1
|
Ruwe H, Spallek T. Systemic signals control infection plasticity in parasitic plants. Proc Natl Acad Sci U S A 2025; 122:e2502286122. [PMID: 40096615 PMCID: PMC11962409 DOI: 10.1073/pnas.2502286122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Affiliation(s)
- Hannes Ruwe
- Plant Biotic Interactions Group, Albrecht-von-Haller Institute of Plant Sciences, Göttinger Zentrum für Molekulare Biowissenschaften, University of Göttingen, Göttingen37077, Germany
| | - Thomas Spallek
- Plant Biotic Interactions Group, Albrecht-von-Haller Institute of Plant Sciences, Göttinger Zentrum für Molekulare Biowissenschaften, University of Göttingen, Göttingen37077, Germany
| |
Collapse
|
2
|
Meng X, Lv N, Wang X, Zhou Q, Zhang X, Zhang X, Zhang Z, Liu L, Shen T. Molecular Mechanism of Cuscuta Haustorium Specialization Inferences from Transcriptome and Metabolome Analysis. Metabolites 2025; 15:172. [PMID: 40137137 PMCID: PMC11943614 DOI: 10.3390/metabo15030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Cuscuta australis R. Br. is a parasitic herbaceous plant that obtains nutrients by forming specialized structures called haustoria to invade host plants. METHODS In this study, we elucidated the differences in the gene expression regulation and metabolic characteristics between Cuscuta australis and Glycine max (Glycine max (L.) Merr. Var Williams) through comprehensive transcriptomic and metabolomic analyses. RESULTS The results demonstrated significant differences in the gene expression and metabolic features between the haustorium and the distal stem segments. The differentially expressed genes absorbed by Cuscuta australis from the soybean host influence amino acid metabolism, and the expression of the S-adenosylmethionine decarboxylase gene may affect the production of 5'-methylthioadenosine. A high expression of the chalcone synthase enzyme could lead to an increased daidzein content. Many Glycine max genes were also integrated into Cuscuta australis within the haustorium. CONCLUSIONS This study systematically analyzed, for the first time, the significant differences in gene expression and metabolic characteristics between the haustoria and distal stem segments of Cuscuta. It also explored the nutrient absorption mechanisms of the host plant. Additionally, the research discovered that Cuscuta can absorb a substantial amount of host genes and adapt to its parasitic lifestyle through differential gene expression and metabolic changes. These findings provide important insights into the parasitic mechanisms of Cuscuta australis and lay the foundation for the development of effective control strategies.
Collapse
Affiliation(s)
- Xingpan Meng
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang 550025, China; (X.M.); (N.L.); (X.W.); (X.Z.)
| | - Ning Lv
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang 550025, China; (X.M.); (N.L.); (X.W.); (X.Z.)
| | - Xinglin Wang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang 550025, China; (X.M.); (N.L.); (X.W.); (X.Z.)
| | - Qihang Zhou
- School of Cyber Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Xu Zhang
- Guizhou Caohai Wetland Ecosystem National Observation and Research Station, Guizhou Academy of Forestry Sciences, Guiyang 550001, China;
| | - Ximin Zhang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang 550025, China; (X.M.); (N.L.); (X.W.); (X.Z.)
| | - Zhengdong Zhang
- College of Computer Science, Guiyang University, Guiyang 550001, China;
| | - Lunxian Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang 550025, China; (X.M.); (N.L.); (X.W.); (X.Z.)
| | - Tie Shen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang 550025, China; (X.M.); (N.L.); (X.W.); (X.Z.)
- School of Cyber Sciences, Guizhou Normal University, Guiyang 550025, China;
| |
Collapse
|
3
|
Rivera‐Duarte JD, May‐Concha IJ, Vargas‐Abasolo R, Martínez‐Castaneira MX, Farfán‐Beltrán ME, Mendoza‐Garfias B, Flores‐Villegas AL, Córdoba‐Aguilar A. Rewiring the Vehicle: Trypanosoma cruzi Parasites Alter the Antennae of Their Triatomine Hosts. Ecol Evol 2025; 15:e71164. [PMID: 40130004 PMCID: PMC11930763 DOI: 10.1002/ece3.71164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
This study investigates the antennal phenotype of the kissing bug Triatoma pallidipennis (Stål), a primary vector of Chagas disease, by comparing Trypanosoma cruzi-infected and noninfected individuals. We examined the antennae of infected and noninfected N5 nymphs, as well as adult females and males, focusing on four types of sensilla (bristles, basiconic, thin-walled trichoid, and thick-walled trichoid) across three antenna segments (pedicel, proximal flagellum, and distal flagellum). We found differences in sensilla abundance across the antennal segments, with the proximal flagellum showing the highest abundance, followed by the distal flagellum, and the pedicel having the least. Infection demonstrated that males had more chemosensilla than females. We observed a trend in the infected males and nymphs with an increased variation in sensilla types. These antennal modifications are related to previous results in this species whereby infected bugs were found to be more active and capable of finding a human odor compared to noninfected animals. Thus, infection-related changes in antennal phenotype may underlie T. pallidipennis' sensory capabilities, which may indirectly facilitate the spread of the parasite.
Collapse
Affiliation(s)
- Jose D. Rivera‐Duarte
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad UniversitariaCiudad de MéxicoMexico
- Laboratorio de Hidrobiología, Departamento de Ecología y Recursos Naturales, Escuela de Biología, Facultad de CienciasUniversidad Nacional Autónoma de Honduras, Ciudad UniversitariaTegucigalpaHonduras
| | - Irving Jesús May‐Concha
- SECIHTI, Centro de Investigaciones Regionales Dr. Hideyo NoguchiUniversidad Autónoma de YucatánMéridaMexico
| | - Reyna Vargas‐Abasolo
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Mayab X. Martínez‐Castaneira
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Manuel Edday Farfán‐Beltrán
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Berenit Mendoza‐Garfias
- LMF 1‐LANABIO, Instituto de BiologíaUniversidad Nacional Autónoma de México, Circuito Exterior, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Any Laura Flores‐Villegas
- Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Alex Córdoba‐Aguilar
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad UniversitariaCiudad de MéxicoMexico
| |
Collapse
|
4
|
Kokla A, Leso M, Šimura J, Wärdig C, Hayashi M, Nishii N, Tsuchiya Y, Ljung K, Melnyk CW. A long-distance inhibitory system regulates haustoria numbers in parasitic plants. Proc Natl Acad Sci U S A 2025; 122:e2424557122. [PMID: 39964721 PMCID: PMC11874510 DOI: 10.1073/pnas.2424557122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025] Open
Abstract
The ability of parasitic plants to withdraw nutrients from their hosts depends on the formation of an infective structure known as the haustorium. How parasites regulate their haustoria numbers is poorly understood, and here, we uncovered that existing haustoria in the facultative parasitic plants Phtheirospermum japonicum and Parentucellia viscosa suppressed the formation of new haustoria located on distant roots. Using Phtheirospermum, we found that this effect depended on the formation of mature haustoria and could be induced through the application of external nutrients. To understand the molecular basis of this root plasticity, we analyzed hormone response and found that existing infections upregulated cytokinin-responsive genes first at the haustoria and then more distantly in Phtheirospermum shoots. We observed that infections increased endogenous cytokinin levels in Phtheirospermum roots and shoots, and this increase appeared relevant since local treatments with exogenous cytokinins blocked the formation of both locally and distantly formed haustoria. In addition, local overexpression of a cytokinin-degrading enzyme in Phtheirospermum prevented this systemic interhaustoria repression and increased haustoria numbers locally. We propose that a long-distance signal produced by haustoria negatively regulates future haustoria, and in Phtheirospermum, such a signaling system is mediated by a local increase in cytokinin to regulate haustoria numbers and balance nutrient acquisition.
Collapse
Affiliation(s)
- Anna Kokla
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala756 51, Sweden
| | - Martina Leso
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala756 51, Sweden
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå90183, Sweden
| | - Cecilia Wärdig
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala756 51, Sweden
| | - Marina Hayashi
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya464-8601, Japan
| | - Naoshi Nishii
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya464-8601, Japan
| | - Yuichiro Tsuchiya
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya464-8601, Japan
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå90183, Sweden
| | - Charles W. Melnyk
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala756 51, Sweden
| |
Collapse
|
5
|
Park J, Yamamoto S, Tsushima A, Aoki K. Host responses to haustorium invasion of the stem parasitic plant, Cuscuta campestris, differ from responses to wounding. PLANT & CELL PHYSIOLOGY 2025; 66:50-59. [PMID: 39657990 DOI: 10.1093/pcp/pcae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/24/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
The parasitic mechanism employed by the stem parasitic plant, Cuscuta campestris, involves degradation of the host epidermis and intrusion of the cortical tissue of the host stem by a specialized organ called the haustorium. In host plants, the mechanical stimuli associated with this degradation and intrusion of host tissues is considered to be comparable to wounding. However, it has not yet been clarified whether parasitic invasion and wounding induce equivalent responses in host plants. In this study, we demonstrated that parasitic intrusion-induced responses that were comparable to wounding in the host plant, Arabidopsis thaliana, including upregulation of Arabidopsis NAC DOMAIN-CONTAINING PROTEIN 71 (ANAC071), which is a key transcription factor associated with wound repair, cell division, and vascular development. Despite these similarities, we found that the mechanism regulating the induction of cell division- and vascular development-related genes at the host-parasite interface differed from that associated with wound repair. Specifically, ANAC071 was not required for the induction of cell division-related genes, as their upregulation was observed in anac071/096/011 triple mutants as well as in wild-type host plants. We also found that neither auxin nor ethylene plays a significant role in inducing the expression of vascular development-related genes. Thus, the findings show that the mechanisms responsible for upregulating cell division- and vascular development-related genes differ between parasitic and wound repair responses.
