1
|
Wu B, Li B, He X, Cheng X, Ren J, Liu J. Nonadiabatic Field: A Conceptually Novel Approach for Nonadiabatic Quantum Molecular Dynamics. J Chem Theory Comput 2025; 21:3775-3813. [PMID: 40192130 PMCID: PMC12020003 DOI: 10.1021/acs.jctc.5c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 04/23/2025]
Abstract
Reliable trajectory-based nonadiabatic quantum dynamics methods at the atomic/molecular level are critical for the practical understanding and rational design of many important processes in real large/complex systems, where the quantum dynamical behavior of electrons and that of nuclei are coupled. The paper reports latest progress of nonadiabatic field (NaF), a conceptually novel approach for nonadiabatic quantum dynamics with independent trajectories. Substantially different from the mainstreams of Ehrenfest-like dynamics and surface hopping methods, the nuclear force in NaF involves the nonadiabatic force arising from the nonadiabatic coupling between different electronic states, in addition to the adiabatic force contributed by a single adiabatic electronic state. NaF is capable of faithfully describing the interplay between electronic and nuclear motion in a broad regime, which covers where the relevant electronic states keep coupled in a wide range or all the time and where the bifurcation characteristic of nuclear motion is essential. NaF is derived from the exact generalized phase space formulation with coordinate-momentum variables, where constraint phase space (CPS) is employed for discrete electronic-state degrees of freedom (DOFs) and infinite Wigner phase space is used for continuous nuclear DOFs. We propose efficient integrators for the equations of motion of NaF in both adiabatic and diabatic representations. Since the formalism in the CPS formulation is not unique, NaF can in principle be implemented with various phase space representations of the time correlation function (TCF) for the time-dependent property. They are applied to a suite of representative gas-phase and condensed-phase benchmark models where numerically exact results are available for comparison. It is shown that NaF is relatively insensitive to the phase space representation of the electronic TCF and will be a potential tool for practical and reliable simulations of the quantum mechanical behavior of both electronic and nuclear dynamics of nonadiabatic transition processes in real systems.
Collapse
Affiliation(s)
- Baihua Wu
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingqi Li
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin He
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiangsong Cheng
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiajun Ren
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing
Normal University, Beijing 100875, China
| | - Jian Liu
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Triana JF, Herrera F. Spontaneous single-molecule dissociation in infrared nanocavities. J Chem Phys 2025; 162:134103. [PMID: 40166992 DOI: 10.1063/5.0247008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/15/2025] [Indexed: 04/02/2025] Open
Abstract
Ultrastrong light-matter interaction with molecular vibrations in infrared cavities has emerged as a tool for manipulating and controlling chemical reactivity. By studying the wavepacket dynamics of an individual polar diatomic molecule in a quantized infrared electromagnetic environment, we show that chemical bonds can efficiently dissociate in the absence of additional thermal or coherent energy sources, provided that the coupled system is prepared in a suitable diabatic state. Using hydrogen fluoride as a case study, we predict dissociation probabilities of up to 35% in less than 200 fs for a vibration-cavity system that is rapidly initialized with a low number of bare vibrational and cavity excitations. We develop a simple and general analytical model based on the multipolar formulation of quantum electrodynamics to show that the Bloch-Seigert shift of the bare vibrational ground state is a predictor of a threshold coupling strength below which no spontaneous dissociation is expected. The role of state-dependent permanent dipole moments in the light-matter interaction process is clarified. Our work paves the way toward the development of vacuum-assisted chemical reactors powered by ultrastrong light-matter interaction at the single-molecule level.
Collapse
Affiliation(s)
- Johan F Triana
- Department of Physics, Universidad Católica del Norte, Av. Angamos, 0610 Antofagasta, Chile
| | - Felipe Herrera
- Department of Physics, Universidad de Santiago de Chile, Av. Victor Jara, 3493 Santiago, Chile
- ANID-Millennium Institute for Research in Optics, Santiago, Chile
| |
Collapse
|
3
|
Bocanegra Vargas AF, Li TE. Polariton-induced Purcell effects via a reduced semiclassical electrodynamics approach. J Chem Phys 2025; 162:124101. [PMID: 40125669 DOI: 10.1063/5.0251767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
Recent experiments have demonstrated that polariton formation provides a novel strategy for modifying local molecular processes when a large ensemble of molecules is confined within an optical cavity. Herein, a numerical strategy based on coupled Maxwell-Schrödinger equations is examined for simulating local molecular processes in a realistic cavity structure under collective strong coupling. In this approach, only a few molecules, referred to as quantum impurities, are treated quantum mechanically, while the remaining macroscopic molecular layer and the cavity structure are modeled using dielectric functions. When a single electronic two-level system embedded in a Lorentz medium is confined in a two-dimensional Bragg resonator, our numerical simulations reveal a polariton-induced Purcell effect: the radiative decay rate of the quantum impurity is significantly enhanced by the cavity when the impurity frequency matches the polariton frequency, while the rate can sometimes be greatly suppressed when the impurity is near resonance with the bulk molecules forming strong coupling. In addition, this approach demonstrates that the cavity absorption of light exhibits Rabi-splitting-dependent suppression due to the inclusion of a realistic cavity structure. Our simulations also identify a fundamental limitation of this approach-an inaccurate description of polariton dephasing rates into dark modes. This arises because the dark-mode degrees of freedom are not explicitly included when most molecules are modeled using simple dielectric functions. As the polariton-induced Purcell effect alters molecular radiative decay differently from the Purcell effect under weak coupling, this polariton-induced effect may facilitate understanding the origin of polariton-modified photochemistry under electronic strong coupling.
Collapse
Affiliation(s)
| | - Tao E Li
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
4
|
Hu D, Chng BXK, Ying W, Huo P. Trajectory-based non-adiabatic simulations of the polariton relaxation dynamics. J Chem Phys 2025; 162:124113. [PMID: 40145468 DOI: 10.1063/5.0246099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
We benchmark the accuracy of various trajectory-based non-adiabatic methods in simulating the polariton relaxation dynamics under the collective coupling regime. The Holstein-Tavis-Cummings Hamiltonian is used to describe the hybrid light-matter system of N molecules coupled to a single cavity mode. We apply various recently developed trajectory-based methods to simulate the population relaxation dynamics by initially exciting the upper polariton state and benchmark the results against populations computed from exact quantum dynamical propagation using the hierarchical equations of motion approach. In these benchmarks, we have systematically varied the number of molecules N, light-matter detunings, and the light-matter coupling strengths. Our results demonstrate that the symmetrical quasi-classical method with γ correction and spin-mapping linearized semi-classical approaches yield more accurate polariton population dynamics than traditional mixed quantum-classical methods, such as the Ehrenfest and surface hopping techniques.
Collapse
Affiliation(s)
- Deping Hu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Benjamin X K Chng
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Wenxiang Ying
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
- The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
5
|
Ke Y. Stochastic resonance in vibrational polariton chemistry. J Chem Phys 2025; 162:064702. [PMID: 39927544 DOI: 10.1063/5.0248419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/22/2025] [Indexed: 02/11/2025] Open
Abstract
In this work, we systematically investigate the impact of ambient noise intensity on the rate modifications of ground-state chemical reactions in an optical cavity under vibrational strong-coupling conditions. To achieve this, we utilize a numerically exact open quantum system approach-the hierarchical equations of motion in twin space, combined with a flexible tree tensor network state solver. Our findings reveal a stochastic resonance phenomenon in cavity-modified chemical reactivities: an optimal reaction rate enhancement occurs at an intermediate noise level. In other words, this enhancement diminishes if ambient noise, sensed by the cavity-molecule system through cavity leakage, is either too weak or excessively strong. In the collective coupling regime, when the cavity is weakly damped, rate enhancement strengthens as more molecules couple to the cavity. In contrast, under strong cavity damping, reaction rates decline as the number of molecules grows.
Collapse
Affiliation(s)
- Yaling Ke
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Fábri C, Halász GJ, Hofierka J, Cederbaum LS, Vibók Á. Impact of Dipole Self-Energy on Cavity-Induced Nonadiabatic Dynamics. J Chem Theory Comput 2025; 21:575-589. [PMID: 39772522 DOI: 10.1021/acs.jctc.4c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The coupling of matter to the quantized electromagnetic field of a plasmonic or optical cavity can be harnessed to modify and control chemical and physical properties of molecules. In optical cavities, a term known as the dipole self-energy (DSE) appears in the Hamiltonian to ensure gauge invariance. The aim of this work is twofold. First, we introduce a method, which has its own merits and complements existing methods, to compute the DSE. Second, we study the impact of the DSE on cavity-induced nonadiabatic dynamics in a realistic system. For that purpose, various matrix elements of the DSE are computed as functions of the nuclear coordinates and the dynamics of the system after laser excitation is investigated. The cavity is known to induce conical intersections between polaritons, which gives rise to substantial nonadiabatic effects. The DSE is shown to slightly affect these light-induced conical intersections and, in particular, break their symmetry.
