416771122. [PMID: 40131951 PMCID: PMC12002262 DOI: 10.1073/pnas.2416771122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/09/2025] [Indexed: 03/27/2025] Open
Abstract
In native extracellular matrices (ECM), cells utilize matrix metalloproteinases (MMPs) to degrade and remodel their microenvironment. Accordingly, synthetic matrices have been engineered to permit MMP-mediated cleavage, facilitating cell spreading, migration, and interactions. However, the interplay between matrix degradability and mechanical properties remains underexplored. We hypothesized that MMP activity induces immediate mechanical alterations in the ECM, which are subsequently detected by cells. We observed that both fibrillar collagen and synthetic degradable matrices exhibit enhanced stress relaxation following MMP exposure. Cells responded to these variations in relaxation by modulating their spreading and focal adhesions. Furthermore, we demonstrated that stress relaxation and cell spreading can be precisely controlled through the rational design of matrix degradability. These findings establish a fundamental link between matrix degradability and stress relaxation, with potential implications for a broad spectrum of biological applications.
Collapse
|
2
|
Guan Y, Zhang M, Song J, Negrete M, Adcock T, Kandel R, Racioppi L, Gerecht S. CaMKK2 Regulates Macrophage Polarization Induced by Matrix Stiffness: Implications for Shaping the Immune Response in Stiffened Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417778. [PMID: 40036145 PMCID: PMC12021110 DOI: 10.1002/advs.202417778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/13/2025] [Indexed: 03/06/2025]
Abstract
Macrophages are essential for immune responses and maintaining tissue homeostasis, exhibiting a wide range of phenotypes depending on their microenvironment. The extracellular matrix (ECM) is a vital component that provides structural support and organization to tissues, with matrix stiffness acting as a key regulator of macrophage behavior. Using physiologically relevant 3D stiffening hydrogel models, it is found that increased matrix stiffness alone promoted macrophage polarization toward a pro-regenerative phenotype, mimicking the effect of interleukin-4(IL-4) in softer matrices. Blocking Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) selectively inhibited stiffness-induced macrophage polarization without affecting IL-4-driven pro-regenerative pathways. In functional studies, CaMKK2 deletion prevented M2-like/pro-tumoral polarization caused by matrix stiffening, which in turn hindered tumor growth. In a murine wound healing model, loss of CaMKK2 impaired matrix stiffness-mediated macrophage accumulation, ultimately disrupting vascularization. These findings highlight the critical role of CaMKK2 in the macrophage mechanosensitive fate determination and gene expression program, positioning this kinase as a promising therapeutic target to selectively modulate macrophage responses in pathologically stiff tissues.
Collapse
Affiliation(s)
- Ya Guan
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Min Zhang
- Division of Hematological Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27708USA
| | - Jiyeon Song
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Marcos Negrete
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Tyler Adcock
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Reeva Kandel
- Division of Hematological Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27708USA
| | - Luigi Racioppi
- Division of Hematological Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27708USA
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | - Sharon Gerecht
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| |
Collapse
|
3
|
Hong Y, Peng X, Yu H, Jafari M, Shakiba D, Huang Y, Qu C, Melika EE, Tawadros AK, Mujahid A, Huang YY, Sandler JA, Pryse KM, Sacks JM, Elson EL, Genin GM, Alisafaei F. Cell-matrix feedback controls stretch-induced cellular memory and fibroblast activation. Proc Natl Acad Sci U S A 2025; 122:e2322762122. [PMID: 40100625 PMCID: PMC11962495 DOI: 10.1073/pnas.2322762122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/30/2025] [Indexed: 03/20/2025] Open
Abstract
Mechanical stretch can activate long-lived changes in fibroblasts, increasing their contractility and initiating phenotypic transformations. This activation, critical to wound healing and procedures such as skin grafting, increases with mechanical stimulus for cells cultured in two-dimensional but is highly variable in cells in three-dimensional (3D) tissue. Here, we show that static mechanical stretch of cells in 3D tissues can either increase or decrease fibroblast activation depending upon recursive cell-extracellular matrix (ECM) feedback and demonstrate control of this activation through integrated in vitro and mathematical models. ECM viscoelasticity, signaling dynamics, and cell mechanics combine to yield a predictable, but nonmonotonic, relationship between mechanical stretch and long-term cell activation. Results demonstrate that feedback between cells and ECM determine how cells retain memory of mechanical stretch and have direct implications for improving outcomes in skin grafting procedures.
Collapse
Affiliation(s)
- Yuan Hong
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO63130
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
| | - Xiangjun Peng
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO63130
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63130
| | - Haomin Yu
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO63130
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
| | - Mohammad Jafari
- NSF Science and Technology Center for Engineering Mechanobiology, Newark, NJ07102
- Department of Mechanical Engineering, New Jersey Institute of Technology, Newark, NJ07102
| | - Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO63130
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Yuxuan Huang
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO63130
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63130
| | - Chengqing Qu
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO63130
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
| | - Ermia E. Melika
- NSF Science and Technology Center for Engineering Mechanobiology, Newark, NJ07102
- Department of Mechanical Engineering, New Jersey Institute of Technology, Newark, NJ07102
| | - Andrew K. Tawadros
- NSF Science and Technology Center for Engineering Mechanobiology, Newark, NJ07102
- Department of Mechanical Engineering, New Jersey Institute of Technology, Newark, NJ07102
| | - Aliza Mujahid
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO63130
- NSF Science and Technology Center for Engineering Mechanobiology, Newark, NJ07102
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ07102
| | - Yin-Yuan Huang
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO63130
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63130
| | - Jacob A. Sandler
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO63130
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
| | - Kenneth M. Pryse
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO63130
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
| | - Justin M. Sacks
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO63110
| | - Elliot L. Elson
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO63130
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO63110
| | - Guy M. Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO63130
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63130
| | - Farid Alisafaei
- NSF Science and Technology Center for Engineering Mechanobiology, Newark, NJ07102
- Department of Mechanical Engineering, New Jersey Institute of Technology, Newark, NJ07102
| |
Collapse
|
4
|
Alisafaei F, Shakiba D, Hong Y, Ramahdita G, Huang Y, Iannucci LE, Davidson MD, Jafari M, Qian J, Qu C, Ju D, Flory DR, Huang YY, Gupta P, Jiang S, Mujahid A, Singamaneni S, Pryse KM, Chao PHG, Burdick JA, Lake SP, Elson EL, Huebsch N, Shenoy VB, Genin GM. Tension anisotropy drives fibroblast phenotypic transition by self-reinforcing cell-extracellular matrix mechanical feedback. NATURE MATERIALS 2025:10.1038/s41563-025-02162-5. [PMID: 40128624 DOI: 10.1038/s41563-025-02162-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/28/2025] [Indexed: 03/26/2025]
Abstract
Mechanical factors such as stress in the extracellular environment affect the phenotypic commitment of cells. Stress fields experienced by cells in tissues are multiaxial, but how cells integrate such information is largely unknown. Here we report that the anisotropy of stress fields is a critical factor triggering a phenotypic transition in fibroblast cells, outweighing the role of stress amplitude, a factor previously described to modulate such a transition. Combining experimental and computational approaches, we identified a self-reinforcing mechanism in which cellular protrusions interact with collagen fibres to establish tension anisotropy. This anisotropy, in turn, stabilizes the protrusions and enhances their contractile forces. Disruption of this self-reinforcing process, either by reducing tension anisotropy or by inhibiting contractile protrusions, prevents the phenotypic conversion of fibroblasts to contractile myofibroblasts. Overall, our findings support stress anisotropy as a factor modulating cellular responses, expanding our understanding of the role of mechanical forces in biological processes.
Collapse
Affiliation(s)
- Farid Alisafaei
- NSF Science and Technology Center for Engineering Mechanobiology, Newark, NJ, USA
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, Saint Louis, MO, USA
- Department of Mechanical Engineering & Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Yuan Hong
- NSF Science and Technology Center for Engineering Mechanobiology, Saint Louis, MO, USA
- Department of Mechanical Engineering & Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Ghiska Ramahdita
- NSF Science and Technology Center for Engineering Mechanobiology, Saint Louis, MO, USA
- Department of Mechanical Engineering & Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Yuxuan Huang
- NSF Science and Technology Center for Engineering Mechanobiology, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Leanne E Iannucci
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Matthew D Davidson
- NSF Science and Technology Center for Engineering Mechanobiology, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Mohammad Jafari
- NSF Science and Technology Center for Engineering Mechanobiology, Newark, NJ, USA
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Jin Qian
- NSF Science and Technology Center for Engineering Mechanobiology, Saint Louis, MO, USA
- Department of Mechanical Engineering & Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Chengqing Qu
- NSF Science and Technology Center for Engineering Mechanobiology, Saint Louis, MO, USA
- Department of Mechanical Engineering & Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - David Ju
- NSF Science and Technology Center for Engineering Mechanobiology, Saint Louis, MO, USA
- Department of Mechanical Engineering & Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Dashiell R Flory
- NSF Science and Technology Center for Engineering Mechanobiology, Saint Louis, MO, USA
- Department of Mechanical Engineering & Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Yin-Yuan Huang
- NSF Science and Technology Center for Engineering Mechanobiology, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Prashant Gupta
- Department of Mechanical Engineering & Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Shumeng Jiang
- NSF Science and Technology Center for Engineering Mechanobiology, Saint Louis, MO, USA
- Department of Mechanical Engineering & Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Aliza Mujahid
- NSF Science and Technology Center for Engineering Mechanobiology, Newark, NJ, USA
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Saint Louis, MO, USA
- Department of Mechanical Engineering & Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering & Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Kenneth M Pryse
- NSF Science and Technology Center for Engineering Mechanobiology, Saint Louis, MO, USA
- Department of Mechanical Engineering & Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Pen-Hsiu Grace Chao
- Department of Biomedical Engineering, School of Engineering and School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jason A Burdick
- NSF Science and Technology Center for Engineering Mechanobiology, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Spencer P Lake
- Department of Mechanical Engineering & Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
- Department of Orthopaedic Surgery, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Elliot L Elson
- NSF Science and Technology Center for Engineering Mechanobiology, Saint Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nathaniel Huebsch
- NSF Science and Technology Center for Engineering Mechanobiology, Saint Louis, MO, USA.
- Department of Mechanical Engineering & Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA.
| | - Vivek B Shenoy
- NSF Science and Technology Center for Engineering Mechanobiology, Philadelphia, PA, USA.
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Saint Louis, MO, USA.
- Department of Mechanical Engineering & Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA.
| |
Collapse
|
5
|
Ranamukhaarachchi SK, Walker A, Tang MH, Leineweber WD, Lam S, Rappel WJ, Fraley SI. Global versus local matrix remodeling drives rotational versus invasive collective migration of epithelial cells. Dev Cell 2025; 60:871-884.e8. [PMID: 39706188 PMCID: PMC11945606 DOI: 10.1016/j.devcel.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/18/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
The coordinated movement of cell collectives is essential for normal epithelial tissue development, maintenance, and cancer progression. Here, we report on a minimal 3D extracellular matrix (ECM) system wherein both invasive collective migration (ICM) and rotational collective migration (RCM) arise spontaneously from individually seeded epithelial cells of mammary and hepatic origin, regardless of whether they express adherens junctions, and lead to ductal-like and acinar-like structures, respectively. Quantitative microscopy and cellular Potts modeling reveal that initial differences in cell protrusion dynamics and matrix-remodeling localization generate RCM and ICM behavior in confining 3D ECM. Matrix-remodeling activity by matrix metalloproteinases (MMPs) is localized to the base of protrusions in cells that initiate ICM, whereas RCM does not require MMPs and is associated with ITGβ1-mediated remodeling localized globally around the cell body. Further analysis in vitro and in vivo supports the concept that distinct matrix-remodeling strategies encode collective migration behaviors and tissue structure.