Collapse
Affiliation(s)
- Jihwan Park
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-Cho, Naka-Ku, Sakai 599-8531, Japan
| | - Shota Yamamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-Cho, Naka-Ku, Sakai 599-8531, Japan
| | - Ayako Tsushima
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai 599-8531, Japan
| | - Koh Aoki
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai 599-8531, Japan
| |
Collapse
|
6
|
Cochavi A. Broomrape-host interaction: host morphology and physiology as metrics for infestation. PLANTA 2024; 261:4. [PMID: 39611979 PMCID: PMC11607093 DOI: 10.1007/s00425-024-04581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
MAIN CONCLUSION In contrast to other plant pests, broomrape, parasitic plant, rely on maintaining the productivity of the host plant to complete their life cycle. Parasitic plants, particularly those in the Orobanchaceae family, rely on their host plants to complete their life cycle. Unlike other plant parasites such as fungi and bacteria, which exploit their hosts regardless of their physiological status, parasitic plants development is linked to the host productivity due to their mutual physiological dependence on water availability and sugar metabolism. Presently, most research focuses on the damage caused to the host after the parasite completes its life cycle, including inflorescence emergence and seed dispersal. However, the interaction between parasite and host begins long before these stages. This implies that certain physiological adaptations are necessary to sustain the parasite's development while maintaining the host's productivity. In this review, I compile existing knowledge regarding changes in host physiology during the early developmental stages of parasitic plants, spanning from attachment to inflorescence emergence. Additionally, I highlight knowledge gaps that should be addressed to understand how hosts sustain themselves throughout extended periods of parasitism.
Collapse
Affiliation(s)
- Amnon Cochavi
- Newe Ya'ar Research Center, Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, 3009500, Ramat Yishay, Israel.
| |
Collapse
|
7
|
Xiao L, Zhao Q, Cao X, Yao Z, Zhao S. Secretory Proteins Are Involved in the Parasitism of Melon by Phelipanche aegyptiaca During the Attachment Stage. PLANTS (BASEL, SWITZERLAND) 2024; 13:3083. [PMID: 39520001 PMCID: PMC11548055 DOI: 10.3390/plants13213083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Parasitic plants represent a significant challenge in global agriculture, with Broomrape (Orobanche/Phelipanche spp.) being a notable example of a holoparasitic species that targets the roots of host plants. This study employed comparative transcriptomics to investigate the mechanisms underlying the parasitism of P. aegyptiaca on melon, focusing on both resistant and susceptible interactions. The findings indicate that the critical phase of P. aegyptiaca parasitism occurs during the post-attachment stage. It is suggested that peptidases may play a role in the development of invasive cells, while cell wall-degrading enzymes (CWDEs) are likely involved in cell wall modification and degradation, and transferases, elicitors, and effectors may play a role in immune regulation. In this study, 25 tobacco rattle virus (TRV) recombinant vectors were successfully constructed and functionally validated using a host-induced gene silencing assay to explore the functions of candidate-secreted effector proteins. The results revealed that silencing Cluster-107894.0, Cluster-11592.0, and Cluster-12482.0 significantly decreased the parasitism rate of P. aegyptiaca on Nicotiana benthamiana. Notably, Cluster-107849.0 encodes a cellulase with hydrolase activity, Cluster-11592.0 encodes a periodic-dependent kinase inhibitor with phosphoprotein activity, and Cluster-12482.0 encodes a glucan 1,3-β-glucosidase with hydrolase activity. These findings potentially offer a novel theoretical framework and justification for understanding host-parasite plant interactions, and suggest new avenues for developing crop varieties resistant to parasitic infestation.
Collapse
Affiliation(s)
- Lifeng Xiao
- Key Laboratory of Molecular Breeding and Variety Creation of Horticultural Plants for Mountain Features in Guizhou Province, Kaili University, Kaili 556000, China;
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi 832003, China; (Q.Z.); (X.C.); (Z.Y.)
| | - Qiuyue Zhao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi 832003, China; (Q.Z.); (X.C.); (Z.Y.)
| | - Xiaolei Cao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi 832003, China; (Q.Z.); (X.C.); (Z.Y.)
| | - Zhaoqun Yao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi 832003, China; (Q.Z.); (X.C.); (Z.Y.)
| | - Sifeng Zhao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi 832003, China; (Q.Z.); (X.C.); (Z.Y.)
| |
Collapse
|
8
|
Ishida JK, Costa EC. What we know so far and what we can expect next: A molecular investigation of plant parasitism. Genet Mol Biol 2024; 47Suppl 1:e20240051. [PMID: 39348487 PMCID: PMC11441458 DOI: 10.1590/1678-4685-gmb-2024-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
The review explores parasitic plants' evolutionary success and adaptability, highlighting their widespread occurrence and emphasizing the role of an invasive organ called haustorium in nutrient acquisition from hosts. It discusses the genetic and physiological adaptations that facilitate parasitism, including horizontal gene transfer, and the impact of environmental factors like climate change on these relationships. It addresses the need for further research into parasitic plants' genomes and interactions with their hosts to better predict environmental changes' impacts.
Collapse
Affiliation(s)
- Juliane Karine Ishida
- Universidade Federal de Minas Gerias (UFMG), Instituto de Ciências Biológicas, Departamento de Botânica, Belo Horizonte, MG, Brazil
| | - Elaine Cotrim Costa
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas, Rio Grande do Sul, RS, Brazil
| |
Collapse
|
9
|
Feng Z, Miao Y, Sun X, Zheng Y, Luo G, Pei J, Huang L. Characterization of microbial community assembly in parasitic plant systems and the influence of microorganisms on metabolite accumulation in parasitic plants: case study of Cistanche salsa and Kalidium foliatum. Front Microbiol 2024; 15:1279536. [PMID: 39132140 PMCID: PMC11312099 DOI: 10.3389/fmicb.2024.1279536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Cistanche salsa (C.A.Mey.) G. Beck is a perennial holoparasitic herb recognized for its medicinal properties, particularly in kidney-tonifying and laxative treatments. Despite its therapeutic potential, little is known about the endophyte communities inhabiting C. salsa and its host plants, and how these microorganisms may impact the production and accumulation of metabolites in C. salsa. Methods We conducted a dual analysis focusing on metabolomics of wild C. salsa and microbiome characterization of both C. salsa and its host plant, Kalidium foliatum (Pall.) Moq. The metabolomics analysis revealed variations in metabolite composition across different parts of C. salsa. Additionally, the microbiome analysis involved studying endophytic bacteria and fungi, comparing their community structures between parasitic C. salsa and its host plant. Results Significant variations in metabolite composition were observed through metabolomic profiling, which identified 93 secondary metabolites and 398 primary metabolites across various parts of C. salsa. Emphasis was placed on differences in metabolite composition within the flowers. Microbiome analysis revealed differential community compositions of endophytic bacteria between the parasitic and host plants, whereas differences in endophytic fungi were less pronounced. Certain endophytes, such as Bacteroidota, Proteobacteria, Ascomycota, and Basidiomycota, were associated with the production of specific secondary metabolites in C. salsa, including the plant-specific compound salsaside. Discussion Our findings highlight the intricate relationship between C. salsa and its endophytic microbiota, suggesting a potential role of these microorganisms in modulating the biosynthesis of bioactive compounds. The differential preferences of endophytic bacteria and fungi across various microenvironments within the parasitic plant system underscore the complexity of these interactions. Further elucidation of these dynamics could enhance our understanding of C. salsa's medicinal properties and its ecological adaptations as a holoparasitic herb.
Collapse
Affiliation(s)
- Zhan Feng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujing Miao
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Sun
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Zheng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guangming Luo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Frederica CF, Irving LJ. Hemiparasite Phtheirospermum japonicum growth benefits from a second host and inflicts greater host damage with exogenous N supply. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154238. [PMID: 38581742 DOI: 10.1016/j.jplph.2024.154238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
While parasites are likely to connect to multiple host plants in nature, parasitism dynamics under multiple association conditions remain unclear and are difficult to separate from competitive effects. In this study, a five-compartment split root-box was constructed to allow a single facultative root hemiparasite, Phtheirospermum japonicum, to connect to zero, one or two Medicago sativa hosts while maintaining constant plant number and independently controlling nutrient supply. In the first experiment, we found that P. japonicum derived equal, additive benefits from attachment to a second host irrespective of parasite N status. In the second experiment, parasites were grown at four N levels in either parasitic or control conditions. Attachment caused a constant, absolute increase in parasite mass at all N levels, while host damage increased at higher parasite N levels despite an apparent decrease in host to parasite N transfer. Our findings suggest that host damage caused by P. japonicum may be strengthened by exogenous nitrogen supply to the parasite.
Collapse
Affiliation(s)
- Clarissa Frances Frederica
- Institute of Life and Environmental Sciences, School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8577, Japan
| | - Louis John Irving
- Institute of Life and Environmental Sciences, School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8577, Japan.
| |
Collapse
|
11
|
Argueso CT, Kieber JJ. Cytokinin: From autoclaved DNA to two-component signaling. THE PLANT CELL 2024; 36:1429-1450. [PMID: 38163638 PMCID: PMC11062471 DOI: 10.1093/plcell/koad327] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
Since its first identification in the 1950s as a regulator of cell division, cytokinin has been linked to many physiological processes in plants, spanning growth and development and various responses to the environment. Studies from the last two and one-half decades have revealed the pathways underlying the biosynthesis and metabolism of cytokinin and have elucidated the mechanisms of its perception and signaling, which reflects an ancient signaling system evolved from two-component elements in bacteria. Mutants in the genes encoding elements involved in these processes have helped refine our understanding of cytokinin functions in plants. Further, recent advances have provided insight into the mechanisms of intracellular and long-distance cytokinin transport and the identification of several proteins that operate downstream of cytokinin signaling. Here, we review these processes through a historical lens, providing an overview of cytokinin metabolism, transport, signaling, and functions in higher plants.
Collapse
Affiliation(s)
- Cristiana T Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Bradley JM, Butlin RK, Scholes JD. Comparative secretome analysis of Striga and Cuscuta species identifies candidate virulence factors for two evolutionarily independent parasitic plant lineages. BMC PLANT BIOLOGY 2024; 24:251. [PMID: 38582844 PMCID: PMC10998327 DOI: 10.1186/s12870-024-04935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Many parasitic plants of the genera Striga and Cuscuta inflict huge agricultural damage worldwide. To form and maintain a connection with a host plant, parasitic plants deploy virulence factors (VFs) that interact with host biology. They possess a secretome that represents the complement of proteins secreted from cells and like other plant parasites such as fungi, bacteria or nematodes, some secreted proteins represent VFs crucial to successful host colonisation. Understanding the genome-wide complement of putative secreted proteins from parasitic plants, and their expression during host invasion, will advance understanding of virulence mechanisms used by parasitic plants to suppress/evade host immune responses and to establish and maintain a parasite-host interaction. RESULTS We conducted a comparative analysis of the secretomes of root (Striga spp.) and shoot (Cuscuta spp.) parasitic plants, to enable prediction of candidate VFs. Using orthogroup clustering and protein domain analyses we identified gene families/functional annotations common to both Striga and Cuscuta species that were not present in their closest non-parasitic relatives (e.g. strictosidine synthase like enzymes), or specific to either the Striga or Cuscuta secretomes. For example, Striga secretomes were strongly associated with 'PAR1' protein domains. These were rare in the Cuscuta secretomes but an abundance of 'GMC oxidoreductase' domains were found, that were not present in the Striga secretomes. We then conducted transcriptional profiling of genes encoding putatively secreted proteins for the most agriculturally damaging root parasitic weed of cereals, S. hermonthica. A significant portion of the Striga-specific secretome set was differentially expressed during parasitism, which we probed further to identify genes following a 'wave-like' expression pattern peaking in the early penetration stage of infection. We identified 39 genes encoding putative VFs with functions such as cell wall modification, immune suppression, protease, kinase, or peroxidase activities, that are excellent candidates for future functional studies. CONCLUSIONS Our study represents a comprehensive secretome analysis among parasitic plants and revealed both similarities and differences in candidate VFs between Striga and Cuscuta species. This knowledge is crucial for the development of new management strategies and delaying the evolution of virulence in parasitic weeds.