Collapse
Affiliation(s)
- Csaba Fábri
- HUN-REN-ELTE Complex Chemical Systems Research Group, P.O. Box 32, Budapest 112 H-1518, Hungary
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, Debrecen H-4002, Hungary
| | - Gábor J Halász
- Department of Information Technology, University of Debrecen, P.O. Box 400, Debrecen H-4002, Hungary
| | - Jaroslav Hofierka
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg D-69120, Germany
| | - Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg D-69120, Germany
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, Debrecen H-4002, Hungary
- ELI-ALPS, ELI-HU Non-Profit Ltd, Dugonics tér 13, Szeged H-6720, Hungary
| |
Collapse
|
7
|
Shen CE, Tsai HS, Hsu LY. Non-adiabatic quantum electrodynamic effects on electron-nucleus-photon systems: Single photonic mode vs infinite photonic modes. J Chem Phys 2025; 162:034107. [PMID: 39812271 DOI: 10.1063/5.0238657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025] Open
Abstract
The quantum-electrodynamic non-adiabatic emission (QED-NAE) is a type of radiatively assisted vibronic de-excitation due to electromagnetic vacuum fluctuations on non-adiabatic processes. Building on our previous work [Tsai et al., J. Phys. Chem. Lett. 14, 5924 (2023)], we extend the theory of the QED-NAE rate from a single cavity photonic mode to infinite photonic modes and calculate the QED-NAE rates of 9-cyanoanthracene at the first-principles level. To avoid the confusion, the quantum electrodynamic internal conversion process is renamed as "QED-NAE" in our present work. According to our theory, we identify three key factors influencing the QED-NAE processes: light-matter coupling strength (mode volume), mass-weighted orientation factor, and photonic density of states. The mode volume is the primary factor causing rate differences between the two scenarios. In a single cavity with a small mode volume, strong light-matter coupling strength boosts QED-NAE rates. In contrast, in free space with infinite photonic modes, weak coupling strength significantly reduces these rates. From a single cavity photonic mode to infinite photonic modes, the mass-weighted orientation factor only causes an 8π/3-fold increase in the QED-NAE rate. In free space, the photonic density of state exhibits a flat and quadratic distribution, which slightly reduces the QED-NAE rate. Our study shows that cavities can significantly enhance non-adiabatic QED effects while providing a robust analysis demonstrating that QED vibronic effects can be safely ignored in free space.
Collapse
Affiliation(s)
- Chih-En Shen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hung-Sheng Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Liang-Yan Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Huang X, Liang W. Analytical derivative approaches for vibro-polaritonic structures and properties. I. Formalism and implementation. J Chem Phys 2025; 162:024115. [PMID: 39783973 DOI: 10.1063/5.0228891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
Vibro-polaritons are hybrid light-matter states that arise from the strong coupling between the molecular vibrational transitions and the photons in an optical cavity. Developing theoretical and computational methods to describe and predict the unique properties of vibro-polaritons is of great significance for guiding the design of new materials and experiments. Here, we present the ab initio cavity Born-Oppenheimer density functional theory (CBO-DFT) and formulate the analytic energy gradient and Hessian as well as the nuclear and photonic derivatives of dipole and polarizability within the framework of CBO-DFT to efficiently calculate the harmonic vibrational frequencies, infrared absorption, and Raman scattering spectra of vibro-polaritons as well as to explore the critical points on the cavity potential energy surface. The implementation of analytic derivatives into the electronic structure package is validated by a comparison with the finite-difference method and with other reported computational results. By adopting appropriate exchange-correlation functionals, CBO-DFT can better describe the structure and properties of molecules in the cavity than CBO-Hartree-Fock method. It is expected that CBO-DFT is a useful tool for studying the polaritonic structures and properties.
Collapse
Affiliation(s)
- Xunkun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
9
|
Gu B. Toward Collective Chemistry under Strong Light-Matter Coupling. J Phys Chem Lett 2025; 16:317-323. [PMID: 39723952 DOI: 10.1021/acs.jpclett.4c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Collective strong light-matter coupling provides a versatile means to manipulate physicochemical properties of molecules and materials. Understanding collective polaritonic dynamics is hindered by the macroscopic number of molecules interacting collectively with photonic modes. We develop a many-body theory to investigate the spectroscopy and dynamics of a molecular ensemble embedded in an optical cavity in the collective strong coupling regime. This theory is constructed by a pseudoparticle representation of the molecular Hamiltonian, which maps the polaritonic Hamiltonian into a coupled fermion-boson model under particle number constraints. The mapped model is then analyzed using the nonequilibrium Green's function theory with the self-energy diagrams identified through a large N expansion. We demonstrate that in the thermodynamic limit, the necessary condition to have any collective effects is to have a macroscopic cavity field. Numerical illustrations are shown for the driven Tavis-Cummings model, which shows an excellent agreement with exact results.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
10
|
Riso RR, Castagnola M, Ronca E, Koch H. Chiral polaritonics: cavity-mediated enantioselective excitation condensation. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2025; 88:027901. [PMID: 39671716 DOI: 10.1088/1361-6633/ad9ed9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/13/2024] [Indexed: 12/15/2024]
Abstract
Separation of the two mirror images of a chiral molecule, the enantiomers, is a historically complicated problem of major relevance for biological systems. Since chiral molecules are optically active, it has been speculated that strong coupling to circularly polarized fields may be used as a general procedure to unlock enantiospecific reactions. In this work, we focus on how chiral cavities can be used to drive asymmetry in the photochemistry of chiral molecular systems. We first show that strong coupling to circularly polarized fields leads to enantiospecific Rabi splittings, an effect that displays a collective behavior in line with other strong coupling phenomena. Additionally, entanglement with circularly polarized light generates an asymmetry in the enantiomer population of the polaritons, leading to a condensation of the excitation on a preferred molecular configuration. These results confirm that chiral cavities represent a tantalizing opportunity to drive asymmetric photochemistry in enantiomeric mixtures.
Collapse
Affiliation(s)
- Rosario R Riso
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Matteo Castagnola
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Enrico Ronca
- Dipartimento di Chimica, Biologia e Biotecnologie, Universita degli Studi di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
11
|
Herrera F, Barnes WL. Multiple interacting photonic modes in strongly coupled organic microcavities. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230343. [PMID: 39717976 DOI: 10.1098/rsta.2023.0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 12/25/2024]
Abstract
Room-temperature cavity quantum electrodynamics with molecular materials in optical cavities offers exciting prospects for controlling electronic, nuclear and photonic degrees of freedom for applications in physics, chemistry and materials science. However, achieving strong coupling with molecular ensembles typically requires high molecular densities and substantial electromagnetic-field confinement. These conditions usually involve a significant degree of molecular disorder and a highly structured photonic density of states. It remains unclear to what extent these additional complexities modify the usual physical picture of strong coupling developed for atoms and inorganic semiconductors. Using a microscopic quantum description of molecular ensembles in realistic multimode optical resonators, we show that the emergence of vacuum Rabi splitting in linear spectroscopy is a necessary but not sufficient metric of coherent admixing between light and matter. In low-finesse multi-mode situations, we find that molecular dipoles can be partially hybridized with photonic dissipation channels associated with off-resonant cavity modes. These vacuum-induced dissipative processes ultimately limit the extent of light-matter coherence that the system can sustain.This article is part of the theme issue 'The quantum theory of light'.
Collapse
Affiliation(s)
- Felipe Herrera
- Department of Physics, Universidad de Santiago de Chile, Av. Victor Jara 3493, Santiago, Chile
| | - William L Barnes
- Department of Physics and Astronomy, University of Exeter, Exeter, Devon EX4 4QL, UK
| |
Collapse
|
12
|
Wang S, Huang JL, Hsu LY. Theory of molecular emission power spectra. III. Non-Hermitian interactions in multichromophoric systems coupled with polaritons. J Chem Phys 2024; 161:234113. [PMID: 39692490 DOI: 10.1063/5.0235250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
Based on our previous study [Wang et al., J. Chem. Phys. 153, 184102 (2020)], we generalize the theory of molecular emission power spectra (EPS) from one molecule to multichromophoric systems in the framework of macroscopic quantum electrodynamics. This generalized theory is applicable to ensembles of molecules, providing a comprehensive description of the molecular spontaneous emission spectrum in arbitrary inhomogeneous, dispersive, and absorbing media. In the far-field region, the analytical formula of EPS can be expressed as the product of a lineshape function (LF) and an electromagnetic environment factor (EEF). To demonstrate the polaritonic effect on multichromophoric systems, we simulate the LF and EEF for one to three molecules weakly coupled to surface plasmon polaritons above a silver surface. Our analytical expressions show that the peak broadening originates from not only the spontaneous emission rates but also the imaginary part of resonant dipole-dipole interactions (non-Hermitian interactions), which is associated with the superradiance of molecular aggregates, indicating that the superradiance rate can be controlled through an intermolecular distance and the design of dielectric environments. This study presents an alternative approach to directly analyze the hybrid-state dynamics of multichromophoric systems coupled with polaritons.
Collapse
Affiliation(s)
- Siwei Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Jia-Liang Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Liang-Yan Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- National Center for Theoretical Sciences, Taipei 10617, Taiwan
| |
Collapse
|
13
|
Lu IT, Shin D, Svendsen MK, Hübener H, De Giovannini U, Latini S, Ruggenthaler M, Rubio A. Cavity-enhanced superconductivity in MgB 2 from first-principles quantum electrodynamics (QEDFT). Proc Natl Acad Sci U S A 2024; 121:e2415061121. [PMID: 39636851 PMCID: PMC11648876 DOI: 10.1073/pnas.2415061121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
Strong laser pulses can control superconductivity, inducing nonequilibrium transient pairing by leveraging strong-light matter interaction. Here, we demonstrate theoretically that equilibrium ground-state phonon-mediated superconductive pairing can be affected through the vacuum fluctuating electromagnetic field in a cavity. Using the recently developed ab initio quantum electrodynamical density-functional theory approximation, we specifically investigate the phonon-mediated superconductive behavior of MgB[Formula: see text] under different cavity setups and find that in the strong light-matter coupling regime its superconducting transition temperature T[Formula: see text] can be enhanced at most by [Formula: see text]10% in an in-plane (or out-of-plane) polarized and realistic cavity via photon vacuum fluctuations. The results highlight that strong light-matter coupling in extended systems can profoundly alter material properties in a nonperturbative way by modifying their electronic structure and phononic dispersion at the same time. Our findings indicate a pathway to the experimental realization of light-controlled superconductivity in solid-state materials at equilibrium via cavity materials engineering.
