1
|
Lehenauer T, Jaksch-Bogensperger H, Huber S, Weghuber D, Fischer T, Mayr JA, Kofler B, Neumayer B, Gharehbaghi D, Duggan-Peer M, Brandstetter M, Fazelnia C, Feichtinger RG. Mitochondrial Oxidative Phosphorylation Alterations in Placental Tissues from Early- and Late-Onset Preeclampsia. Int J Mol Sci 2025; 26:3951. [PMID: 40362193 PMCID: PMC12071294 DOI: 10.3390/ijms26093951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Preeclampsia (PE), a pregnancy complication characterized by high blood pressure and organ damage, has been suggested to be associated with mitochondrial dysfunction, although evidence remains limited. This study aimed to investigate the activity of oxidative phosphorylation (OXPHOS) enzymes and the expression of related proteins in placental tissues from women diagnosed with early-onset preeclampsia (eoPE, <34 weeks of gestation), late-onset preeclampsia (loPE, ≥34 weeks of gestation), and normotensive controls. Placental samples were analyzed using immunohistochemistry, western blotting, and enzymatic activity assays to assess the activity and expression of OXPHOS complexes. Complex I activity was increased by 80% in eoPE and 56% in loPE, with positive correlations between normalized complex I expression, gestational age at delivery (r = 0.85, p = 0.01), and birth weight (r = 0.88, p = 0.004) in loPE. Relative complex II expression in loPE showed positive correlations with pregnancy duration (r = 0.76, p = 0.03) and birth weight (r = 0.77, p = 0.03), while in controls, complex II expression correlated with pregnancy duration (r = 0.64, p = 0.03). Additionally, complex IV enzyme activity in eoPE was negatively correlated with maternal age at birth (r = -0.69, p = 0.03). The observed correlations highlight mitochondrial metabolism as a promising biomarker for predicting disease progression and guiding therapeutic interventions in preeclampsia. Unraveling its precise role in PE pathogenesis is critical to advancing diagnostic precision and improving maternal-fetal outcomes.
Collapse
Affiliation(s)
- Theresa Lehenauer
- University Children’s Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University (PMU), Müllner Hauptstraße 48, 5020 Salzburg, Austria; (T.L.); (D.W.); (J.A.M.)
| | - Heidi Jaksch-Bogensperger
- Department of Obstetrics and Gynaecology, Salzburger Landesklinken (SALK) and Paracelsus Medical University (PMU), Müllner Hauptstraße 48, 5020 Salzburg, Austria; (H.J.-B.); (T.F.); (D.G.); (M.D.-P.); (M.B.); (C.F.)
| | - Sara Huber
- Research Program for Receptor Biochemistry and Tumor Metabolism, University Children’s Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University (PMU), Müllner Hauptstraße 48, 5020 Salzburg, Austria; (S.H.); (B.K.)
| | - Daniel Weghuber
- University Children’s Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University (PMU), Müllner Hauptstraße 48, 5020 Salzburg, Austria; (T.L.); (D.W.); (J.A.M.)
| | - Thorsten Fischer
- Department of Obstetrics and Gynaecology, Salzburger Landesklinken (SALK) and Paracelsus Medical University (PMU), Müllner Hauptstraße 48, 5020 Salzburg, Austria; (H.J.-B.); (T.F.); (D.G.); (M.D.-P.); (M.B.); (C.F.)
| | - Johannes A. Mayr
- University Children’s Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University (PMU), Müllner Hauptstraße 48, 5020 Salzburg, Austria; (T.L.); (D.W.); (J.A.M.)
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, University Children’s Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University (PMU), Müllner Hauptstraße 48, 5020 Salzburg, Austria; (S.H.); (B.K.)
| | - Bettina Neumayer
- Department of Pathology, Salzburger Landesklinken (SALK) and Paracelsus Medical University (PMU), Müllner Hauptstraße 48, 5020 Salzburg, Austria;
| | - Daniel Gharehbaghi
- Department of Obstetrics and Gynaecology, Salzburger Landesklinken (SALK) and Paracelsus Medical University (PMU), Müllner Hauptstraße 48, 5020 Salzburg, Austria; (H.J.-B.); (T.F.); (D.G.); (M.D.-P.); (M.B.); (C.F.)
| | - Michaela Duggan-Peer
- Department of Obstetrics and Gynaecology, Salzburger Landesklinken (SALK) and Paracelsus Medical University (PMU), Müllner Hauptstraße 48, 5020 Salzburg, Austria; (H.J.-B.); (T.F.); (D.G.); (M.D.-P.); (M.B.); (C.F.)
| | - Maximilian Brandstetter
- Department of Obstetrics and Gynaecology, Salzburger Landesklinken (SALK) and Paracelsus Medical University (PMU), Müllner Hauptstraße 48, 5020 Salzburg, Austria; (H.J.-B.); (T.F.); (D.G.); (M.D.-P.); (M.B.); (C.F.)
| | - Claudius Fazelnia
- Department of Obstetrics and Gynaecology, Salzburger Landesklinken (SALK) and Paracelsus Medical University (PMU), Müllner Hauptstraße 48, 5020 Salzburg, Austria; (H.J.-B.); (T.F.); (D.G.); (M.D.-P.); (M.B.); (C.F.)
| | - René G. Feichtinger
- University Children’s Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University (PMU), Müllner Hauptstraße 48, 5020 Salzburg, Austria; (T.L.); (D.W.); (J.A.M.)
| |
Collapse
|
2
|
Takahashi K, Sato E, Yamakoshi S, Ogane M, Sekimoto A, Ishikawa T, Kisu K, Oe Y, Okamoto K, Miyazaki M, Tanaka T, Takahashi N. Nicotinamide ameliorates podocyte injury and albuminuria in adriamycin-induced nephropathy. Am J Physiol Renal Physiol 2025; 328:F501-F516. [PMID: 40033940 DOI: 10.1152/ajprenal.00297.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 02/26/2025] [Indexed: 03/05/2025] Open
Abstract
Podocytes are key components of the glomerular filtration barrier, and their injury leads to proteinuria, chronic kidney disease (CKD), and nephrotic syndrome. Effective treatments for these conditions are not well established, and prevention of podocyte injury is a crucial challenge. Nicotinamide (NAM), a form of vitamin B3, has been reported to exert beneficial effects in various renal disease models due to its antioxidant and anti-inflammatory properties and its ability to replenish nicotinamide adenine dinucleotide (NAD+). However, its impact on adriamycin (ADR)-induced nephropathy, a model of nephrotic syndrome caused by podocyte injury, remains unclear. We investigated the effects of NAM administration in a mouse model of ADR nephropathy. BALB/c mice were intravenously administered ADR to induce nephropathy. In the NAM-treated group, mice received 0.6% NAM in drinking water ad libitum starting 7 days before ADR administration. After 14 days, NAM treatment decreased albuminuria, glomerular sclerosis, and podocyte injury, and reduced inflammation and oxidative stress markers in the kidneys. NAM and NAD+ levels were decreased in ADR-treated kidneys, and the expression of the NAD+-consuming enzymes SIRT1 and poly(ADP-ribose) polymerase 1 (PARP-1) was decreased and increased, respectively. Nicotinamide N-methyltransferase expression was increased. NAM canceled these abnormalities. In cultured rat podocytes, NAD+ alleviated ADR-induced cytotoxicity, apoptosis, and inflammation. These findings suggest that NAM prevents ADR nephropathy and podocyte injury, likely through NAD+ replenishment.NEW & NOTEWORTHY Nephrotic syndrome can lead to end-stage kidney disease and cause severe complications. Currently, effective treatments for nephrotic syndrome have not been established, and new therapeutic approaches targeting podocyte injury are needed. Nicotinamide prevents podocyte injury in adriamycin-induced nephropathy in mice and ameliorates albuminuria, pathological changes, oxidative stress, and inflammation. Here, we provide evidence that pretreatment with nicotinamide can attenuate podocyte injury and subsequent nephropathy in mice.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Emiko Sato
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Seiko Yamakoshi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Mizuki Ogane
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Akiyo Sekimoto
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Takamasa Ishikawa
- Infinity Lab, Inc., Tsuruoka, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Kiyomi Kisu
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Oe
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Okamoto
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mariko Miyazaki
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuhiro Tanaka
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuyuki Takahashi
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| |
Collapse
|
3
|
Jahan F, Vasam G, Cariaco Y, Nik-Akhtar A, Green A, Menzies KJ, Bainbridge SA. NAD + depletion is central to placental dysfunction in an inflammatory subclass of preeclampsia. Life Sci Alliance 2024; 7:e202302505. [PMID: 39389781 PMCID: PMC11467044 DOI: 10.26508/lsa.202302505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of pregnancy and a major cause of maternal/perinatal adverse health outcomes with no effective therapeutic strategies. Our group previously identified distinct subclasses of PE, one of which exhibits heightened placental inflammation (inflammation-driven PE). In non-pregnant populations, chronic inflammation is associated with decreased levels of cellular NAD+, a vitamin B3 derivative involved in energy metabolism and mitochondrial function. Interestingly, specifically in placentas from women with inflammation-driven PE, we observed the increased activity of NAD+-consuming enzymes, decreased NAD+ content, decreased expression of mitochondrial proteins, and increased oxidative damage. HTR8 human trophoblasts likewise demonstrated increased NAD+-dependent ADP-ribosyltransferase (ART) activity, coupled with decreased mitochondrial respiration rates and invasive function under inflammatory conditions. Such adverse effects were attenuated by boosting cellular NAD+ levels with nicotinamide riboside (NR). Finally, in an LPS-induced rat model of inflammation-driven PE, NR administration (200 mg/kg/day) from gestational days 1-19 prevented maternal hypertension and fetal/placental growth restriction, improved placental mitochondrial function, and reduced inflammation and oxidative stress. This study demonstrates the critical role of NAD+ in maintaining placental function and identifies NAD+ boosting as a promising preventative strategy for PE.
Collapse
Affiliation(s)
- Fahmida Jahan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Yusmaris Cariaco
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Abolfazl Nik-Akhtar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alex Green
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Keir J Menzies
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Shannon A Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
4
|
Oliveira-Cruz A, Macedo-Silva A, Silva-Lima D, Sanchez-Almeida J, Cruz-Coutinho L, Santos Tavares MP, Majerowicz D. Effects of Supplementation with NAD + Precursors on Metabolic Syndrome Parameters: A Systematic Review and Meta-Analysis. Horm Metab Res 2024; 56:818-826. [PMID: 39111741 DOI: 10.1055/a-2382-6829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Intracellular levels of NAD + regulate metabolism, among other ways, through enzymes that use NAD + as a substrate, capable of inducing catabolic processes, such as lipid oxidation, glucose uptake, and mitochondrial activity. In several model organisms, administering precursor compounds for NAD + synthesis increases its levels, improves lipid and glucose homeostasis, and reduces weight gain. However, evidence of the effects of these precursors on human patients needs to be better evaluated. Therefore, we carried out a systematic review and meta-analysis of randomized clinical trials that assessed the effects of NAD + precursors on Metabolic Syndrome parameters in humans. We based our methods on PRISMA 2020. Our search retrieved 429 articles, and 19 randomized controlled trials were included in the meta-analysis. We assessed the risk of bias with the Rob 2 algorithm and summarized the quality of evidence with the GRADE algorithm. Supplementation with NAD + precursors reduced plasma levels of total cholesterol and triglycerides in volunteers, but the intervention did not significantly affect the other outcomes analyzed. Three of the included articles presented a high risk of bias. The quality of evidence varied between very low and low due to the risk of bias, imprecision, and indirectness. The number of participants in outcomes other than lipidemia is still generally tiny; therefore, more clinical trials evaluating these parameters will increase the quality of the evidence. On the other hand, quality randomized studies are essential to assess better the effects of NAD + precursors on lipidemia.
