1
|
Ravn K, Cobuccio L, Muktupavela RA, Meisner J, Danielsen LS, Benros ME, Korneliussen TS, Sikora M, Willerslev E, Allentoft ME, Irving-Pease EK, Rasmussen S. Tracing the evolutionary history of the CCR5delta32 deletion via ancient and modern genomes. Cell 2025:S0092-8674(25)00417-9. [PMID: 40328257 DOI: 10.1016/j.cell.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/31/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
The chemokine receptor variant CCR5delta32 is linked to HIV-1 resistance and other conditions. Its evolutionary history and allele frequency (10%-16%) in European populations have been extensively debated. We provide a detailed perspective of the evolutionary history of the deletion through time and space. We discovered that the CCR5delta32 allele arose on a pre-existing haplotype consisting of 84 variants. Using this information, we developed a haplotype-aware probabilistic model to screen 934 low-coverage ancient genomes and traced the origin of the CCR5delta32 deletion to at least 6,700 years before the present (BP) in the Western Eurasian Steppe region. Furthermore, we present strong evidence for positive selection acting upon the CCR5delta32 haplotype between 8,000 and 2,000 years BP in Western Eurasia and show that the presence of the haplotype in Latin America can be explained by post-Columbian genetic exchanges. Finally, we point to complex CCR5delta32 genotype-haplotype-phenotype relationships, which demand consideration when targeting the CCR5 receptor for therapeutic strategies.
Collapse
Affiliation(s)
- Kirstine Ravn
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leonardo Cobuccio
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasa Audange Muktupavela
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Meisner
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lasse Schnell Danielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Eriksen Benros
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thorfinn Sand Korneliussen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark; Centre for Ancient Environmental Genomics, University of Copenhagen, Copenhagen, Denmark
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark; Centre for Ancient Environmental Genomics, University of Copenhagen, Copenhagen, Denmark
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark; Centre for Ancient Environmental Genomics, University of Copenhagen, Copenhagen, Denmark; Department of Genetics, University of Cambridge, Cambridge, UK; MARUM, University of Bremen, Bremen, Germany
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark; Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Evan K Irving-Pease
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark; Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Carlsson F, Råberg L. The germ theory revisited: A noncentric view on infection outcome. Proc Natl Acad Sci U S A 2024; 121:e2319605121. [PMID: 38578984 PMCID: PMC11047106 DOI: 10.1073/pnas.2319605121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
The germ theory states that pathogenic microorganisms are responsible for causing infectious diseases. The theory is inherently microbe-centric and does not account for variability in disease severity among individuals and asymptomatic carriership-two phenomena indicating an important role for host variability in infection outcome. The basic tenet of the germ theory was recently challenged, and a radically host-centric paradigm referred to as the "full-blown host theory" was proposed. According to this view, the pathogen is reduced to a passive environmental trigger, and the development of disease is instead due to pre-existing immunodeficiencies of the host. Here, we consider the factors that determine disease severity using established knowledge concerning evolutionary biology, microbial pathogenesis, and host-pathogen interactions. We note that the available data support a noncentric view that recognizes key roles for both the causative microbe and the host in dictating infection outcome.
Collapse
Affiliation(s)
| | - Lars Råberg
- Department of Biology, Lund University, Lund223 62, Sweden
| |
Collapse
|
3
|
Affiliation(s)
- Gaspard Kerner
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS) UMR, 2000, Paris, France
| | - Jeremy Choin
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS) UMR, 2000, Paris, France. .,Chair of Human Genomics and Evolution, Collège de France, Paris, France.