Collapse
Affiliation(s)
- I-Te Lu
- Theory Department, Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, 22761Hamburg, Germany
| | - Dongbin Shin
- Theory Department, Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, 22761Hamburg, Germany
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Mark Kamper Svendsen
- Theory Department, Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, 22761Hamburg, Germany
- Novo Nordisk Foundation Quantum Computing Programme, Niels Bohr Institute, University of Copenhagen, 2100Copenhagen, Denmark
| | - Hannes Hübener
- Theory Department, Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, 22761Hamburg, Germany
| | - Umberto De Giovannini
- Theory Department, Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, 22761Hamburg, Germany
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università degli Studi di Palermo, I-90123Palermo, Italy
| | - Simone Latini
- Theory Department, Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, 22761Hamburg, Germany
- Department of Physics, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Michael Ruggenthaler
- Theory Department, Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, 22761Hamburg, Germany
| | - Angel Rubio
- Theory Department, Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, 22761Hamburg, Germany
- Center for Computational Quantum Physics, The Flatiron Institute, New York, NY10010
| |
Collapse
|
14
|
Matoušek M, Vu N, Govind N, Foley JJ, Veis L. Polaritonic Chemistry Using the Density Matrix Renormalization Group Method. J Chem Theory Comput 2024; 20:9424-9434. [PMID: 39441199 PMCID: PMC11562376 DOI: 10.1021/acs.jctc.4c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The emerging field of polaritonic chemistry explores the behavior of molecules under strong coupling with cavity modes. Despite recent developments in ab initio polaritonic methods for simulating polaritonic chemistry under electronic strong coupling, their capabilities are limited, especially in cases where the molecule also features strong electronic correlation. To bridge this gap, we have developed a novel method for cavity QED calculations utilizing the Density Matrix Renormalization Group (DMRG) algorithm in conjunction with the Pauli-Fierz Hamiltonian. Our approach is applied to investigate the effect of the cavity on the S0-S1 transition of n-oligoacenes, with n ranging from 2 to 5, encompassing 22 fully correlated π orbitals in the largest pentacene molecule. Our findings indicate that the influence of the cavity intensifies with larger acenes. Additionally, we demonstrate that, unlike the full determinantal representation, DMRG efficiently optimizes and eliminates excess photonic degrees of freedom, resulting in an asymptotically constant computational cost as the photonic basis increases.
Collapse
Affiliation(s)
- Mikuláš Matoušek
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences
of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, 12116 Prague 2, Czech Republic
| | - Nam Vu
- Department
of Chemistry, University of North Carolina
Charlotte, Charlotte, North Carolina 28223, United States
| | - Niranjan Govind
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan J. Foley
- Department
of Chemistry, University of North Carolina
Charlotte, Charlotte, North Carolina 28223, United States
| | - Libor Veis
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences
of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
15
|
Fischer EW. Cavity-modified local and non-local electronic interactions in molecular ensembles under vibrational strong coupling. J Chem Phys 2024; 161:164112. [PMID: 39451002 DOI: 10.1063/5.0231528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Resonant vibrational strong coupling (VSC) between molecular vibrations and quantized field modes of low-frequency optical cavities constitutes the conceptual cornerstone of vibro-polaritonic chemistry. In this work, we theoretically investigate the role of complementary nonresonant electron-photon interactions in the cavity Born-Oppenheimer (CBO) approximation. In particular, we study cavity-induced modifications of local and non-local electronic interactions in dipole-coupled molecular ensembles under VSC. Methodologically, we combine CBO perturbation theory (CBO-PT) [E. W. Fischer and P. Saalfrank, J. Chem. Theory Comput. 19, 7215 (2023)] with non-perturbative CBO Hartree-Fock (HF) and coupled cluster (CC) theories. In a first step, we derive up to second-order CBO-PT cavity potential energy surfaces, which reveal non-trivial intra- and inter-molecular corrections induced by the cavity. We then introduce the concept of a cavity reaction potential (CRP), minimizing the electronic energy in the cavity subspace to discuss vibro-polaritonic reaction mechanisms. We present reformulations of CBO-HF and CBO-CC approaches for CRPs and derive second-order approximate CRPs from CBO-PT for unimolecular and bimolecular scenarios. In the unimolecular case, we find small local modifications of molecular potential energy surfaces for selected isomerization reactions dominantly captured by the first-order dipole fluctuation correction. Excellent agreement between CBO-PT and non-perturbative wave function results indicates minor VSC-induced state relaxation effects in the single-molecule limit. In the bimolecular scenario, CBO-PT reveals an explicit coupling of interacting dimers to cavity modes besides cavity-polarization dependent dipole-induced dipole and van der Waals interactions with enhanced long-range character. An illustrative CBO-coupled cluster theory with singles and doubles-based numerical analysis of selected molecular dimer models provides a complementary non-perturbative perspective on cavity-modified intermolecular interactions under VSC.
Collapse
Affiliation(s)
- Eric W Fischer
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| |
Collapse
|
16
|
Wallner L, Remnant C, Vendrell O. Strong-Coupling Modification of Singlet-Fission Dynamical Pathways. J Phys Chem A 2024; 128:8897-8905. [PMID: 39377577 DOI: 10.1021/acs.jpca.4c04207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We investigate theoretically the influence of strong light-matter coupling on the initial steps of the phototriggered singlet-fission process. In particular we focus on intramolecular singlet fission in a TIPS-pentacene dimer derivative described by a vibronic Hamiltonian including the optically active singlet excited states, doubly excited and charge transfer states, as well as the final triplet-triplet pair state. Quantum dynamics simulations of up to four dimers in the cavity indicate that the modified resonance condition imposed by the cavity strongly quenches the passage through the intermediate charge transfer and double-excitation states, thus largely reducing the triplet-triplet yield in the bare system. Subsequently, we modify the system parameters and construct a model Hamiltonian where the optically active singlet excitation lies below the final triplet-triplet state such that the yield of the bare system becomes insignificant. In this case we find that using the upper polariton as the doorway state for photoexcitation can lead to a much enhanced yield. This pathway is operative provided that the system is sufficiently rigid to prevent vibronic losses from the upper polariton to the dark-states manifold.
Collapse
Affiliation(s)
- Lisamaria Wallner
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg 69120, Germany
| | - Charlotte Remnant
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg 69120, Germany
| | - Oriol Vendrell
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg 69120, Germany
- Interdisciplinary Center for Scientific Computing, Universität Heidelberg, Im Neuneheimer Feld 205, Heidelberg 69120, Germany
| |
Collapse
|
17
|
Lyu N, Khazaei P, Geva E, Batista VS. Simulating Cavity-Modified Electron Transfer Dynamics on NISQ Computers. J Phys Chem Lett 2024; 15:9535-9542. [PMID: 39264851 DOI: 10.1021/acs.jpclett.4c02220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
We present an algorithm based on the quantum-mechanically exact tensor-train thermo-field dynamics (TT-TFD) method for simulating cavity-modified electron transfer dynamics on noisy intermediate-scale quantum (NISQ) computers. The utility and accuracy of the proposed methodology is demonstrated on a model for the photoinduced intramolecular electron transfer reaction within the carotenoid-porphyrin-C60 molecular triad in tetrahydrofuran (THF) solution. The electron transfer rate is found to increase significantly with increasing coupling strength between the molecular system and the cavity. The rate process is also seen to shift from overdamped monotonic decay to under-damped oscillatory dynamics. The electron transfer rate is seen to be highly sensitive to the cavity frequency, with the emergence of a resonance cavity frequency for which the effect of coupling to the cavity is maximal. Finally, an implementation of the algorithm on the IBM Osaka quantum computer is used to demonstrate how TT-TFD-based electron transfer dynamics can be simulated accurately on NISQ computers.
Collapse
Affiliation(s)
- Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, 200433, China
| | - Pouya Khazaei
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
18
|
Liu Z, Wang X. Modulating molecular plasmons in naphthalene via intermolecular interactions and strong light-matter coupling. Phys Chem Chem Phys 2024; 26:23646-23653. [PMID: 39224059 DOI: 10.1039/d4cp01816h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We conducted a theoretical investigation on the modulation of plasmon-like resonances in naphthalene - the so-called molecular plasmons - through intermolecular interactions and strong light-matter coupling. The configuration interaction with single excitations (CIS) approach and its quantum electrodynamics extension (QED-CIS-1) are used to describe the molecular plasmon states under these interactions. We detail the effects of changing intermolecular distances of the naphthalene dimer and incorporating the naphthalene molecule into optical cavities, both allowing for precise control of naphthalene's plasmonic responses. Our results show significant shifts of the plasmon peak in the absorption spectra of naphthalene, depending on the spatial configuration of the dimer and cavity parameters such as polarization, frequency, and coupling strength. Further investigation of the naphthalene dimer in a cavity reveals a synergistic effect on the plasmon peak when the two types of interactions are combined. This research provides insights into the plasmonic behavior of simple polyacenes like naphthalene and opens up possibilities for plasmon modulation in more complex systems.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
| | - Xiao Wang
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
19
|
Sharma SK, Chen HT. Unraveling abnormal collective effects via the non-monotonic number dependence of electron transfer in confined electromagnetic fields. J Chem Phys 2024; 161:104102. [PMID: 39248381 DOI: 10.1063/5.0225434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Strong light-matter coupling within an optical cavity leverages the collective interactions of molecules and confined electromagnetic fields, giving rise to the possibilities of modifying chemical reactivity and molecular properties. While collective optical responses, such as enhanced Rabi splitting, are often observed, the overall effect of the cavity on molecular systems remains ambiguous for a large number of molecules. In this paper, we investigate the non-adiabatic electron transfer process in electron donor-acceptor pairs influenced by collective excitation and local molecular dynamics. Using the timescale difference between reorganization and thermal fluctuations, we derive analytical formulas for the electron transfer rate constant and the polariton relaxation rate. These formulas apply to any number of molecules (N) and account for the collective effect as induced by cavity photon coupling. Our findings reveal a non-monotonic dependence of the rate constant on N, which can be understood by the interplay between electron transfer and polariton relaxation. As a result, the cavity-induced quantum yield increases linearly with N for small N (as predicted by a simple Dicke model) but shows a turnover and suppression for large N. We also interrelate the thermal bath frequency and the number of molecules, suggesting the optimal number for maximizing enhancement. The analysis provides an analytical insight for understanding the collective excitation of light and electron transfer, helping to predict the optimal condition for effective cavity-controlled chemical reactivity.