Collapse
Affiliation(s)
- Amanda Oliveira-Cruz
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessa Macedo-Silva
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Silva-Lima
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia Sanchez-Almeida
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia Cruz-Coutinho
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - David Majerowicz
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Tao S, Zhang X, Yang L, Yang M, Pan B, Xu Y, Li W, Wang J. Nicotinamide improves the impaired extravillous trophoblast cell invasion induced by PM 2.5 exposure-associated increase of TNFα secretion through the ROS/NF-κB/FLT1 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116733. [PMID: 39029224 DOI: 10.1016/j.ecoenv.2024.116733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
It has been well acknowledged that maternal exposure to fine particulate matters (PM2.5) might lead to poor pregnancy outcomes including the intrauterine growth restriction (IUGR) by interfering with the placental development. Our previous studies have demonstrated that maternal PM2.5 exposure induces IUGR, accompanied with increased maternal circulating TNFα level and impaired extravillous trophoblast cells (EVTs) invasion in mice. In this study, HTR8/SVneo cells, the immortalized human EVTs line, were used to assess effects and the underlying molecular mechanisms of nicotinamide on the impaired EVTs invasion. Our results showed that, the placental FLT1 protein level was significantly increased whereas maternal serum nicotinamide concentration was remarkably decreased in PM2.5-exposured pregnant mice at GD17.5 (vaginal plug day=GD0.5), compared to that in normal GD17.5 pregnant mice. FLT1 expression in HTR8/SVneo cells was significantly up-regulated by TNFα treatment, and the down-regulated FLT1 expression effectively abated the inhibitory effects of TNFα on HTR8/SVneo cells migration and invasion. Meanwhile, TNFα promoted reactive oxygen species (ROS) production and NF-κB signaling pathway activation in HTR8/SVneo cells in a dose-dependent manner. Nicotinamide treatment significantly reversed the effects of TNFα on cell migration and invasion, as well as the FLT1 expression, ROS production and NF-κB pathway activation. In summary, increased TNFα induced by PM2.5 exposure inhibits EVTs invasion by activating the ROS/NF-κB/FLT1 signaling pathway, and this adverse effect could be attenuated by nicotinamide treatment, suggesting a potential application in the clinical intervention of PM2.5-induced IUGR.
Collapse
Affiliation(s)
- Shimin Tao
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China; Department of Pharmacy, Affiliated Children's Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China.
| | - Xuan Zhang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Long Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Mingjun Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Bin Pan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Jian Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| |
Collapse
|
6
|
Wang Y, Ssengonzi R, Townley-Tilson WHD, Kayashima Y, Maeda-Smithies N, Li F. The Roles of Obesity and ASB4 in Preeclampsia Pathogenesis. Int J Mol Sci 2024; 25:9017. [PMID: 39201703 PMCID: PMC11354233 DOI: 10.3390/ijms25169017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Preeclampsia is a complex pregnancy-related hypertensive disorder which poses significant risks for both maternal and fetal health. Preeclampsia affects 5-8% of pregnancies in the United States, causing a significant public health and economic burden. Despite extensive research, the etiology and pathogenesis of preeclampsia remain elusive, but have been correlated with maternal conditions such as obesity. In recent decades, the incidence of preeclampsia increased along with the prevalence of obesity among women of reproductive age. Maternal obesity has been shown to negatively affect pregnancy in almost all aspects. However, the precise mechanisms by which obesity influences preeclampsia are unclear. Ankyrin repeat and SOCS Box Containing protein 4 (ASB4) is an E3 ubiquitin ligase that can promote the degradation of a wide range of target proteins. ASB4-null mice display a full spectrum of preeclampsia-like phenotypes during pregnancy including hypertension, proteinuria, and decreased litter size. Furthermore, maternal obesity induced by a high-fat diet aggravates preeclampsia-like phenotypes in pregnant mice lacking ASB4. Variants in the ASB4 gene have been associated with obesity in humans, and a functional connection between the ASB4 gene and obesity has been established in mice. This review discusses the connections between preeclampsia, obesity, and ASB4.
Collapse
Affiliation(s)
| | | | | | | | | | - Feng Li
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA; (Y.W.)
| |
Collapse
|
7
|
Thompson LP, Song H, Hartnett J. Nicotinamide Riboside, an NAD + Precursor, Protects Against Cardiac Mitochondrial Dysfunction in Fetal Guinea Pigs Exposed to Gestational Hypoxia. Reprod Sci 2024; 31:975-986. [PMID: 37957471 PMCID: PMC10959782 DOI: 10.1007/s43032-023-01387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023]
Abstract
Gestational hypoxia inhibits mitochondrial function in the fetal heart and placenta contributing to fetal growth restriction and organ dysfunction. NAD + deficiency may contribute to a metabolic deficit by inhibiting oxidative phosphorylation and ATP synthesis. We tested the effects of nicotinamide riboside (NR), an NAD + precursor, as a treatment for reversing known mitochondrial dysfunction in hypoxic fetal hearts. Pregnant guinea pigs were housed in room air (normoxia) or placed in a hypoxic chamber (10.5%O2) for the last 14 days of gestation (term = 65 days) and administered either water or NR (1.6 mg/ml) in the drinking bottle. Fetuses were excised at term, and NAD + levels of maternal liver, placenta, and fetal heart ventricles were measured. Indices of mitochondrial function (complex IV activity, sirtuin 3 activity, protein acetylation) and ATP synthesis were measured in fetal heart ventricles of NR-treated/untreated normoxic and hypoxic animals. Hypoxia reduced fetal body weight in both sexes (p = 0.01), which was prevented by NR. Hypoxia had no effect on maternal liver NAD + levels but decreased (p = 0.04) placenta NAD + levels, the latter normalized with NR treatment. Hypoxia had no effect on fetal heart NAD + but decreased (p < 0.05) mitochondrial complex IV and sirtuin 3 activities, ATP content, and increased mitochondrial acetylation, which were all normalized with maternal NR. Hypoxia increased (p < 0.05) mitochondrial acetylation in female fetal hearts but had no effect on other mitochondrial indices. We conclude that maternal NR is an effective treatment for normalizing mitochondrial dysfunction and ATP synthesis in the hypoxic fetal heart.
Collapse
Affiliation(s)
- Loren P Thompson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
| | - Hong Song
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Jamie Hartnett
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
| |
Collapse
|
8
|
Fashe MM, Le TV, Gower MN, Mulrenin IR, Dorman KF, Smith S, Fallon JK, Dumond JB, Boggess KA, Lee CR. Impact of Pregnancy on the Pharmacokinetics and Metabolism of Nicotinamide in Humans. Clin Pharmacol Ther 2024; 115:556-564. [PMID: 38093631 PMCID: PMC11250906 DOI: 10.1002/cpt.3146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
In pre-eclampsia models, nicotinamide (NAM) has protective effects in pre-eclampsia and is being evaluated as a therapeutic nutraceutical in clinical studies. NAM undergoes extensive hepatic metabolism by NAM N-methyltransferase to methylnicotinamide (MNA), which is subsequently metabolized to methyl-2-pyridone-5-carboxamide (M2PY) by aldehyde oxidase. However, the pharmacokinetics of NAM and its major metabolites has never been studied in pregnant individuals. Blood samples were collected before and 1, 2, 4, 8, and 24 hours after single 1 g oral NAM dose in healthy pregnant (gestational age 24-33 weeks) and nonpregnant female volunteers (n = 6/group). Pooled urine was collected from 0 to 8 hours. NAM, MNA, and M2PY area under the concentration-time curve (AUC) data were analyzed by noncompartmental analysis. No difference in the plasma AUC0→24 of NAM (median (25%-75%): 463 (436-576) vs. 510 (423, 725) μM*hour, P = 0.430) and its intermediate metabolite MNA (89.1 (60.4, 124.4) vs. 83.8 (62.7, 93.7) μM*hour, P = 0.515) was observed in pregnant and nonpregnant volunteers, respectively; however, the terminal metabolite M2PY AUC0 → 24 was significantly lower in pregnant individuals (218 (188, 254) vs. 597 (460, 653) μM*hour, P < 0.001). NAM renal clearance (CLR ; P = 0.184), MNA CLR (P = 0.180), and total metabolite formation clearance (P = 0.405) did not differ across groups; however, M2PY CLR was significantly higher in pregnant individuals (10.5 (9.3-11.3) vs. 7.5 (6.4-8.5) L/h, P = 0.002). These findings demonstrate that the PK of NAM and systemic exposure to its intermediate metabolite MNA are not significantly altered during pregnancy, and systemic exposure to NAM's major metabolite M2PY was reduced during pregnancy due to increased renal elimination.
Collapse
Affiliation(s)
- Muluneh M. Fashe
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tien V. Le
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Megan N. Gower
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ian R. Mulrenin
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karen F. Dorman
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Spenser Smith
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John K. Fallon
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie B. Dumond
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim A. Boggess
- Department of Obstetrics & Gynecology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig R. Lee
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Bhasin S, Seals D, Migaud M, Musi N, Baur JA. Nicotinamide Adenine Dinucleotide in Aging Biology: Potential Applications and Many Unknowns. Endocr Rev 2023; 44:1047-1073. [PMID: 37364580 DOI: 10.1210/endrev/bnad019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Recent research has unveiled an expansive role of NAD+ in cellular energy generation, redox reactions, and as a substrate or cosubstrate in signaling pathways that regulate health span and aging. This review provides a critical appraisal of the clinical pharmacology and the preclinical and clinical evidence for therapeutic effects of NAD+ precursors for age-related conditions, with a particular focus on cardiometabolic disorders, and discusses gaps in current knowledge. NAD+ levels decrease throughout life; age-related decline in NAD+ bioavailability has been postulated to be a contributor to many age-related diseases. Raising NAD+ levels in model organisms by administration of NAD+ precursors improves glucose and lipid metabolism; attenuates diet-induced weight gain, diabetes, diabetic kidney disease, and hepatic steatosis; reduces endothelial dysfunction; protects heart from ischemic injury; improves left ventricular function in models of heart failure; attenuates cerebrovascular and neurodegenerative disorders; and increases health span. Early human studies show that NAD+ levels can be raised safely in blood and some tissues by oral NAD+ precursors and suggest benefit in preventing nonmelanotic skin cancer, modestly reducing blood pressure and improving lipid profile in older adults with obesity or overweight; preventing kidney injury in at-risk patients; and suppressing inflammation in Parkinson disease and SARS-CoV-2 infection. Clinical pharmacology, metabolism, and therapeutic mechanisms of NAD+ precursors remain incompletely understood. We suggest that these early findings provide the rationale for adequately powered randomized trials to evaluate the efficacy of NAD+ augmentation as a therapeutic strategy to prevent and treat metabolic disorders and age-related conditions.