Collapse
Affiliation(s)
| | - Alyssa Walker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Man-Ho Tang
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - William D Leineweber
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophia Lam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Stephanie I Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Peng X, Huang Y, Kong W, Du Y, Elson EL, Feng XQ, Genin GM. Critical Cell Spacing Drives Phase Transition in Matrix-Mediated Tissue Condensation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.05.622090. [PMID: 40166242 PMCID: PMC11956908 DOI: 10.1101/2024.11.05.622090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Biological tissues exhibit phase transitions governed by mechanical feedback between cells and their extracellular matrix (ECM). We demonstrate through bio-chemo-mechanical modeling that this emergent behavior arises from competing physical effects: increasing matrix stiffness enhances individual cell activation while simultaneously weakening long-range mechanical communication. This competition establishes a critical cell spacing threshold (80-160 µ m) that precisely matches experimental observations across diverse cell types and collagen densities. Our model reveals that the critical stretch ratio at which fibrous networks transition from compliant to strain-stiffening governs this threshold through the formation of tension bands between neighboring cells. These tension bands create a mechanical percolation network that drives the collective phase transition in tissue behavior. Our model explains how fibrous architecture controls emergent mechanical properties in biological systems and offers insight into both the physics of fiber-reinforced composite materials under active stress, and into potential mechanical interventions for fibrotic disorders.
Collapse
|
7
|
Mao M, Han K, Gao J, Ren Z, Zhang Y, He J, Li D. Engineering Highly Aligned and Densely Populated Cardiac Muscle Bundles via Fibrin Remodeling in 3D-Printed Anisotropic Microfibrous Lattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419380. [PMID: 39811972 DOI: 10.1002/adma.202419380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles. Compared to lattices with isolated pores, the engineered aligned cardiac tissues from neonatal rat cardiomyocytes exhibit improved electrophysiological properties and synchronous contractions. Using a multiseeding strategy, an equivalent cell seeding density of 8 × 107 cells mL-1, facilitating the formation of multicellular, vascularized cardiac structures with maintained tissue viability and integrity, is achieved. As a demonstration, human-induced pluripotent stem cell-derived cardiac tissues are engineered with progressive maturation and functional integration over time. These findings underscore the potential of InterPore microfibrous lattices for applications in cardiac tissue engineering, drug discovery, and therapeutic development.
Collapse
Affiliation(s)
- Mao Mao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Kang Han
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jingyuan Gao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhishuo Ren
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yabo Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
8
|
Chen Q, Teng J, Zhu C, Du J, Wang G, Wu J. Flexible deformation and special interface structure in nanoparticle-stabilized Pickering bubbles strengthen the immunological response as adjuvant. J Mater Chem B 2025; 13:2725-2736. [PMID: 39851034 DOI: 10.1039/d4tb01763c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Adjuvants can enhance an immunological response, which is an important part of vaccine research. Pickering bubbles have been a mega-hit for biomedical applications, including in vivo visualization and targeted drug delivery. However, there have been no studies on Pickering bubbles as an immunological adjuvant, and the special properties and structures of Pickering bubbles may play an important role in immunization. In this study, poly(lactic-co-glycolic acid) (PLGA) particles were used to construct nanoparticle-stabilized Pickering bubbles (PPBs). PPBs were evaluated as immunological adjuvants based on immune response effects and mechanisms and aiming at future applications. PPBs have a flexible gas core and a special surface structure that can increase the cell contact area to promote phagocytosis and enhance the immune response. Quartz crystal microbalance with dissipation (QCM-D) data showed the flexibility of PPBs, and confocal images captured the deformability of PPBs during cell uptake. Flow cytometry and antibody titer detection showed that PPBs significantly promoted antigen uptake and activation of bone-marrow-derived dendritic cells (BMDCs) and induced an immune response with upregulated SIINFEKL MHC I and CD127 molecules on the surface of CD8+ T cells, indicating excellent antigen cross-presentation and cellular immune triggering effects. The upregulation of CD44 and CD62L on CD4+ T cells and the IgG2a/IgG1 ratio bias further demonstrated the excellent adjuvant role of PPBs in immunity. Finally, the biosafety of PPBs as an immunological adjuvant was also demonstrated. Our study demonstrates the potential of particle-stabilized bubbles as immune adjuvants, which provides innovative ideas for vaccine development and design.
Collapse
Affiliation(s)
- Qiuting Chen
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jie Teng
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, P. R. China.
| | - Cuixiao Zhu
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, P. R. China.
| | - Jinzhi Du
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Guixiang Wang
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, P. R. China.
| | - Jie Wu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
9
|
Tetrick MG, Emon MAB, Doha U, Marcellus M, Symanski J, Ramanathan V, Saif MTA, Murphy CJ. Decoupling chemical and mechanical signaling in colorectal cancer cell migration. Sci Rep 2025; 15:4952. [PMID: 39929899 PMCID: PMC11811049 DOI: 10.1038/s41598-025-89152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Colorectal cancer metastasis is governed by a variety of chemical and mechanical signaling that are largely influenced by cancer-associated fibroblasts (CAFs) in the tumor microenvironment. Here, we deconvolute the chemical from mechanical signaling in the case of the colon cancer cell line HCT-116 and CAFs. We examined three chemoattractants (CXCL12, TGF-β, and activin A) which allegedly are secreted by CAFs and induce HCT-116 cell migration. None of the chemoattractants tested resulted in enhanced migration of HCT-116 in a 2D transwell assay, at low cell density. Similarly, CAF-conditioned media also did not lead to enhanced HCT-116 migration, while CAFs co-cultured in the transwell assay did lead to increased HCT-116 migration. This result suggests that either high cell densities are required for chemotaxis, and/or a reciprocal two-way signaling network between CAFs and HCT-116 is necessary to induce chemotaxis. Surprisingly, we find that HCT-116 cells exhibit enhanced migration along the axis of mechanical stress in a 3D collagen matrix, at very high cell densities. This migration is independent of whether the strain is induced mechanically or by CAFs. By comparing purely mechanical and purely chemical migration to a 3D co-culture of CAFs and HCT-116 containing both chemical and mechanical cues, it is concluded that HCT-116 migration is dominated by mechanical signaling, while chemical cues are less influential.
Collapse
Affiliation(s)
- Maxwell G Tetrick
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Md Abul Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Umnia Doha
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marsophia Marcellus
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joseph Symanski
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Valli Ramanathan
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - M Taher A Saif
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
10
|
Cheung BCH, Chen X, Davis HJ, Nordmann CS, Toth J, Hodgson L, Segall JE, Shenoy VB, Wu M. Identification of CD44 as a key engager to hyaluronic acid-rich extracellular matrices for cell traction force generation and tumor invasion in 3D. Matrix Biol 2025; 135:1-11. [PMID: 39528207 PMCID: PMC11729355 DOI: 10.1016/j.matbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Mechanical properties of the extracellular matrix (ECM) critically regulate a number of important cell functions including growth, differentiation and migration. Type I collagen and glycosaminoglycans (GAGs) are two primary components of ECMs that contribute to mammalian tissue mechanics, with the collagen fiber network sustaining tension, and GAGs withstanding compression. The architecture and stiffness of the collagen network are known to be important for cell-ECM mechanical interactions via cell surface adhesion receptor integrin. In contrast, studies of GAGs in modulating cell-ECM interactions are limited. Here, we present experimental studies on the roles of hyaluronic acid (HA) in single tumor cell traction force generation using a recently developed 3D cell traction force microscopy method. Our work reveals that CD44, a cell surface receptor to HA, is engaged in cell traction force generation in conjunction with β1-integrin. We find that HA significantly modifies the architecture and mechanics of the collagen fiber network, decreasing tumor cells' propensity to remodel the collagen network, attenuating traction force generation, transmission distance, and tumor invasion. Our findings point to a novel role for CD44 in traction force generation, which can be a potential therapeutic target for diseases involving HA rich ECMs such as breast cancer and glioblastoma.
Collapse
Affiliation(s)
- Brian C H Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Xingyu Chen
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah J Davis
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA; Department of Biological Sciences, Cornell University, Ithaca, NY, USA
| | - Cassidy S Nordmann
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joshua Toth
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey E Segall
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vivek B Shenoy
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
11
|
Cassani M, Fernandes S, Pagliari S, Cavalieri F, Caruso F, Forte G. Unraveling the Role of the Tumor Extracellular Matrix to Inform Nanoparticle Design for Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409898. [PMID: 39629891 PMCID: PMC11727388 DOI: 10.1002/advs.202409898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Indexed: 01/14/2025]
Abstract
The extracellular matrix (ECM)-and its mechanobiology-regulates key cellular functions that drive tumor growth and development. Accordingly, mechanotherapy is emerging as an effective approach to treat fibrotic diseases such as cancer. Through restoring the ECM to healthy-like conditions, this treatment aims to improve tissue perfusion, facilitating the delivery of chemotherapies. In particular, the manipulation of ECM is gaining interest as a valuable strategy for developing innovative treatments based on nanoparticles (NPs). However, further progress is required; for instance, it is known that the presence of a dense ECM, which hampers the penetration of NPs, primarily impacts the efficacy of nanomedicines. Furthermore, most 2D in vitro studies fail to recapitulate the physiological deposition of matrix components. To address these issues, a comprehensive understanding of the interactions between the ECM and NPs is needed. This review focuses on the main features of the ECM and its complex interplay with NPs. Recent advances in mechanotherapy are discussed and insights are offered into how its combination with nanomedicine can help improve nanomaterials design and advance their clinical translation.
Collapse
Affiliation(s)
- Marco Cassani
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Soraia Fernandes
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Stefania Pagliari
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonWC2R 2LSUK
| | - Francesca Cavalieri
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
- Dipartimento di Scienze e Tecnologie ChimicheUniversita di Roma “Tor Vergata”Via della Ricerca Scientifica 1Rome00133Italy
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Giancarlo Forte
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonWC2R 2LSUK
| |
Collapse
|
12
|
Yu H, Jafari M, Mujahid A, Garcia CF, Shah J, Sinha R, Huang Y, Shakiba D, Hong Y, Cheraghali D, Pryce JRS, Sandler JA, Elson EL, Sacks JM, Genin GM, Alisafaei F. Expansion limits of meshed split-thickness skin grafts. Acta Biomater 2025; 191:325-335. [PMID: 39581335 DOI: 10.1016/j.actbio.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Split-thickness skin grafts are widely used to treat chronic wounds. Procedure design requires surgeons to predict how much a patch of the patient's own skin expands when it is meshed with rows of slits and stretched over a larger wound area. Accurate prediction of graft expansion remains a challenge, with current models overestimating the actual expansion, leading to suboptimal outcomes. Inspired by the principles of mechanical metamaterials, we developed a model that distinguishes between the kinematic rearrangement of structural elements and their stretching, providing a more accurate prediction of skin graft expansion. Our model was validated against extensive data from skin graft surgeries, demonstrating vastly superior predictive capability compared to existing methods. This metamaterial-inspired approach enables informed decision-making for potentially improving healing outcomes. STATEMENT OF SIGNIFICANCE: Accurately predicting the expansion of meshed skin grafts is crucial for minimizing patient trauma and optimizing healing outcomes in reconstructive surgery. However, current quantitative models, which treat grafts as tessellated trusses of rigid bars, fail to accurately estimate graft expansion. We have uncovered the mechanisms underlying skin graft expansion and developed a straightforward method based on these findings. This method, designed for practical use by surgeons, provides accurate predictions of graft expansion, as validated against extensive data from skin graft surgeries.