Collapse
Affiliation(s)
- James M Bradley
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Present address: Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada.
| | - Roger K Butlin
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Department of Marine Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Julie D Scholes
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
13
|
Auriac MC, Griffiths C, Robin-Soriano A, Legendre A, Boniface MC, Muños S, Fournier J, Chabaud M. The penetration of sunflower root tissues by the parasitic plant Orobanche cumana is intracellular. THE NEW PHYTOLOGIST 2024; 241:2326-2332. [PMID: 38124276 DOI: 10.1111/nph.19495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Marie-Christine Auriac
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, Cedex, France
| | - Caitlin Griffiths
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, Cedex, France
| | - Alexandre Robin-Soriano
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Montpellier, F-31398, Cedex 05, France
| | - Alexandra Legendre
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, Cedex, France
| | - Marie-Claude Boniface
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, Cedex, France
| | - Stéphane Muños
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, Cedex, France
| | - Joëlle Fournier
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, Cedex, France
| | - Mireille Chabaud
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, Cedex, France
| |
Collapse
|
14
|
Leso M, Kokla A, Feng M, Melnyk CW. Pectin modifications promote haustoria development in the parasitic plant Phtheirospermum japonicum. PLANT PHYSIOLOGY 2023; 194:229-242. [PMID: 37311199 PMCID: PMC10762509 DOI: 10.1093/plphys/kiad343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 06/15/2023]
Abstract
Parasitic plants are globally prevalent pathogens with important ecological functions but also potentially devastating agricultural consequences. Common to all parasites is the formation of the haustorium which requires parasite organ development and tissue invasion into the host. Both processes involve cell wall modifications. Here, we investigated a role for pectins during haustorium development in the facultative parasitic plant Phtheirospermum japonicum. Using transcriptomics data from infected Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), we identified genes for multiple P. japonicum pectin methylesterases (PMEs) and their inhibitors (PMEIs) whose expression was upregulated by haustoria formation. Changes in PME and PMEI expression were associated with tissue-specific modifications in pectin methylesterification. While de-methylesterified pectins were present in outer haustorial cells, highly methylesterified pectins were present in inner vascular tissues, including the xylem bridge that connects parasite to host. Specifically blocking xylem bridge formation in the haustoria inhibited several PME and PMEI genes from activating. Similarly, inhibiting PME activity using chemicals or by overexpressing PMEI genes delayed haustoria development. Our results suggest a dynamic and tissue-specific regulation of pectin contributes to haustoria initiation and to the establishment of xylem connections between parasite and host.
Collapse
Affiliation(s)
- Martina Leso
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Anna Kokla
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Ming Feng
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Charles W Melnyk
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| |
Collapse
|
15
|
Cui S, Inaba S, Suzaki T, Yoshida S. Developing for nutrient uptake: Induced organogenesis in parasitic plants and root nodule symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102473. [PMID: 37826989 DOI: 10.1016/j.pbi.2023.102473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/26/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023]
Abstract
Plants have evolved diverse strategies to meet their nutritional needs. Parasitic plants employ haustoria, specialized structures that facilitate invasion of host plants and nutrient acquisition. Legumes have adapted to nitrogen-limited conditions by developing nodules that accommodate nitrogen-fixing rhizobia. The formation of both haustoria and nodules is induced by signals originating from the interacting organisms, namely host plants and rhizobial bacteria, respectively. Emerging studies showed that both organogenesis crucially involves plant hormones such as auxin, cytokinins, and ethylene and also integrate nutrient availability, particularly nitrogen. In this review, we discuss recent advances on hormonal and environmental control of haustoria and nodules development with side-by-side comparison. These underscore the remarkable plasticity of plant organogenesis.
Collapse
Affiliation(s)
- Songkui Cui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shoko Inaba
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Ikoma, Nara, Japan
| | - Takuya Suzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Satoko Yoshida
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Ikoma, Nara, Japan.
| |
Collapse
|
16
|
Kirschner GK, Xiao TT, Jamil M, Al-Babili S, Lube V, Blilou I. A roadmap of haustorium morphogenesis in parasitic plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7034-7044. [PMID: 37486862 PMCID: PMC10752351 DOI: 10.1093/jxb/erad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/23/2023] [Indexed: 07/26/2023]
Abstract
Parasitic plants invade their host through their invasive organ, the haustorium. This organ connects to the vasculature of the host roots and hijacks water and nutrients. Although parasitism has evolved independently in plants, haustoria formation follows a similar mechanism throughout different plant species, highlighting the developmental plasticity of plant tissues. Here, we compare three types of haustoria formed by the root and shoot in the plant parasites Striga and Cuscuta. We discuss mechanisms underlying the interactions with their hosts and how different approaches have contributed to major understanding of haustoria formation and host invasion. We also illustrate the role of auxin and cytokinin in controlling this process.
Collapse
Affiliation(s)
- Gwendolyn K Kirschner
- BESE Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ting Ting Xiao
- BESE Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Muhammad Jamil
- BESE Division, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- BESE Division, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Vinicius Lube
- BESE Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ikram Blilou
- BESE Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Casadesús A, Munné-Bosch S. Parasitic plant-host interaction between the holoparasite Cytinus hypocistis and the shrub Cistus albidus in their natural Mediterranean habitat: local and systemic hormonal effects. TREE PHYSIOLOGY 2023; 43:2001-2011. [PMID: 37606243 DOI: 10.1093/treephys/tpad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
Mediterranean-type ecosystems provide a unique opportunity to study parasitic plant-host interactions, such as the relationship between the dominant shrub Cistus albidus L. and the root holoparasitic plant Cytinus hypocistis L. We examined this interaction (i) locally, by measuring the hormonal profiling of the interaction zone between the holoparasitic plant and the host, and (ii) systemically, by examining the hormonal profiling and physiological status of leaves from infested and uninfested plants. Furthermore, we explored how temporal variation (seasonal effects) and geographical location influenced the systemic hormonal and physiological response of leaves. Results shed light on tissue-related variations in hormones, suggesting the parasite exerted a sink effect, mainly influenced by cytokinins. Jasmonates triggered a defense response in leaves, far from the infestation point, and both jasmonates and abscisic acid (ABA) appeared to be involved in the tolerance to holoparasitism when plants were simultaneously challenged with summer drought. Parasitism did not have any major negative impact on the host, as indicated by physiological stress markers in leaves, thus indicating a high tolerance of the shrub C. albidus to the root holoparasitic plant C. hypocistis. Rather, parasitism seemed to exert a priming-like effect and some compensatory effects were observed (increased chlorophyll contents) in the host under mild climatic conditions. We conclude that (i) cytokinins, jasmonates and ABA play a role at the local and systemic levels in the response of C. albidus to the biotic stress caused by C. hypocistis, and that (ii) seasonal changes in environmental conditions and geographical location may impact holoparasitic plant-host interactions in the field, modulating the physiological response.
Collapse
Affiliation(s)
- Andrea Casadesús
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Faculty of Biology, Avinguda Diagonal 643, 08028 Barcelona, Spain
- Institute of Research of Biodiversity (IRBio), University of Barcelona, 08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Faculty of Biology, Avinguda Diagonal 643, 08028 Barcelona, Spain
- Institute of Research of Biodiversity (IRBio), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Moncalvillo B, Matthies D. Host age affects the performance of the root hemiparasitic plant Rhinanthus alectorolophus. Ecol Evol 2023; 13:e10167. [PMID: 37287855 PMCID: PMC10242892 DOI: 10.1002/ece3.10167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Interactions between root hemiparasitic plants and their hosts are strongly affected by host identity, but may also depend on the condition of the host. An important determinant of host quality could be host age, as it may influence host size, allocation patterns, responses to infection, and the strength of competition for light between parasite and host. We investigated the effects of host species identity, host age and above-ground separation of hemiparasite and host on the interactions between the hemiparasite Rhinanthus alectorolophus and five host species in a factorial experiment. The host species were planted at six different times, from 10 weeks before the parasite was planted to 4 weeks after. Host age strongly influenced the performance of the parasite, but these effects also varied among host species. Parasites grew largest with hosts planted at the same time or 2 weeks earlier, but their performance strongly declined both with increasing host age and with the time they grew autotrophically. A large part of the variation due to host age but not of that due to host species identity could be related to the negative influence of host size at the likely time of parasite attachment. The low quality of older hosts was not due to light competition, suggesting that effective exploitation of these hosts was prevented by other factors like harder roots, stronger defense against parasite attack or competition for resources taken up by the host roots. Suppression of host growth by the parasites declined with increasing host age. The results indicate that the choice of host age may influence the results of studies on hemiparasites. They also highlight the importance for annual root hemiparasites of attachment in early spring, that is, at a time when their mostly perennial hosts produce fresh roots but are still poorly developed above ground.