Collapse
Affiliation(s)
- Shalender Bhasin
- Department of Medicine, Harvard Medical School, Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Douglas Seals
- Department of Integrative Physiology and Medicine, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Marie Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of Southern Alabama, Mobile, AL 36688, USA
| | - Nicolas Musi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Ciampa EJ, Flahardy P, Srinivasan H, Jacobs C, Tsai L, Karumanchi SA, Parikh SM. Hypoxia-inducible factor 1 signaling drives placental aging and can provoke preterm labor. eLife 2023; 12:RP85597. [PMID: 37610425 PMCID: PMC10446824 DOI: 10.7554/elife.85597] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Most cases of preterm labor have unknown cause, and the burden of preterm birth is immense. Placental aging has been proposed to promote labor onset, but specific mechanisms remain elusive. We report findings stemming from unbiased transcriptomic analysis of mouse placenta, which revealed that hypoxia-inducible factor 1 (HIF-1) stabilization is a hallmark of advanced gestational timepoints, accompanied by mitochondrial dysregulation and cellular senescence; we detected similar effects in aging human placenta. In parallel in primary mouse trophoblasts and human choriocarcinoma cells, we modeled HIF-1 induction and demonstrated resultant mitochondrial dysfunction and cellular senescence. Transcriptomic analysis revealed that HIF-1 stabilization recapitulated gene signatures observed in aged placenta. Further, conditioned media from trophoblasts following HIF-1 induction promoted contractility in immortalized uterine myocytes, suggesting a mechanism by which the aging placenta may drive the transition from uterine quiescence to contractility at the onset of labor. Finally, pharmacological induction of HIF-1 via intraperitoneal administration of dimethyloxalyl glycine (DMOG) to pregnant mice caused preterm labor. These results provide clear evidence for placental aging in normal pregnancy, and demonstrate how HIF-1 signaling in late gestation may be a causal determinant of the mitochondrial dysfunction and senescence observed within the trophoblast as well as a trigger for uterine contraction.
Collapse
Affiliation(s)
- Erin J Ciampa
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Padraich Flahardy
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Harini Srinivasan
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Christopher Jacobs
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Linus Tsai
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | | | - Samir M Parikh
- Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical SchoolDallasUnited States
| |
Collapse
|
11
|
Liu X, Yang J, Ran R, Long F, Yang Y, Dong X, Saffery R, Novakovic B, Mousa H, Wei Y, Hu L, Han TL. Chorionicity-associated variation in metabolic phenotype of cord blood in twin. Nutr Metab (Lond) 2023; 20:31. [PMID: 37443030 DOI: 10.1186/s12986-023-00744-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 04/13/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Monochorionic (MC) twins present a higher incidence of unfavorable clinical perinatal outcomes than dichorionic (DC) twins, often in association with placental vascular anastomosis. In this study, we profiled the umbilical cord plasma metabolomes of uncomplicated MC and DC twin pregnancies and related these to several offspring outcomes, previously associated with birthweight. METHODS Umbilical vein blood samples were collected at birth from 25 pairs of uncomplicated MC twins and 24 pairs of uncomplicated DC twins. The samples were subjected to gas chromatography-mass spectrometry-based metabolomics. 152 metabolites were identified from the cord plasma samples of MC and DC twins. Partial least squares discriminant analysis and pathway analysis were performed to compare within DC/MC twin pairs and between DC and MC twins. A generalized estimating equation (GEE) model was utilized to explore the correlation between metabolic differences and birthweight discordance within and between twin pairs. RESULTS Our study revealed clear differences between the metabolite profiles of umbilical cord plasma of MC and DC twins. Metabolite profiles in MC within twin pairs and DC within twin pairs were characterized by the differences in 2 - hydroxyglutaramic acid levels and nicotinamide levels, respectively. The metabolic pathways of GSH, tryptophan, and fatty acid metabolism, were significantly downregulated in MC twins compared to DC twins. In addition, the concentration of caffeine and decamethyl-cyclopentasiloxane (D5) was positively correlated with birthweight in MC and DC twins. CONCLUSION This study demonstrated that the altered metabolites in umbilical plasma made contributions to the different chorionicities between uncomplicated MC twins and DC twins. The chorionicity of twins seems to affect the metabolic cross-talk between co-twin pairs and be related to birthweight discordance of twins.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rui Ran
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fei Long
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, School of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yang Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojing Dong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Richard Saffery
- Molecular Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Boris Novakovic
- Molecular Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Hatem Mousa
- University of Leicester, NHS Trust, Leicester, UK
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| | - Lina Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Mass Spectrometry Centre of Maternal Fetal Medicine, Life Science Institution, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Milano-Foster J, Schulz LC. RISING STARS: Approaches to modeling placental function in preeclampsia in vitro and in vivo. J Endocrinol 2023; 258:e230008. [PMID: 37014303 PMCID: PMC10330201 DOI: 10.1530/joe-23-0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/05/2023]
Abstract
Modeling preeclampsia remains difficult due to the nature of the disease and the unique characteristics of the human placenta. Members of the Hominidae superfamily have a villous hemochorial placenta that is different in structure from those of other therian mammals, including the mouse hemochorial placenta, making this common animal model less ideal for studying this disease. Human placental tissues delivered from pregnancies complicated by preeclampsia are excellent for assessing the damage the disease causes but cannot answer how or when the disease begins. Symptoms of preeclampsia manifest halfway through pregnancy or later, making it currently impossible to identify preeclampsia in human tissues obtained from an early stage of pregnancy. Many animal and cell culture models recapitulate various aspects of preeclampsia, though none can on its own completely capture the complexity of human preeclampsia. It is particularly difficult to uncover the cause of the disease using models in which the disease is induced in the lab. However, the many ways by which preeclampsia-like features can be induced in a variety of laboratory animals are consistent with the idea that preeclampsia is a two-stage disease, in which a variety of initial insults may lead to placental ischemia, and ultimately systemic symptoms. The recent development of stem cell-based models, organoids, and various coculture systems have brought in vitro systems with human cells ever closer to recapitulating in vivo events that lead to placental ischemia.
Collapse
Affiliation(s)
- Jessica Milano-Foster
- Division of Animal Sciences, 245 Bond Life Sciences Center, 1201 Rollins Dr University of Missouri, Columbia MO 65211
| | - Laura C. Schulz
- Department of Obstetrics, Gynecology and Women’s Health, N610 Medical Sciences Building, Columbia, MO 65212
| |
Collapse
|
13
|
Placental Mitochondrial Function and Dysfunction in Preeclampsia. Int J Mol Sci 2023; 24:ijms24044177. [PMID: 36835587 PMCID: PMC9963167 DOI: 10.3390/ijms24044177] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The placenta is a vital organ of pregnancy, regulating adaptation to pregnancy, gestational parent/fetal exchange, and ultimately, fetal development and growth. Not surprisingly, in cases of placental dysfunction-where aspects of placental development or function become compromised-adverse pregnancy outcomes can result. One common placenta-mediated disorder of pregnancy is preeclampsia (PE), a hypertensive disorder of pregnancy with a highly heterogeneous clinical presentation. The wide array of clinical characteristics observed in pregnant individuals and neonates of a PE pregnancy are likely the result of distinct forms of placental pathology underlying the PE diagnosis, explaining why no one common intervention has proven effective in the prevention or treatment of PE. The historical paradigm of placental pathology in PE highlights an important role for utero-placental malperfusion, placental hypoxia and oxidative stress, and a critical role for placental mitochondrial dysfunction in the pathogenesis and progression of the disease. In the current review, the evidence of placental mitochondrial dysfunction in the context of PE will be summarized, highlighting how altered mitochondrial function may be a common feature across distinct PE subtypes. Further, advances in this field of study and therapeutic targeting of mitochondria as a promising intervention for PE will be discussed.
Collapse
|
14
|
Kayashima Y, Townley-Tilson WHD, Vora NL, Boggess K, Homeister JW, Maeda-Smithies N, Li F. Insulin Elevates ID2 Expression in Trophoblasts and Aggravates Preeclampsia in Obese ASB4-Null Mice. Int J Mol Sci 2023; 24:ijms24032149. [PMID: 36768469 PMCID: PMC9917068 DOI: 10.3390/ijms24032149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Obesity is a risk factor for preeclampsia. We investigated how obesity influences preeclampsia in mice lacking ankyrin-repeat-and-SOCS-box-containing-protein 4 (ASB4), which promotes trophoblast differentiation via degrading the inhibitor of DNA-binding protein 2 (ID2). Asb4-/- mice on normal chow (NC) develop mild preeclampsia-like phenotypes during pregnancy, including hypertension, proteinuria, and reduced litter size. Wild-type (WT) and Asb4-/- females were placed on a high-fat diet (HFD) starting at weaning. At the age of 8-9 weeks, they were mated with WT or Asb4-/- males, and preeclamptic phenotypes were assessed. HFD-WT dams had no obvious adverse outcomes of pregnancy. In contrast, HFD-Asb4-/- dams had significantly more severe preeclampsia-like phenotypes compared to NC-Asb4-/- dams. The HFD increased white fat weights and plasma leptin and insulin levels in Asb4-/- females. In the HFD-Asb4-/- placenta, ID2 amounts doubled without changing the transcript levels, indicating that insulin likely increases ID2 at a level of post-transcription. In human first-trimester trophoblast HTR8/SVneo cells, exposure to insulin, but not to leptin, led to a significant increase in ID2. HFD-induced obesity markedly worsens the preeclampsia-like phenotypes in the absence of ASB4. Our data indicate that hyperinsulinemia perturbs the timely removal of ID2 and interferes with proper trophoblast differentiation, contributing to enhanced preeclampsia.
Collapse
Affiliation(s)
- Yukako Kayashima
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - W. H. Davin Townley-Tilson
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Neeta L. Vora
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kim Boggess
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathon W. Homeister
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nobuyo Maeda-Smithies
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Feng Li
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-966-6915; Fax: +1-919-966-8800
| |
Collapse
|
15
|
Dupont V, Berg AH, Yamashita M, Huang C, Covarrubias AE, Ali S, Stotland A, Van Eyk JE, Jim B, Thadhani R, Karumanchi SA. Impaired renal reserve contributes to preeclampsia via the kynurenine and soluble fms-like tyrosine kinase 1 pathway. J Clin Invest 2022; 132:158346. [PMID: 35943814 PMCID: PMC9566901 DOI: 10.1172/jci158346] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
To understand how kidney donation leads to an increased risk of preeclampsia, we studied pregnant outbred mice with prior uninephrectomy and compared them with sham-operated littermates carrying both kidneys. During pregnancy, uninephrectomized (UNx) mice failed to achieve a physiological increase in the glomerular filtration rate and during late gestation developed hypertension, albuminuria, glomerular endothelial damage, and excess placental production of soluble fms-like tyrosine kinase 1 (sFLT1), an antiangiogenic protein implicated in the pathogenesis of preeclampsia. Maternal hypertension in UNx mice was associated with low plasma volumes, an increased rate of fetal resorption, impaired spiral artery remodeling, and placental ischemia. To evaluate potential mechanisms, we studied plasma metabolite changes using mass spectrometry and noted that l-kynurenine, a metabolite of l-tryptophan, was upregulated approximately 3-fold during pregnancy when compared with prepregnant concentrations in the same animals, consistent with prior reports suggesting a protective role for l-kynurenine in placental health. However, UNx mice failed to show upregulation of l-kynurenine during pregnancy; furthermore, when UNx mice were fed l-kynurenine in drinking water throughout pregnancy, their preeclampsia-like state was rescued, including a reversal of placental ischemia and normalization of sFLT1 levels. In aggregate, we provide a mechanistic basis for how impaired renal reserve and the resulting failure to upregulate l-kynurenine during pregnancy can lead to impaired placentation, placental hypoperfusion, an antiangiogenic state, and subsequent preeclampsia.