Collapse
Affiliation(s)
- Haomin Yu
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA
| | - Mohammad Jafari
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Aliza Mujahid
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Chelsea F Garcia
- Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Jaisheel Shah
- Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Riya Sinha
- Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Yuxuan Huang
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Biomedical Engineering, Washington University in St. Louis, USA
| | - Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Pathology, Johns Hopkins University, USA
| | - Yuan Hong
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA
| | - Danial Cheraghali
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - John R S Pryce
- Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Jacob A Sandler
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA
| | - Elliot L Elson
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA; Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, USA
| | - Justin M Sacks
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA; Department of Biomedical Engineering, Washington University in St. Louis, USA.
| | - Farid Alisafaei
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering, New Jersey Institute of Technology, USA.
| |
Collapse
|
13
|
Balsini P, Weinzettl P, Samardzic D, Zila N, Buchberger M, Freystätter C, Tschandl P, Wielscher M, Weninger W, Pfisterer K. Stiffness-Dependent Lysyl Oxidase Regulation through Hypoxia-Inducing Factor 1 Drives Extracellular Matrix Modifications in Psoriasis. J Invest Dermatol 2024:S0022-202X(24)02958-0. [PMID: 39603411 DOI: 10.1016/j.jid.2024.10.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024]
Abstract
Psoriasis is a common chronic inflammatory skin disease characterized by a thickened epidermis with elongated rete ridges and massive immune cell infiltration. It is currently unclear what impact mechanoregulatory aspects may have on disease progression. Using multiphoton second harmonic generation microscopy, we found that the extracellular matrix was profoundly reorganized within psoriatic dermis. Collagen fibers were highly aligned and assembled into thick, long collagen bundles, whereas the overall fiber density was reduced. This was particularly pronounced within dermal papillae extending into the epidermis. Furthermore, the extracellular matrix-modifying enzyme lysyl oxidase was highly upregulated in the dermis of patients with psoriasis. In vitro experiments identified a previously unreported link between hypoxia-inducing factor 1 stabilization and lysyl oxidase protein regulation in mechanosensitive skin fibroblasts. Lysyl oxidase secretion and activity directly correlated with substrate stiffness and were independent of hypoxia and IL-17. Finally, single-cell RNA-sequencing analysis identified skin fibroblasts expressing high amounts of lysyl oxidase and confirmed elevated hypoxia-inducing factor 1 expression in psoriasis. Our findings suggest a potential yet undescribed mechanical aspect of psoriasis. Deregulated mechanical forces hence may be involved in initiating or maintaining of a positive feedback loop in fibroblasts and contribute to tissue stiffening and diminished skin elasticity in psoriasis, potentially exacerbating disease pathogenesis.
Collapse
Affiliation(s)
- Parvaneh Balsini
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Pauline Weinzettl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - David Samardzic
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Section Biomedical Science, University of Applied Sciences FH Campus Wien, Wien, Austria
| | - Maria Buchberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christian Freystätter
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Philipp Tschandl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Wielscher
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Karin Pfisterer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Vargas Garcia AP, Reis LA, Ribeiro BRM, Nunes CB, de Paula AM, Cassali GD. Comparative evaluation of collagen modifications in breast cancer in human and canine carcinomas. Sci Rep 2024; 14:28846. [PMID: 39572729 PMCID: PMC11582713 DOI: 10.1038/s41598-024-79854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
New diagnostic and therapeutic approaches have been increasingly demanded due to the high morbidity and mortality associated with breast cancer. Recently, changes in the collagen fibres in mammary neoplasms have been shown to provide information that can be helpful for more accurate diagnosis. We aimed to conduct a comparative analysis of the tumour stroma in human and canine mammary neoplasms to assess the relationship between collagen modifications and the behaviour of carcinomas in both species, by multiphoton microscopy. We present a retrospective study of 70 cases of human mammary tumour and 74 cases of canine mammary tumour. We analysed sections stained with haematoxylin and eosin from 1,200 representative areas of normal mammary tissue, fibroadenoma, grade I invasive carcinoma, grade III invasive carcinoma and invasive micropapillary carcinoma in human species and 1,304 representative areas of normal mammary tissue, benign mixed tumour, mixed carcinoma, carcinosarcoma, invasive micropapillary carcinoma and solid carcinoma in canine species. We obtained that both human and canine mammary carcinomas present lower density of collagen fibres, higher density of cells and the collagen fibres are more aligned than in normal tissue. For human mammary carcinomas, the collagen fibres are more linear as compared to normal tissue. In addition, we demonstrated that the carcinomas with unfavourable prognosis present shorter collagen fibres, and these collagen changes correlate with the clinical and pathological data in human and canine species. For dogs, there is a correlation between the mean fibre length with the specific survival times. Thus, we demonstrate that dogs provide an excellent comparative perspective for studying how changes in the tumour stroma affect patient survival.
Collapse
Affiliation(s)
- Ana Paula Vargas Garcia
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, MG, Brazil
| | - Luana Aparecida Reis
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, MG, Brazil
| | - Bárbara Regina Melo Ribeiro
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, MG, Brazil
| | - Cristiana Buzelin Nunes
- Department of Anatomic Pathology, Faculty of Medicine, Federal University of Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, 30130-100, MG, Brazil
| | - Ana Maria de Paula
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, MG, Brazil.
- Institute of Physics "Gleb Wataghin", University of Campinas, Campinas, SP, Brazil.
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, MG, Brazil
| |
Collapse
|
15
|
Cao G, Ye M, Wang H, Liu Y, Li M. The Role of Biomechanical Forces in the Formation and Treatment of Pathological Scars. Clin Cosmet Investig Dermatol 2024; 17:2565-2571. [PMID: 39559183 PMCID: PMC11570529 DOI: 10.2147/ccid.s496253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
Pathological scars, including hypertrophic scar and keloid are the result of excessive tissue repair and are influenced by biomechanical forces like tension, mechanical pressure, and stiffness. These forces significantly impact scar development and progression, affecting wound healing, collagen deposition, and tissue remodeling. Understanding how these mechanical stimuli contribute to scar development is essential for devising effective therapeutic interventions. Clinically, reducing wound tension and applying mechanical pressure are key strategies for managing pathological scars. Techniques like super-tension-reduction suturing, stress-shielding polymers, and force-modulating tissue bridges (FMTB) have been shown to effectively alleviate tension and reduce scar proliferation. Additionally, Pressure Garment Therapy (PGT) is widely used to treat hypertrophic scars by reducing tissue stiffness, limiting collagen buildup, and promoting collagen realignment. Despite challenges such as discomfort and uneven pressure application, ongoing research focuses on enhancing these therapies through mechanosensitive technologies to improve both efficacy and patient comfort. This review highlights the role of biomechanical forces in scar formation and discusses therapeutic approaches that target these forces to improve clinical outcomes.
Collapse
Affiliation(s)
- Guangtong Cao
- Department of Burns and Plastic Surgery & Wound Repair Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030People’s Republic of China
| | - Mingmin Ye
- Department of Plastic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, People’s Republic of China
| | - Haiyan Wang
- Department of Ultrasound Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Yi Liu
- Department of Burns and Plastic Surgery & Wound Repair Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030People’s Republic of China
| | - Mengzhi Li
- Department of Hand, Foot, and Microsurgical Reconstruction, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
16
|
Fan Y, Chiu A, Zhao F, George JT. Understanding the interplay between extracellular matrix topology and tumor-immune interactions: Challenges and opportunities. Oncotarget 2024; 15:768-781. [PMID: 39513932 PMCID: PMC11546212 DOI: 10.18632/oncotarget.28666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Modern cancer management comprises a variety of treatment strategies. Immunotherapy, while successful at treating many cancer subtypes, is often hindered by tumor immune evasion and T cell exhaustion as a result of an immunosuppressive tumor microenvironment (TME). In solid malignancies, the extracellular matrix (ECM) embedded within the TME plays a central role in T cell recognition and cancer growth by providing structural support and regulating cell behavior. Relative to healthy tissues, tumor associated ECM signatures include increased fiber density and alignment. These and other differentiating features contributed to variation in clinically observed tumor-specific ECM configurations, collectively referred to as Tumor-Associated Collagen Signatures (TACS) 1-3. TACS is associated with disease progression and immune evasion. This review explores our current understanding of how ECM geometry influences the behaviors of both immune cells and tumor cells, which in turn impacts treatment efficacy and cancer evolutionary progression. We discuss the effects of ECM remodeling on cancer cells and T cell behavior and review recent in silico models of cancer-immune interactions.
Collapse
Affiliation(s)
- Yijia Fan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Translational Medical Sciences, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Alvis Chiu
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jason T. George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Translational Medical Sciences, Texas A&M University Health Science Center, Houston, TX 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
17
|
Manning ML. Rigidity in mechanical biological networks. Curr Biol 2024; 34:R1024-R1030. [PMID: 39437721 DOI: 10.1016/j.cub.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Multicellular organisms generate complex morphologies required for their function. Organisms control these morphologies by tuning active forces and by altering the emergent 'material properties' of a tissue, i.e. the rheology of the tissue. In many cases, organisms take advantage of dramatic changes in the rheology that occur when the material undergoes a rigidity transition from a fluid-like or floppy state to a solid-like or rigid state. This transition in turn depends on internal parameters at the scale of cells and molecules. This review highlights recent theoretical work identifying the mechanisms that drive such transitions, so that biologists can look for these mechanisms in in vivo or in vitro systems. We discuss two main types of transition: a first-order rigidity transition that depends on the connectivity of small-scale structures, such as the number of contacts between cells or the number of branch points in a biopolymer network; and a second-order rigidity transition that depends on the geometry of small-scale structures, such as the shape of cells or the distance between crosslinks in a polymer network. We provide examples of each type of transition in model organisms and discuss methods for distinguishing between the mechanisms in future experiments.
Collapse
Affiliation(s)
- M Lisa Manning
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
18
|
Lu M, Xu Z, Xu F, Yin C, Guo H, Cheng B. Mechanical network motifs as targets for mechanomedicine. Drug Discov Today 2024; 29:104145. [PMID: 39182599 DOI: 10.1016/j.drudis.2024.104145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/26/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The identification and analysis of network motifs has been widely used in the functional analysis of signaling components, disease discovery and other fields. The positive feedback loop (PFL) is a simple but important network motif. The formation of a PFL is regulated by mechanical cues such as substrate stiffness, fiber stretching and cell compression in the cell microenvironment. Here, we propose a new term, 'mechanical PFL', and analyze the mechanisms of mechanical PFLs at molecular, subcellular and cellular scales. More and more therapies are being targeted against mechanosignaling pathways at the experimental and preclinical stages, and exploring mechanical PFLs as potential mechanomedicine targets could be a new direction for disease treatment.