Collapse
Affiliation(s)
- Shravan Kumar Sharma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Hsing-Ta Chen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
20
|
Kumar R, Trodden B, Klimash A, Bousquet M, Chaubey SK, Fairbairn NJ, Russell BA, Wynne K, Karimullah AS, Gadegaard N, Skabara PJ, Hedley GJ, Hashiyada S, Movsesyan A, Govorov AO, Kadodwala M. Electromagnetic Enantiomer: Chiral Nanophotonic Cavities for Inducing Chemical Asymmetry. ACS NANO 2024; 18:22220-22232. [PMID: 39107108 PMCID: PMC11342365 DOI: 10.1021/acsnano.4c05861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Chiral molecules, a cornerstone of chemical sciences with applications ranging from pharmaceuticals to molecular electronics, come in mirror-image pairs called enantiomers. However, their synthesis often requires complex control of their molecular geometry. We propose a strategy called "electromagnetic enantiomers" for inducing chirality in molecules located within engineered nanocavities using light, eliminating the need for intricate molecular design. This approach works by exploiting the strong coupling between a nonchiral molecule and a chiral mode within a nanocavity. We provide evidence for this strong coupling through angular emission patterns verified by numerical simulations and with complementary evidence provided by luminescence lifetime measurements. In simpler terms, our hypothesis suggests that chiral properties can be conveyed on to a molecule with a suitable chromophore by placing it within a specially designed chiral nanocavity that is significantly larger (hundreds of nanometers) than the molecule itself. To demonstrate this concept, we showcase an application in display technology, achieving efficient emission of circularly polarized light from a nonchiral molecule. The electromagnetic enantiomer concept offers a simpler approach to chiral control, potentially opening doors for asymmetric synthesis.
Collapse
Affiliation(s)
- Rahul Kumar
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Ben Trodden
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Anastasia Klimash
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Manon Bousquet
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Shailendra K. Chaubey
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Nicola J. Fairbairn
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Ben A. Russell
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Klaas Wynne
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Affar S. Karimullah
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Nikolaj Gadegaard
- James
Watt School of Engineering, Rankine Building, University of Glasgow, Glasgow G12 8LT, U.K.
| | - Peter J. Skabara
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Gordon J. Hedley
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Shun Hashiyada
- Innovative
Photon Manipulation Research Team, RIKEN
Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department
of Electrical, Electronic, and Communication Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-Ku, Tokyo 112-8551, Japan
| | - Artur Movsesyan
- Department
of Physics and Astronomy and Nano scale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610056, China
| | - Alexander O. Govorov
- Innovative
Photon Manipulation Research Team, RIKEN
Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Malcolm Kadodwala
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| |
Collapse
|
21
|
Litman Y, Kapil V, Feldman YMY, Tisi D, Begušić T, Fidanyan K, Fraux G, Higer J, Kellner M, Li TE, Pós ES, Stocco E, Trenins G, Hirshberg B, Rossi M, Ceriotti M. i-PI 3.0: A flexible and efficient framework for advanced atomistic simulations. J Chem Phys 2024; 161:062504. [PMID: 39140447 DOI: 10.1063/5.0215869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Atomic-scale simulations have progressed tremendously over the past decade, largely thanks to the availability of machine-learning interatomic potentials. These potentials combine the accuracy of electronic structure calculations with the ability to reach extensive length and time scales. The i-PI package facilitates integrating the latest developments in this field with advanced modeling techniques thanks to a modular software architecture based on inter-process communication through a socket interface. The choice of Python for implementation facilitates rapid prototyping but can add computational overhead. In this new release, we carefully benchmarked and optimized i-PI for several common simulation scenarios, making such overhead negligible when i-PI is used to model systems up to tens of thousands of atoms using widely adopted machine learning interatomic potentials, such as Behler-Parinello, DeePMD, and MACE neural networks. We also present the implementation of several new features, including an efficient algorithm to model bosonic and fermionic exchange, a framework for uncertainty quantification to be used in conjunction with machine-learning potentials, a communication infrastructure that allows for deeper integration with electronic-driven simulations, and an approach to simulate coupled photon-nuclear dynamics in optical or plasmonic cavities.
Collapse
Affiliation(s)
- Yair Litman
- Y. Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Venkat Kapil
- Y. Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Physics and Astronomy, University College London, 17-19 Gordon St, London WC1H 0AH, United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology, 19 Gordon St, London WC1H 0AH, United Kingdom
| | | | - Davide Tisi
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Tomislav Begušić
- Div. of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Karen Fidanyan
- MPI for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Guillaume Fraux
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jacob Higer
- School of Physics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Matthias Kellner
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Tao E Li
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Eszter S Pós
- MPI for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Elia Stocco
- MPI for the Structure and Dynamics of Matter, Hamburg, Germany
| | - George Trenins
- MPI for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Barak Hirshberg
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mariana Rossi
- MPI for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Stefanucci G. Kadanoff-Baym Equations for Interacting Systems with Dissipative Lindbladian Dynamics. PHYSICAL REVIEW LETTERS 2024; 133:066901. [PMID: 39178436 DOI: 10.1103/physrevlett.133.066901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/02/2024] [Accepted: 07/01/2024] [Indexed: 08/25/2024]
Abstract
The extraordinary quantum properties of nonequilibrium systems governed by dissipative dynamics have become a focal point in contemporary scientific inquiry. The nonequilibrium Green's functions (NEGF) theory provides a versatile method for addressing driven nondissipative systems, utilizing the powerful diagrammatic technique to incorporate correlation effects. We here present a second-quantization approach to the dissipative NEGF theory, reformulating Keldysh ideas to accommodate Lindbladian dynamics and extending the Kadanoff-Baym equations accordingly. Generalizing diagrammatic perturbation theory for many-body Lindblad operators, the formalism enables correlated and dissipative real-time simulations for the exploration of transient and steady-state changes in the electronic, transport, and optical properties of materials.
Collapse
|
23
|
Ke Y, Richardson JO. Quantum nature of reactivity modification in vibrational polariton chemistry. J Chem Phys 2024; 161:054104. [PMID: 39087532 DOI: 10.1063/5.0220908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
In this work, we present a mixed quantum-classical open quantum system dynamics method for studying rate modifications of ground-state chemical reactions in an optical cavity under vibrational strong-coupling conditions. In this approach, the cavity radiation mode is treated classically with a mean-field nuclear force averaging over the remaining degrees of freedom, both within the system and the environment, which are handled quantum mechanically within the hierarchical equations of motion framework. Using this approach, we conduct a comparative analysis by juxtaposing the mixed quantum-classical results with fully quantum-mechanical simulations. After eliminating spurious peaks that can occur when not using the rigorous definition of the rate constant, we confirm the crucial role of the quantum nature of the cavity radiation mode in reproducing the resonant peak observed in the cavity frequency-dependent rate profile. In other words, it appears necessary to explicitly consider the quantized photonic states in studying reactivity modification in vibrational polariton chemistry (at least for the model systems studied in this work), as these phenomena stem from cavity-induced reaction pathways involving resonant energy exchanges between photons and molecular vibrational transitions.
Collapse
Affiliation(s)
- Yaling Ke
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
24
|
Dutta A, Tiainen V, Sokolovskii I, Duarte L, Markešević N, Morozov D, Qureshi HA, Pikker S, Groenhof G, Toppari JJ. Thermal disorder prevents the suppression of ultra-fast photochemistry in the strong light-matter coupling regime. Nat Commun 2024; 15:6600. [PMID: 39097575 PMCID: PMC11297929 DOI: 10.1038/s41467-024-50532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 07/11/2024] [Indexed: 08/05/2024] Open
Abstract
Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this effect remains largely unknown. While theoretical models suggest a suppression of photochemistry due to the formation of new polaritonic potential energy surfaces, many of these models do not account for the energetic disorder among the molecules, which is unavoidable at ambient conditions. Here, we combine simulations and experiments to show that for an ultra-fast photochemical reaction such thermal disorder prevents the modification of the potential energy surface and that suppression is due to radiative decay of the lossy cavity modes. We also show that the excitation spectrum under strong coupling is a product of the excitation spectrum of the bare molecules and the absorption spectrum of the molecule-cavity system, suggesting that polaritons can act as gateways for channeling an excitation into a molecule, which then reacts normally. Our results therefore imply that strong coupling provides a means to tune the action spectrum of a molecule, rather than to change the reaction.
Collapse
Affiliation(s)
- Arpan Dutta
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- Department of Mechanical and Materials Engineering, University of Turku, 20014, Turku, Finland
| | - Ville Tiainen
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Ilia Sokolovskii
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Luís Duarte
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki, Finland
| | - Nemanja Markešević
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- CNR-INO Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche and LENS European Laboratory for Nonlinear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Hassan A Qureshi
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- Department of Mechanical and Materials Engineering, University of Turku, 20014, Turku, Finland
| | - Siim Pikker
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - J Jussi Toppari
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| |
Collapse
|
25
|
Schnappinger T, Kowalewski M. Do Molecular Geometries Change Under Vibrational Strong Coupling? J Phys Chem Lett 2024; 15:7700-7707. [PMID: 39041716 PMCID: PMC11299175 DOI: 10.1021/acs.jpclett.4c01810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
As pioneering experiments have shown, strong coupling between molecular vibrations and light modes in an optical cavity can significantly alter molecular properties and even affect chemical reactivity. However, the current theoretical description is limited and far from complete. To explore the origin of this exciting observation, we investigate how the molecular structure changes under strong light-matter coupling using an ab initio method based on the cavity Born-Oppenheimer Hartree-Fock ansatz. By optimizing H2O and H2O2 resonantly coupled to cavity modes, we study the importance of reorientation and geometric relaxation. In addition, we show that the inclusion of one or two cavity modes can change the observed results. On the basis of our findings, we derive a simple concept to estimate the effect of the cavity interaction on the molecular geometry using the molecular polarizability and the dipole moments.