Collapse
Affiliation(s)
- Vincent Dupont
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.,EA-3801, Université de Reims Champagne-Ardenne, Reims, France
| | | | | | | | | | - Shafat Ali
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Aleksandr Stotland
- Department of Biomedical Sciences and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jennifer E. Van Eyk
- Department of Biomedical Sciences and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Belinda Jim
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ravi Thadhani
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - S. Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
16
|
Zhao S, Hong Y, Liang YY, Li XL, Shen JC, Sun CC, Chu LL, Hu J, Wang H, Xu DX, Zhang SC, Xu DD, Xu T, Zhao LL. Compartmentalized regulation of NAD + by Di (2-ethyl-hexyl) phthalate induces DNA damage in placental trophoblast. Redox Biol 2022; 55:102414. [PMID: 35926314 PMCID: PMC9356100 DOI: 10.1016/j.redox.2022.102414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022] Open
Abstract
Di (2-ethyl-hexyl) phthalate (DEHP) is a wildly used plasticizer. Maternal exposure to DEHP during pregnancy blocks the placental cell cycle at the G2/M phase by reducing the efficiency of the DNA repair pathways and affects the health of offsprings. However, the mechanism by which DEHP inhibits the repair of DNA damage remains unclear. In this study, we demonstrated that DEHP inhibits DNA damage repair by reducing the activity of the DNA repair factor recruitment molecule PARP1. NAD+ and ATP are two substrates necessary for PARP1 activity. DEHP abated NAD+ in the nucleus by reducing the level of NAD+ synthase NMNAT1 and elevated NAD+ in the mitochondrial by promoting synthesis. Furthermore, DEHP destroyed the mitochondrial respiratory chain, affected the structure and quantity of mitochondria, and decreased ATP production. Therefore, DEHP inhibits PARP1 activity by reducing the amount of NAD+ and ATP, which hinders the DNA damage repair pathways. The supplement of NAD+ precursor NAM can partially rescue the DNA and mitochondria damage. It provides a new idea for the prevention of health problems of offsprings caused by DEHP injury to the placenta.
Collapse
Affiliation(s)
- Shuai Zhao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Yun Hong
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Yue-Yue Liang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Xiao-Lu Li
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Jiang-Chuan Shen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Cong-Cong Sun
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health / Center for Water and Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ling-Luo Chu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jie Hu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - Hua Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - De-Xiang Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - Shi-Chen Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei, Anhui, 230601, China
| | - Dou-Dou Xu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Tao Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China.
| | - Ling-Li Zhao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
17
|
Valenzuela I, Kinoshita M, van der Merwe J, Maršál K, Deprest J. Prenatal interventions for fetal growth restriction in animal models: A systematic review. Placenta 2022; 126:90-113. [PMID: 35796064 DOI: 10.1016/j.placenta.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/20/2022] [Accepted: 06/17/2022] [Indexed: 12/09/2022]
Abstract
Fetal growth restriction (FGR) in human pregnancy is associated with perinatal mortality, short- and long-term morbidities. No prenatal therapy is currently established despite decades of research. We aimed to review interventions in animal models for prenatal FGR treatment, and to seek the next steps for an effective clinical therapy. We registered our protocol and searched MEDLINE, Embase, and The Cochrane Library with no language restrictions, in accordance with the PRISMA guideline. We included all studies that reported the effects of any prenatal intervention in animal models of induced FGR. From 3257 screened studies, 202 describing 237 interventions were included for the final synthesis. Mice and rats were the most used animals (79%) followed by sheep (16%). Antioxidants (23%), followed by vasodilators (18%), nutrients (14%), and immunomodulators (12%) were the most tested therapy. Two-thirds of studies only reported delivery or immediate neonatal outcomes. Adverse effects were rarely reported (11%). Most studies (73%), independent of the intervention, showed a benefit in fetal survival or birthweight. The risk of bias was high, mostly due to the lack of randomization, allocation concealment, and blinding. Future research should aim to describe both short- and long-term outcomes across various organ systems in well-characterized models. Further efforts must be made to reduce selection, performance, and detection bias.
Collapse
|
18
|
Abstract
Cardiovascular complications of pregnancy have risen substantially over the past decades, and now account for the majority of pregnancy-induced maternal deaths, as well as having substantial long-term consequences on maternal cardiovascular health. The causes and pathophysiology of these complications remain poorly understood, and therapeutic options are limited. Preclinical models represent a crucial tool for understanding human disease. We review here advances made in preclinical models of cardiovascular complications of pregnancy, including preeclampsia and peripartum cardiomyopathy, with a focus on pathological mechanisms elicited by the models and on relevance to human disease.
Collapse
Affiliation(s)
- Zolt Arany
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (Z.A.)
| | - Denise Hilfiker-Kleiner
- Institute of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Philipps University Marburg, Germany (D.H.-K.)
| | - S Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (S.A.K.)
| |
Collapse
|
19
|
Abdellatif M, Bugger H, Kroemer G, Sedej S. NAD + and Vascular Dysfunction: From Mechanisms to Therapeutic Opportunities. J Lipid Atheroscler 2022; 11:111-132. [PMID: 35656147 PMCID: PMC9133775 DOI: 10.12997/jla.2022.11.2.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential and pleiotropic coenzyme involved not only in cellular energy metabolism, but also in cell signaling, epigenetic regulation, and post-translational protein modifications. Vascular disease risk factors are associated with aberrant NAD+ metabolism. Conversely, the therapeutic increase of NAD+ levels through the administration of NAD+ precursors or inhibitors of NAD+-consuming enzymes reduces chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, and enhances oxidative metabolism in vascular cells of humans and rodents with vascular pathologies. As such, NAD+ has emerged as a potential target for combatting age-related cardiovascular and cerebrovascular disorders. This review discusses NAD+-regulated mechanisms critical for vascular health and summarizes new advances in NAD+ research directly related to vascular aging and disease, including hypertension, atherosclerosis, coronary artery disease, and aortic aneurysms. Finally, we enumerate challenges and opportunities for NAD+ repletion therapy while anticipating the future of this exciting research field, which will have a major impact on vascular medicine.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| | - Heiko Bugger
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
20
|
Tong S, Kaitu’u-Lino TJ, Hastie R, Brownfoot F, Cluver C, Hannan N. Pravastatin, proton-pump inhibitors, metformin, micronutrients, and biologics: new horizons for the prevention or treatment of preeclampsia. Am J Obstet Gynecol 2022; 226:S1157-S1170. [PMID: 32946849 DOI: 10.1016/j.ajog.2020.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
There has been increasing research momentum to identify new therapeutic agents for the prevention or treatment of preeclampsia, drugs that can affect the underlying disease pathophysiology. Molecular targets of candidate treatments include oxidative stress, antiangiogenic factors, and the angiotensin, nitric oxide, and proinflammatory pathways. The proposed treatments undergoing preclinical and clinical trial evaluation are thought to act on placental or endothelial disease or both. Most have adopted the pragmatic strategy of repurposing drugs. Of all the therapeutic agents proposed, pravastatin has received the most interest. There are preclinical studies showing that it has pleiotropic actions that favorably impact on multiple molecular targets and can resolve a preeclampsia phenotype in many animal models. An early phase clinical trial suggests that it may have therapeutic activity. Several large prevention trials are planned or ongoing and, when completed, could definitively address whether pravastatin can prevent preeclampsia. Proton-pump inhibitors, metformin, and sulfasalazine are other drugs with preclinical evidence of multiple molecular actions that could resolve the pathophysiology of preeclampsia. These agents are also currently being evaluated in clinical trials. There have been many recent preclinical studies identifying the potential of numerous natural compounds to treat preeclampsia, such as plant extracts and micronutrients that have potent anti-inflammatory or antioxidant activity. Recent preclinical studies have also proposed novel molecular-targeted strategies, such as monoclonal antibodies targeting tumor necrosis factor alpha, placental growth factor, and short interfering RNA technology, to silence the gene expression of soluble fms-like tyrosine kinase-1 or angiotensinogen. Other treatment approaches that have transitioned to human trials (ranging from single-arm to phase III trials that have been completed or are ongoing) include folic acid, nitric oxide donors (such as L-arginine), recombinant antithrombin III, digoxin immune antigen-binding fragment, and melatonin. There have been case series showing the removal of circulating soluble fms-like tyrosine kinase-1 may help stabilize the disease and prolong pregnancy. Interestingly, there are case reports suggesting that monoclonal antibody eculizumab (complement inhibitor) may have therapeutic potential. If new agents are discovered that are proven to be effective in preventing or treating preeclampsia, the potential to improve global maternal and perinatal health will be significant.
Collapse
|
21
|
Bakrania BA, George EM, Granger JP. Animal models of preeclampsia: investigating pathophysiology and therapeutic targets. Am J Obstet Gynecol 2022; 226:S973-S987. [PMID: 33722383 PMCID: PMC8141071 DOI: 10.1016/j.ajog.2020.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 02/03/2023]
Abstract
Animal models have been critical in investigating the pathogenesis, mediators, and even therapeutic options for a number of diseases, including preeclampsia. Preeclampsia is the leading cause of maternal and fetal morbidity and mortality worldwide. The placenta is thought to play a central role in the pathogenesis of this disease because it releases antiangiogenic and proinflammatory factors into the maternal circulation, resulting in the maternal syndrome. Despite the deleterious effects preeclampsia has been shown to have on the mother and baby during pregnancy and postpartum, there is still no effective treatment for this disease. Although clinical studies in patients are crucial to identify the involvement of pathogenic factors in preeclampsia, there are obvious limitations that prevent detailed investigation of the quantitative importance of time-dependent mechanisms involved in this syndrome. Animal models allow investigators to perform proof-of-concept studies and examine whether certain factors found in women with preeclampsia mediate hypertension and other manifestations of this disease. In this brief review, we summarize some of the more widely studied models used to investigate pathophysiological mechanisms that are thought to be involved in preeclampsia. These include models of placental ischemia, angiogenic imbalance, and maternal immune activation. Infusion of preeclampsia-related factors into animals has been widely studied to understand the specific mediators of this disease. These models have been included, in addition to a number of genetic models involved in overexpression of the renin-angiotensin system, complement activation, and trophoblast differentiation. Together, these models cover multiple mechanisms of preeclampsia from trophoblast dysfunction and impaired placental vascularization to the excess circulating placental factors and clinical manifestation of this disease. Most animal studies have been performed in rats and mice; however, we have also incorporated nonhuman primate models in this review. Preclinical animal models not only have been instrumental in understanding the pathophysiology of preeclampsia but also continue to be important tools in the search for novel therapeutic options for the treatment of this disease.