Collapse
Affiliation(s)
- Belén Moncalvillo
- Plant Ecology, Department of BiologyPhilipps‐Universität MarburgMarburgGermany
| | - Diethart Matthies
- Plant Ecology, Department of BiologyPhilipps‐Universität MarburgMarburgGermany
| |
Collapse
|
19
|
Kumar R, Dasgupta I. Geminiviral C4/AC4 proteins: An emerging component of the viral arsenal against plant defence. Virology 2023; 579:156-168. [PMID: 36693289 DOI: 10.1016/j.virol.2023.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Virus infection triggers a plethora of defence reactions in plants to incapacitate the intruder. Viruses, in turn, have added additional functions to their genes so that they acquire capabilities to neutralize the above defence reactions. In plant-infecting viruses, the family Geminiviridae comprises members, majority of whom encode 6-8 genes in their small single-stranded DNA genomes. Of the above genes, one which shows the most variability in its amino acid sequence is the C4/AC4. Recent studies have uncovered evidence, which point towards a wide repertoire of functions performed by C4/AC4 revealing its role as a major player in suppressing plant defence. This review summarizes the various plant defence mechanisms against viruses and highlights how C4/AC4 has evolved to counter most of them.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
20
|
Aguilar-Venegas M, Quintana-Rodríguez E, Aguilar-Hernández V, López-García CM, Conejo-Dávila E, Brito-Argáez L, Loyola-Vargas VM, Vega-Arreguín J, Orona-Tamayo D. Protein Profiling of Psittacanthus calyculatus during Mesquite Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:464. [PMID: 36771550 PMCID: PMC9920738 DOI: 10.3390/plants12030464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Psittacanthus calyculatus is a hemiparasite mistletoe that represents an ecological problem due to the impacts caused to various tree species of ecological and commercial interest. Although the life cycle for the Psittacanthus genus is well established in the literature, the development stages and molecular mechanism implicated in P. calyculatus host infection are poorly understood. In this study, we used a manageable infestation of P. laevigata with P. calyculatus to clearly trace the infection, which allowed us to describe five phenological infective stages of mistletoe on host tree branches: mature seed (T1), holdfast formation (T2), haustorium activation (T3), haustorium penetration (T4), and haustorium connection (T5) with the host tree. Proteomic analyses revealed proteins with a different accumulation and cellular processes in infective stages. Activities of the cell wall-degrading enzymes cellulase and β-1,4-glucosidase were primarily active in haustorium development (T3), while xylanase, endo-glucanase, and peptidase were highly active in the haustorium penetration (T4) and xylem connection (T5). Patterns of auxins and cytokinin showed spatial concentrations in infective stages and moreover were involved in haustorium development. These results are the first evidence of proteins, cell wall-degrading enzymes, and phytohormones that are involved in early infection for the Psittacanthus genus, and thus represent a general infection mechanism for other mistletoe species. These results could help to understand the molecular dialogue in the establishment of P. calyculatus parasitism.
Collapse
Affiliation(s)
- Montserrat Aguilar-Venegas
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Unidad León, UNAM, León CP 37684, Guanajuato, Mexico
| | | | - Víctor Aguilar-Hernández
- Unidad de Bioquímica y Biología Molecular de Plantas, CICY, A.C., Mérida CP 97205, Yucatán, Mexico
| | | | - Efraín Conejo-Dávila
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Silao de la Victoria CP 36275, Guanajuato, Mexico
| | - Ligia Brito-Argáez
- Unidad de Bioquímica y Biología Molecular de Plantas, CICY, A.C., Mérida CP 97205, Yucatán, Mexico
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, CICY, A.C., Mérida CP 97205, Yucatán, Mexico
| | - Julio Vega-Arreguín
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Unidad León, UNAM, León CP 37684, Guanajuato, Mexico
| | | |
Collapse
|
21
|
Ogawa S, Shirasu K. Strigol induces germination of the facultative parasitic plant Phtheirospermum japonicum in the absence of nitrate ions. PLANT SIGNALING & BEHAVIOR 2022; 17:2114647. [PMID: 35993137 PMCID: PMC9397475 DOI: 10.1080/15592324.2022.2114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Root parasitic plants in the family Orobanchaceae, such as Striga and Orobanche spp., infest major crops worldwide, leading to a multibillion-dollar loss annually. Host-derived strigolactones (SLs), recognized by a group of α/β hydrolase receptors (KAI2d) in these parasites, are important determinants for germinating root parasitic plants near the roots of host plants. Phtheirospermum japonicum, a facultative hemiparasitic Orobanchaceae plant, can germinate and grow in the presence or absence of the host and can also exhibit root chemotropism to host-derived SLs that are perceived via KAI2d. However, the importance of SLs in P. japonicum germination remains unclear. In this study, we found that germination of P. japonicum was suppressed in the absence of nitrate ions and that germination of P. japonicum was promoted by exogenous strigol, an SL, under such conditions. We propose a model in which P. japonicum may select either independent living or parasitism in response to ambient nitrogen conditions and host presence.
Collapse
Affiliation(s)
- Satoshi Ogawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Graduate School of Science, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Ogawa S, Cui S, White ARF, Nelson DC, Yoshida S, Shirasu K. Strigolactones are chemoattractants for host tropism in Orobanchaceae parasitic plants. Nat Commun 2022; 13:4653. [PMID: 35970835 PMCID: PMC9378612 DOI: 10.1038/s41467-022-32314-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/26/2022] [Indexed: 12/17/2022] Open
Abstract
Parasitic plants are worldwide threats that damage major agricultural crops. To initiate infection, parasitic plants have developed the ability to locate hosts and grow towards them. This ability, called host tropism, is critical for parasite survival, but its underlying mechanism remains mostly unresolved. To characterise host tropism, we used the model facultative root parasite Phtheirospermum japonicum, a member of the Orobanchaceae. Here, we show that strigolactones (SLs) function as host-derived chemoattractants. Chemotropism to SLs is also found in Striga hermonthica, a parasitic member of the Orobanchaceae, but not in non-parasites. Intriguingly, chemotropism to SLs in P. japonicum is attenuated in ammonium ion-rich conditions, where SLs are perceived, but the resulting asymmetrical accumulation of the auxin transporter PIN2 is diminished. P. japonicum encodes putative receptors that sense exogenous SLs, whereas expression of a dominant-negative form reduces its chemotropic ability. We propose a function for SLs as navigators for parasite roots.
Collapse
Affiliation(s)
- Satoshi Ogawa
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Songkui Cui
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Alexandra R F White
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Satoko Yoshida
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan. .,Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
23
|
Nitrogen represses haustoria formation through abscisic acid in the parasitic plant Phtheirospermum japonicum. Nat Commun 2022; 13:2976. [PMID: 35624089 PMCID: PMC9142502 DOI: 10.1038/s41467-022-30550-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
Parasitic plants are globally prevalent pathogens that withdraw nutrients from their host plants using an organ known as the haustorium. The external environment including nutrient availability affects the extent of parasitism and to understand this phenomenon, we investigated the role of nutrients and found that nitrogen is sufficient to repress haustoria formation in the root parasite Phtheirospermum japonicum. Nitrogen increases levels of abscisic acid (ABA) in P. japonicum and prevents the activation of hundreds of genes including cell cycle and xylem development genes. Blocking ABA signaling overcomes nitrogen’s inhibitory effects indicating that nitrogen represses haustoria formation by increasing ABA. The effect of nitrogen appears more widespread since nitrogen also inhibits haustoria in the obligate root parasite Striga hermonthica. Together, our data show that nitrogen acts as a haustoria repressing factor and suggests a mechanism whereby parasitic plants use nitrogen availability in the external environment to regulate the extent of parasitism. Parasitic plants obtain nutrients from their hosts. Here the authors show that nitrogen sufficiency suppresses parasitism in the root parasite Phtheirospermum japonicum by increasing levels of the phytohormone ABA suggesting that the degree of parasitism is regulated by nutrient availability.
Collapse
|
24
|
Serivichyaswat PT, Bartusch K, Leso M, Musseau C, Iwase A, Chen Y, Sugimoto K, Quint M, Melnyk CW. High temperature perception in leaves promotes vascular regeneration and graft formation in distant tissues. Development 2022; 149:274539. [PMID: 35217857 PMCID: PMC8959136 DOI: 10.1242/dev.200079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
ABSTRACT
Cellular regeneration in response to wounding is fundamental to maintain tissue integrity. Various internal factors including hormones and transcription factors mediate healing, but little is known about the role of external factors. To understand how the environment affects regeneration, we investigated the effects of temperature upon the horticulturally relevant process of plant grafting. We found that elevated temperatures accelerated vascular regeneration in Arabidopsis thaliana and tomato grafts. Leaves were crucial for this effect, as blocking auxin transport or mutating PHYTOCHROME INTERACTING FACTOR 4 (PIF4) or YUCCA2/5/8/9 in the cotyledons abolished the temperature enhancement. However, these perturbations did not affect grafting at ambient temperatures, and temperature enhancement of callus formation and tissue adhesion did not require PIF4, suggesting leaf-derived auxin specifically enhanced vascular regeneration in response to elevated temperatures. We also found that elevated temperatures accelerated the formation of inter-plant vascular connections between the parasitic plant Phtheirospermum japonicum and host Arabidopsis, and this effect required shoot-derived auxin from the parasite. Taken together, our results identify a pathway whereby local temperature perception mediates long distance auxin signaling to modify regeneration, grafting and parasitism.
This article has an associated ‘The people behind the papers’ interview.
Collapse
Affiliation(s)
- Phanu T. Serivichyaswat
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| | - Kai Bartusch
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, 8092 Zürich, Switzerland
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany
| | - Martina Leso
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| | - Constance Musseau
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Yu Chen
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Tokyo 113-8654, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Tokyo 113-8654, Japan
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany
| | - Charles W. Melnyk
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| |
Collapse
|
25
|
Pellissari LCO, Teixeira-Costa L, Ceccantini G, Tamaio N, Cardoso LJT, Braga JMA, Barros CF. Parasitic plant, from inside out: endophytic development in Lathrophytum peckoltii (Balanophoraceae) in host liana roots from tribe Paullineae (Sapindaceae). ANNALS OF BOTANY 2022; 129:331-342. [PMID: 34888616 PMCID: PMC8835641 DOI: 10.1093/aob/mcab148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/08/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND AIMS Balanophoraceae is one of the most bizarre and biologically interesting plant clades. It groups species with peculiar features that offers an opportunity for investigating several aspects of parasite plant development and morphogenesis. We analysed the development and the mature vegetative body of Lathrophytum peckoltii Eichler, focusing on the formation of the host-parasite interface. Additionally, we analysed how this parasitic interaction causes modifications to the anatomy of Paullinia uloptera Radlk and Serjania clematidifolia Cambess host roots. METHODS Vegetative bodies of the parasite at different developmental stages were collected while infesting the roots of Sapindaceae vines. Non-parasitized host roots were also collected for comparison. Light, epifluorescence, confocal and scanning electron microscopy were used for the analysis. KEY RESULTS The initial cells of the vegetative axis divide repeatedly, originating a parenchymatous matrix, which occupies the space from the cortex to the vascular cylinder of the host's root. In the peripheral layers of the matrix, located near the xylem of the host's roots, a few cells initiate the process of wall lignification, originating the parasitic bundle. The vascular cambium of the host's root changes the division plane and becomes composed of fusiform initials, forming the vascular bundle. The vegetative axis presents a dermal tissue similar to a phellem, a parenchymatous matrix and a vascular system with different origins. CONCLUSION The parasite reproduces by endophytic development, in a manner similar to that observed for endoparasites. The strategy of late cell differentiation could aid the parasite in avoiding early detection and triggering of defence responses by the host. This development causes changes to the host root cambial activity, leading to the establishment of direct, vessel to vessel connection between host and parasite. We associate these changes with the cambium modularity and an influx of parasite-derived hormones into the host cambium.