Collapse
Affiliation(s)
- Mengnan Lu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710054, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710054, PR China.
| | - Hui Guo
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710054, PR China.
| | - Bo Cheng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
19
|
Suh YJ, Li AT, Pandey M, Nordmann CS, Huang YL, Wu M. Decoding physical principles of cell migration under controlled environment using microfluidics. BIOPHYSICS REVIEWS 2024; 5:031302. [PMID: 39091432 PMCID: PMC11290890 DOI: 10.1063/5.0199161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024]
Abstract
Living cells can perform incredible tasks that man-made micro/nano-sized robots have not yet been able to accomplish. One example is that white blood cells can sense and move to the site of pathogen attack within minutes. The robustness and precision of cellular functions have been perfected through billions of years of evolution. In this context, we ask the question whether cells follow a set of physical principles to sense, adapt, and migrate. Microfluidics has emerged as an enabling technology for recreating well-defined cellular environment for cell migration studies, and its ability to follow single cell dynamics allows for the results to be amenable for theoretical modeling. In this review, we focus on the development of microfluidic platforms for recreating cellular biophysical (e.g., mechanical stress) and biochemical (e.g., nutrients and cytokines) environments for cell migration studies in 3D. We summarize the basic principles that cells (including bacteria, algal, and mammalian cells) use to respond to chemical gradients learned from microfluidic systems. We also discuss about novel biological insights gained from studies of cell migration under biophysical cues and the need for further quantitative studies of cell function under well-controlled biophysical environments in the future.
Collapse
Affiliation(s)
- Young Joon Suh
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Alan T. Li
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Mrinal Pandey
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Cassidy S. Nordmann
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Yu Ling Huang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
20
|
Blázquez-Carmona P, Ruiz-Mateos R, Barrasa-Fano J, Shapeti A, Martín-Alfonso JE, Domínguez J, Van Oosterwyck H, Reina-Romo E, Sanz-Herrera JA. Quantitative atlas of collagen hydrogels reveals mesenchymal cancer cell traction adaptation to the matrix nanoarchitecture. Acta Biomater 2024; 185:281-295. [PMID: 38992411 DOI: 10.1016/j.actbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Collagen-based hydrogels are commonly used in mechanobiology to mimic the extracellular matrix. A quantitative analysis of the influence of collagen concentration and properties on the structure and mechanics of the hydrogels is essential for tailored design adjustments for specific in vitro conditions. We combined focused ion beam scanning electron microscopy and rheology to provide a detailed quantitative atlas of the mechanical and nanoscale three-dimensional structural alterations that occur when manipulating different hydrogel's physicochemistry. Moreover, we study the effects of such alterations on the phenotype of breast cancer cells and their mechanical interactions with the extracellular matrix. Regardless of the microenvironment's pore size, porosity or mechanical properties, cancer cells are able to reach a stable mesenchymal-like morphology. Additionally, employing 3D traction force microscopy, a positive correlation between cellular tractions and ECM mechanics is observed up to a critical threshold, beyond which tractions plateau. This suggests that cancer cells in a stable mesenchymal state calibrate their mechanical interactions with the ECM to keep their migration and invasiveness capacities unaltered. STATEMENT OF SIGNIFICANCE: The paper presents a thorough study on the mechanical microenvironment in breast cancer cells during their interaction with collagen based hydrogels of different compositions. The hydrogels' microstructure were obtained using state-of-the-art 3D microscopy, namely focused ion beam-scanning electron microscope (FIB-SEM). FIB-SEM was originally applied in this work to reconstruct complex fibered collagen microstructures within the nanometer range, to obtain key microarchitectural parameters. The mechanical microenvironment of cells was recovered using Traction Force Microscopy (TFM). The obtained results suggest that cells calibrate tractions such that they depend on mechanical, microstructural and physicochemical characteristics of the hydrogels, hence revealing a steric hindrance. We hypothesize that cancer cells studied in this paper tune their mechanical state to keep their migration and invasiveness capacities unaltered.
Collapse
Affiliation(s)
- Pablo Blázquez-Carmona
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Raquel Ruiz-Mateos
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Jorge Barrasa-Fano
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - Apeksha Shapeti
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - José Enrique Martín-Alfonso
- Escuela Técnica Superior de Ingeniería, Universidad de Huelva. Avda. de las Fuerzas Armadas s/n, 21007 Huelva, Spain
| | - Jaime Domínguez
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Hans Van Oosterwyck
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - Esther Reina-Romo
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - José Antonio Sanz-Herrera
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain.
| |
Collapse
|
21
|
Narasimhan BN, Fraley SI. Degradability tunes ECM stress relaxation and cellular mechanics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605514. [PMID: 39131364 PMCID: PMC11312499 DOI: 10.1101/2024.07.28.605514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
In native extracellular matrices (ECM), cells can use matrix metalloproteinases (MMPs) to degrade and remodel their surroundings. Likewise, synthetic matrices have been engineered to facilitate MMP-mediated cleavage that enables cell spreading, migration, and interactions. However, the intersection of matrix degradability and mechanical properties has not been fully considered. We hypothesized that immediate mechanical changes result from the action of MMPs on the ECM and that these changes are sensed by cells. Using atomic force microscopy (AFM) to measure cell-scale mechanical properties, we find that both fibrillar collagen and synthetic degradable matrices exhibit enhanced stress relaxation after MMP exposure. Cells respond to these relaxation differences by altering their spreading and focal adhesions. We demonstrate that stress relaxation can be tuned through the rational design of matrix degradability. These findings establish a fundamental link between matrix degradability and stress relaxation, which may impact a range of biological applications.
Collapse
Affiliation(s)
| | - Stephanie I. Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Ollier RC, Webber MJ. Strain-Stiffening Mechanoresponse in Dynamic-Covalent Cellulose Hydrogels. Biomacromolecules 2024; 25:4406-4419. [PMID: 38847048 DOI: 10.1021/acs.biomac.4c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Mechanical stimuli such as strain, force, and pressure are pervasive within and beyond the human body. Mechanoresponsive hydrogels have been engineered to undergo changes in their physicochemical or mechanical properties in response to such stimuli. Relevant responses can include strain-stiffening, self-healing, strain-dependent stress relaxation, and shear rate-dependent viscosity. These features are a direct result of dynamic bonds or noncovalent/physical interactions within such hydrogels. The contributions of various types of bonds and intermolecular interactions to these behaviors are important to more fully understand the resulting materials and engineer their mechanoresponsive features. Here, strain-stiffening in carboxymethylcellulose hydrogels cross-linked with pendant dynamic-covalent boronate esters using tannic acid is studied and modulated as a function of polymer concentration, temperature, and effective cross-link density. Furthermore, these materials are found to exhibit self-healing and strain-memory, as well as strain-dependent stress relaxation and shear rate-dependent changes in gel viscosity. These features are attributed to the dynamic nature of the boronate ester cross-links, interchain hydrogen bonding and bundling, or a combination of these two intermolecular interactions. This work provides insight into the interplay of such interactions in the context of mechanoresponsive behaviors, particularly informing the design of hydrogels with tunable strain-stiffening. The multiresponsive and tunable nature of this hydrogel system therefore presents a promising platform for a variety of applications.
Collapse
Affiliation(s)
- Rachel C Ollier
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
23
|
Dahdah N, Tercero-Alcázar C, Malagón MM, Garcia-Roves PM, Guzmán-Ruiz R. Interrelation of adipose tissue macrophages and fibrosis in obesity. Biochem Pharmacol 2024; 225:116324. [PMID: 38815633 DOI: 10.1016/j.bcp.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Obesity is characterized by adipose tissue expansion, extracellular matrix remodelling and unresolved inflammation that contribute to insulin resistance and fibrosis. Adipose tissue macrophages represent the most abundant class of immune cells in adipose tissue inflammation and could be key mediators of adipocyte dysfunction and fibrosis in obesity. Although macrophage activation states are classically defined by the M1/M2 polarization nomenclature, novel studies have revealed a more complex range of macrophage phenotypes in response to external condition or the surrounding microenvironment. Here, we discuss the plasticity of adipose tissue macrophages (ATMs) in response to their microenvironment in obesity, with special focus on macrophage infiltration and polarization, and their contribution to adipose tissue fibrosis. A better understanding of the role of ATMs as regulators of adipose tissue remodelling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Norma Dahdah
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Carmen Tercero-Alcázar
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María M Malagón
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Pablo Miguel Garcia-Roves
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Rocío Guzmán-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain.
| |
Collapse
|
24
|
Shivers JL, MacKintosh FC. Nonlinear Poisson effect in affine semiflexible polymer networks. Phys Rev E 2024; 110:014502. [PMID: 39160898 DOI: 10.1103/physreve.110.014502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Stretching an elastic material along one axis typically induces contraction along the transverse axes, a phenomenon known as the Poisson effect. From these strains, one can compute the specific volume, which generally either increases or, in the incompressible limit, remains constant as the material is stretched. However, in networks of semiflexible or stiff polymers, which are typically highly compressible yet stiffen significantly when stretched, one instead sees a significant reduction in specific volume under finite strains. This volume reduction is accompanied by increasing alignment of filaments along the strain axis and a nonlinear elastic response, with stiffening of the apparent Young's modulus. For semiflexible networks, in which entropic bending elasticity governs the linear elastic regime, the nonlinear Poisson effect is caused by the nonlinear force-extension relationship of the constituent filaments, which produces a highly asymmetric response of the constituent polymers to stretching and compression. The details of this relationship depend on the geometric and elastic properties of the underlying filaments, which can vary greatly in experimental systems. Here, we provide a comprehensive characterization of the nonlinear Poisson effect in an affine network model and explore the influence of filament properties on essential features of both microscopic and macroscopic response, including strain-driven alignment and volume reduction.
Collapse
Affiliation(s)
- Jordan L Shivers
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - Fred C MacKintosh
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
25
|
Randhawa A, Dutta SD, Ganguly K, Patil TV, Lim KT. Manufacturing 3D Biomimetic Tissue: A Strategy Involving the Integration of Electrospun Nanofibers with a 3D-Printed Framework for Enhanced Tissue Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309269. [PMID: 38308170 DOI: 10.1002/smll.202309269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Indexed: 02/04/2024]
Abstract
3D printing and electrospinning are versatile techniques employed to produce 3D structures, such as scaffolds and ultrathin fibers, facilitating the creation of a cellular microenvironment in vitro. These two approaches operate on distinct working principles and utilize different polymeric materials to generate the desired structure. This review provides an extensive overview of these techniques and their potential roles in biomedical applications. Despite their potential role in fabricating complex structures, each technique has its own limitations. Electrospun fibers may have ambiguous geometry, while 3D-printed constructs may exhibit poor resolution with limited mechanical complexity. Consequently, the integration of electrospinning and 3D-printing methods may be explored to maximize the benefits and overcome the individual limitations of these techniques. This review highlights recent advancements in combined techniques for generating structures with controlled porosities on the micro-nano scale, leading to improved mechanical structural integrity. Collectively, these techniques also allow the fabrication of nature-inspired structures, contributing to a paradigm shift in research and technology. Finally, the review concludes by examining the advantages, disadvantages, and future outlooks of existing technologies in addressing challenges and exploring potential opportunities.