Collapse
Affiliation(s)
- Thomas Schnappinger
- Department of Physics, Stockholm
University, AlbaNova University Center, SE-106
91 Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm
University, AlbaNova University Center, SE-106
91 Stockholm, Sweden
| |
Collapse
|
26
|
Berquist E, Dumi A, Upadhyay S, Abarbanel OD, Cho M, Gaur S, Cano Gil VH, Hutchison GR, Lee OS, Rosen AS, Schamnad S, Schneider FSS, Steinmann C, Stolyarchuk M, Vandezande JE, Zak W, Langner KM. cclib 2.0: An updated architecture for interoperable computational chemistry. J Chem Phys 2024; 161:042501. [PMID: 39051837 DOI: 10.1063/5.0216778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Interoperability in computational chemistry is elusive, impeded by the independent development of software packages and idiosyncratic nature of their output files. The cclib library was introduced in 2006 as an attempt to improve this situation by providing a consistent interface to the results of various quantum chemistry programs. The shared API across programs enabled by cclib has allowed users to focus on results as opposed to output and to combine data from multiple programs or develop generic downstream tools. Initial development, however, did not anticipate the rapid progress of computational capabilities, novel methods, and new programs; nor did it foresee the growing need for customizability. Here, we recount this history and present cclib 2, focused on extensibility and modularity. We also introduce recent design pivots-the formalization of cclib's intermediate data representation as a tree-based structure, a new combinator-based parser organization, and parsed chemical properties as extensible objects.
Collapse
Affiliation(s)
- Eric Berquist
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Amanda Dumi
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Shiv Upadhyay
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Omri D Abarbanel
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Minsik Cho
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Sagar Gaur
- MarkovML 23, Geary St. Suite 600, San Francisco, California 94108, USA
- International Institute of Information Technology, Prof. CR Rao Road Gachibowli, Hyderabad 500032, Telangana, India
| | | | - Geoffrey R Hutchison
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Oliver S Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St. Andrews KY16 9ST, United Kingdom
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St. Andrews KY16 9SS, United Kingdom
| | - Andrew S Rosen
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | | | | | - Casper Steinmann
- Department of Chemistry and Bioscience, Aalborg University, DK-9230 Aalborg, Denmark
| | | | | | - Weronika Zak
- Department of Computer Science, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | | |
Collapse
|
27
|
Borges L, Schnappinger T, Kowalewski M. Extending the Tavis-Cummings model for molecular ensembles-Exploring the effects of dipole self-energies and static dipole moments. J Chem Phys 2024; 161:044119. [PMID: 39072423 PMCID: PMC7616353 DOI: 10.1063/5.0214362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Strong coupling of organic molecules to the vacuum field of a nanoscale cavity can be used to modify their chemical and physical properties. We extend the Tavis-Cummings model for molecular ensembles and show that the often neglected interaction terms arising from the static dipole moment and the dipole self-energy are essential for a correct description of the light-matter interaction in polaritonic chemistry. On the basis of a full quantum description, we simulate the excited-state dynamics and spectroscopy of MgH+ molecules resonantly coupled to an optical cavity. We show that the inclusion of static dipole moments and the dipole self-energy is necessary to obtain a consistent model. We construct an efficient two-level system approach that reproduces the main features of the real molecular system and may be used to simulate larger molecular ensembles.
Collapse
Affiliation(s)
- Lucas Borges
- Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91Stockholm, Sweden
| | - Thomas Schnappinger
- Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91Stockholm, Sweden
| | | |
Collapse
|
28
|
Li TE. Mesoscale Molecular Simulations of Fabry-Pérot Vibrational Strong Coupling. J Chem Theory Comput 2024. [PMID: 38912683 DOI: 10.1021/acs.jctc.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Developing theoretical frameworks for vibrational strong coupling (VSC) beyond the single-mode approximation is crucial for a comprehensive understanding of experiments with planar Fabry-Pérot cavities. Herein, a generalized cavity molecular dynamics (CavMD) scheme is developed to simulate VSC of a large ensemble of realistic molecules coupled to an arbitrary 1D or 2D photonic environment. This approach is built upon the Power-Zienau-Woolley Hamiltonian in the normal mode basis and uses a grid representation of the molecular ensembles to reduce the computational cost. When simulating the polariton dispersion relation for a homogeneous distribution of molecules in planar Fabry-Pérot cavities, our data highlight the importance of preserving the in-plane translational symmetry of the molecular distribution. In this homogeneous limit, CavMD yields the consistent polariton dispersion relation as an analytic theory, i.e., incorporating many cavity modes with varying in-plane wave vectors (k∥) produces the same spectrum as the system with a single cavity mode. Furthermore, CavMD reveals that the validity of the single-mode approximation is challenged when nonequilibrium polariton dynamics are considered, as polariton-polariton scattering occurs between modes with the nearest neighbor k∥. The procedure for numerically approaching the macroscopic limit is also demonstrated with CavMD by increasing the system size. Looking forward, our generalized CavMD approach may facilitate understanding vibrational polariton transport and condensation.
Collapse
Affiliation(s)
- Tao E Li
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
29
|
Ke Y, Richardson JO. Insights into the mechanisms of optical cavity-modified ground-state chemical reactions. J Chem Phys 2024; 160:224704. [PMID: 38856061 DOI: 10.1063/5.0200410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
In this work, we systematically investigate the mechanisms underlying the rate modification of ground-state chemical reactions in an optical cavity under vibrational strong-coupling conditions. We employ a symmetric double-well description of the molecular potential energy surface and a numerically exact open quantum system approach-the hierarchical equations of motion in twin space with a matrix product state solver. Our results predict the existence of multiple peaks in the photon frequency-dependent rate profile for a strongly anharmonic molecular system with multiple vibrational transition energies. The emergence of a new peak in the rate profile is attributed to the opening of an intramolecular reaction pathway, energetically fueled by the cavity photon bath through a resonant cavity mode. The peak intensity is determined jointly by kinetic factors. Going beyond the single-molecule limit, we examine the effects of the collective coupling of two molecules to the cavity. We find that when two identical molecules are simultaneously coupled to the same resonant cavity mode, the reaction rate is further increased. This additional increase is associated with the activation of a cavity-induced intermolecular reaction channel. Furthermore, the rate modification due to these cavity-promoted reaction pathways remains unaffected, regardless of whether the molecular dipole moments are aligned in the same or opposite direction as the light polarization.
Collapse
Affiliation(s)
- Yaling Ke
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
30
|
Bustamante CM, Todorov T, Gadea ED, Tarasi F, Stella L, Horsfield A, Scherlis DA. Modeling the electroluminescence of atomic wires from quantum dynamics simulations. J Chem Phys 2024; 160:214102. [PMID: 38828814 DOI: 10.1063/5.0201447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Static and time-dependent quantum-mechanical approaches have been employed in the literature to characterize the physics of light-emitting molecules and nanostructures. However, the electromagnetic emission induced by an input current has remained beyond the realm of molecular simulations. This is the challenge addressed here with the help of an equation of motion for the density matrix coupled to a photon bath based on a Redfield formulation. This equation is evolved within the framework of the driven-Liouville von Neumann approach, which incorporates open boundaries by introducing an applied bias and a circulating current. The dissipated electromagnetic power can be computed in this context from the time derivative of the energy. This scheme is applied in combination with a self-consistent tight-binding Hamiltonian to investigate the effects of bias and molecular size on the electroluminescence of metallic and semiconducting chains. For the latter, a complex interplay between bias and molecular length is observed: there is an optimal number of atoms that maximizes the emitted power at high voltages but not at low ones. This unanticipated behavior can be understood in terms of the band bending produced along the semiconducting chain, a phenomenon that is captured by the self-consistency of the method. A simple analytical model is proposed that explains the main features revealed by the simulations. The methodology, applied here at a self-consistent tight-binding level but extendable to more sophisticated Hamiltonians such as density functional tight binding and time dependent density functional theory, promises to be helpful for quantifying the power and quantum efficiency of nanoscale electroluminescent devices.
Collapse
Affiliation(s)
- Carlos M Bustamante
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany
| | - Tchavdar Todorov
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Esteban D Gadea
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Facundo Tarasi
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lorenzo Stella
- Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Andrew Horsfield
- Department of Materials, Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Damián A Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
31
|
Yu Q, Bowman JM. Fully Quantum Simulation of Polaritonic Vibrational Spectra of Large Cavity-Molecule System. J Chem Theory Comput 2024; 20:4278-4287. [PMID: 38717309 DOI: 10.1021/acs.jctc.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The formation of molecular vibrational polaritons, arising from the interplay between molecular vibrations and infrared cavity modes, is a quantum phenomenon necessitating accurate quantum dynamical simulations. Here, we introduce the cavity vibrational self-consistent field/virtual state configuration interaction method, enabling quantum simulation of the vibrational spectra of many-molecule systems within the optical cavity. Focusing on the representative (H2O)21 system, we showcase this parameter-free quantum approach's ability to capture both linear and nonlinear vibrational spectral features. Our findings highlight the growing prominence of molecular couplings among OH stretches and bending excited bands with increased light-matter interaction, revealing distinctive nonlinear spectral features induced by vibrational strong coupling.
Collapse
Affiliation(s)
- Qi Yu
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
32
|
Sidler D, Schnappinger T, Obzhirov A, Ruggenthaler M, Kowalewski M, Rubio A. Unraveling a Cavity-Induced Molecular Polarization Mechanism from Collective Vibrational Strong Coupling. J Phys Chem Lett 2024; 15:5208-5214. [PMID: 38717382 PMCID: PMC11103705 DOI: 10.1021/acs.jpclett.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
We demonstrate that collective vibrational strong coupling of molecules in thermal equilibrium can give rise to significant local electronic polarizations in the thermodynamic limit. We do so by first showing that the full nonrelativistic Pauli-Fierz problem of an ensemble of strongly coupled molecules in the dilute-gas limit reduces in the cavity Born-Oppenheimer approximation to a cavity-Hartree equation for the electronic structure. Consequently, each individual molecule experiences a self-consistent coupling to the dipoles of all other molecules, which amount to non-negligible values in the thermodynamic limit (large ensembles). Thus, collective vibrational strong coupling can alter individual molecules strongly for localized "hotspots" within the ensemble. Moreover, the discovered cavity-induced polarization pattern possesses a zero net polarization, which resembles a continuous form of a spin glass (or better polarization glass). Our findings suggest that the thorough understanding of polaritonic chemistry, requires a self-consistent treatment of dressed electronic structure, which can give rise to numerous, so far overlooked, physical mechanisms.