Collapse
Affiliation(s)
- Lauany C O Pellissari
- Diretoria de Pesquisa Científica, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão nº 915, CEP 22460-030, Rio de Janeiro, RJ, Brazil
| | | | - Gregorio Ceccantini
- Institute of Biosciences, University of São Paulo, Rua do Matão, 277. São Paulo, SP CEP 05508-090, Brazil
| | - Neusa Tamaio
- Diretoria de Pesquisa Científica, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão nº 915, CEP 22460-030, Rio de Janeiro, RJ, Brazil
| | - Leandro J T Cardoso
- Diretoria de Pesquisa Científica, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão nº 915, CEP 22460-030, Rio de Janeiro, RJ, Brazil
| | - João M A Braga
- Diretoria de Pesquisa Científica, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão nº 915, CEP 22460-030, Rio de Janeiro, RJ, Brazil
| | - Claudia F Barros
- Diretoria de Pesquisa Científica, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão nº 915, CEP 22460-030, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
26
|
Jhu MY, Farhi M, Wang L, Zumstein K, Sinha NR. Investigating Host and Parasitic Plant Interaction by Tissue-Specific Gene Analyses on Tomato and Cuscuta campestris Interface at Three Haustorial Developmental Stages. FRONTIERS IN PLANT SCIENCE 2022; 12:764843. [PMID: 35222447 PMCID: PMC8866705 DOI: 10.3389/fpls.2021.764843] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/28/2021] [Indexed: 05/26/2023]
Abstract
Parasitic weeds cause billions of dollars in agricultural losses each year worldwide. Cuscuta campestris (C. campestris), one of the most widespread and destructive parasitic plants in the United States, severely reduces yield in tomato plants. Reducing the spread of parasitic weeds requires understanding the interaction between parasites and hosts. Several studies have identified factors needed for parasitic plant germination and haustorium induction, and genes involved in host defense responses. However, knowledge of the mechanisms underlying the interactions between host and parasitic plants, specifically at the interface between the two organisms, is relatively limited. A detailed investigation of the crosstalk between the host and parasite at the tissue-specific level would enable development of effective parasite control strategies. To focus on the haustorial interface, we used laser-capture microdissection (LCM) with RNA-seq on early, intermediate and mature haustorial stages. In addition, the tomato host tissue that immediately surround the haustoria was collected to obtain tissue- resolution RNA-Seq profiles for C. campestris and tomato at the parasitism interface. After conducting RNA-Seq analysis and constructing gene coexpression networks (GCNs), we identified CcHB7, CcPMEI, and CcERF1 as putative key regulators involved in C. campestris haustorium organogenesis, and three potential regulators, SlPR1, SlCuRe1-like, and SlNLR, in tomatoes that are involved in perceiving signals from the parasite. We used host-induced gene silencing (HIGS) transgenic tomatoes to knock-down the candidate genes in C. campestris and produced CRISPR transgenic tomatoes to knock out candidate genes in tomatoes. The interactions of C. campestris with these transgenic lines were tested and compared with that in wild-type tomatoes. The results of this study reveal the tissue-resolution gene regulatory mechanisms at the parasitic plant-host interface and provide the potential of developing a parasite-resistant system in tomatoes.
Collapse
Affiliation(s)
- Min-Yao Jhu
- Department of Plant Biology, University of California, Davis, CA, United States
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Moran Farhi
- Department of Plant Biology, University of California, Davis, CA, United States
- The Better Meat Co., West Sacramento, CA, United States
| | - Li Wang
- Department of Plant Biology, University of California, Davis, CA, United States
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kristina Zumstein
- Department of Plant Biology, University of California, Davis, CA, United States
| | - Neelima R. Sinha
- Department of Plant Biology, University of California, Davis, CA, United States
| |
Collapse
|
27
|
Greifenhagen A, Braunstein I, Pfannstiel J, Yoshida S, Shirasu K, Schaller A, Spallek T. The Phtheirospermum japonicum isopentenyltransferase PjIPT1a regulates host cytokinin responses in Arabidopsis. THE NEW PHYTOLOGIST 2021; 232:1582-1590. [PMID: 34254310 DOI: 10.1111/nph.17615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The hemiparasitic plant Phtheirospermum japonicum (Phtheirospermum) is a nutritional specialist that supplements its nutrient requirements by parasitizing other plants through haustoria. During parasitism, the Phtheirospermum haustorium transfers hypertrophy-inducing cytokinins (CKs) to the infected host root. The CK biosynthesis genes required for haustorium-derived CKs and the induction of hypertrophy are still unknown. We searched for haustorium-expressed isopentenyltransferases (IPTs) that catalyze the first step of CK biosynthesis, confirmed the specific expression by in vivo imaging of a promoter-reporter, and further analyzed the subcellular localization, the enzymatic function and contribution to inducing hypertrophy by studying CRISPR-Cas9-induced Phtheirospermum mutants. PjIPT1a was expressed in intrusive cells of the haustorium close to the host vasculature. PjIPT1a and its closest homolog PjIPT1b located to the cytosol and showed IPT activity in vitro with differences in substrate specificity. Mutating PjIPT1a abolished parasite-induced CK responses in the host. A homolog of PjIPT1a also was identified in the related weed Striga hermonthica. With PjIPT1a, we identified the IPT enzyme that induces CK responses in Phtheirospermum japonicum-infected Arabidopsis roots. We propose that PjIPT1a exemplifies how parasitism-related functions evolve through gene duplications and neofunctionalization.
Collapse
Affiliation(s)
- Anne Greifenhagen
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, 70599, Germany
| | - Isabell Braunstein
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, 70599, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, Stuttgart, 70599, Germany
| | - Satoko Yoshida
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, 70599, Germany
| | - Thomas Spallek
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, 70599, Germany
| |
Collapse
|
28
|
Wu D, Wang L, Zhang Y, Bai L, Yu F. Emerging roles of pathogen-secreted host mimics in plant disease development. Trends Parasitol 2021; 37:1082-1095. [PMID: 34627670 DOI: 10.1016/j.pt.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022]
Abstract
Plant pathogens and parasites use multiple virulence factors to successfully infect plants. While most plant-pathogen interaction studies focus on pathogen effectors and their functions in suppressing plant immunity or interfering with normal cellular processes, other virulence factors likely also contribute. Here we highlight another important strategy used by pathogens to promote virulence: secretion of mimics of host molecules, including peptides, phytohormones, and small RNAs, which play diverse roles in plant development and stress responses. Pathogen-secreted mimics hijack the host endogenous signaling pathways, thereby modulating host cellular functions to the benefit of the pathogen and promoting infection. Understanding the mechanisms of pathogen-secreted host mimics will expand our knowledge of host-pathogen coevolution and interactions, while providing new targets for plant disease control.
Collapse
Affiliation(s)
- Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Lifeng Wang
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Feng Yu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
29
|
Zagorchev L, Stöggl W, Teofanova D, Li J, Kranner I. Plant Parasites under Pressure: Effects of Abiotic Stress on the Interactions between Parasitic Plants and Their Hosts. Int J Mol Sci 2021; 22:7418. [PMID: 34299036 PMCID: PMC8304456 DOI: 10.3390/ijms22147418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/07/2023] Open
Abstract
Parasitic angiosperms, comprising a diverse group of flowering plants, are partially or fully dependent on their hosts to acquire water, mineral nutrients and organic compounds. Some have detrimental effects on agriculturally important crop plants. They are also intriguing model systems to study adaptive mechanisms required for the transition from an autotrophic to a heterotrophic metabolism. No less than any other plant, parasitic plants are affected by abiotic stress factors such as drought and changes in temperature, saline soils or contamination with metals or herbicides. These effects may be attributed to the direct influence of the stress, but also to diminished host availability and suitability. Although several studies on abiotic stress response of parasitic plants are available, still little is known about how abiotic factors affect host preferences, defense mechanisms of both hosts and parasites and the effects of combinations of abiotic and biotic stress experienced by the host plants. The latter effects are of specific interest as parasitic plants pose additional pressure on contemporary agriculture in times of climate change. This review summarizes the existing literature on abiotic stress response of parasitic plants, highlighting knowledge gaps and discussing perspectives for future research and potential agricultural applications.
Collapse
Affiliation(s)
- Lyuben Zagorchev
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China;
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Wolfgang Stöggl
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; (W.S.); (I.K.)
| | - Denitsa Teofanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China;
| | - Ilse Kranner
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; (W.S.); (I.K.)
| |
Collapse
|
30
|
Yoshida S, Kee YJ. Large-scale sequencing paves the way for genomic and genetic analyses in parasitic plants. Curr Opin Biotechnol 2021; 70:248-254. [PMID: 34242992 DOI: 10.1016/j.copbio.2021.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Parasitic plants pose a serious agricultural threat, but are also precious resources for valuable metabolites. The heterotrophic nature of these plants has resulted in the development of several morphological and physiological features that are of evolutionary significance. Recent advances in large-scale sequencing technology have provided insights into the evolutionary and molecular mechanisms of plant parasitism. Genome sequencing has revealed gene losses and horizontal gene transfers in parasitic plants. Mobile signals traveling between the parasite and host may have contributed to the increased fitness of parasitic life styles. Transcriptome analyses implicate shared processes among various parasitic species and the establishment of functional analysis is beginning to reveal molecular mechanisms during host and parasite interactions.
Collapse
Affiliation(s)
- Satoko Yoshida
- Nara Institute of Science and Technology, Grad. School Sci. Tech., Ikoma, Nara, Japan; JST, PRESTO, Japan.
| | - Yee Jia Kee
- Nara Institute of Science and Technology, Grad. School Sci. Tech., Ikoma, Nara, Japan
| |
Collapse
|
31
|
Furuta KM, Xiang L, Cui S, Yoshida S. Molecular dissection of haustorium development in Orobanchaceae parasitic plants. PLANT PHYSIOLOGY 2021; 186:1424-1434. [PMID: 33783524 PMCID: PMC8260117 DOI: 10.1093/plphys/kiab153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Characterizing molecular aspects of haustorium development by parasitic plants in the Orobanchaceae family has identified hormone signaling/transport and specific genes as major players.