| |
Collapse
|
4
|
Garcia OA, Arslanian K, Whorf D, Thariath S, Shriver M, Li JZ, Bigham AW. The Legacy of Infectious Disease Exposure on the Genomic Diversity of Indigenous Southern Mexicans. Genome Biol Evol 2023; 15:7023365. [PMID: 36726304 PMCID: PMC10016042 DOI: 10.1093/gbe/evad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
To characterize host risk factors for infectious disease in Mesoamerican populations, we interrogated 857,481 SNPs assayed using the Affymetrix 6.0 genotyping array for signatures of natural selection in immune response genes. We applied three statistical tests to identify signatures of natural selection: locus-specific branch length (LSBL), the cross-population extended haplotype homozygosity (XP-EHH), and the integrated haplotype score (iHS). Each of the haplotype tests (XP-EHH and iHS) were paired with LSBL and significance was determined at the 1% level. For the paired analyses, we identified 95 statistically significant windows for XP-EHH/LSBL and 63 statistically significant windows for iHS/LSBL. Among our top immune response loci, we found evidence of recent directional selection associated with the major histocompatibility complex (MHC) and the peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling pathway. These findings illustrate that Mesoamerican populations' immunity has been shaped by exposure to infectious disease. As targets of selection, these variants are likely to encode phenotypes that manifest themselves physiologically and therefore may contribute to population-level variation in immune response. Our results shed light on past selective events influencing the host response to modern diseases, both pathogenic infection as well as autoimmune disorders.
Collapse
Affiliation(s)
- Obed A Garcia
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Data Science, Stanford University, Stanford, California
| | | | - Daniel Whorf
- College of Medicine, University of Illinois, Peoria, Illinois
| | - Serena Thariath
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee
| | - Mark Shriver
- Department of Anthropology, Penn State University, State College, Pennsylvania
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, California
| |
Collapse
|
5
|
Wang PY, Yang Y, Shi XQ, Chen Y, Liu SD, Wang HY, Peng T, Shi Q, Zhang W, Sun C. Distilling functional variations for human UGT2B4 upstream region based on selection signals and implications for phenotypes of Neanderthal and Denisovan. Sci Rep 2023; 13:3134. [PMID: 36823244 PMCID: PMC9950360 DOI: 10.1038/s41598-023-29682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Our previous work identified one region upstream human UGT2B4 (UDP glucuronosyltransferase family 2 member B4) which is associated with breast cancer and under balancing selection. However, the distribution, functional variation and molecular mechanism underlying breast cancer and balancing selection remain unclear. In current study, the two haplotypes with deep divergence are described by analyzing 1000 genomes project data and observed to be with high frequencies in all human populations. Through population genetics analysis and genome annotation, the potential functional region is identified and verified by reporter gene assay. Further mutagenesis indicates that the functional mutations are rs66862535 and rs68096061. Both SNPs can alter the interaction efficiency of transcription factor POU2F1 (POU class 2 homeobox 1). Through chromosome conformation capture, it is identified that the enhancer containing these two SNPs can interact with UGT2B4 promoter. Expression quantitative trait loci analysis indicates that UGT2B4 expression is dependent on the genotype of this locus. The common haplotype in human is lost in four genomes of archaic hominins, which suggests that Neanderthal and Denisovan should present relatively lower UGT2B4 expression and further higher steroid hormone level. This study provides new insight into the contribution of ancient population structure to human phenotypes.
Collapse
Affiliation(s)
- Pin-Yi Wang
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China ,grid.440773.30000 0000 9342 2456State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091 Yunnan People’s Republic of China
| | - Yuan Yang
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Xiao-Qian Shi
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Ying Chen
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Shao-Dong Liu
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Hong-Yan Wang
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Tao Peng
- grid.440773.30000 0000 9342 2456State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091 Yunnan People’s Republic of China
| | - Qiang Shi
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Wei Zhang
- grid.16753.360000 0001 2299 3507Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA ,grid.449428.70000 0004 1797 7280Institute of Precision Medicine, Jining Medical University, Jining, 272067 Shandong People’s Republic of China
| | - Chang Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Ishida Y, Kuninaka Y, Mukaida N, Kondo T. Immune Mechanisms of Pulmonary Fibrosis with Bleomycin. Int J Mol Sci 2023; 24:3149. [PMID: 36834561 PMCID: PMC9958859 DOI: 10.3390/ijms24043149] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Fibrosis and structural remodeling of the lung tissue can significantly impair lung function, often with fatal consequences. The etiology of pulmonary fibrosis (PF) is diverse and includes different triggers such as allergens, chemicals, radiation, and environmental particles. However, the cause of idiopathic PF (IPF), one of the most common forms of PF, remains unknown. Experimental models have been developed to study the mechanisms of PF, and the murine bleomycin (BLM) model has received the most attention. Epithelial injury, inflammation, epithelial-mesenchymal transition (EMT), myofibroblast activation, and repeated tissue injury are important initiators of fibrosis. In this review, we examined the common mechanisms of lung wound-healing responses after BLM-induced lung injury as well as the pathogenesis of the most common PF. A three-stage model of wound repair involving injury, inflammation, and repair is outlined. Dysregulation of one or more of these three phases has been reported in many cases of PF. We reviewed the literature investigating PF pathogenesis, and the role of cytokines, chemokines, growth factors, and matrix feeding in an animal model of BLM-induced PF.