Collapse
Affiliation(s)
- Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| |
Collapse
|
26
|
Cheung BCH, Abbed RJ, Wu M, Leggett SE. 3D Traction Force Microscopy in Biological Gels: From Single Cells to Multicellular Spheroids. Annu Rev Biomed Eng 2024; 26:93-118. [PMID: 38316064 DOI: 10.1146/annurev-bioeng-103122-031130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cell traction force plays a critical role in directing cellular functions, such as proliferation, migration, and differentiation. Current understanding of cell traction force is largely derived from 2D measurements where cells are plated on 2D substrates. However, 2D measurements do not recapitulate a vital aspect of living systems; that is, cells actively remodel their surrounding extracellular matrix (ECM), and the remodeled ECM, in return, can have a profound impact on cell phenotype and traction force generation. This reciprocal adaptivity of living systems is encoded in the material properties of biological gels. In this review, we summarize recent progress in measuring cell traction force for cells embedded within 3D biological gels, with an emphasis on cell-ECM cross talk. We also provide perspectives on tools and techniques that could be adapted to measure cell traction force in complex biochemical and biophysical environments.
Collapse
Affiliation(s)
- Brian C H Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA;
| | - Rana J Abbed
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA;
| | - Susan E Leggett
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
27
|
Ho Thanh MT, Poudel A, Ameen S, Carroll B, Wu M, Soman P, Zhang T, Schwarz JM, Patteson AE. Vimentin promotes collective cell migration through collagen networks via increased matrix remodeling and spheroid fluidity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599259. [PMID: 38948855 PMCID: PMC11212918 DOI: 10.1101/2024.06.17.599259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The intermediate filament (IF) protein vimentin is associated with many diseases with phenotypes of enhanced cellular migration and aggressive invasion through the extracellular matrix (ECM) of tissues, but vimentin's role in in-vivo cell migration is still largely unclear. Vimentin is important for proper cellular adhesion and force generation, which are critical to cell migration; yet the vimentin cytoskeleton also hinders the ability of cells to squeeze through small pores in ECM, resisting migration. To identify the role of vimentin in collective cell migration, we generate spheroids of wide-type and vimentin-null mouse embryonic fibroblasts (mEFs) and embed them in a 3D collagen matrix. We find that loss of vimentin significantly impairs the ability of the spheroid to collectively expand through collagen networks and remodel the collagen network. Traction force analysis reveals that vimentin null spheroids exert less contractile force than their wild-type counterparts. In addition, spheroids made of mEFs with only vimentin unit length filaments (ULFs) exhibit similar behavior as vimentin-null spheroids, suggesting filamentous vimentin is required to promote 3D collective cell migration. We find the vimentin-mediated collective cell expansion is dependent on matrix metalloproteinase (MMP) degradation of the collagen matrix. Further, 3D vertex model simulation of spheroid and embedded ECM indicates that wild-type spheroids behave more fluid-like, enabling more active pulling and reconstructing the surrounding collagen network. Altogether, these results signify that VIF plays a critical role in enhancing migratory persistence in 3D matrix environments through MMP transportation and tissue fluidity.
Collapse
Affiliation(s)
- Minh Tri Ho Thanh
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - Arun Poudel
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Biomedical and Chemical Engineering Department, Syracuse University; Syracuse, New York, USA
| | - Shabeeb Ameen
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - Bobby Carroll
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - M Wu
- Department of Biological and Environmental Engineering, Cornell University; Ithaca, New York, USA
| | - Pranav Soman
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Biomedical and Chemical Engineering Department, Syracuse University; Syracuse, New York, USA
| | - Tao Zhang
- Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - J M Schwarz
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Indian Creek Farm, Ithaca, New York, USA
| | - Alison E Patteson
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| |
Collapse
|
28
|
Cheung BCH, Chen X, Davis HJ, Nordmann CS, Toth J, Hodgson L, Segall JE, Shenoy VB, Wu M. Identification of CD44 as a key mediator of cell traction force generation in hyaluronic acid-rich extracellular matrices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.24.563860. [PMID: 37961689 PMCID: PMC10634813 DOI: 10.1101/2023.10.24.563860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mechanical properties of the extracellular matrix (ECM) critically regulate a number of important cell functions including growth, differentiation and migration. Type I collagen and glycosaminoglycans (GAGs) are two primary components of ECMs that contribute to mammalian tissue mechanics, with the collagen fiber network sustaining tension, and GAGs withstanding compression. The architecture and stiffness of the collagen network are known to be important for cell-ECM mechanical interactions via integrin cell surface adhesion receptors. In contrast, studies of GAGs in modulating cell-ECM interactions are limited. Here, we present experimental studies on the roles of hyaluronic acid (HA, an unsulfated GAG) in single tumor cell traction force generation using a recently developed 3D cell traction force microscopy method. Our work reveals that CD44, a cell surface adhesion receptor to HA, is engaged in cell traction force generation in conjunction with β1-integrin. We find that HA significantly modifies the architecture and mechanics of the collagen fiber network, decreasing tumor cells' propensity to remodel the collagen network, attenuating traction force generation, transmission distance, and tumor invasion. Our findings point to a novel role for CD44 in traction force generation, which can be a potential therapeutic target for diseases involving HA rich ECMs such as breast cancer and glioblastoma.
Collapse
|
29
|
Wang X, Li K, Yuan Y, Zhang N, Zou Z, Wang Y, Yan S, Li X, Zhao P, Li Q. Nonlinear Elasticity of Blood Vessels and Vascular Grafts. ACS Biomater Sci Eng 2024; 10:3631-3654. [PMID: 38815169 DOI: 10.1021/acsbiomaterials.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The transplantation of vascular grafts has emerged as a prevailing approach to address vascular disorders. However, the development of small-diameter vascular grafts is still in progress, as they serve in a more complicated mechanical environment than their counterparts with larger diameters. The biocompatibility and functional characteristics of small-diameter vascular grafts have been well developed; however, mismatch in mechanical properties between the vascular grafts and native arteries has not been accomplished, which might facilitate the long-term patency of small-diameter vascular grafts. From a point of view in mechanics, mimicking the nonlinear elastic mechanical behavior exhibited by natural blood vessels might be the state-of-the-art in designing vascular grafts. This review centers on elucidating the nonlinear elastic behavior of natural blood vessels and vascular grafts. The biological functionality and limitations associated with as-reported vascular grafts are meticulously reviewed and the future trajectory for fabricating biomimetic small-diameter grafts is discussed. This review might provide a different insight from the traditional design and fabrication of artificial vascular grafts.
Collapse
Affiliation(s)
- Xiaofeng Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Kecheng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Yuan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Zhang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zifan Zou
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yun Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shujie Yan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Qian Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
30
|
Radman BA, Alhameed AMM, Shu G, Yin G, Wang M. Cellular elasticity in cancer: a review of altered biomechanical features. J Mater Chem B 2024; 12:5299-5324. [PMID: 38742281 DOI: 10.1039/d4tb00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A large number of studies have shown that changes in biomechanical characteristics are an important indicator of tumor transformation in normal cells. Elastic deformation is one of the more studied biomechanical features of tumor cells, which plays an important role in tumourigenesis and development. Altered cell elasticity often brings many indications. This manuscript reviews the effects of altered cellular elasticity on cell characteristics, including adhesion viscosity, migration, proliferation, and differentiation elasticity and stiffness. Also, the physical factors that may affect cell elasticity, such as temperature, cell height, cell-viscosity, and aging, are summarized. Then, the effects of cell-matrix, cytoskeleton, in vitro culture medium, and cell-substrate with different three-dimensional structures on cell elasticity during cell tumorigenesis are outlined. Importantly, we summarize the current signaling pathways that may affect cellular elasticity, as well as tests for cellular elastic deformation. Finally, we summarize current hybrid materials: polymer-polymer, protein-protein, and protein-polymer hybrids, also, nano-delivery strategies that target cellular resilience and cases that are at least in clinical phase 1 trials. Overall, the behavior of cancer cell elasticity is modulated by biological, chemical, and physical changes, which in turn have the potential to alter cellular elasticity, and this may be an encouraging prediction for the future discovery of cancer therapies.
Collapse
Affiliation(s)
- Bakeel A Radman
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
- Department of Biology, College of Science and Education, Albaydha University, Yemen
| | | | - Guang Shu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
31
|
Abdollahzadeh F, Khoshdel‐Rad N, Bahrehbar K, Erfanian S, Ezzatizadeh V, Totonchi M, Moghadasali R. Enhancing maturity in 3D kidney micro-tissues through clonogenic cell combinations and endothelial integration. J Cell Mol Med 2024; 28:e18453. [PMID: 38818569 PMCID: PMC11140233 DOI: 10.1111/jcmm.18453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024] Open
Abstract
As an advance laboratory model, three-dimensional (3D) organoid culture has recently been recruited to study development, physiology and abnormality of kidney tissue. Micro-tissues derived from primary renal cells are composed of 3D epithelial structures representing the main characteristics of original tissue. In this research, we presented a simple method to isolate mouse renal clonogenic mesenchymal (MLCs) and epithelial-like cells (ELCs). Then we have done a full characterization of MLCs using flow cytometry for surface markers which showed that more than 93% of cells expressed these markers (Cd44, Cd73 and Cd105). Epithelial and stem/progenitor cell markers characterization also performed for ELC cells and upregulating of these markers observed while mesenchymal markers expression levels were not significantly increased in ELCs. Each of these cells were cultured either alone (ME) or in combination with human umbilical vein endothelial cells (HUVECs) (MEH; with an approximate ratio of 10:5:2) to generate more mature kidney structures. Analysis of 3D MEH renal micro-tissues (MEHRMs) indicated a significant increase in renal-specific gene expression including Aqp1 (proximal tubule), Cdh1 (distal tubule), Umod (loop of Henle), Wt1, Podxl and Nphs1 (podocyte markers), compared to those groups without endothelial cells, suggesting greater maturity of the former tissue. Furthermore, ex ovo transplantation showed greater maturation in the constructed 3D kidney.