Collapse
Affiliation(s)
- Dominik Sidler
- Laboratory
for Materials Simulations, Paul Scherrer
Institute, 5232 Villigen PSI, Switzerland
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Thomas Schnappinger
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106
91 Stockholm, Sweden
| | - Anatoly Obzhirov
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Ruggenthaler
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Markus Kowalewski
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106
91 Stockholm, Sweden
| | - Angel Rubio
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics, Flatiron
Institute, 162 Fifth Avenue, New York, New York 10010, United States
- Nano-Bio
Spectroscopy Group, University of the Basque
Country (UPV/EHU), 20018 San Sebastián, Spain
| |
Collapse
|
33
|
Fábri C, Halász GJ, Cederbaum LS, Vibók Á. Impact of Cavity on Molecular Ionization Spectra. J Phys Chem Lett 2024; 15:4655-4661. [PMID: 38647546 DOI: 10.1021/acs.jpclett.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ionization phenomena have been widely studied for decades. With the advent of cavity technology, the question arises how quantum light affects molecular ionization. As the ionization spectrum is recorded from the neutral ground state, it is usually possible to choose cavities which exert negligible effect on the neutral ground state, but have significant impact on the ion and the ionization spectrum. Particularly interesting are cases where the ion exhibits conical intersections between close-lying electronic states, which gives rise to substantial nonadiabatic effects. Assuming single-molecule strong coupling, we demonstrate that vibrational modes irrelevant in the absence of a cavity play a decisive role when the molecule is in the cavity. Here, dynamical symmetry breaking is responsible for the ion-cavity coupling and high symmetry enables control of the coupling via molecular orientation relative to the cavity field polarization. Significant impact on the spectrum by the cavity is found and shown to even substantially increase for less symmetric molecules.
Collapse
Affiliation(s)
- Csaba Fábri
- HUN-REN-ELTE Complex Chemical Systems Research Group, H-1518 Budapest 112, Hungary
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Gábor J Halász
- Department of Information Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
- ELI-ALPS, ELI-HU Non-Profit Ltd, Dugonics tér 13, H-6720 Szeged, Hungary
| |
Collapse
|
34
|
Lee IS, Filatov M, Min SK. Formulation of transition dipole gradients for non-adiabatic dynamics with polaritonic states. J Chem Phys 2024; 160:154103. [PMID: 38624116 DOI: 10.1063/5.0202095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
A general formulation of the strong coupling between photons confined in a cavity and molecular electronic states is developed for the state-interaction state-average spin-restricted ensemble-referenced Kohn-Sham method. The light-matter interaction is included in the Jaynes-Cummings model, which requires the derivation and implementation of the analytical derivatives of the transition dipole moments between the molecular electronic states. The developed formalism is tested in the simulations of the nonadiabatic dynamics in the polaritonic states resulting from the strong coupling between the cavity photon mode and the ground and excited states of the penta-2,4-dieniminium cation, also known as PSB3. Comparison with the field-free simulations of the excited-state decay dynamics in PSB3 reveals that the light-matter coupling can considerably alter the decay dynamics by increasing the excited state lifetime and hindering photochemically induced torsion about the C=C double bonds of PSB3. The necessity of obtaining analytical transition dipole gradients for the accurate propagation of the dynamics is underlined.
Collapse
Affiliation(s)
- In Seong Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Michael Filatov
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Seung Kyu Min
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| |
Collapse
|
35
|
Tsai HS, Shen CE, Hsu LY. Generalized Born-Huang expansion under macroscopic quantum electrodynamics framework. J Chem Phys 2024; 160:144112. [PMID: 38597310 DOI: 10.1063/5.0195087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Born-Huang expansion is the cornerstone for studying potential energy surfaces and non-adiabatic couplings (NACs) in molecular systems. However, the traditional approach is insufficient to describe the molecular system, which strongly interacts with quantum light. Inspired by the work by Schäfer et al., we develop the generalized Born-Huang expansion theory within a macroscopic quantum electrodynamics (QED) framework. The theory we present allows us to describe electromagnetic vacuum fluctuations in dielectric media and incorporate the effects of dressed photons (or polaritons) into NACs. With the help of the generalized Born-Huang expansion, we clearly classify electronic nuclear NACs, polaritonic nuclear NACs, and polaritonic electronic NACs. Furthermore, to demonstrate the advantage of the macroscopic QED framework, we estimate polaritonic electronic NACs without any free parameter, such as the effective mode volume, and demonstrate the distance dependence of the polaritonic electronic NACs in a silver planar system. In addition, we take a hydrogen atom in free space as an example and derive spontaneous emission rates from photonic electronic NACs (polaritonic electronic NACs are reduced to photonic electronic NACs). We believe that this work not only provides an avenue for the theoretical exploration of NACs in a nucleus-electron-polariton coupled system but also offers a more comprehensive understanding for molecules coupled with quantum light.
Collapse
Affiliation(s)
- Hung-Sheng Tsai
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chih-En Shen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Liang-Yan Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
| |
Collapse
|
36
|
Herzig Sheinfux H, Orsini L, Jung M, Torre I, Ceccanti M, Marconi S, Maniyara R, Barcons Ruiz D, Hötger A, Bertini R, Castilla S, Hesp NCH, Janzen E, Holleitner A, Pruneri V, Edgar JH, Shvets G, Koppens FHL. High-quality nanocavities through multimodal confinement of hyperbolic polaritons in hexagonal boron nitride. NATURE MATERIALS 2024; 23:499-505. [PMID: 38321241 DOI: 10.1038/s41563-023-01785-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/05/2023] [Indexed: 02/08/2024]
Abstract
Compressing light into nanocavities substantially enhances light-matter interactions, which has been a major driver for nanostructured materials research. However, extreme confinement generally comes at the cost of absorption and low resonator quality factors. Here we suggest an alternative optical multimodal confinement mechanism, unlocking the potential of hyperbolic phonon polaritons in isotopically pure hexagonal boron nitride. We produce deep-subwavelength cavities and demonstrate several orders of magnitude improvement in confinement, with estimated Purcell factors exceeding 108 and quality factors in the 50-480 range, values approaching the intrinsic quality factor of hexagonal boron nitride polaritons. Intriguingly, the quality factors we obtain exceed the maximum predicted by impedance-mismatch considerations, indicating that confinement is boosted by higher-order modes. We expect that our multimodal approach to nanoscale polariton manipulation will have far-reaching implications for ultrastrong light-matter interactions, mid-infrared nonlinear optics and nanoscale sensors.
Collapse
Affiliation(s)
- Hanan Herzig Sheinfux
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel
| | - Lorenzo Orsini
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Minwoo Jung
- Department of Physics, Cornell University, Ithaca, NY, USA
| | - Iacopo Torre
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Matteo Ceccanti
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Simone Marconi
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Rinu Maniyara
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - David Barcons Ruiz
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Alexander Hötger
- Walter Schottky Institut and Physik Department, Technische Universitat Munchen, Garching, Germany
| | - Ricardo Bertini
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Sebastián Castilla
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Niels C H Hesp
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Eli Janzen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Durland Hall, Manhattan, KS, USA
| | - Alexander Holleitner
- Walter Schottky Institut and Physik Department, Technische Universitat Munchen, Garching, Germany
| | - Valerio Pruneri
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Durland Hall, Manhattan, KS, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Frank H L Koppens
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain.
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
37
|
Fischer EW, Syska JA, Saalfrank P. A Quantum Chemistry Approach to Linear Vibro-Polaritonic Infrared Spectra with Perturbative Electron-Photon Correlation. J Phys Chem Lett 2024; 15:2262-2269. [PMID: 38381036 PMCID: PMC10910601 DOI: 10.1021/acs.jpclett.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
In the vibrational strong coupling (VSC) regime, molecular vibrations and resonant low-frequency cavity modes form light-matter hybrid states, vibrational polaritons, with characteristic infrared (IR) spectroscopic signatures. Here, we introduce a molecular quantum chemistry-based computational scheme for linear IR spectra of vibrational polaritons in polyatomic molecules, which perturbatively accounts for nonresonant electron-photon interactions under VSC. Specifically, we formulate a cavity Born-Oppenheimer perturbation theory (CBO-PT) linear response approach, which provides an approximate but systematic description of such electron-photon correlation effects in VSC scenarios while relying on molecular ab initio quantum chemistry methods. We identify relevant electron-photon correlation effects at the second order of CBO-PT, which manifest as static polarizability-dependent Hessian corrections and an emerging polarizability-dependent cavity intensity component providing access to transmission spectra commonly measured in vibro-polaritonic chemistry. Illustratively, we address electron-photon correlation effects perturbatively in IR spectra of CO2 and Fe(CO)5 vibro-polaritonic models in sound agreement with nonperturbative CBO linear response theory.
Collapse
Affiliation(s)
- Eric W. Fischer
- Institut
für Chemie, Humboldt-Universität
zu Berlin, Brook-Taylor-Straße
2, D-12489 Berlin, Germany
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Jan A. Syska
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Peter Saalfrank
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
- Institut
für Physik und Astronomie, Universität
Potsdam, Karl-Liebknecht-Straße
24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
38
|
Xu J, Carney TE, Zhou R, Shepard C, Kanai Y. Real-Time Time-Dependent Density Functional Theory for Simulating Nonequilibrium Electron Dynamics. J Am Chem Soc 2024; 146:5011-5029. [PMID: 38362887 DOI: 10.1021/jacs.3c08226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The explicit real-time propagation approach for time-dependent density functional theory (RT-TDDFT) has increasingly become a popular first-principles computational method for modeling various time-dependent electronic properties of complex chemical systems. In this Perspective, we provide a nontechnical discussion of how this first-principles simulation approach has been used to gain novel physical insights into nonequilibrium electron dynamics phenomena in recent years. Following a concise overview of the RT-TDDFT methodology from a practical standpoint, we discuss our recent studies on the electronic stopping of DNA in water and the Floquet topological phase as examples. Our discussion focuses on how RT-TDDFT simulations played a unique role in deriving new scientific understandings. We then discuss existing challenges and some new advances at the frontier of RT-TDDFT method development for studying increasingly complex dynamic phenomena and systems.