Collapse
Affiliation(s)
- Kaori Miyashima Furuta
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Lei Xiang
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Songkui Cui
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Satoko Yoshida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
32
|
Hoang XLT, Prerostova S, Thu NBA, Thao NP, Vankova R, Tran LSP. Histidine Kinases: Diverse Functions in Plant Development and Responses to Environmental Conditions. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:297-323. [PMID: 34143645 DOI: 10.1146/annurev-arplant-080720-093057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The two-component system (TCS), which is one of the most evolutionarily conserved signaling pathway systems, has been known to regulate multiple biological activities and environmental responses in plants. Significant progress has been made in characterizing the biological functions of the TCS components, including signal receptor histidine kinase (HK) proteins, signal transducer histidine-containing phosphotransfer proteins, and effector response regulator proteins. In this review, our scope is focused on the diverse structure, subcellular localization, and interactions of the HK proteins, as well as their signaling functions during development and environmental responses across different plant species. Based on data collected from scientific studies, knowledge about acting mechanisms and regulatory roles of HK proteins is presented. This comprehensive summary ofthe HK-related network provides a panorama of sophisticated modulating activities of HK members and gaps in understanding these activities, as well as the basis for developing biotechnological strategies to enhance the quality of crop plants.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Nguyen Binh Anh Thu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409, USA;
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
33
|
Furuhashi K, Iwase K, Furuhashi T. Role of Light and Plant Hormones in Stem Parasitic Plant (Cuscuta and Cassytha) Twining and Haustoria Induction. Photochem Photobiol 2021; 97:1054-1062. [PMID: 33934364 DOI: 10.1111/php.13441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022]
Abstract
Cuscuta and Cassytha are two distinct stem parasitic plant genera developing haustoria at their stem. The initial step to parasitization is twining onto the host plant. Although twining is the critical first step, less attention has been paid to this aspect in stem haustoria parasitic plant studies. As tendril coiling is also controlled by light and plant hormones, we investigated the role of light (blue, red and far-red) and hormones (auxin, brassinolide, cytokinin) in twining of stem parasitic plants (Cuscuta japonica and Cassytha filiformis). In general, both Cuscuta and Cassytha showed similar behavior to light cues. The data show that blue light is essential for twining, and a lower far-red/red light (FR/R) ratio is important for subsequent haustoria induction. Regarding plant hormones, seedlings with solely auxin or cytokinin (iP) under blue light showed not only twining but also haustoria induction, demonstrating that auxin and iP appear to be especially important for induction. Seedlings with solely brassinolide showed no positive influence, but brassinolide together with iP caused twining even under dark conditions. This points to the presence of cross-talk between brassinolide and cytokinin for twining.
Collapse
Affiliation(s)
- Katsuhisa Furuhashi
- Department of Parasitic Plant Physiology, Maeda-Institute of Plant Resources, Nagoya, Japan
| | - Koji Iwase
- Department of Natural and Environmental Science, Teikyo University of Science, Tokyo, Japan
| | | |
Collapse
|
34
|
Teixeira-Costa L, Davis CC, Ceccantini G. Striking developmental convergence in angiosperm endoparasites. AMERICAN JOURNAL OF BOTANY 2021; 108:756-768. [PMID: 33988869 DOI: 10.1002/ajb2.1658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
PREMISE A subset of parasitic plants bear extremely reduced features and grow nearly entirely within their hosts. Until recently, most of these endoparasites were thought to represent a single clade united by their reduced morphology. Current phylogenetic understanding contradicts this assumption and indicates these plants represent distantly related clades, thus offering an opportunity to examine convergence among plants with this life history. METHODS We sampled species from Apodanthaceae, Cytinaceae, Mitrastemonaceae, and Rafflesiaceae spanning a range of developmental stages. To provide a broader comparative framework, Santalaceae mistletoes with a similar lifestyle were also analyzed. Microtomography and microscopy were used to analyze growth patterns and the ontogeny of host-parasite vascular connections. RESULTS Apodanthaceae, Cytinaceae, Mitrastemonaceae, and Rafflesiaceae species demonstrated a common development characterized by late cell differentiation. These species were also observed to form direct connections to host vessels and to cause severe alterations of host xylem development. Apodanthaceae and Rafflesiaceae species were additionally observed to form sieve elements, which connect with the host phloem. Endophytic Santalaceae species demonstrated a dramatically different developmental pattern, featuring early cell differentiation and tissue organization, and little effect on host anatomy and cambial activity. CONCLUSIONS Our results illuminate two distinct developmental trajectories in endoparasites. One involves the retention of embryonic characteristics and late connection with host vessels, as demonstrated in species of Apodanthaceae, Cytinaceae, Mitrastemonaceae, and Rafflesiaceae. The second involves tissue specialization and early connection with host xylem, as exemplified by Santalaceae species. These differences are hypothesized to be related to the absence/presence of photosynthesis in these plants.
Collapse
Affiliation(s)
- Luiza Teixeira-Costa
- Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil
- Harvard University Herbaria, Cambridge, MA, 02138, USA
| | | | - Gregorio Ceccantini
- Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil
| |
Collapse
|
35
|
Albert M, Axtell MJ, Timko MP. Mechanisms of resistance and virulence in parasitic plant-host interactions. PLANT PHYSIOLOGY 2021; 185:1282-1291. [PMID: 33793887 PMCID: PMC8133583 DOI: 10.1093/plphys/kiaa064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Parasitic plants pose a major biotic threat to plant growth and development and lead to losses in crop productivity of billions of USD annually. By comparison with "normal" autotrophic plants, parasitic plants live a heterotrophic lifestyle and rely on water, solutes and to a greater (holoparasitic plants) or lesser extent (hemiparasitic plants) on sugars from other host plants. Most hosts are unable to detect an infestation by plant parasites or unable to fend off these parasitic invaders. However, a few hosts have evolved defense strategies to avoid infestation or protect themselves actively post-attack often leading to full or partial resistance. Here, we review the current state of our understanding of the defense strategies to plant parasitism used by host plants with emphasis on the active molecular resistance mechanisms. Furthermore, we outline the perspectives and the potential of future studies that will be indispensable to develop and breed resistant crops.
Collapse
Affiliation(s)
- Markus Albert
- Department of Biology, Molecular Plant Physiology, FAU Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Michael J Axtell
- Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
36
|
Masumoto N, Suzuki Y, Cui S, Wakazaki M, Sato M, Kumaishi K, Shibata A, Furuta KM, Ichihashi Y, Shirasu K, Toyooka K, Sato Y, Yoshida S. Three-dimensional reconstructions of haustoria in two parasitic plant species in the Orobanchaceae. PLANT PHYSIOLOGY 2021; 185:1429-1442. [PMID: 33793920 PMCID: PMC8133657 DOI: 10.1093/plphys/kiab005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/16/2020] [Indexed: 05/07/2023]
Abstract
Parasitic plants infect other plants by forming haustoria, specialized multicellular organs consisting of several cell types, each of which has unique morphological features and physiological roles associated with parasitism. Understanding the spatial organization of cell types is, therefore, of great importance in elucidating the functions of haustoria. Here, we report a three-dimensional (3-D) reconstruction of haustoria from two Orobanchaceae species, the obligate parasite Striga hermonthica infecting rice (Oryza sativa) and the facultative parasite Phtheirospermum japonicum infecting Arabidopsis (Arabidopsis thaliana). In addition, field-emission scanning electron microscopy observation revealed the presence of various cell types in haustoria. Our images reveal the spatial arrangements of multiple cell types inside haustoria and their interaction with host roots. The 3-D internal structures of haustoria highlight differences between the two parasites, particularly at the xylem connection site with the host. Our study provides cellular and structural insights into haustoria of S. hermonthica and P. japonicum and lays the foundation for understanding haustorium function.
Collapse
Affiliation(s)
- Natsumi Masumoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Yuki Suzuki
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
- Graduate School of Information Science and Technology, Osaka University, Osaka, 565-0871, Japan
- Present address: Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Songkui Cui
- Division for Research Strategy, Institute for Research Initiatives, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kie Kumaishi
- RIKEN BioResource Research Center, Ibaraki, 305-0074, Japan
| | - Arisa Shibata
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kaori M Furuta
- Division for Research Strategy, Institute for Research Initiatives, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | | | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yoshinobu Sato
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Satoko Yoshida
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
- Division for Research Strategy, Institute for Research Initiatives, Nara Institute of Science and Technology, Nara, 630-0192, Japan
- Author for communication:
| |
Collapse
|
37
|
Brun G, Spallek T, Simier P, Delavault P. Molecular actors of seed germination and haustoriogenesis in parasitic weeds. PLANT PHYSIOLOGY 2021; 185:1270-1281. [PMID: 33793893 PMCID: PMC8133557 DOI: 10.1093/plphys/kiaa041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/02/2020] [Indexed: 05/06/2023]
Abstract
One-sentence summary Recent advances provide insight into the molecular mechanisms underlying host-dependent seed germination and haustorium formation in parasitic plants.
Collapse
Affiliation(s)
- Guillaume Brun
- Department for Systematic Botany and Biodiversity, Institute for Biology, Humboldt-Universität zu Berlin, Philippstr. 13, D-10115 Berlin, Germany
| | - Thomas Spallek
- Department of Plant Physiology and Biochemistry, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Philippe Simier
- Laboratory of Plant Biology and Pathology, University of Nantes, F-44322 Nantes Cedex 3, France
| | - Philippe Delavault
- Laboratory of Plant Biology and Pathology, University of Nantes, F-44322 Nantes Cedex 3, France
- Author for communication:
| |
Collapse
|
38
|
Ogawa S, Wakatake T, Spallek T, Ishida JK, Sano R, Kurata T, Demura T, Yoshida S, Ichihashi Y, Schaller A, Shirasu K. Subtilase activity in intrusive cells mediates haustorium maturation in parasitic plants. PLANT PHYSIOLOGY 2021; 185:1381-1394. [PMID: 33793894 PMCID: PMC8133603 DOI: 10.1093/plphys/kiaa001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/28/2020] [Indexed: 05/11/2023]
Abstract
Parasitic plants that infect crops are devastating to agriculture throughout the world. These parasites develop a unique inducible organ called the haustorium that connects the vascular systems of the parasite and host to establish a flow of water and nutrients. Upon contact with the host, the haustorial epidermal cells at the interface with the host differentiate into specific cells called intrusive cells that grow endophytically toward the host vasculature. Following this, some of the intrusive cells re-differentiate to form a xylem bridge (XB) that connects the vasculatures of the parasite and host. Despite the prominent role of intrusive cells in host infection, the molecular mechanisms mediating parasitism in the intrusive cells remain poorly understood. In this study, we investigated differential gene expression in the intrusive cells of the facultative parasite Phtheirospermum japonicum in the family Orobanchaceae by RNA-sequencing of laser-microdissected haustoria. We then used promoter analyses to identify genes that are specifically induced in intrusive cells, and promoter fusions with genes encoding fluorescent proteins to develop intrusive cell-specific markers. Four of the identified intrusive cell-specific genes encode subtilisin-like serine proteases (SBTs), whose biological functions in parasitic plants are unknown. Expression of SBT inhibitors in intrusive cells inhibited both intrusive cell and XB development and reduced auxin response levels adjacent to the area of XB development. Therefore, we propose that subtilase activity plays an important role in haustorium development in P. japonicum.