Collapse
Affiliation(s)
- Fatemeh Abdollahzadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Developmental BiologyUniversity of Science and CultureTehranIran
| | - Niloofar Khoshdel‐Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Khadijeh Bahrehbar
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Saiedeh Erfanian
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Vahid Ezzatizadeh
- Medical Genetics DepartmentAyandeh Clinical and Genetic LaboratoryVaraminIran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| |
Collapse
|
32
|
Goren S, Ergaz B, Barak D, Sorkin R, Lesman A. Micro-tensile rheology of fibrous gels quantifies strain-dependent anisotropy. Acta Biomater 2024; 181:272-281. [PMID: 38685460 DOI: 10.1016/j.actbio.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Semiflexible fiber gels such as collagen and fibrin have unique nonlinear mechanical properties that play an important role in tissue morphogenesis, wound healing, and cancer metastasis. Optical tweezers microrheology has greatly contributed to the understanding of the mechanics of fibrous gels at the microscale, including its heterogeneity and anisotropy. However, the explicit relationship between micromechanical properties and gel deformation has been largely overlooked. We introduce a unique gel-stretching apparatus and employ it to study the relationship between microscale strain and stiffening in fibrin and collagen gels, focusing on the development of anisotropy in the gel. We find that gels stretched by as much as 15 % stiffen significantly both in parallel and perpendicular to the stretching axis, and that the parallel axis is 2-3 times stiffer than the transverse axis. We also measure the stiffening and anisotropy along bands of aligned fibers created by aggregates of cancer cells, and find similar effects as in gels stretched with the tensile apparatus. Our results illustrate that the extracellular microenvironment is highly sensitive to deformation, with implications for tissue homeostasis and pathology. STATEMENT OF SIGNIFICANCE: The inherent fibrous architecture of the extracellular matrix (ECM) gives rise to unique strain-stiffening mechanics. The micromechanics of fibrous networks has been studied extensively, but the deformations involved in its stiffening at the microscale were not quantified. Here we introduce an apparatus that enables measuring the deformations in the gel as it is being stretched while simultaneously using optical tweezers to measure its microscale anisotropic stiffness. We reveal that fibrin and collagen both stiffen dramatically already at ∼10 % deformation, accompanied by the emergence of significant, yet moderate anisotropy. We measure similar stiffening and anisotropy in the matrix remodeled by the tensile apparatus to those found between cancer cell aggregates. Our results emphasize that small strains are enough to introduce substantial stiffening and anisotropy. These have been shown to result in directional cell migration and enhanced force propagation, and possibly control processes like morphogenesis and cancer metastasis.
Collapse
Affiliation(s)
- Shahar Goren
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel; School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| | - Bar Ergaz
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| | - Daniel Barak
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel
| | - Raya Sorkin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel.
| | - Ayelet Lesman
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel.
| |
Collapse
|
33
|
Pratt SJP, Plunkett CM, Kuzu G, Trinh T, Barbara J, Choconta P, Quackenbush D, Huynh T, Smith A, Barnes SW, New J, Pierce J, Walker JR, Mainquist J, King FJ, Elliott J, Hammack S, Decker RS. A high throughput cell stretch device for investigating mechanobiology in vitro. APL Bioeng 2024; 8:026129. [PMID: 38938688 PMCID: PMC11210978 DOI: 10.1063/5.0206852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Mechanobiology is a rapidly advancing field, with growing evidence that mechanical signaling plays key roles in health and disease. To accelerate mechanobiology-based drug discovery, novel in vitro systems are needed that enable mechanical perturbation of cells in a format amenable to high throughput screening. Here, both a mechanical stretch device and 192-well silicone flexible linear stretch plate were designed and fabricated to meet high throughput technology needs for cell stretch-based applications. To demonstrate the utility of the stretch plate in automation and screening, cell dispensing, liquid handling, high content imaging, and high throughput sequencing platforms were employed. Using this system, an assay was developed as a biological validation and proof-of-concept readout for screening. A mechano-transcriptional stretch response was characterized using focused gene expression profiling measured by RNA-mediated oligonucleotide Annealing, Selection, and Ligation with Next-Gen sequencing. Using articular chondrocytes, a gene expression signature containing stretch responsive genes relevant to cartilage homeostasis and disease was identified. The possibility for integration of other stretch sensitive cell types (e.g., cardiovascular, airway, bladder, gut, and musculoskeletal), in combination with alternative phenotypic readouts (e.g., protein expression, proliferation, or spatial alignment), broadens the scope of high throughput stretch and allows for wider adoption by the research community. This high throughput mechanical stress device fills an unmet need in phenotypic screening technology to support drug discovery in mechanobiology-based disease areas.
Collapse
Affiliation(s)
- Stephen J. P. Pratt
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | | | - Guray Kuzu
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Ton Trinh
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Joshua Barbara
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Paula Choconta
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Doug Quackenbush
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Truc Huynh
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Anders Smith
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - S. Whitney Barnes
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Joel New
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - James Pierce
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - John R. Walker
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - James Mainquist
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Frederick J. King
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Jimmy Elliott
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Scott Hammack
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Rebekah S. Decker
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| |
Collapse
|
34
|
Alisafaei F, Mandal K, Saldanha R, Swoger M, Yang H, Shi X, Guo M, Hehnly H, Castañeda CA, Janmey PA, Patteson AE, Shenoy VB. Vimentin is a key regulator of cell mechanosensing through opposite actions on actomyosin and microtubule networks. Commun Biol 2024; 7:658. [PMID: 38811770 PMCID: PMC11137025 DOI: 10.1038/s42003-024-06366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
The cytoskeleton is a complex network of interconnected biopolymers consisting of actin filaments, microtubules, and intermediate filaments. These biopolymers work in concert to transmit cell-generated forces to the extracellular matrix required for cell motility, wound healing, and tissue maintenance. While we know cell-generated forces are driven by actomyosin contractility and balanced by microtubule network resistance, the effect of intermediate filaments on cellular forces is unclear. Using a combination of theoretical modeling and experiments, we show that vimentin intermediate filaments tune cell stress by assisting in both actomyosin-based force transmission and reinforcement of microtubule networks under compression. We show that the competition between these two opposing effects of vimentin is regulated by the microenvironment stiffness. These results reconcile seemingly contradictory results in the literature and provide a unified description of vimentin's effects on the transmission of cell contractile forces to the extracellular matrix.
Collapse
Affiliation(s)
- Farid Alisafaei
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kalpana Mandal
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, 19104, USA
| | - Renita Saldanha
- Physics Department, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Maxx Swoger
- Physics Department, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Haiqian Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xuechen Shi
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, 19104, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heidi Hehnly
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Carlos A Castañeda
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY, 13244, USA
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA
| | - Paul A Janmey
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, 19104, USA
- Departments of Physiology, and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
35
|
Xu KL, Di Caprio N, Fallahi H, Dehghany M, Davidson MD, Laforest L, Cheung BCH, Zhang Y, Wu M, Shenoy V, Han L, Mauck RL, Burdick JA. Microinterfaces in biopolymer-based bicontinuous hydrogels guide rapid 3D cell migration. Nat Commun 2024; 15:2766. [PMID: 38553465 PMCID: PMC10980809 DOI: 10.1038/s41467-024-46774-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
Cell migration is critical for tissue development and regeneration but requires extracellular environments that are conducive to motion. Cells may actively generate migratory routes in vivo by degrading or remodeling their environments or instead utilize existing extracellular matrix microstructures or microtracks as innate pathways for migration. While hydrogels in general are valuable tools for probing the extracellular regulators of 3-dimensional migration, few recapitulate these natural migration paths. Here, we develop a biopolymer-based bicontinuous hydrogel system that comprises a covalent hydrogel of enzymatically crosslinked gelatin and a physical hydrogel of guest and host moieties bonded to hyaluronic acid. Bicontinuous hydrogels form through controlled solution immiscibility, and their continuous subdomains and high micro-interfacial surface area enable rapid 3D migration, particularly when compared to homogeneous hydrogels. Migratory behavior is mesenchymal in nature and regulated by biochemical and biophysical signals from the hydrogel, which is shown across various cell types and physiologically relevant contexts (e.g., cell spheroids, ex vivo tissues, in vivo tissues). Our findings introduce a design that leverages important local interfaces to guide rapid cell migration.
Collapse
Affiliation(s)
- Karen L Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Nikolas Di Caprio
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hooman Fallahi
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, 19104, PA, USA
| | - Mohammad Dehghany
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew D Davidson
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Lorielle Laforest
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Brian C H Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Yuqi Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Vivek Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, 19104, PA, USA
| | - Robert L Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA.
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
| |
Collapse
|
36
|
Sarkar M, Burkel BM, Ponik SM, Notbohm J. Unexpected softening of a fibrous matrix by contracting inclusions. Acta Biomater 2024; 177:253-264. [PMID: 38272198 PMCID: PMC10948310 DOI: 10.1016/j.actbio.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Cells respond to the stiffness of their surrounding environment, but quantifying the stiffness of a fibrous matrix at the scale of a cell is complicated, due to the effects of nonlinearity and complex force transmission pathways resulting from randomness in fiber density and connections. While it is known that forces produced by individual contractile cells can stiffen the matrix, it remains unclear how simultaneous contraction of multiple cells in a fibrous matrix alters the stiffness at the scale of a cell. Here, we used computational modeling and experiments to quantify the stiffness of a random fibrous matrix embedded with multiple contracting inclusions, which mimicked the contractile forces of a cell. The results showed that when the matrix was free to contract as a result of the forces produced by the inclusions, the matrix softened rather than stiffened, which was surprising given that the contracting inclusions applied tensile forces to the matrix. Using the computational model, we identified that the underlying cause of the softening was that the majority of the fibers were under a local state of axial compression, causing buckling. We verified that this buckling-induced matrix softening was sufficient for cells to sense and respond by altering their morphology and force generation. Our findings reveal that the localized forces induced by cells do not always stiffen the matrix; rather, softening can occur in instances wherein the matrix can contract in response to the cell-generated forces. This study opens up new possibilities to investigate whether cell-induced softening contributes to maintenance of homeostatic conditions or progression of disease. STATEMENT OF SIGNIFICANCE: Mechanical interactions between cells and the surrounding matrix strongly influence cellular functions. Cell-induced forces can alter matrix properties, and much prior literature in this area focused on the influence of individual contracting cells. Cells in tissues are rarely solitary; rather, they are interspersed with neighboring cells throughout the matrix. As a result, the mechanics are complicated, leaving it unclear how the multiple contracting cells affect matrix stiffness. Here, we show that multiple contracting inclusions within a fibrous matrix can cause softening that in turn affects cell sensing and response. Our findings provide new directions to determine impacts of cell-induced softening on maintenance of tissue or progression of disease.
Collapse
Affiliation(s)
- Mainak Sarkar
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian M Burkel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Jacob Notbohm
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|
37
|
Sun R, Jin X, Bao Y, Cao Z, Gao D, Zhang R, Qiu L, Yuan H, Xing C. Microenvironment with NIR-Controlled ROS and Mechanical Tensions for Manipulating Cell Activities in Wound Healing. NANO LETTERS 2024; 24:3257-3266. [PMID: 38426843 DOI: 10.1021/acs.nanolett.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The extracellular matrix (ECM) orchestrates cell behavior and tissue regeneration by modulating biochemical and mechanical signals. Manipulating cell-material interactions is crucial for leveraging biomaterials to regulate cell functions. Yet, integrating multiple cues in a single material remains a challenge. Here, near-infrared (NIR)-controlled multifunctional hydrogel platforms, named PIC/CM@NPs, are introduced to dictate fibroblast behavior during wound healing by tuning the matrix oxidative stress and mechanical tensions. PIC/CM@NPs are prepared through cell adhesion-medicated assembly of collagen-like polyisocyanide (PIC) polymers and cell-membrane-coated conjugated polymer nanoparticles (CM@NPs), which closely mimic the fibrous structure and nonlinear mechanics of ECM. Upon NIR stimulation, PIC/CM@NPs composites enhance fibroblast cell proliferation, migration, cytokine production, and myofibroblast activation, crucial for wound closure. Moreover, they exhibit effective and toxin removal antibacterial properties, reducing inflammation. This multifunctional approach accelerates healing by 95%, highlighting the importance of integrating biochemical and biophysical cues in the biomaterial design for advanced tissue regeneration.