Collapse
Affiliation(s)
- Jianhang Xu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas E Carney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ruiyi Zhou
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher Shepard
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
39
|
Schäfer C, Fojt J, Lindgren E, Erhart P. Machine Learning for Polaritonic Chemistry: Accessing Chemical Kinetics. J Am Chem Soc 2024; 146:5402-5413. [PMID: 38354223 PMCID: PMC10910569 DOI: 10.1021/jacs.3c12829] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Altering chemical reactivity and material structure in confined optical environments is on the rise, and yet, a conclusive understanding of the microscopic mechanisms remains elusive. This originates mostly from the fact that accurately predicting vibrational and reactive dynamics for soluted ensembles of realistic molecules is no small endeavor, and adding (collective) strong light-matter interaction does not simplify matters. Here, we establish a framework based on a combination of machine learning (ML) models, trained using density-functional theory calculations and molecular dynamics to accelerate such simulations. We then apply this approach to evaluate strong coupling, changes in reaction rate constant, and their influence on enthalpy and entropy for the deprotection reaction of 1-phenyl-2-trimethylsilylacetylene, which has been studied previously both experimentally and using ab initio simulations. While we find qualitative agreement with critical experimental observations, especially with regard to the changes in kinetics, we also find differences in comparison with previous theoretical predictions. The features for which the ML-accelerated and ab initio simulations agree show the experimentally estimated kinetic behavior. Conflicting features indicate that a contribution of dynamic electronic polarization to the reaction process is more relevant than currently believed. Our work demonstrates the practical use of ML for polaritonic chemistry, discusses limitations of common approximations, and paves the way for a more holistic description of polaritonic chemistry.
Collapse
Affiliation(s)
- Christian Schäfer
- Department
of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
- Department
of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Jakub Fojt
- Department
of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Eric Lindgren
- Department
of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Paul Erhart
- Department
of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| |
Collapse
|
40
|
Ramos Ramos AR, Fischer EW, Saalfrank P, Kühn O. Shaping the laser control landscape of a hydrogen transfer reaction by vibrational strong coupling. A direct optimal control approach. J Chem Phys 2024; 160:074101. [PMID: 38364000 DOI: 10.1063/5.0193502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024] Open
Abstract
Controlling molecular reactivity by shaped laser pulses is a long-standing goal in chemistry. Here, we suggest a direct optimal control approach that combines external pulse optimization with other control parameters arising in the upcoming field of vibro-polaritonic chemistry for enhanced controllability. The direct optimal control approach is characterized by a simultaneous simulation and optimization paradigm, meaning that the equations of motion are discretized and converted into a set of holonomic constraints for a nonlinear optimization problem given by the control functional. Compared with indirect optimal control, this procedure offers great flexibility, such as final time or Hamiltonian parameter optimization. A simultaneous direct optimal control theory will be applied to a model system describing H-atom transfer in a lossy Fabry-Pérot cavity under vibrational strong coupling conditions. Specifically, optimization of the cavity coupling strength and, thus, of the control landscape will be demonstrated.
Collapse
Affiliation(s)
- A R Ramos Ramos
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-24, D-18059 Rostock, Germany
| | - E W Fischer
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, D-12489 Berlin, Germany
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - P Saalfrank
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - O Kühn
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-24, D-18059 Rostock, Germany
| |
Collapse
|
41
|
Vu N, Mejia-Rodriguez D, Bauman NP, Panyala A, Mutlu E, Govind N, Foley JJ. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory. J Chem Theory Comput 2024; 20:1214-1227. [PMID: 38291561 PMCID: PMC10876286 DOI: 10.1021/acs.jctc.3c01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024]
Abstract
Polariton chemistry has attracted great attention as a potential route to modify chemical structure, properties, and reactivity through strong interactions among molecular electronic, vibrational, or rovibrational degrees of freedom. A rigorous theoretical treatment of molecular polaritons requires the treatment of matter and photon degrees of freedom on equal quantum mechanical footing. In the limit of molecular electronic strong or ultrastrong coupling to one or a few molecules, it is desirable to treat the molecular electronic degrees of freedom using the tools of ab initio quantum chemistry, yielding an approach we refer to as ab initio cavity quantum electrodynamics, where the photon degrees of freedom are treated at the level of cavity quantum electrodynamics. Here, we present an approach called Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction theory to provide ground- and excited-state polaritonic surfaces with a balanced description of strong correlation effects among electronic and photonic degrees of freedom. This method provides a platform for ab initio cavity quantum electrodynamics when both strong electron correlation and strong light-matter coupling are important and is an important step toward computational approaches that yield multiple polaritonic potential energy surfaces and couplings that can be leveraged for ab initio molecular dynamics simulations of polariton chemistry.
Collapse
Affiliation(s)
- Nam Vu
- Department
of Chemistry, University of North Carolina
Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
| | - Daniel Mejia-Rodriguez
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Nicholas P. Bauman
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ajay Panyala
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Erdal Mutlu
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Niranjan Govind
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan J. Foley
- Department
of Chemistry, University of North Carolina
Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
| |
Collapse
|
42
|
Svendsen MK, Thygesen KS, Rubio A, Flick J. Ab Initio Calculations of Quantum Light-Matter Interactions in General Electromagnetic Environments. J Chem Theory Comput 2024; 20:926-936. [PMID: 38189259 PMCID: PMC10809713 DOI: 10.1021/acs.jctc.3c00967] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/17/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
The emerging field of strongly coupled light-matter systems has drawn significant attention in recent years because of the prospect of altering both the physical and chemical properties of molecules and materials. Because this emerging field draws on ideas from both condensed-matter physics and quantum optics, it has attracted the attention of theoreticians from both fields. While the former often employ accurate descriptions of the electronic structure of the matter, the description of the electromagnetic environment is often oversimplified. In contrast, the latter often employs sophisticated descriptions of the electromagnetic environment while using oversimplified few-level approximations of the electronic structure. Both approaches are problematic because the oversimplified descriptions of the electronic system are incapable of describing effects such as light-induced structural changes in the electronic system, while the oversimplified descriptions of the electromagnetic environments can lead to unphysical predictions because the light-matter interactions strengths are misrepresented. In this work, we overcome these shortcomings and present the first method which can quantitatively describe both the electronic system and general electromagnetic environments from first principles. We realize this by combining macroscopic QED (MQED) with Quantum Electrodynamical Density-Functional Theory. To exemplify this approach, we consider the example of an absorbing spherical cavity and study the impact of different parameters of both the environment and the electronic system on the transition from weak-to-strong coupling for different aromatic molecules. As part of this work, we also provide an easy-to-use tool to calculate the cavity coupling strengths for simple cavity setups. Our work is a significant step toward parameter-free ab initio calculations for strongly coupled quantum light-matter systems and will help bridge the gap between theoretical methods and experiments in the field.
Collapse
Affiliation(s)
- Mark Kamper Svendsen
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science & Department of Physics, Luruper Chaussee 149, 22761 Hamburg, Germany
- Computational
Atomic scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Center
for Computational Quantum Physics, Flatiron
Institute, 10010 New York, New York, United States
| | - Kristian Sommer Thygesen
- Computational
Atomic scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Angel Rubio
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science & Department of Physics, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics, Flatiron
Institute, 10010 New York, New York, United States
- Nano-Bio
Spectroscopy Group and European Theoretical Spectroscopy Facility
(ETSF), Universidad del País Vasco
(UPV/EHU), Av. Tolosa
72, 20018 San Sebastian, Spain
| | - Johannes Flick
- Center
for Computational Quantum Physics, Flatiron
Institute, 10010 New York, New York, United States
- Department
of Physics, City College of New York, 10031 New York, New York, United States
- Department
of Physics, The Graduate Center, City University
of New York, 10016 New York, New York, United States
| |
Collapse
|
43
|
Li X, Lubbers N, Tretiak S, Barros K, Zhang Y. Machine Learning Framework for Modeling Exciton Polaritons in Molecular Materials. J Chem Theory Comput 2024; 20:891-901. [PMID: 38168674 DOI: 10.1021/acs.jctc.3c01068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A light-matter hybrid quasiparticle, called a polariton, is formed when molecules are strongly coupled to an optical cavity. Recent experiments have shown that polariton chemistry can manipulate chemical reactions. Polariton chemistry is a collective phenomenon, and its effects increase with the number of molecules in a cavity. However, simulating an ensemble of molecules in the excited state coupled to a cavity mode is theoretically and computationally challenging. Recent advances in machine learning (ML) techniques have shown promising capabilities in modeling ground-state chemical systems. This work presents a general protocol to predict excited-state properties, such as energies, transition dipoles, and nonadiabatic coupling vectors with the hierarchically interacting particle neural network. ML predictions are then applied to compute the potential energy surfaces and electronic spectra of a prototype azomethane molecule in the collective coupling scenario. These computational tools provide a much-needed framework to model and understand many molecules' emerging excited-state polariton chemistry.