Collapse
Affiliation(s)
- Satoshi Ogawa
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Takanori Wakatake
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Present address: Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97082, Germany
| | - Thomas Spallek
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart 70599, Germany
| | - Juliane K Ishida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryosuke Sano
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tetsuya Kurata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Satoko Yoshida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart 70599, Germany
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Author for communication: , Present address: Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Mutuku JM, Cui S, Yoshida S, Shirasu K. Orobanchaceae parasite-host interactions. THE NEW PHYTOLOGIST 2021; 230:46-59. [PMID: 33202061 DOI: 10.1111/nph.17083] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Parasitic plants in the family Orobanchaceae, such as Striga, Orobanche and Phelipanche, often cause significant damage to agricultural crops. The Orobanchaceae family comprises more than 2000 species in about 100 genera, providing an excellent system for studying the molecular basis of parasitism and its evolution. Notably, the establishment of model Orobanchaceae parasites, such as Triphysaria versicolor and Phtheirospermum japonicum, that can infect the model host Arabidopsis, has greatly facilitated transgenic analyses of genes important for parasitism. In addition, recent genomic and transcriptomic analyses of several Orobanchaceae parasites have revealed fascinating molecular insights into the evolution of parasitism and strategies for adaptation in this family. This review highlights recent progress in understanding how Orobanchaceae parasites attack their hosts and how the hosts mount a defense against the threats.
Collapse
Affiliation(s)
- J Musembi Mutuku
- The Central and West African Virus Epidemiology (WAVE). Pôle Scientifique et d'Innovation de Bingerville, Université Félix Houphouët-Boigny, BP V34, Abidjan, 01, Côte d'Ivoire
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Songkui Cui
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoko Yoshida
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
40
|
Nishimura A, Yoshioka A, Kariya K, Ube N, Ueno K, Tebayashi SI, Osaki-Oka K, Ishihara A. Sugars in an aqueous extract of the spent substrate of the mushroom Hypsizygus marmoreus induce defense responses in rice. Biosci Biotechnol Biochem 2021; 85:743-755. [PMID: 33580659 DOI: 10.1093/bbb/zbaa122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/23/2020] [Indexed: 01/26/2023]
Abstract
Plant defense responses are activated by various exogenous stimuli. We found that an aqueous extract of spent mushroom substrate used for the cultivation of Hypsizygus marmoreus induced defense responses in rice. Fractionation of the spent mushroom substrate extract indicated that the compounds responsible for this induction were neutral and hydrophilic molecules with molecular weights lower than 3 kDa. Compounds with these characteristics, namely glucose, fructose, and sucrose, were detected in the extract at concentrations of 17.4, 3.3, and 1.6 mM, respectively, and the treatment of rice leaves with these sugars induced defense responses. Furthermore, microarray analysis indicated that the genes involved in defense responses were commonly activated by the treatment of leaves with spent mushroom substrate extract and glucose. These findings indicate that the induction of defense responses by treatment with spent mushroom substrate extract is, at least in part, attributable to the sugar constituents of the extract.
Collapse
Affiliation(s)
- Ayami Nishimura
- Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Anna Yoshioka
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Keisuke Kariya
- Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Naoki Ube
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Shin-Ichi Tebayashi
- Faculty of Agriculture and Marine Science, Kochi University, 200B Monobe, Nankoku, Kochi, Japan
| | | | | |
Collapse
|
41
|
Jiang Z, Zhao Q, Bai R, Yu R, Diao P, Yan T, Duan H, Ma X, Zhou Z, Fan Y, Wuriyanghan H. Host sunflower-induced silencing of parasitism-related genes confers resistance to invading Orobanche cumana. PLANT PHYSIOLOGY 2021; 185:424-440. [PMID: 33721890 PMCID: PMC8133596 DOI: 10.1093/plphys/kiaa018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/08/2020] [Indexed: 05/04/2023]
Abstract
Orobanche cumana is a holoparasitic plant that attaches to host-plant roots and seriously reduces the yield of sunflower (Helianthus annuus L.). Effective control methods are lacking with only a few known sources of genetic resistance. In this study, a seed-soak agroinoculation (SSA) method was established, and recombinant tobacco rattle virus vectors were constructed to express RNA interference (RNAi) inducers to cause virus-induced gene silencing (VIGS) in sunflower. A host target gene HaTubulin was systemically silenced in both leaf and root tissues by the SSA-VIGS approach. Trans-species silencing of O. cumana genes were confirmed for 10 out of 11 target genes with silencing efficiency of 23.43%-92.67%. Knockdown of target OcQR1, OcCKX5, and OcWRI1 genes reduced the haustoria number, and silencing of OcEXPA6 caused further phenotypic abnormalities such as shorter tubercles and necrosis. Overexpression of OcEXPA6 caused retarded root growth in alfalfa (Medicago sativa). The results demonstrate that these genes play an important role in the processes of O. cumana parasitism. High-throughput small RNA (sRNA) sequencing and bioinformatics analyses unveiled the distinct features of target gene-derived siRNAs in O. cumana such as siRNA transitivity, strand polarity, hotspot region, and 21/22-nt siRNA predominance, the latter of which was confirmed by Northern blot experiments. The possible RNAi mechanism is also discussed by analyzing RNAi machinery genes in O. cumana. Taken together, we established an efficient host-induced gene silencing technology for both functional genetics studies and potential control of O. cumana. The ease and effectiveness of this strategy could potentially be useful for other species provided they are amenable to SSA.
Collapse
Affiliation(s)
- Zhengqiang Jiang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Qiqi Zhao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Runyao Bai
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Pengfei Diao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Ting Yan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Huimin Duan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Xuesong Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Yanyan Fan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
- Author for communication:
| |
Collapse
|
42
|
Cui S, Kubota T, Nishiyama T, Ishida JK, Shigenobu S, Shibata TF, Toyoda A, Hasebe M, Shirasu K, Yoshida S. Ethylene signaling mediates host invasion by parasitic plants. SCIENCE ADVANCES 2020; 6:6/44/eabc2385. [PMID: 33115743 PMCID: PMC7608805 DOI: 10.1126/sciadv.abc2385] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/10/2020] [Indexed: 05/18/2023]
Abstract
Parasitic plants form a specialized organ, a haustorium, to invade host tissues and acquire water and nutrients. To understand the molecular mechanism of haustorium development, we performed a forward genetics screening to isolate mutants exhibiting haustorial defects in the model parasitic plant Phtheirospermum japonicum. We isolated two mutants that show prolonged and sometimes aberrant meristematic activity in the haustorium apex, resulting in severe defects on host invasion. Whole-genome sequencing revealed that the two mutants respectively have point mutations in homologs of ETHYLENE RESPONSE 1 (ETR1) and ETHYLENE INSENSITIVE 2 (EIN2), signaling components in response to the gaseous phytohormone ethylene. Application of the ethylene signaling inhibitors also caused similar haustorial defects, indicating that ethylene signaling regulates cell proliferation and differentiation of parasite cells. Genetic disruption of host ethylene production also perturbs parasite invasion. We propose that parasitic plants use ethylene as a signal to invade host roots.
Collapse
Affiliation(s)
- Songkui Cui
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Tomoya Kubota
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Kanazawa 920-0934, Japan
| | | | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | | | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Satoko Yoshida
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
43
|
Kurotani KI, Wakatake T, Ichihashi Y, Okayasu K, Sawai Y, Ogawa S, Cui S, Suzuki T, Shirasu K, Notaguchi M. Host-parasite tissue adhesion by a secreted type of β-1,4-glucanase in the parasitic plant Phtheirospermum japonicum. Commun Biol 2020; 3:407. [PMID: 32733024 PMCID: PMC7393376 DOI: 10.1038/s42003-020-01143-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023] Open
Abstract
Tissue adhesion between plant species occurs both naturally and artificially. Parasitic plants establish intimate relationship with host plants by adhering tissues at roots or stems. Plant grafting, on the other hand, is a widely used technique in agriculture to adhere tissues of two stems. Here we found that the model Orobanchaceae parasitic plant Phtheirospermum japonicum can be grafted on to interfamily species. To understand molecular basis of tissue adhesion between distant plant species, we conducted comparative transcriptome analyses on both infection and grafting by P. japonicum on Arabidopsis. Despite different organs, we identified the shared gene expression profile, where cell proliferation- and cell wall modification-related genes are up-regulated. Among genes commonly induced in tissue adhesion between distant species, we showed a gene encoding a secreted type of β-1,4-glucanase plays an important role for plant parasitism. Our data provide insights into the molecular commonality between parasitism and grafting in plants.
Collapse
Affiliation(s)
- Ken-Ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takanori Wakatake
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Biocenter, Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, 97082, Würzburg, Germany
| | - Yasunori Ichihashi
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Koji Okayasu
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yu Sawai
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Satoshi Ogawa
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Songkui Cui
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Matsumoto-cho, Kasugai, 487-8501, Japan
| | - Ken Shirasu
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
44
|
Wakatake T, Ogawa S, Yoshida S, Shirasu K. An auxin transport network underlies xylem bridge formation between the hemi-parasitic plant Phtheirospermum japonicum and host Arabidopsis. Development 2020; 147:dev187781. [PMID: 32586973 DOI: 10.1242/dev.187781] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/15/2020] [Indexed: 03/01/2024]
Abstract
Parasitic plants form vascular connections with host plants for efficient material transport. The haustorium is the responsible organ for host invasion and subsequent vascular connection. After invasion of host tissues, vascular meristem-like cells emerge in the central region of the haustorium, differentiate into tracheary elements and establish a connection, known as a xylem bridge, between parasite and host xylem systems. Despite the importance of this parasitic connection, the regulatory mechanisms of xylem bridge formation are unknown. Here, we show the role of auxin and auxin transporters during the process of xylem bridge formation using an Orobanchaceae hemiparasitic plant, Phtheirospermum japonicum The auxin response marker DR5 has a similar expression pattern to tracheary element differentiation genes in haustoria. Auxin transport inhibitors alter tracheary element differentiation in haustoria, but biosynthesis inhibitors do not, demonstrating the importance of auxin transport during xylem bridge formation. The expression patterns and subcellular localization of PIN family auxin efflux carriers and AUX1/LAX influx carriers correlate with DR5 expression patterns. The cooperative action of auxin transporters is therefore responsible for controlling xylem vessel connections between parasite and host.