Collapse
Affiliation(s)
- Bhavisha A Bakrania
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Eric M George
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Joey P Granger
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS.
| |
Collapse
|
22
|
Rotllan N, Camacho M, Tondo M, Diarte-Añazco EMG, Canyelles M, Méndez-Lara KA, Benitez S, Alonso N, Mauricio D, Escolà-Gil JC, Blanco-Vaca F, Julve J. Therapeutic Potential of Emerging NAD+-Increasing Strategies for Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:1939. [PMID: 34943043 PMCID: PMC8750485 DOI: 10.3390/antiox10121939] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Aging and/or metabolic stress directly impact the cardiovascular system. Over the last few years, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism to aging and other pathological conditions closely related to cardiovascular diseases have been intensively investigated. NAD+ bioavailability decreases with age and cardiometabolic conditions in several mammalian tissues. Compelling data suggest that declining tissue NAD+ is commonly related to mitochondrial dysfunction and might be considered as a therapeutic target. Thus, NAD+ replenishment by either genetic or natural dietary NAD+-increasing strategies has been recently demonstrated to be effective for improving the pathophysiology of cardiac and vascular health in different experimental models, as well as human health, to a lesser extent. Here, we review and discuss recent experimental evidence illustrating that increasing NAD+ bioavailability, particularly by the use of natural NAD+ precursors, may offer hope for new therapeutic strategies to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Noemi Rotllan
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| | - Mercedes Camacho
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- CIBER de Enfermedades Cardiovasculares, CIBERCV, 28029 Madrid, Spain
| | - Mireia Tondo
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
| | - Elena M. G. Diarte-Añazco
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
| | - Marina Canyelles
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| | - Karen Alejandra Méndez-Lara
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
| | - Sonia Benitez
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
| | - Núria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, 08916 Barcelona, Spain
| | - Didac Mauricio
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| | - Francisco Blanco-Vaca
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
| | - Josep Julve
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| |
Collapse
|
23
|
Meng Y, Song C, Ren Z, Li X, Yang X, Ai N, Yang Y, Wang D, Zhan M, Wang J, Lei CL, Liu W, Ge W, Lu L, Chen G. Nicotinamide promotes cardiomyocyte derivation and survival through kinase inhibition in human pluripotent stem cells. Cell Death Dis 2021; 12:1119. [PMID: 34845199 PMCID: PMC8630224 DOI: 10.1038/s41419-021-04395-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022]
Abstract
Nicotinamide, the amide form of Vitamin B3, is a common nutrient supplement that plays important role in human fetal development. Nicotinamide has been widely used in clinical treatments, including the treatment of diseases during pregnancy. However, its impacts during embryogenesis have not been fully understood. In this study, we show that nicotinamide plays multiplex roles in mesoderm differentiation of human embryonic stem cells (hESCs). Nicotinamide promotes cardiomyocyte fate from mesoderm progenitor cells, and suppresses the emergence of other cell types. Independent of its functions in PARP and Sirtuin pathways, nicotinamide modulates differentiation through kinase inhibition. A KINOMEscan assay identifies 14 novel nicotinamide targets among 468 kinase candidates. We demonstrate that nicotinamide promotes cardiomyocyte differentiation through p38 MAP kinase inhibition. Furthermore, we show that nicotinamide enhances cardiomyocyte survival as a Rho-associated protein kinase (ROCK) inhibitor. This study reveals nicotinamide as a pleiotropic molecule that promotes the derivation and survival of cardiomyocytes, and it could become a useful tool for cardiomyocyte production for regenerative medicine. It also provides a theoretical foundation for physicians when nicotinamide is considered for treatments for pregnant women.
Collapse
Affiliation(s)
- Ya Meng
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519000, China
| | - Chengcheng Song
- Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China.,Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China
| | - Zhili Ren
- Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China.,Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China
| | - Xiaohong Li
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
| | - Xiangyu Yang
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Nana Ai
- Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China.,Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China
| | - Yang Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China.,Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China
| | - Dongjin Wang
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Meixiao Zhan
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519000, China
| | - Jiaxian Wang
- HELP Stem Cell Innovations Ltd. Co, Nanjing, 210000, China
| | - Chon Lok Lei
- Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China
| | - Weiwei Liu
- Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China.,Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China
| | - Wei Ge
- Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China.,Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519000, China.
| | - Guokai Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China. .,Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, China. .,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, SAR, China.
| |
Collapse
|
24
|
Gaskins AJ, Tang Z, Hood RB, Ford J, Schwartz JD, Jones DP, Laden F, Liang D. Periconception air pollution, metabolomic biomarkers, and fertility among women undergoing assisted reproduction. ENVIRONMENT INTERNATIONAL 2021; 155:106666. [PMID: 34116378 PMCID: PMC8292230 DOI: 10.1016/j.envint.2021.106666] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Air pollution exposure has been linked with diminished fertility. Identifying the metabolic changes induced by periconception air pollution exposure among women could enhance our understanding of the potential biological pathways underlying air pollution's reproductive toxicity. OBJECTIVE To identify serum metabolites associated with periconception air pollution exposure and evaluate the extent to which these metabolites mediate the association between air pollution and live birth. METHODS We included 200 women undergoing a fresh assisted reproductive technology (ART) cycle at Massachusetts General Hospital Fertility Center (2005-2015). A serum sample was collected during stimulation, and untargeted metabolic profiling was conducted using liquid chromatography with ultra-high-resolution mass spectrometry. Exposure to nitrogen dioxide (NO2), ozone (O3), fine particulate matter <2.5 µm (PM2.5), and black carbon (BC) was estimated using validated spatiotemporal models. Multivariable linear regression models were used to evaluate the associations between the air pollutants, live birth, and metabolic feature intensities. A meet in the middle approach was used to identify overlapping features and metabolic pathways. RESULTS From the C18 and HILIC chromatography columns, 10,803 and 12,968 metabolic features were extracted. There were 190 metabolic features and 18 pathways that were significantly associated with both air pollution and live birth (P < 0.05) across chromatography columns. Eight features were confirmed metabolites implicated in amino acid and nutrient metabolism with downstream effects on oxidative stress and inflammation. Six confirmed metabolites fell into two intuitive clusters - "antioxidants" and "oxidants"- which could potentially mediate some of the association between air pollution and lower odds of live birth. Tryptophan and vitamin B3 metabolism were common pathways linking air pollution exposure to decreased probability of live birth. CONCLUSION Higher periconception air pollution exposure was associated with metabolites and biologic pathways involved in inflammation and oxidative stress that may mediate the observed associations with lower probability of live birth following ART.
Collapse
Affiliation(s)
- Audrey J Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States.
| | - Ziyin Tang
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Robert B Hood
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Jennifer Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, & Critical Care Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Francine Laden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, United States
| | - Donghai Liang
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, United States
| |
Collapse
|
25
|
Zhang J, Wang W, Wang Y, Hu H, Yu B, Zhou Z, Guo J, Gu Y, Cai Z, Xin G. Modulation of broiler plasma metabolic spectrum by the addition of lysine residue to the diet. J Anim Physiol Anim Nutr (Berl) 2021; 106:1072-1085. [PMID: 34528302 DOI: 10.1111/jpn.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
Flavour is an important factor in evaluating meat quality, and amino acids and fats are important components affecting meat flavour. In this study, we evaluated the relationship between the variation of lysine residue addition and the slaughter performance and meat quality of broilers, which decreased with the addition of lysine residues but improved the meat quality of the broilers. 10% lysine residue addition was the most beneficial for reducing feed cost and improving meat quality. Meanwhile, the plasma metabolites of broilers fed increasing concentrations of lysine residue supplemented feeds were analysed using liquid chromatography-mass spectrometry (LC-MS). Principal component analysis (PCA) and partial least square discriminant analysis (OPLS-DA) were used screen, the differential metabolites induced by lysine residue. In the broilers 29, 37, 63, 87, 80 and 111 differential metabolites were detected (p < 0.05). Amongst them, 3-iodotyrosine, N-methyl-L-glutamic acid, coumaraldehyde, 2-dimethylphenol, N-methylnicotinamide and L-erythrone were the common differential metabolites between group A and groups B, C, D, E, F and G. The addition of lysine residue was positively correlated with alanine aminotransferase (p < 0.05, r = 0.942) and high-density lipoprotein cholesterol (p < 0.05, r = 0.798) and negatively correlated with aspartate aminotransferase (p < 0.05, r = 0.822). According to the classification of differential metabolites and their enriched pathway analysis, differential metabolites mainly caused changes in amino acid and lipid metabolism. Our study shows that a certain proportion of lysine residue in diet affects the specific metabolic pathway of broilers, which may affect amino acid and fat metabolism by regulating alanine aminotransferase, aspartate aminotransferase and high-density lipoprotein cholesterol, ultimately affecting the flavour.
Collapse
Affiliation(s)
- Juan Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Weizhen Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Ying Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Honghong Hu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Baojun Yu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Zihang Zhou
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Ju Guo
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yaling Gu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhengyun Cai
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Guosheng Xin
- School of Life Sciences, Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
| |
Collapse
|
26
|
Jahan F, Bagchi RA. Enhancing NAD + Metabolome in Cardiovascular Diseases: Promises and Considerations. Front Cardiovasc Med 2021; 8:716989. [PMID: 34513955 PMCID: PMC8429781 DOI: 10.3389/fcvm.2021.716989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fahmida Jahan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Rushita A Bagchi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
27
|
Yakob NA, Peek MJ, Quinlivan JA. Vitamin B3 levels in women who experience first-trimester miscarriage. Aust N Z J Obstet Gynaecol 2021; 61:478-483. [PMID: 33866568 DOI: 10.1111/ajo.13341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 11/28/2022]
Abstract
Miscarriage is the most common complication in early pregnancy. It was recently reported in mice that miscarriage can be prevented through the administration of niacin. We conducted a prospective, exploratory pilot study involving 24 women who were less than 14 weeks pregnant. Neither niacin intake (P = 0.24) nor urinary vitamin B3 measured as the 1-methyl-5-carboxylamide-2-pyridone/N-1-methylnicotinamide (2-pyr/MNA) ratio (P = 1.00) predicted miscarriage. However, the difference in mean 2-pyr/MNA ratios between women who miscarried and controls suggests there may be a threshold niacin level protective in miscarriage prevention warranting further investigation.
Collapse
Affiliation(s)
- Nurul A Yakob
- ANU Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michael J Peek
- ANU Medical School, Australian National University, Canberra, Australian Capital Territory, Australia.,Obstetrics and Gynaecology, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Julie A Quinlivan
- ANU Medical School, Australian National University, Canberra, Australian Capital Territory, Australia.,Obstetrics and Gynaecology, University of Notre Dame, Fremantle, Western Australia, Australia
| |
Collapse
|
28
|
Brownfoot F, Binder N, Hastie R, Harper A, Beard S, Tuohey L, Keenan E, Tong S, Hannan N. Nicotinamide and its effects on endothelial dysfunction and secretion of antiangiogenic factors by primary human placental cells and tissues. Placenta 2021; 109:28-31. [PMID: 33957335 DOI: 10.1016/j.placenta.2021.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023]
Abstract
Preeclampsia is a serious pregnancy complication associated with elevated antiangiogenic markers and endothelial dysfunction. Recently nicotinamide (vitamin B3) was shown to reduce high blood pressure and proteinuria in mice models of the disease. Using primary human pregnancy tissue we show nicotinamide did not change antiangiogenic factor secretion including soluble fms-like tyrosine kinase 1 or soluble endoglin from primary cytotrophoblasts and placental explants. Furthermore, it did not reverse markers of endothelial dysfunction. Therefore, we did not demonstrate an effect of nicotinamide on reducing markers of preeclampsia from primary human placental tissues and vascular cells.
Collapse
Affiliation(s)
- Fiona Brownfoot
- Mercy Perinatal, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia.
| | - Natalie Binder
- Mercy Perinatal, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia
| | - Roxanne Hastie
- Mercy Perinatal, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia
| | - Alesia Harper
- Mercy Perinatal, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia
| | - Sally Beard
- Mercy Perinatal, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia
| | - Laura Tuohey
- Mercy Perinatal, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia
| | - Emerson Keenan
- Mercy Perinatal, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia
| | - Stephen Tong
- Mercy Perinatal, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia
| | - Natalie Hannan
- Mercy Perinatal, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, University of Melbourne. Mercy Perinatal, Mercy Hospital for Women 163 Studley Rd, Heidelberg, 3084, Victoria, Australia
| |
Collapse
|
29
|
Complementary and Alternative Medicine for Threatened Miscarriage: Advantages and Risks. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021. [DOI: 10.1155/2021/5589116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Threatened miscarriage is one of the most common complications causing pregnancy loss, and it affects approximately 20% of confirmed pregnancies. More and more women are seeking treatment with complementary and alternative medicine (CAM) for this common complication, and it has been reported that women have had successful pregnancies after threatened miscarriage when being treated with CAM, which mainly includes Chinese herbal medicines, acupuncture, and nutritional supplements as well as psychological interventions and other approaches. However, many experts are concerned about the safety and adverse events of certain CAM approaches in women with threatened miscarriage. Therefore, this review focuses on the status of CAM for threatened miscarriage and presents the potential therapeutic efficacy and safety of CAM based on some clinical and experimental studies. We thus hope to provide some instructive suggestions for the application of CAM for treating threatened miscarriage in the future.