Collapse
Affiliation(s)
- Rang Sun
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xinyu Jin
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yuying Bao
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Zhanshuo Cao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Dong Gao
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Ran Zhang
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Liang Qiu
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Hongbo Yuan
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Leuven 3000, Belgium
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
38
|
Garcia APV, Taborda DYO, Reis LA, de Paula AM, Cassali GD. Collagen modifications predictive of lymph node metastasis in dogs with carcinoma in mixed tumours. Front Vet Sci 2024; 11:1362693. [PMID: 38511192 PMCID: PMC10951072 DOI: 10.3389/fvets.2024.1362693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Mixed tumours in the canine mammary gland are the most common histological type in routine diagnosis. In general, these neoplasms have a favourable prognosis that does not evolve into metastatic disease. However, some cases develop into lymph node metastases and are associated with worse patient survival rates. Methods Here is a retrospective study of 46 samples of primary mixed tumours of the canine mammary gland: 15 cases of benign mixed tumours (BMT), 16 cases of carcinoma in mixed tumours without lymph node metastasis (CMT), and 15 cases of carcinomas in mixed tumours with lymph node metastasis (CMTM). In addition, we selected 23 cases of normal mammary glands (NMT) for comparison. The samples were collected from biopsies performed during nodulectomy, simple mastectomy, regional mastectomy, or unilateral/bilateral radical mastectomy. We used multiphoton microscopy, second harmonic generation, and two-photon excited fluorescence, to evaluate the characteristics of collagen fibres and cellular components in biopsies stained with haematoxylin and eosin. We performed Ki67, ER, PR, and HER-2 immunostaining to define the immunophenotype and COX-2. We showed that carcinomas that evolved into metastatic disease (CMTM) present shorter and wavier collagen fibres as compared to CMT. Results and discussion When compared to NMT and BMT the carcinomas present a smaller area of fibre coverage, a larger area of cellular coverage, and a larger number of individual fibres. Furthermore, we observed a correlation between the strong expression of COX-2 and a high rate of cell proliferation in carcinomas with a smaller area covered by cell fibres and a larger number of individual fibres. These findings highlight the fundamental role of collagen during tumour progression, especially in invasion and metastatic dissemination.
Collapse
Affiliation(s)
- Ana Paula Vargas Garcia
- Laboratory of Comparative Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daiana Yively Osorio Taborda
- Laboratory of Comparative Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luana Aparecida Reis
- Biophotonics Laboratory, Physics Department, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Maria de Paula
- Biophotonics Laboratory, Physics Department, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
39
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
40
|
Jyoti Mech D, Suhail Rizvi M. Micromechanics of fibrous scaffolds and their stiffness sensing by cells. Biomed Mater 2024; 19:025035. [PMID: 38290154 DOI: 10.1088/1748-605x/ad2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Mechanical properties of the tissue engineering scaffolds are known to play a crucial role in cell response. Therefore, an understanding of the cell-scaffold interactions is of high importance. Here, we have utilized discrete fiber network model to quantitatively study the micromechanics of fibrous scaffolds with different fiber arrangements and cross-linking densities. We observe that localized forces on the scaffold result in its anisotropic deformation even for isotropic fiber arrangements. We also see an exponential decay of the displacement field with distance from the location of applied force. This nature of the decay allows us to estimate the characteristic length for force transmission in fibrous scaffolds. Furthermore, we also looked at the stiffness sensing of fibrous scaffolds by individual cells and its dependence on the cellular sensing mechanism. For this, we considered two conditions- stress-controlled, and strain-controlled application of forces by a cell. With fixed strain, we find that the stiffness sensed by a cell is proportional to the scaffold's 'macroscopic' elastic modulus. However, under fixed stress application by the cell, the stiffness sensed by the cell also depends on the cell's own stiffness. In fact, the stiffness values for the same scaffold sensed by the stiff and soft cells can differ from each other by an order of magnitude. The insights from this work will help in designing tissue engineering scaffolds for applications where mechanical stimuli are a critical factor.
Collapse
Affiliation(s)
- Dhruba Jyoti Mech
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Mohd Suhail Rizvi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
- Computational Biology Research Lab, IIT Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| |
Collapse
|
41
|
Crawford AJ, Gomez-Cruz C, Russo GC, Huang W, Bhorkar I, Roy T, Muñoz-Barrutia A, Wirtz D, Garcia-Gonzalez D. Tumor proliferation and invasion are intrinsically coupled and unraveled through tunable spheroid and physics-based models. Acta Biomater 2024; 175:170-185. [PMID: 38160858 DOI: 10.1016/j.actbio.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Proliferation and invasion are two key drivers of tumor growth that are traditionally considered independent multicellular processes. However, these processes are intrinsically coupled through a maximum carrying capacity, i.e., the maximum spatial cell concentration supported by the tumor volume, total cell count, nutrient access, and mechanical properties of the tissue stroma. We explored this coupling of proliferation and invasion through in vitro and in silico methods where we modulated the mechanical properties of the tumor and the surrounding extracellular matrix. E-cadherin expression and stromal collagen concentration were manipulated in a tunable breast cancer spheroid to determine the overall impacts of these tumor variables on net tumor proliferation and continuum invasion. We integrated these results into a mixed-constitutive formulation to computationally delineate the influences of cellular and extracellular adhesion, stiffness, and mechanical properties of the extracellular matrix on net proliferation and continuum invasion. This framework integrates biological in vitro data into concise computational models of invasion and proliferation to provide more detailed physical insights into the coupling of these key tumor processes and tumor growth. STATEMENT OF SIGNIFICANCE: Tumor growth involves expansion into the collagen-rich stroma through intrinsic coupling of proliferation and invasion within the tumor continuum. These processes are regulated by a maximum carrying capacity that is determined by the total cell count, tumor volume, nutrient access, and mechanical properties of the surrounding stroma. The influences of biomechanical parameters (i.e., stiffness, cell elongation, net proliferation rate and cell-ECM friction) on tumor proliferation or invasion cannot be unraveled using experimental methods alone. By pairing a tunable spheroid system with computational modeling, we delineated the interdependencies of each system parameter on tumor proliferation and continuum invasion, and established a concise computational framework for studying tumor mechanobiology.
Collapse
Affiliation(s)
- Ashleigh J Crawford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA
| | - Clara Gomez-Cruz
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid, Spain; Departamento de Bioingenieria, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid, Spain
| | - Gabriella C Russo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA
| | - Wilson Huang
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA; Department of Biology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA
| | - Isha Bhorkar
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA
| | - Triya Roy
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA
| | - Arrate Muñoz-Barrutia
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, MD 21218, USA; Departamento de Bioingenieria, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid, Spain; Area de Ingenieria Biomedica, Instituto de Investigacion Sanitaria Gregorio Maranon, Calle del Doctor Esquerdo 46, Madrid' ES 28007, Spain
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA; Departments of Pathology and Oncology and Sydney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21215, USA.
| | - Daniel Garcia-Gonzalez
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid, Spain.
| |
Collapse
|
42
|
Mellentine SQ, Brown HN, Ramsey AS, Li J, Tootle TL. Specific prostaglandins are produced in the migratory cells and the surrounding substrate to promote Drosophila border cell migration. Front Cell Dev Biol 2024; 11:1257751. [PMID: 38283991 PMCID: PMC10811798 DOI: 10.3389/fcell.2023.1257751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: A key regulator of collective cell migration is prostaglandin (PG) signaling. However, it remains largely unclear whether PGs act within the migratory cells or their microenvironment to promote migration. Here we use Drosophila border cell migration as a model to uncover the cell-specific roles of two PGs in collective migration. The border cells undergo a collective and invasive migration between the nurse cells; thus, the nurse cells are the substrate and microenvironment for the border cells. Prior work found PG signaling is required for on-time border cell migration and cluster cohesion. Methods: Confocal microscopy and quantitative image analyses of available mutant alleles and RNAi lines were used to define the roles of the PGE2 and PGF2α synthases in border cell migration. Results: We find that the PGE2 synthase cPGES is required in the substrate, while the PGF2α synthase Akr1B is required in the border cells for on-time migration. Akr1B acts in both the border cells and their substrate to regulate cluster cohesion. One means by which Akr1B may regulate border cell migration and/or cluster cohesion is by promoting integrin-based adhesions. Additionally, Akr1B limits myosin activity, and thereby cellular stiffness, in the border cells, whereas cPGES limits myosin activity in both the border cells and their substrate. Decreasing myosin activity overcomes the migration delays in both akr1B and cPGES mutants, indicating the changes in cellular stiffness contribute to the migration defects. Discussion: Together these data reveal that two PGs, PGE2 and PGF2α, produced in different locations, play key roles in promoting border cell migration. These PGs likely have similar migratory versus microenvironment roles in other collective cell migrations.
Collapse
Affiliation(s)
- Samuel Q. Mellentine
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Hunter N. Brown
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Anna S. Ramsey
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Jie Li
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
43
|
Sleeboom JJF, van Tienderen GS, Schenke-Layland K, van der Laan LJW, Khalil AA, Verstegen MMA. The extracellular matrix as hallmark of cancer and metastasis: From biomechanics to therapeutic targets. Sci Transl Med 2024; 16:eadg3840. [PMID: 38170791 DOI: 10.1126/scitranslmed.adg3840] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
The extracellular matrix (ECM) is essential for cell support during homeostasis and plays a critical role in cancer. Although research often concentrates on the tumor's cellular aspect, attention is growing for the importance of the cancer-associated ECM. Biochemical and physical ECM signals affect tumor formation, invasion, metastasis, and therapy resistance. Examining the tumor microenvironment uncovers intricate ECM dysregulation and interactions with cancer and stromal cells. Anticancer therapies targeting ECM sensors and remodelers, including integrins and matrix metalloproteinases, and ECM-remodeling cells, have seen limited success. This review explores the ECM's role in cancer and discusses potential therapeutic strategies for cell-ECM interactions.
Collapse
Affiliation(s)
- Jelle J F Sleeboom
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Postbox 2040, 3000CA Rotterdam, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628CD Delft, Netherlands
| | - Gilles S van Tienderen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Postbox 2040, 3000CA Rotterdam, Netherlands
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Postbox 2040, 3000CA Rotterdam, Netherlands
| | - Antoine A Khalil
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Postbox 2040, 3000CA Rotterdam, Netherlands
| |
Collapse
|
44
|
Davidson CD, Midekssa FS, DePalma SJ, Kamen JL, Wang WY, Jayco DKP, Wieger ME, Baker BM. Mechanical Intercellular Communication via Matrix-Borne Cell Force Transmission During Vascular Network Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306210. [PMID: 37997199 PMCID: PMC10797481 DOI: 10.1002/advs.202306210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 11/25/2023]
Abstract
Intercellular communication is critical to the formation and homeostatic function of all tissues. Previous work has shown that cells can communicate mechanically via the transmission of cell-generated forces through their surrounding extracellular matrix, but this process is not well understood. Here, mechanically defined, synthetic electrospun fibrous matrices are utilized in conjunction with a microfabrication-based cell patterning approach to examine mechanical intercellular communication (MIC) between endothelial cells (ECs) during their assembly into interconnected multicellular networks. It is found that cell force-mediated matrix displacements in deformable fibrous matrices underly directional extension and migration of neighboring ECs toward each other prior to the formation of stable cell-cell connections enriched with vascular endothelial cadherin (VE-cadherin). A critical role is also identified for calcium signaling mediated by focal adhesion kinase and mechanosensitive ion channels in MIC that extends to multicellular assembly of 3D vessel-like networks when ECs are embedded within fibrin hydrogels. These results illustrate a role for cell-generated forces and ECM mechanical properties in multicellular assembly of capillary-like EC networks and motivates the design of biomaterials that promote MIC for vascular tissue engineering.