Collapse
Affiliation(s)
- Takanori Wakatake
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Satoshi Ogawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Satoko Yoshida
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
45
|
Clarke CR, Park SY, Tuosto R, Jia X, Yoder A, Van Mullekom J, Westwood J. Multiple immunity-related genes control susceptibility of Arabidopsis thaliana to the parasitic weed Phelipanche aegyptiaca. PeerJ 2020; 8:e9268. [PMID: 32551199 PMCID: PMC7289146 DOI: 10.7717/peerj.9268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/10/2020] [Indexed: 12/14/2022] Open
Abstract
Parasitic weeds represent a major threat to agricultural production across the world. Little is known about which host genetic pathways determine compatibility for any host–parasitic plant interaction. We developed a quantitative assay to characterize the growth of the parasitic weed Phelipanche aegyptiaca on 46 mutant lines of the host plant Arabidopsis thaliana to identify host genes that are essential for susceptibility to the parasite. A. thaliana host plants with mutations in genes involved in jasmonic acid biosynthesis/signaling or the negative regulation of plant immunity were less susceptible to P. aegyptiaca parasitization. In contrast, A. thaliana plants with a mutant allele of the putative immunity hub gene Pfd6 were more susceptible to parasitization. Additionally, quantitative PCR revealed that P. aegyptiaca parasitization leads to transcriptional reprograming of several hormone signaling pathways. While most tested A. thaliana lines were fully susceptible to P. aegyptiaca parasitization, this work revealed several host genes essential for full susceptibility or resistance to parasitism. Altering these pathways may be a viable approach for limiting host plant susceptibility to parasitism.
Collapse
Affiliation(s)
- Christopher R Clarke
- Genetic Improvement of Fruits and Vegetables Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - So-Yon Park
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Robert Tuosto
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Xiaoyan Jia
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Amanda Yoder
- Department of Statistics, Virginia Tech, Blacksburg, VA, USA
| | | | - James Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
46
|
Fitzpatrick CR, Schneider AC. Unique bacterial assembly, composition, and interactions in a parasitic plant and its host. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2198-2209. [PMID: 31912143 PMCID: PMC7094075 DOI: 10.1093/jxb/erz572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/02/2020] [Indexed: 05/21/2023]
Abstract
How plant-associated microbiota are shaped by, and potentially contribute to, the unique ecology and heterotrophic life history of parasitic plants is relatively unknown. Here, we investigate the leaf and root bacterial communities of the root holoparasite Orobanche hederae and its host Hedera spp. from natural populations. Root bacteria inhabiting Orobanche were less diverse, had fewer co-associations, and displayed increased compositional similarity to leaf bacteria relative to Hedera. Overall, Orobanche bacteria exhibited significant congruency with Hedera root bacteria across sites, but not the surrounding soil. Infection had localized and systemic effects on Hedera bacteria, which included effects on the abundance of individual taxa and root network properties. Collectively, our results indicate that the parasitic plant microbiome is derived but distinct from the host plant microbiota, exhibits increased homogenization between shoot and root tissues, and displays far fewer co-associations among individual bacterial members. Host plant infection is accompanied by modest changes of associated microbiota at both local and systemic scales compared with uninfected individuals. Our results are a first step towards extending the growing insight into the assembly and function of the plant microbiome to include the ecologically unique but often overlooked guild of heterotrophic plants.
Collapse
Affiliation(s)
- Connor R Fitzpatrick
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Corresponding author: . Present address: Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Adam C Schneider
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Present address: Department of Biology, Hendrix College, Conway, AR 72032, USA
| |
Collapse
|
47
|
Akhtar SS, Mekureyaw MF, Pandey C, Roitsch T. Role of Cytokinins for Interactions of Plants With Microbial Pathogens and Pest Insects. FRONTIERS IN PLANT SCIENCE 2020; 10:1777. [PMID: 32140160 PMCID: PMC7042306 DOI: 10.3389/fpls.2019.01777] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 12/19/2019] [Indexed: 05/05/2023]
Abstract
It has been recognized that cytokinins are plant hormones that influence not only numerous aspects of plant growth, development and physiology, including cell division, chloroplast differentiation and delay of senescence but the interaction with other organisms, including pathogens. Cytokinins are not only produced by plants but are also by other prokaryotic and eukaryotic organism such as bacteria, fungi, microalgae and insects. Notably, cytokinins are produced both by pathogenic and also beneficial microbes and are known to induce resistance in plants against pathogen infections. In this review the contrasting role of cytokinin for the defence and susceptibility of plants against bacterial and fungal pathogen and pest insects is assessed. We also discuss the cross talk of cytokinins with other phytohormones and the underlying mechanism involved in enhancing plant immunity against pathogen infections and explore possible practical applications in crop plant production.
Collapse
Affiliation(s)
- Saqib Saleem Akhtar
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mengistu F. Mekureyaw
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chandana Pandey
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, Brno, Czechia
| |
Collapse
|
48
|
Ichihashi Y, Hakoyama T, Iwase A, Shirasu K, Sugimoto K, Hayashi M. Common Mechanisms of Developmental Reprogramming in Plants-Lessons From Regeneration, Symbiosis, and Parasitism. FRONTIERS IN PLANT SCIENCE 2020; 11:1084. [PMID: 32765565 PMCID: PMC7378864 DOI: 10.3389/fpls.2020.01084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/30/2020] [Indexed: 05/09/2023]
Abstract
Most plants are exquisitely sensitive to their environment and adapt by reprogramming post-embryonic development. The systematic understanding of molecular mechanisms regulating developmental reprogramming has been underexplored because abiotic and biotic stimuli that lead to reprogramming of post-embryonic development vary and the outcomes are highly species-specific. In this review, we discuss the diversity and similarities of developmental reprogramming processes by summarizing recent key findings in reprogrammed development: plant regeneration, nodule organogenesis in symbiosis, and haustorial formation in parasitism. We highlight the potentially shared molecular mechanisms across the different developmental programs, especially a core network module mediated by the AUXIN RESPONSIVE FACTOR (ARF) and the LATERAL ORGAN BOUNDARIES DOMAIN (LBD) family of transcription factors. This allows us to propose a new holistic concept that will provide insights into the nature of plant development, catalyzing the fusion of subdisciplines in plant developmental biology.
Collapse
Affiliation(s)
- Yasunori Ichihashi
- RIKEN BioResource Research Center, Tsukuba, Japan
- *Correspondence: Yasunori Ichihashi,
| | - Tsuneo Hakoyama
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Makoto Hayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
49
|
Shimizu K, Aoki K. Development of Parasitic Organs of a Stem Holoparasitic Plant in Genus Cuscuta. FRONTIERS IN PLANT SCIENCE 2019; 10:1435. [PMID: 31781146 PMCID: PMC6861301 DOI: 10.3389/fpls.2019.01435] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/16/2019] [Indexed: 05/18/2023]
Abstract
Parasitic plants infect a broad range of plant species including economically important crops. They survive by absorbing water, minerals, and photosynthates from their hosts. To support their way of life, parasitic plants generally establish parasitic organs that allow them to attach to their hosts and to efficiently absorb substances from the vascular system of the host. Here, we summarize the recent progress in understanding the mechanisms underlying the formation of these parasitic organs, focusing on the process depicted in the stem holoparasitic genus, Cuscuta. An attachment structure called "holdfast" on the stem surface is induced by the light and contact stimuli. Concomitantly with holdfast formation, development of an intrusive structure called haustorium initiates in the inner cortex of the Cuscuta stem, and it elongates through apoplastic space of the host tissue. When haustoria reaches to host vascular tissues, they begin to form vascular conductive elements to connect vascular tissue of Cuscuta stem to those of host. Recent studies have shown parasite-host interaction in the interfacial cell wall, and regulation of development of these parasitic structures in molecular level. We also briefly summarize the role of host receptor in the control of compatibility between Cuscuta and hosts, on which occurrence of attachment structure depends, and the role of plant-to-plant transfer of long-distance signals after the establishment of conductive structure.
Collapse
Affiliation(s)
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
50
|
Krupp A, Heller A, Spring O. Development of phloem connection between the parasitic plant Orobanche cumana and its host sunflower. PROTOPLASMA 2019; 256:1385-1397. [PMID: 31111243 DOI: 10.1007/s00709-019-01393-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 05/02/2023]
Abstract
Orobanche cumana is a root parasitic plant causing considerable yield losses in sunflower cultivation. The holoparasite fulfills its entire demand for water, minerals, and organic nutrients from the host's vascular system. In this study, the ultrastructure of the phloem connection between the haustorium of young O. cumana tubercles and the sunflower root has been examined for the first time. Parasite and host tissues were intermingled at the contact site and difficult to distinguish, but sieve-tube elements of O. cumana and sunflower could be differentiated according to their plastid ultrastructure. While O. cumana sieve-element plastids were larger, often irregular in shape and contained few, small starch inclusions, sieve-element plastids of the host were significantly smaller, always roundish with more and larger starch inclusions. This made it possible to trace the exact contact site of host and parasite sieve elements to show a direct symplastic phloem connection between the two species. The interspecific sieve plate showed more callose on the host side. This allowed detection of newly formed plasmodesmata between host sieve-tube elements and parenchymatic parasite cells, thus showing that undifferentiated cells of the parasite could connect to fully differentiated sieve elements of sunflower. Furthermore, the arrangement of phloem within the O. cumana tubercle as well as differences in sieve-element plastid ultrastructure during shoot development in O. cumana were investigated and are discussed in this paper.
Collapse
Affiliation(s)
- Anna Krupp
- Institute of Botany (210), University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| | - Annerose Heller
- Institute of Botany (210), University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Otmar Spring
- Institute of Botany (210), University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| |
Collapse
|