Collapse
|
30
|
Lin Q, Zuo W, Liu Y, Wu K, Liu Q. NAD + and cardiovascular diseases. Clin Chim Acta 2021; 515:104-110. [PMID: 33485900 DOI: 10.1016/j.cca.2021.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) plays pivotal roles in controlling many biochemical processes. 'NAD' refers to the chemical backbone irrespective of charge, whereas 'NAD+' and 'NADH' refers to oxidized and reduced forms, respectively. NAD+/NADH ratio is essential for maintaining cellular reduction-oxidation (redox) homeostasis and for modulating energy metabolism. As a sensing or consuming enzyme of the poly (ADP-ribose) polymerase 1 (PARP1), the cyclic ADP-ribose (cADPR) synthases (CD38 and CD157), and sirtuin protein deacetylases (sirtuins, SIRTs), NAD+ participates in several key processes in cardiovascular disease. For example, NAD+ protects against metabolic syndrome, heart failure, ischemia-reperfusion (IR) injury, arrhythmia and hypertension. Accordingly, the subsequent loss of NAD+ in aging or during stress results in altered metabolic status and potentially increased disease susceptibility. Therefore, it is essential to maintain NAD+ or reduce loss in the heart. This review focuses on the involvement of NAD+ in the pathogenesis of cardiovascular disease and explores the effects of NAD+ boosting strategies in cardiovascular health.
Collapse
Affiliation(s)
- Qiuzhen Lin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha Hunan 410011, PR China
| | - Wanyun Zuo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha Hunan 410011, PR China
| | - Yaozhong Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha Hunan 410011, PR China
| | - Keke Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha Hunan 410011, PR China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha Hunan 410011, PR China.
| |
Collapse
|
31
|
Nicotinamide Attenuates the Progression of Renal Failure in a Mouse Model of Adenine-Induced Chronic Kidney Disease. Toxins (Basel) 2021; 13:toxins13010050. [PMID: 33440677 PMCID: PMC7827863 DOI: 10.3390/toxins13010050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) supplies energy for deoxidation and anti-inflammatory reactions fostering the production of adenosine triphosphate (ATP). The kidney is an essential regulator of body fluids through the excretion of numerous metabolites. Chronic kidney disease (CKD) leads to the accumulation of uremic toxins, which induces chronic inflammation. In this study, the role of NAD+ in kidney disease was investigated through the supplementation of nicotinamide (Nam), a precursor of NAD+, to an adenine-induced CKD mouse model. Nam supplementation reduced kidney inflammation and fibrosis and, therefore, prevented the progression of kidney disease. Notably, Nam supplementation also attenuated the accumulation of glycolysis and Krebs cycle metabolites that occurs in renal failure. These effects were due to increased NAD+ supply, which accelerated NAD+-consuming metabolic pathways. Our study suggests that Nam administration may be a novel therapeutic approach for CKD prevention.
Collapse
|
32
|
Miyagi M, Wilson R, Saigusa D, Umeda K, Saijo R, Hager CL, Li Y, McCormick T, Ghannoum MA. Indole-3-acetic acid synthesized through the indole-3-pyruvate pathway promotes Candida tropicalis biofilm formation. PLoS One 2020; 15:e0244246. [PMID: 33332404 PMCID: PMC7746184 DOI: 10.1371/journal.pone.0244246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022] Open
Abstract
We previously found that the elevated abundance of the fungus Candida tropicalis is positively correlated with the bacteria Escherichia coli and Serratia marcescens in Crohn’s disease patients and the three pathogens, when co-cultured, form a robust mixed-species biofilm. The finding suggests that these three pathogens communicate and promote biofilm formation, possibly through secretion of small signaling molecules. To identify candidate signaling molecules, we carried out a metabolomic analysis of the single-species and triple-species cultures of the three pathogens. This analysis identified 15 metabolites that were highly increased in the triple-species culture. One highly induced metabolite was indole-3-acetic acid (IAA), which has been shown to induce filamentation of certain fungi. We thus tested the effect of IAA on biofilm formation of C. tropicalis and demonstrated that IAA promotes biofilm formation of C. tropicalis. Then, we carried out isotope tracing experiments using 13C-labeled-tryptophan as a precursor to uncover the biosynthesis pathway of IAA in C. tropicalis. The results indicated that C. tropicalis synthesizes IAA through the indole-3-pyruvate pathway. Further studies using inhibitors of the indole-3-pyruvate pathway are warranted to decipher the mechanisms by which IAA influences biofilm formation.
Collapse
Affiliation(s)
- Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (MM); (MAG)
| | - Rachel Wilson
- Department of Dermatology, Center for Medical Mycology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Keiko Umeda
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Reina Saijo
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Christopher L. Hager
- Department of Dermatology, Center for Medical Mycology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yuejin Li
- Department of Dermatology, Center for Medical Mycology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Thomas McCormick
- Department of Dermatology, Center for Medical Mycology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mahmoud A. Ghannoum
- Department of Dermatology, Center for Medical Mycology, Case Western Reserve University, Cleveland, Ohio, United States of America
- University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- * E-mail: (MM); (MAG)
| |
Collapse
|
33
|
Wei X, Yin Q, Zhao H, Jiang H, He J, Cai C, Cao Y, Yao J. Maternal nicotinamide supplementation during late gestation and early lactation alters hepatic glucose and lipid metabolism in kids. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Metabolomics of a mouse model of preeclampsia induced by overexpressing soluble fms-like tyrosine kinase 1. Biochem Biophys Res Commun 2020; 527:1064-1071. [PMID: 32448504 DOI: 10.1016/j.bbrc.2020.04.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
Preeclampsia (PE) is a leading cause of maternal morbidity and mortality. Nicotinamide has beneficial effects on PE. In this study, we evaluated the effect of nicotinamide on placental development using a PE mouse model. To generate the PE model, a recombinant adenovirus to overproduce soluble fms-like tyrosine kinase 1 (sFlt-1) was administered to mice (Jcl:ICR) at 8.5 day post-coitum (dpc). Plasma and placenta samples were harvested at 12.5 dpc. Fetal and placental weight was significantly decreased at 12.5 dpc in PE mice. Plasma and placental acylcarnitine levels were significantly higher in PE mice than those in control mice. Glycolysis was accelerated and glucose metabolic flow was altered with hypoxia, leading to ATP shortage in the labyrinth of PE mice. In PE mice, ATP production was diminished, and fatty acid oxidation was accelerated in the placenta, consequently, blood carnitine and acylcarnitine levels were increased. The mitochondrial morphology in BeWo cells was impaired under hypoxia. Nicotinamide treatment reversed fetal growth restriction, placental development, and altered metabolic flow in the early stage in PE. In addition, nicotinamide normalized impaired mitochondrial morphology. Hence, targeting this metabolic alteration in the placenta using nicotinamide may serve as a potential therapeutic approach for PE treatment.
Collapse
|
35
|
Huynh PK, Wilder J, Hiller S, Hagaman J, Takahashi N, Maeda-Smithies N, Li F. Beneficial effects of nicotinamide on hypertensive mice with impaired endothelial nitric oxide function. JOURNAL OF EXPERIMENTAL NEPHROLOGY 2020; 1:1-8. [PMID: 32905409 PMCID: PMC7470241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nicotinamide (Nam, amide form of niacin acid or nicotinate), a precursor for nicotinamide adenine dinucleotide (NAD+), is important for normal physiological function of organisms. Nam also suppresses mobilization of Ca2+ from sarcoplasmic reticulum into cytoplasm through inhibiting ADP-ribose cyclase. Previously, we have demonstrated that a pharmacological dose of Nam normalizes maternal blood pressure in mouse models of preeclampsia, a pregnancy related hypertensive disorder. We hypothesized that Nam could decrease blood pressure in hypertensive conditions unrelated to pregnancy. Nam at a dose of 500 mg/kg/day was given to wild type (WT) mice treated with L-NAME, endothelial nitric oxide synthase (eNOS)-null and renin transgenic (Renin-Tg) mice via drinking water. Blood pressure was measured by tail-cuff at different stages of treatment. The function and structure of kidneys of WT mice with L-NAME were determined at the end of the study. The gene expression of markers of inflammation and fibrosis in the kidneys of WT mice with L-NAME was also measured. Nam effectively prevented increase in blood pressure in L-NAME treated mice and decreased elevated blood pressure in eNOS-null mice. However, it did not alter high blood pressure in Renin-Tg mice. Nam prevented increase in urinary albumin excretion and collagen deposit in kidneys of WT mice treated with L-NAME. In addition, Nam significantly decreased the mRNA levels of the markers of inflammation and fibrosis in the kidneys of WT mice treated with L-NAME. Nam may execute beneficial effects on hypertensive conditions associated with eNOS dysfunction via suppressing inflammation. Because Nam is generally regarded as safe in humans, it merits further evaluation for the tailored treatment for the subgroup of hypertensive cases associated with impaired eNOS system.
Collapse
Affiliation(s)
- Phillip K Huynh
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jen Wilder
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sylvia Hiller
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - John Hagaman
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Nobuyo Maeda-Smithies
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Feng Li
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA,Author for correspondence:
| |
Collapse
|
36
|
Wei XS, Zhao HH, He JJ, Yin QY, Cao YC, Cai CJ, Yao JH. Maternal nicotinamide supplementation during the perinatal period modifies the small intestine morphology and antioxidative status of offspring kids. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Chang X, Yao J, He Q, Liu M, Duan T, Wang K. Exosomes From Women With Preeclampsia Induced Vascular Dysfunction by Delivering sFlt (Soluble Fms-Like Tyrosine Kinase)-1 and sEng (Soluble Endoglin) to Endothelial Cells. Hypertension 2019; 72:1381-1390. [PMID: 30571229 DOI: 10.1161/hypertensionaha.118.11706] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Preeclampsia is a unique multiple system disorder that affects 5% to 8% of pregnancies. Exosomes, membrane-encapsulated vesicles that are released into the extracellular environment by many cell types, can carry signals to the recipient cells to affect inflammation, apoptosis, and angiogenesis. We hypothesize that exosomes from women with preeclampsia complications impair vascular development by delivering antiangiogenic factors to endothelial cells. In the current study, plasma samples from gestational age-matched preeclampsia and normal pregnancies were used to isolate circulating exosomes by commercial kits. Next, application of transwell and matrigel tube formation assays showed that exosomes from preeclampsia patients impaired angiogenesis of human umbilical vein endothelial cells. We found that exosomes from preeclampsia expressed abundant sFlt-1 (soluble fms-like tyrosine kinase-1) and sEng (soluble endoglin). Considering the possibility that extracellular sFlt and sEng were horizontally transferred to human umbilical vein endothelial cells, we successfully collected exosomes containing high levels of sFlt-1 and sEng by overexpressing them in human embryonic kidney 293 cells. Furthermore, we demonstrated that these exosomes can attenuate the proliferation, migration, and tube formation of human umbilical vein endothelial cells in vitro. In a mouse model, exosomes from preeclampsia patients caused vascular dysfunction directly resulted in adverse preeclampsia-like birth outcomes. Thus, we proposed that exosomes mediated efficient transfer of sFlt-1 and sEng to endothelial cells to damage vascular functions and induce complications in preeclampsia patients.