Collapse
Affiliation(s)
| | - Firaol S. Midekssa
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Samuel J. DePalma
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Jordan L. Kamen
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - William Y. Wang
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | | | - Megan E. Wieger
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Brendon M. Baker
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
45
|
Zadvornyi T, Lukianova N, Mushii O, Pavlova A, Voronina O, Chekhun V. Benign and malignant prostate neoplasms show different spatial organization of collagen. Croat Med J 2023; 64:413-420. [PMID: 38168522 PMCID: PMC10797232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
AIM To compare the indicators of the spatial organization of collagen and its regulating factors between benign and malignant prostate neoplasms. METHODS The study involved tumor tissue samples from 40 patients with stage II-III prostate cancer (PCa) and 20 patients with benign prostatic hyperplasia (BPH). The localization of collagen was determined with a Masson trichrome stain. To establish quantitative indicators of the spatial organization of collagen, morphometric studies were carried out with the CurveAlign and ImageJ programs. RESULTS PCa tissue had two times lower collagen density (P<0.0001) and 1.3 times lower levels of collagen alignment (P=0.018) compared with BPH tissue. In PCa tissue, collagen fibers were shorter (by 24.2%; P<0.001) and thicker (by 15.5%; P<0.001). PCa tissue samples showed significantly higher levels of metalloproteinase (MMP)-2 (by 2.4 times; P=0.001), MMP-8 (by 2.3 times; P=0.007), and MMP-13 (by 1.9 times; P=0.004). CONCLUSIONS Collagen matrix spatial organization features, as well as its regulatory factors, could be potential biomarkers of malignant prostate neoplasms.
Collapse
Affiliation(s)
- Taras Zadvornyi
- Taras Zadvornyi, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Vasylkivska str. 45, Kyiv-03022, Ukraine,
| | | | | | | | | | | |
Collapse
|
46
|
Prince E, Morozova S, Chen Z, Adibnia V, Yakavets I, Panyukov S, Rubinstein M, Kumacheva E. Nanocolloidal hydrogel mimics the structure and nonlinear mechanical properties of biological fibrous networks. Proc Natl Acad Sci U S A 2023; 120:e2220755120. [PMID: 38091296 PMCID: PMC10743449 DOI: 10.1073/pnas.2220755120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/03/2023] [Indexed: 12/18/2023] Open
Abstract
Fibrous networks formed by biological polymers such as collagen or fibrin exhibit nonlinear mechanical behavior. They undergo strong stiffening in response to weak shear and elongational strains, but soften under compressional strain, in striking difference with the response to the deformation of flexible-strand networks formed by molecules. The nonlinear properties of fibrous networks are attributed to the mechanical asymmetry of the constituent filaments, for which a stretching modulus is significantly larger than the bending modulus. Studies of the nonlinear mechanical behavior are generally performed on hydrogels formed by biological polymers, which offers limited control over network architecture. Here, we report an engineered covalently cross-linked nanofibrillar hydrogel derived from cellulose nanocrystals and gelatin. The variation in hydrogel composition provided a broad-range change in its shear modulus. The hydrogel exhibited both shear-stiffening and compression-induced softening, in agreement with the predictions of the affine model. The threshold nonlinear stress and strain were universal for the hydrogels with different compositions, which suggested that nonlinear mechanical properties are general for networks formed by rigid filaments. The experimental results were in agreement with an affine model describing deformation of the network formed by rigid filaments. Our results lend insight into the structural features that govern the nonlinear biomechanics of fibrous networks and provide a platform for future studies of the biological impact of nonlinear mechanical properties.
Collapse
Affiliation(s)
- Elisabeth Prince
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
- Department of Chemical Engineering, University of Waterloo, Waterloo, ONN2L3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ONN2L3G1, Canada
| | - Sofia Morozova
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
- N. E. Bauman Moscow State Technical University, Moscow105005, Russia
| | - Zhengkun Chen
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
| | - Vahid Adibnia
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NSB3H4R2, Canada
| | - Ilya Yakavets
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
| | - Sergey Panyukov
- Center of Soft Matter and Physics of Fluids, P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow117924, Russia
- Department of Theoretical Physics, Moscow Institute of Physics and Technology, Moscow 141700, Russia
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC27708
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Physics, Duke University, Durham, NC27708
- Department of Chemistry, Duke University, Durham, NC27708
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ONM5S3E5, Canada
| |
Collapse
|
47
|
Ouyang M, Hu Y, Chen W, Li H, Ji Y, Qiu L, Zhu L, Ji B, Bu B, Deng L. Cell Mechanics Regulates the Dynamic Anisotropic Remodeling of Fibril Matrix at Large Scale. RESEARCH (WASHINGTON, D.C.) 2023; 6:0270. [PMID: 39882542 PMCID: PMC11776286 DOI: 10.34133/research.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 10/22/2023] [Indexed: 01/31/2025]
Abstract
Living tissues often have anisotropic and heterogeneous organizations, in which developmental processes are coordinated by cells and extracellular matrix modeling. Cells have the capability of modeling matrix in long distance; however, the biophysical mechanism is largely unknown. We investigated the dynamic remodeling of collagen I (COL) fibril matrix by cell contraction with designed patterns of cell clusters. By considering cell dynamic contractions, our molecular dynamics simulations predicted the anisotropic patterns of the observed COL bundling in experiments with various geometrical patterns without spatial limitation. The pattern of COL bundling was closely related to the dynamic remodeling of fibril under cell active contraction. We showed that cell cytoskeletal integrity (actin filaments and microtubules), actomyosin contractions, and endoplasmic reticulum calcium channels acting as force generations and transductions were essential for fiber bundling inductions, and membrane mechanosensory components integrin and Piezo played critical roles as well. This study revealed the underlying mechanisms of the cell mechanics-induced matrix remodeling in large scales and the associated cellular mechanism and should provide important guidelines for tissue engineering in potential biomedical applications.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Yanling Hu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Weihui Chen
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Hui Li
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Yingbo Ji
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Linshuo Qiu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Linlin Zhu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Bing Bu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
48
|
Lyu C, Kong W, Liu Z, Wang S, Zhao P, Liang K, Niu Y, Yang W, Xiang C, Hu X, Li X, Du Y. Advanced glycation end-products as mediators of the aberrant crosslinking of extracellular matrix in scarred liver tissue. Nat Biomed Eng 2023; 7:1437-1454. [PMID: 37037967 DOI: 10.1038/s41551-023-01019-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/10/2023] [Indexed: 04/12/2023]
Abstract
The extracellular matrix of cirrhotic liver tissue is highly crosslinked. Here we show that advanced glycation end-products (AGEs) mediate crosslinking in liver extracellular matrix and that high levels of crosslinking are a hallmark of cirrhosis. We used liquid chromatography-tandem mass spectrometry to quantify the degree of crosslinking of the matrix of decellularized cirrhotic liver samples from patients and from two mouse models of liver fibrosis and show that the structure, biomechanics and degree of AGE-mediated crosslinking of the matrices can be recapitulated in collagen matrix crosslinked by AGEs in vitro. Analyses via cryo-electron microscopy and optical tweezers revealed that crosslinked collagen fibrils form thick bundles with reduced stress relaxation rates; moreover, they resist remodelling by macrophages, leading to reductions in their levels of adhesion-associated proteins, altering HDAC3 expression and the organization of their cytoskeleton, and promoting a type II immune response of macrophages. We also show that rosmarinic acid inhibited AGE-mediated crosslinking and alleviated the progression of fibrosis in mice. Our findings support the development of therapeutics targeting crosslinked extracellular matrix in scarred liver tissue.
Collapse
Affiliation(s)
- Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wenyu Kong
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhiqiang Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Sihan Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Peng Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yudi Niu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Canhong Xiang
- Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xueming Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
49
|
Pajic-Lijakovic I, Milivojevic M. Physics of collective cell migration. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:625-640. [PMID: 37707627 DOI: 10.1007/s00249-023-01681-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Movement of cell clusters along extracellular matrices (ECM) during tissue development, wound healing, and early stage of cancer invasion involve various inter-connected migration modes such as: (1) cell movement within clusters, (2) cluster extension (wetting) and compression (de-wetting), and (3) directional cluster movement. It has become increasingly evident that dilational and volumetric viscoelasticity of cell clusters and their surrounding substrate significantly influence these migration modes through physical parameters such as: tissue and matrix surface tensions, interfacial tension between cells and substrate, gradients of surface and interfacial tensions, as well as, the accumulation of cell and matrix residual stresses. Inhomogeneous distribution of tissue surface tension along the cell-matrix biointerface can appear as a consequence of different contractility of various cluster regions. While the directional cell migration caused by the matrix stiffness gradient (i.e., durotaxis) has been widely elaborated, the structural changes of matrix surface caused by cell tractions which lead to the generation of the matrix surface tension gradient has not been considered yet. The main goal of this theoretical consideration is to clarify the roles of various physical parameters in collective cell migration based on the formulation of a biophysical model. This complex phenomenon is discussed with the help of model systems such as the movement of cell clusters on a collagen I gel matrix, simultaneously reviewing various experimental data with and without cells.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia
| |
Collapse
|
50
|
Peng X, Huang Y, Genin GM. The fibrous character of pericellular matrix mediates cell mechanotransduction. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2023; 180:105423. [PMID: 38559448 PMCID: PMC10978028 DOI: 10.1016/j.jmps.2023.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cells in solid tissues sense and respond to mechanical signals that are transmitted through extracellular matrix (ECM) over distances that are many times their size. This long-range force transmission is known to arise from strain-stiffening and buckling in the collagen fiber ECM network, but must also pass through the denser pericellular matrix (PCM) that cells form by secreting and compacting nearby collagen. However, the role of the PCM in the transmission of mechanical signals is still unclear. We therefore studied an idealized computational model of cells embedded within fibrous collagen ECM and PCM. Our results suggest that the smaller network pore sizes associated with PCM attenuates tension-driven collagen-fiber alignment, undermining long-range force transmission and shielding cells from mechanical stress. However, elongation of the cell body or anisotropic cell contraction can compensate for these effects to enable long distance force transmission. Results are consistent with recent experiments that highlight an effect of PCM on shielding cells from high stresses. Results have implications for the transmission of mechanical signaling in development, wound healing, and fibrosis.
Collapse
Affiliation(s)
- Xiangjun Peng
- U.S. National Science Foundation Science and Technology Center for Engineering Mechanobiology, and Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 United States
| | - Yuxuan Huang
- U.S. National Science Foundation Science and Technology Center for Engineering Mechanobiology, and Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 United States
| | - Guy M. Genin
- U.S. National Science Foundation Science and Technology Center for Engineering Mechanobiology, and Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 United States
| |
Collapse
|