Collapse
Affiliation(s)
- Xinyang Li
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicholas Lubbers
- Information Sciences, Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kipton Barros
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
44
|
Rana B, Hohenstein EG, Martínez TJ. Simulating the Excited-State Dynamics of Polaritons with Ab Initio Multiple Spawning. J Phys Chem A 2024; 128:139-151. [PMID: 38110364 DOI: 10.1021/acs.jpca.3c06607] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Over the past decade, there has been a growth of interest in polaritonic chemistry, where the formation of hybrid light-matter states (polaritons) can alter the course of photochemical reactions. These hybrid states are created by strong coupling between molecules and photons in resonant optical cavities and can even occur in the absence of light when the molecule is strongly coupled with the electromagnetic fluctuations of the vacuum field. We present a first-principles model to simulate nonadiabatic dynamics of such polaritonic states inside optical cavities by leveraging graphical processing units (GPUs). Our first implementation of this model is specialized for a single molecule coupled to a single-photon mode confined inside the optical cavity but with any number of excited states computed using complete active space configuration interaction (CASCI) and a Jaynes-Cummings-type Hamiltonian. Using this model, we have simulated the excited-state dynamics of a single salicylideneaniline (SA) molecule strongly coupled to a cavity photon with the ab initio multiple spawning (AIMS) method. We demonstrate how the branching ratios of the photodeactivation pathways for this molecule can be manipulated by coupling to the cavity. We also show how one can stop the photoreaction from happening inside of an optical cavity. Finally, we also investigate cavity-based control of the ordering of two excited states (one optically bright and the other optically dark) inside a cavity for a set of molecules, where the dark and bright states are close in energy.
Collapse
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Edward G Hohenstein
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
45
|
Calderón LF, Triviño H, Pachón LA. Quantum to Classical Cavity Chemistry Electrodynamics. J Phys Chem Lett 2023; 14:11725-11734. [PMID: 38112558 DOI: 10.1021/acs.jpclett.3c02870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Polaritonic chemistry has ushered in new avenues for controlling molecular dynamics. However, two key questions remain: (i) Can classical light sources elicit the same effects as certain quantum light sources on molecular systems? (ii) Can semiclassical treatments of light-matter interactions capture nontrivial quantum effects observed in molecular dynamics? This work presents a quantum-classical approach addressing issues of realizing cavity chemistry effects without actual cavities. It also highlights the limitations of the standard semiclassical light-matter interaction. It is demonstrated that classical light sources can mimic quantum effects up to the second order of light-matter interaction provided that the mean-field contribution, the symmetrized two-time correlation function, and the linear response function are the same in both situations. Numerical simulations show that the quantum-classical method aligns more closely with exact quantum molecular-only dynamics for quantum light states such as Fock states, superpositions of Fock states, and vacuum squeezed states than does the conventional semiclassical approach.
Collapse
Affiliation(s)
- Leonardo F Calderón
- Grupo de Física Teórica y Matemática Aplicada, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia; Calle 70 No. 52-21, 500001 Medellín, Colombia
- Grupo de Física Computacional en Materia Condensada, Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander UIS; Cra 27 Calle 9 Ciudad Universitaria, 680002 Bucaramanga, Colombia
| | - Humberto Triviño
- Grupo de Física Teórica y Matemática Aplicada, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia; Calle 70 No. 52-21, 500001 Medellín, Colombia
| | - Leonardo A Pachón
- Grupo de Física Teórica y Matemática Aplicada, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia; Calle 70 No. 52-21, 500001 Medellín, Colombia
- Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia; Calle 70 No. 52-21, 500001 Medellín, Colombia
| |
Collapse
|
46
|
Schnappinger T, Kowalewski M. Ab Initio Vibro-Polaritonic Spectra in Strongly Coupled Cavity-Molecule Systems. J Chem Theory Comput 2023; 19:9278-9289. [PMID: 38084914 PMCID: PMC10753771 DOI: 10.1021/acs.jctc.3c01135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023]
Abstract
Recent experiments have revealed the profound effect of strong light-matter interactions in optical cavities on the electronic ground state of molecular systems. This phenomenon, known as vibrational strong coupling, can modify reaction rates and induce the formation of molecular vibrational polaritons, hybrid states involving both photon modes, and vibrational modes of molecules. We present an ab initio methodology based on the cavity Born-Oppenheimer Hartree-Fock ansatz, which is specifically powerful for ensembles of molecules, to calculate vibro-polaritonic IR spectra. This method allows for a comprehensive analysis of these hybrid states. Our semiclassical approach, validated against full quantum simulations, reproduces key features of the vibro-polaritonic spectra. The underlying analytic gradients also allow for optimization of cavity-coupled molecular systems and performing semiclassical dynamics simulations.
Collapse
Affiliation(s)
- Thomas Schnappinger
- Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
47
|
Sidler D, Ruggenthaler M, Rubio A. Numerically Exact Solution for a Real Polaritonic System under Vibrational Strong Coupling in Thermodynamic Equilibrium: Loss of Light-Matter Entanglement and Enhanced Fluctuations. J Chem Theory Comput 2023; 19:8801-8814. [PMID: 37972347 PMCID: PMC10720342 DOI: 10.1021/acs.jctc.3c00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
The first numerically exact simulation of a full ab initio molecular quantum system (HD+) under strong ro-vibrational coupling to a quantized optical cavity mode in thermal equilibrium is presented. Theoretical challenges in describing strongly coupled systems of mixed quantum statistics (bosons and Fermions) are discussed and circumvented by the specific choice of our molecular system. Our numerically exact simulations highlight the absence of zero temperature for the strongly coupled matter and light subsystems, due to cavity-induced noncanonical conditions. Furthermore, we explore the temperature dependency of light-matter quantum entanglement, which emerges for the ground state but is quickly lost already in the deep cryogenic regime. This is in contrast to predictions from the Jaynes-Cummings model, which is the standard starting point to model collective strong-coupling chemistry phenomenologically. Moreover, we find that the fluctuations of matter remain modified by the quantum nature of the thermal and vacuum-field fluctuations for significant temperatures, e.g., at ambient conditions. These observations (loss of entanglement and coupling to quantum fluctuations) have implications for the understanding and control of polaritonic chemistry and materials science, since a semiclassical theoretical description of light-matter interaction becomes reasonable, but the typical (classical) canonical equilibrium assumption for the nuclear subsystem remains violated. This opens the door for quantum fluctuation-induced stochastic resonance phenomena under vibrational strong coupling, which have been suggested as a plausible theoretical mechanism to explain the experimentally observed resonance phenomena in the absence of periodic driving that has not yet been fully understood.
Collapse
Affiliation(s)
- Dominik Sidler
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Michael Ruggenthaler
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Angel Rubio
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
- Center
for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
- Nano-Bio
Spectroscopy Group, University of the Basque Country (UPV/EHU), San Sebastián 20018, Spain
| |
Collapse
|
48
|
Angelico S, Haugland TS, Ronca E, Koch H. Coupled cluster cavity Born-Oppenheimer approximation for electronic strong coupling. J Chem Phys 2023; 159:214112. [PMID: 38051099 DOI: 10.1063/5.0172764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023] Open
Abstract
Chemical and photochemical reactivity, as well as supramolecular organization and several other molecular properties, can be modified by strong interactions between light and matter. Theoretical studies of these phenomena require the separation of the Schrödinger equation into different degrees of freedom as in the Born-Oppenheimer approximation. In this paper, we analyze the electron-photon Hamiltonian within the cavity Born-Oppenheimer approximation (CBOA), where the electronic problem is solved for fixed nuclear positions and photonic parameters. In particular, we focus on intermolecular interactions in representative dimer complexes. The CBOA potential energy surfaces are compared with those obtained using a polaritonic approach, where the photonic and electronic degrees of freedom are treated at the same level. This allows us to assess the role of electron-photon correlation and the accuracy of CBOA.
Collapse
Affiliation(s)
- Sara Angelico
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Tor S Haugland
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Enrico Ronca
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
49
|
Ke Y, Song Z, Jiang QD. Vacuum-Induced Symmetry Breaking of Chiral Enantiomer Formation in Chemical Reactions. PHYSICAL REVIEW LETTERS 2023; 131:223601. [PMID: 38101368 DOI: 10.1103/physrevlett.131.223601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/23/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023]
Abstract
A material with symmetry breaking inside can transmit the symmetry breaking to its vicinity by vacuum electromagnetic fluctuations. Here, we show that vacuum quantum fluctuations proximate to a parity-symmetry-broken material can induce a chirality-dependent spectral shift of chiral molecules, resulting in a chemical reaction process that favors producing one chirality over the other. We calculate concrete examples and evaluate the chirality production rate with experimentally realizable parameters, showing the promise of selecting chirality with symmetry-broken vacuum quantum fluctuations.
Collapse
Affiliation(s)
- Yanzhe Ke
- Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhigang Song
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Qing-Dong Jiang
- Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Branch, Hefei National Laboratory, Shanghai 201315, China
| |
Collapse
|
50
|
Gudem M, Kowalewski M. Cavity-Modified Chemiluminescent Reaction of Dioxetane. J Phys Chem A 2023; 127:9483-9494. [PMID: 37845803 PMCID: PMC10658626 DOI: 10.1021/acs.jpca.3c05664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Indexed: 10/18/2023]
Abstract
Chemiluminescence is a thermally activated chemical process that emits a photon of light by forming a fraction of products in the electronic excited state. A well-known example of this spectacular phenomenon is the emission of light in the firefly beetle, where the formation of a four-membered cyclic peroxide compound and subsequent dissociation produce a light-emitting product. The smallest cyclic peroxide, dioxetane, also exhibits chemiluminescence but with a low quantum yield as compared to that of firefly dioxetane. Employing the strong light-matter coupling has recently been found to be an alternative strategy to modify the chemical reactivity. In the presence of an optical cavity, the molecular degrees of freedom greatly mix with the cavity mode to form hybrid cavity-matter states called polaritons. These newly generated hybrid light-matter states manipulate the potential energy surfaces and significantly change the reaction dynamics. Here, we theoretically investigate the effects of a strong light-matter interaction on the chemiluminescent reaction of dioxetane using the extended Jaynes-Cummings model. The cavity couplings corresponding to the electronic and vibrational degrees of freedom have been included in the interaction Hamiltonian. We explore how the cavity alters the ground- and excited-state path energy barriers and reaction rates. Our results demonstrate that the formation of excited-state products in the dioxetane decomposition process can be either accelerated or suppressed, depending on the molecular orientation with respect to the cavity polarization.
Collapse
Affiliation(s)
- Mahesh Gudem
- Department of Physics, Stockholm University, Albanova University Centre, SE-106
91 Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106
91 Stockholm, Sweden
| |
Collapse
|