Collapse
Affiliation(s)
- Xinwen Chang
- From the Clinical and Translational Research Center (X.C., J.Y., K.W.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, P.R. China
| | - Julei Yao
- From the Clinical and Translational Research Center (X.C., J.Y., K.W.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, P.R. China
| | - Qizhi He
- Department of Pathology (Q.H.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, P.R. China
| | - Ming Liu
- Department of Obstetrics (M.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, P.R. China
| | - Tao Duan
- Department of Obstetrics (M.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, P.R. China
| | - Kai Wang
- From the Clinical and Translational Research Center (X.C., J.Y., K.W.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, P.R. China
| |
Collapse
|
38
|
Protease-activated receptor 2 protects against VEGF inhibitor-induced glomerular endothelial and podocyte injury. Sci Rep 2019; 9:2986. [PMID: 30814628 PMCID: PMC6393426 DOI: 10.1038/s41598-019-39914-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 02/02/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) inhibitors cause glomerular injury. We have recently shown that activation of protease-activated receptor 2 (PAR2) by factor Xa exacerbated diabetic kidney disease. However, the role of PAR2 in glomerular injury induced by VEGF blockade is not known. Herein, we investigated the effect of the lack of PAR2 on VEGF inhibitor-induced glomerular injury. Although administering an anti-VEGF antibody by itself did not show renal phenotype in wild type mice, its administration to mice lacking endothelial nitric oxide synthase (eNOS) caused glomerular injury. Different from what we expected, administration of an anti-VEGF antibody in mice lacking PAR2 and eNOS exacerbated albuminuria and reduced the expression levels of CD31, pro-angiogenic VEGF, and angiogenesis-related chemokines in their kidneys. Podocyte injury was also evident in this model of mice lacking PAR2. Our results suggest that PAR2 is protective against VEGF inhibitor-induced glomerular endothelial and podocyte injury.
Collapse
|
39
|
Imaruoka K, Oe Y, Fushima T, Sato E, Sekimoto A, Sato H, Sugawara J, Ito S, Takahashi N. Nicotinamide alleviates kidney injury and pregnancy outcomes in lupus-prone MRL/lpr mice treated with lipopolysaccharide. Biochem Biophys Res Commun 2019; 510:587-593. [PMID: 30739788 DOI: 10.1016/j.bbrc.2019.01.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) increases the risk of preterm birth and preeclampsia (PE). The flares of SLE during pregnancy or after delivery are also problematic. We have previously demonstrated that nicotinamide (NAM), a non-teratogenic amide of vitamin B3, reduces inflammation and oxidative stress and improves PE-like phenotype and pregnancy outcomes in the mouse models of PE. The present study aimed to establish a model to investigate the pregnancy outcomes and flares of SLE in pregnant mice with SLE and to examine whether NAM is beneficial to pregnant mice with SLE. We used pregnant and non-pregnant lupus-prone MRL/lpr mice treated with or without a Toll-like receptor (TLR) ligand lipopolysaccharide (LPS) because TLR4 signaling reportedly exacerbates SLE and pregnancy; MRL/+ mice were used as controls. Blood pressure (BP) and urinary albumin excretion were increased only in the pregnant MRL/lpr-LPS mice. LPS together with pregnancy exacerbated glomerulonephritis, and the most severe inflammation was observed in the kidneys of the pregnant MRL/lpr-LPS mice. The shortening of pregnancy periods, increase in fetal demise percentage, and reduction in fetal weight were observed only in the pregnant MRL/lpr-LPS mice. NAM improved BP and kidney injury, prolonged pregnancy periods, and improved fetal growth in the pregnant MRL/lpr-LPS mice. The results suggest that SLE patients are prone to develop poor pregnancy outcome, and likely develop severe nephropathy and kidney inflammation. NAM may be a novel therapeutic option that improves kidney injury and pregnancy outcomes, thereby benefiting pregnant patients with SLE.
Collapse
Affiliation(s)
- Kenta Imaruoka
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Yuji Oe
- Division of Feto-Maternal Medical Science, Department of Community Medical Support, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8574, Japan; Research Fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Tomofumi Fushima
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, 980-8578, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Akiyo Sekimoto
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, 980-8578, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hiroshi Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, 980-8578, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Junichi Sugawara
- Division of Feto-Maternal Medical Science, Department of Community Medical Support, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8574, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, 980-8578, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| |
Collapse
|
40
|
Beneficial effects of nicotinamide on the mouse model of preeclampsia. OA JOURNAL OF PREGNANCY AND CHILD CARE 2018; 1. [PMID: 34268502 PMCID: PMC8278325 DOI: 10.33118/oaj.preg.2019.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Preeclampsia (PE) is a pregnancy related disorder that is characterized by hypertension and proteinuria in the mother. It is associated with impaired coagulation and liver function, and a variety of other detrimental effects. In severe cases without treatment, PE can progress to eclampsia and result in seizures, a life-threatening condition. Although the etiology of PE is largely unknown, sFlt-1 (soluble vascular endothelial growth factor receptor 1) released by the impaired placenta resulting from insufficient perfusion plays a critical role in PE, and phenotypes of PE can be induced by experimentally increasing sFlt-1. We and other investigators have proposed that endothelin-1 (ET-1) system is the mediator of the pathological effects of excess sFlt-1, and antagonists of ET-1 receptor block the effects of sFlt-1. Unfortunately, this class of drugs is teratogenic and unsuitable for treating pregnant women. Nicotinamide is a naturally occurring derivative of vitamin B3 in the body and inhibits ADP-ribosyl cyclase, which is activated by the ET-1 receptor. Therefore, if utilized, it would be expected to play a beneficial role in PE. In mouse models of PE, a high dose of nicotinamide shows great success in lowering blood pressure, correcting renal function and structure, prolonging pregnancy as well as increasing fetal weight/number. Nicotinamide, being generally regarded as safe, could be a promising substance to further investigate for use in clinical trials.
Collapse
|
41
|
Takahashi N, Li F, Fushima T, Oyanagi G, Sato E, Oe Y, Sekimoto A, Saigusa D, Sato H, Ito S. Vitamin B 3 Nicotinamide: A Promising Candidate for Treating Preeclampsia and Improving Fetal Growth. TOHOKU J EXP MED 2018; 244:243-248. [PMID: 29563389 DOI: 10.1620/tjem.244.243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Up to 8% of pregnant women suffer from preeclampsia (PE), a deadly disease characterized by high blood pressure (BP), blood vessel damage, called endotheliosis (vascular endothelial swelling with narrowing of capillary lumen), and high levels of protein in the urine. PE is often associated with premature delivery, which is a risk factor of cardiovascular and metabolic diseases among the offspring. Accordingly, establishing drug treatments of PE is in immediate needs. Currently, many of anti-hypertensive drugs cause malformation of the fetuses and are contraindicated for pregnant women. Anti-hypertensive drugs that are allowed to be used for treating pregnant women could lower BP of the mothers and reduce the risk of maternal death due to cardiovascular diseases such as cerebral hemorrhage. However, these anti-hypertensives do not improve endotheliosis and proteinuria. In fact, they reduce blood supply to the placentae and fetuses, which could lead to fetal growth restriction (FGR) and fetal and neonatal death. Until now, the only treatment for preeclamptic women has been delivery of the baby and placenta. Using three mechanistically different mouse models of PE, we have found that vitamin B3 nicotinamide (Nam) is the first safe drug that alleviates PE, and that Nam also alleviates or prevents miscarriage, prolongs pregnancy period, and improves the growth of the fetuses in mice with PE. Importantly, Nam has been used for pregnant and nursing women who have difficulty in taking sufficient meal. Nam could help treat or prevent PE and FGR associated with PE, if the treatment works in humans.
Collapse
Affiliation(s)
- Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences.,Department of Medicine, Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University.,Department of Pathology and Laboratory Medicine, The University of North Carolina
| | - Feng Li
- Department of Pathology and Laboratory Medicine, The University of North Carolina
| | - Tomofumi Fushima
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences
| | - Gen Oyanagi
- Tohoku University Hospital Pharmaceutical Department
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences.,Department of Medicine, Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University
| | - Yuji Oe
- Division of Feto-Maternal Medical Science, Tohoku Medical Megabank Organization, Tohoku University
| | - Akiyo Sekimoto
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences.,Department of Medicine, Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University
| | - Hiroshi Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences.,Department of Medicine, Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University
| | - Sadayoshi Ito
- Department of Medicine, Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University
| |
Collapse
|
42
|
Fricker RA, Green EL, Jenkins SI, Griffin SM. The Influence of Nicotinamide on Health and Disease in the Central Nervous System. Int J Tryptophan Res 2018; 11:1178646918776658. [PMID: 29844677 PMCID: PMC5966847 DOI: 10.1177/1178646918776658] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide, the amide form of vitamin B3 (niacin), has long been associated with neuronal development, survival, and function in the central nervous system (CNS), being implicated in both neuronal death and neuroprotection. Here, we summarise a body of research investigating the role of nicotinamide in neuronal health within the CNS, with a focus on studies that have shown a neuroprotective effect. Nicotinamide appears to play a role in protecting neurons from traumatic injury, ischaemia, and stroke, as well as being implicated in 3 key neurodegenerative conditions: Alzheimer’s, Parkinson’s, and Huntington’s diseases. A key factor is the bioavailability of nicotinamide, with low concentrations leading to neurological deficits and dementia and high levels potentially causing neurotoxicity. Finally, nicotinamide’s potential mechanisms of action are discussed, including the general maintenance of cellular energy levels and the more specific inhibition of molecules such as the nicotinamide adenine dinucleotide-dependent deacetylase, sirtuin 1 (SIRT1).
Collapse
Affiliation(s)
- Rosemary A Fricker
- School of Medicine and Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| | - Emma L Green
- School of Medicine and Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| | - Stuart I Jenkins
- School of Medicine and Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| | - Síle M Griffin
- School of Medicine and Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| |
Collapse
|
43
|
Li F, Kakoki M, Smid M, Boggess K, Wilder J, Hiller S, Bounajim C, Parnell SE, Sulik KK, Smithies O, Maeda-Smithies N. Causative Effects of Genetically Determined High Maternal/Fetal Endothelin-1 on Preeclampsia-Like Conditions in Mice. Hypertension 2018; 71:894-903. [PMID: 29610266 DOI: 10.1161/hypertensionaha.117.10849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/22/2018] [Accepted: 03/06/2018] [Indexed: 12/20/2022]
Abstract
Endothelin-1 (ET-1) is implicated in the pathophysiology of preeclampsia. An association between an EDN1 gene polymorphism with high ET-1 and preeclampsia was reported in humans, but their cause and effect relationships have not been defined. We examined the pregnancy effects in mice with a modified Edn1 allele that increases mRNA stability and thus ET-1 production. Heterozygous Edn1H/+ females showed no obvious abnormalities before pregnancy, but when mated with wild-type (WT) males developed a full spectrum of preeclampsia-like phenotypes, including increased systolic blood pressure, proteinuria, glomerular endotheliosis, and intrauterine fetal growth restriction. At 7.5 days post-coitus, the embryos from Edn1H/+ dams, regardless of their Edn1 genotype, lagged 12 hours in development compared with embryos from WT dams, had disoriented ectoplacental cones, and retained high E-cadherin expression. In contrast, WT females mated with Edn1H/+ males, which also carried half of the fetuses with Edn1H/+ genotype, showed a mild systolic blood pressure increase only. These WT dams had 2× higher plasma soluble fms-like tyrosine kinase-1 than WT dams mated with WT males. In human first trimester trophoblast cells, pharmacological doses of ET-1 increased the cellular sFlt1 transcripts and protein secretion via both type A and B ET-1 receptors. Our data demonstrate that high maternal ET-1 production causes preeclampsia-like phenotypes during pregnancy, affecting both initial stage of trophoblast differentiation/invasion and maternal peripheral vasculature during late gestation. High fetal ET-1 production, however, could cause increased soluble fms-like tyrosine kinase-1 in the maternal circulation and contribute to blood pressure elevation.
Collapse
Affiliation(s)
- Feng Li
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.).
| | - Masao Kakoki
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Marcela Smid
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Kim Boggess
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Jennifer Wilder
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Sylvia Hiller
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Carol Bounajim
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Scott E Parnell
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Kathleen K Sulik
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Oliver Smithies
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Nobuyo Maeda-Smithies
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| |
Collapse
|
44
|
Bashandy SAE, Ebaid H, Abdelmottaleb Moussa SA, Alhazza IM, Hassan I, Alaamer A, Al Tamimi J. Potential effects of the combination of nicotinamide, vitamin B2 and vitamin C on oxidative-mediated hepatotoxicity induced by thioacetamide. Lipids Health Dis 2018; 17:29. [PMID: 29444683 PMCID: PMC5813429 DOI: 10.1186/s12944-018-0674-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/05/2018] [Indexed: 02/08/2023] Open
Abstract
Background The liver disease is one of the most important traditional public health problems in Egypt. Oxidative stress is attributed to such pathological condition that further contributes to the initiation and progression of liver injury. In the present study, we have investigated if the strong antioxidant power of Nicotinamide (NA), Vitamin B2 (VB2), and Vitamin C (VC) can ameliorate TAA-induced oxidative stress-mediated liver injury in the rats. Methods Thirty-six albino rats were divided into six groups: Control group; TAA group (IP injection with TAA at a dosage of 200 mg/Kg three times a week for two months); TAA + NA group (rats administered with NA at a dosage of 200 mg/kg daily besides TAA as in the control); TAA + VB2 group (rats administered with vitamin B2 at a dosage of 30 mg/kg daily besides injection with TAA); TAA + VC group (rats administered with vitamin C at a dosage of 200 mg/kg daily along with injection of TAA). TAA + NA + VB + VC group (rats administered the with the three vitamins daily in TAA pre-injected at the respective doses described above). Results Treatment of rats with TAA led to a significant elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), total bilirubin, cholesterol, triglycerides, low-density lipoprotein (LDL) and tumor necrosis factor-alpha (TNF-α) in the serum samples. Moreover, malondialdehyde (MDA), hydroxyproline and nitic oxide (NO) were also significantly increased in the TAA-treated rats, while reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were significantly compromised in the hepatic samples. Rats administered with NA, VB2, and VC as individually or in combination ameliorated the deleterious effects of TAA that was confirmed by histopathology. However, the combination of the three vitamins was found more effective as compared to each of the vitamins. Conclusion Our work demonstrates that NA, VB2, and VC cross-talk with each other that act as a more potent biochemical chain of antioxidant defense against TAA-induced toxicities in vivo.
Collapse
Affiliation(s)
- Samir A E Bashandy
- Pharmacology Department, Medical Division, National Research Centre, Bohouth St. (former EL Tahrir St.), Dokki, Giza, EL, 33, Egypt
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia. .,Department of Zoology, Faculty of Science, Minia University, Minia, Egypt.
| | - Sherif A Abdelmottaleb Moussa
- Committee of Radiation and Environmental Pollution Protection (CREPP), Department of Physics, College of Science, Al- Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.,Biophysics Group, Biochemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt
| | - Ibrahim M Alhazza
- Department of Zoology, Faculty of Science, Minia University, Minia, Egypt
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulaziz Alaamer
- Committee of Radiation and Environmental Pollution Protection (CREPP), Department of Physics, College of Science, Al- Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Jameel Al Tamimi
- Pharmacology Department, Medical Division, National Research Centre, Bohouth St. (former EL Tahrir St.), Dokki, Giza, EL, 33, Egypt
| |
Collapse
|
45
|
Hepatic dysfunction and thrombocytopenia induced by excess sFlt1 in mice lacking endothelial nitric oxide synthase. Sci Rep 2018; 8:102. [PMID: 29311569 PMCID: PMC5758763 DOI: 10.1038/s41598-017-18260-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023] Open
Abstract
Liver dysfunction is a major problem in patients with severe preeclampsia (PE), hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome, or in patients receiving anti-vascular endothelial growth factor (VEGF) therapy. Excessive soluble fms-like tyrosine kinase 1 (sFlt1) that antagonizes VEGF has been implicated in the pathogenesis of PE. VEGF increases the expression of endothelial nitric oxide synthase (eNOS) and activates it. eNOS polymorphisms that cause reduced NO production are associated with PE. The aim of this study was to clarify the role on hepatic function by excess sFlt1 in the absence of eNOS gene product. We first overexpressed sFlt1 using adenovirus in eNOS−/− and eNOS+/+ mice. Excessive sFlt1 and lack of eNOS synergistically increased plasma levels of liver transaminases, exacerbated infiltration of inflammatory cells, elevated expression levels of cytokines in the liver, and aggravated oxidative stress and coagulation abnormalities. Lack of eNOS in the presence of excess sFlt1 also induced thrombocytopenia, whereas eNOS+/+ mice with excess sFlt1 alone showed no or modest liver phenotype. Taken together, excessive sFlt1 and lack of eNOS synergistically induce hepatic dysfunction and thrombocytopenia, suggesting a novel role for VEGF and nitric oxide signaling in hepatocyte-endothelial cross-talk in health and in liver injury states.
Collapse
|
46
|
Williams PA, Harder JM, John SWM. Glaucoma as a Metabolic Optic Neuropathy: Making the Case for Nicotinamide Treatment in Glaucoma. J Glaucoma 2017; 26:1161-1168. [PMID: 28858158 PMCID: PMC5854489 DOI: 10.1097/ijg.0000000000000767] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction may be an important, if not essential, component of human glaucoma. Using transcriptomics followed by molecular and neurobiological techniques, we have recently demonstrated that mitochondrial dysfunction within retinal ganglion cells is an early feature in the DBA/2J mouse model of inherited glaucoma. Guided by these findings, we discovered that the retinal level of nicotinamide adenine dinucleotide (NAD, a key molecule for mitochondrial health) declines in an age-dependent manner. We hypothesized that this decline in NAD renders retinal ganglion cells susceptible to damage during periods of elevated intraocular pressure. To replete NAD levels in this glaucoma, we administered nicotinamide (the amide of vitamin B3). At the lowest dose tested, nicotinamide robustly protected from glaucoma (~70% of eyes had no detectable glaucomatous neurodegeneration). At this dose, nicotinamide had no influence on intraocular pressure and so its effect was neuroprotective. At the highest dose tested, 93% of eyes had no detectable glaucoma. This represents a ~10-fold decrease in the risk of developing glaucoma. At this dose, intraocular pressure still became elevated but there was a reduction in the degree of elevation showing an additional benefit. Thus, nicotinamide is unexpectedly potent at preventing this glaucoma and is an attractive option for glaucoma therapeutics. Our findings demonstrate the promise for both preventing and treating glaucoma by interventions that bolster metabolism during increasing age and during periods of elevated intraocular pressure. Nicotinamide prevents age-related declines in NAD (a decline that occurs in different genetic contexts and species). NAD precursors are reported to protect from a variety of neurodegenerative conditions. Thus, nicotinamide may provide a much needed neuroprotective treatment against human glaucoma. This manuscript summarizes human data implicating mitochondria in glaucoma, and argues for studies to further assess the safety and efficacy of nicotinamide in human glaucoma care.
Collapse
Affiliation(s)
- Pete A Williams
- The Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Jeffrey M Harder
- The Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Simon W M John
- The Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Ophthalmology, Tufts University of Medicine, Boston, MA, USA
| |
Collapse
|
47
|
Williams AC, Hill LJ. Meat and Nicotinamide: A Causal Role in Human Evolution, History, and Demographics. Int J Tryptophan Res 2017; 10:1178646917704661. [PMID: 28579800 PMCID: PMC5417583 DOI: 10.1177/1178646917704661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 01/15/2023] Open
Abstract
Hunting for meat was a critical step in all animal and human evolution. A key brain-trophic element in meat is vitamin B3 / nicotinamide. The supply of meat and nicotinamide steadily increased from the Cambrian origin of animal predators ratcheting ever larger brains. This culminated in the 3-million-year evolution of Homo sapiens and our overall demographic success. We view human evolution, recent history, and agricultural and demographic transitions in the light of meat and nicotinamide intake. A biochemical and immunological switch is highlighted that affects fertility in the 'de novo' tryptophan-to-kynurenine-nicotinamide 'immune tolerance' pathway. Longevity relates to nicotinamide adenine dinucleotide consumer pathways. High meat intake correlates with moderate fertility, high intelligence, good health, and longevity with consequent population stability, whereas low meat/high cereal intake (short of starvation) correlates with high fertility, disease, and population booms and busts. Too high a meat intake and fertility falls below replacement levels. Reducing variances in meat consumption might help stabilise population growth and improve human capital.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
48
|
Williams PA, Harder JM, Foxworth NE, Cochran KE, Philip VM, Porciatti V, Smithies O, John SWM. Vitamin B 3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science 2017; 355:756-760. [PMID: 28209901 PMCID: PMC5408298 DOI: 10.1126/science.aal0092] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/23/2016] [Indexed: 12/25/2022]
Abstract
Glaucomas are neurodegenerative diseases that cause vision loss, especially in the elderly. The mechanisms initiating glaucoma and driving neuronal vulnerability during normal aging are unknown. Studying glaucoma-prone mice, we show that mitochondrial abnormalities are an early driver of neuronal dysfunction, occurring before detectable degeneration. Retinal levels of nicotinamide adenine dinucleotide (NAD+, a key molecule in energy and redox metabolism) decrease with age and render aging neurons vulnerable to disease-related insults. Oral administration of the NAD+ precursor nicotinamide (vitamin B3), and/or gene therapy (driving expression of Nmnat1, a key NAD+-producing enzyme), was protective both prophylactically and as an intervention. At the highest dose tested, 93% of eyes did not develop glaucoma. This supports therapeutic use of vitamin B3 in glaucoma and potentially other age-related neurodegenerations.
Collapse
Affiliation(s)
| | | | | | | | | | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Oliver Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.
- Department of Ophthalmology, Tufts University of Medicine, Boston, MA 02111, USA
- The Howard Hughes Medical Institute, Bar Harbor, ME 04609, USA
| |
Collapse
|
49
|
Seki H. Animal models of preeclampsia: an examination of usefulness and limitations based on the metabolic domino theory. HYPERTENSION RESEARCH IN PREGNANCY 2017. [DOI: 10.14390/jsshp.hrp2017-015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hiroyuki Seki
- Center for Maternal, Fetal and Neonatal Medicine, Saitama Medical Center, Saitama Medical University
| |
Collapse
|