Collapse
Affiliation(s)
| | | | | | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| |
Collapse
|
7
|
Dubois‐Mignon T, Monget P. Gene essentiality and variability: What is the link? A within‐ and between‐species perspective. Bioessays 2022; 44:e2200132. [DOI: 10.1002/bies.202200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Tania Dubois‐Mignon
- Institut de Biologie de l’École Normale Supérieure Université PSL 46 rue d'Ulm Paris 75005 France
| | - Philippe Monget
- Physiologie de la Reproduction et des Comportements, Centre Val de Loire – UMR INRAE, CNRS, IFCE Université de Tours Nouzilly France
| |
Collapse
|
8
|
Kerner G, Quintana-Murci L. The genetic and evolutionary determinants of COVID-19 susceptibility. Eur J Hum Genet 2022; 30:915-921. [PMID: 35760904 PMCID: PMC9244541 DOI: 10.1038/s41431-022-01141-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 06/16/2022] [Indexed: 02/08/2023] Open
Abstract
Devastating pandemics, such as that due to COVID-19, can provide strong testimony to our knowledge of the genetic and evolutionary determinants of infectious disease susceptibility and severity. One of the most remarkable aspects of such outbreaks is the stunning interindividual variability observed in the course of infection. In recent decades, enormous progress has been made in the field of the human genetics of infectious diseases, and an increasing number of human genetic factors have been reported to explain, to a great extent, the observed variability for a large number of infectious agents. However, our understanding of the cellular, molecular, and immunological mechanisms underlying such disparities between individuals and ethnic groups, remains very limited. Here, we discuss recent findings relating to human genetic predisposition to infectious disease, from an immunological or population genetic perspective, and show how these and other innovative approaches have been applied to deciphering the genetic basis of human susceptibility to COVID-19 and the severity of this disease. From an evolutionary perspective, we show how past demographic and selection events characterizing the history of our species, including admixture with archaic humans, such as Neanderthals, facilitated modern human adaptation to the threats imposed by ancient pathogens. In the context of emerging infectious diseases, these past episodes of genetic adaptation may contribute to some of the observed population differences in the outcome of SARS-CoV-2 infection and the severity of COVID-19 illness.
Collapse
Affiliation(s)
- Gaspard Kerner
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, F-75015, Paris, France
| | - Lluis Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, F-75015, Paris, France.
- Collège de France, Chair of Human Genomics and Evolution, F-75005, Paris, France.
| |
Collapse
|
9
|
Werren EA, Garcia O, Bigham AW. Identifying adaptive alleles in the human genome: from selection mapping to functional validation. Hum Genet 2020; 140:241-276. [PMID: 32728809 DOI: 10.1007/s00439-020-02206-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
The suite of phenotypic diversity across geographically distributed human populations is the outcome of genetic drift, gene flow, and natural selection throughout human evolution. Human genetic variation underlying local biological adaptations to selective pressures is incompletely characterized. With the emergence of population genetics modeling of large-scale genomic data derived from diverse populations, scientists are able to map signatures of natural selection in the genome in a process known as selection mapping. Inferred selection signals further can be used to identify candidate functional alleles that underlie putative adaptive phenotypes. Phenotypic association, fine mapping, and functional experiments facilitate the identification of candidate adaptive alleles. Functional investigation of candidate adaptive variation using novel techniques in molecular biology is slowly beginning to unravel how selection signals translate to changes in biology that underlie the phenotypic spectrum of our species. In addition to informing evolutionary hypotheses of adaptation, the discovery and functional annotation of adaptive alleles also may be of clinical significance. While selection mapping efforts in non-European populations are growing, there remains a stark under-representation of diverse human populations in current public genomic databases, of both clinical and non-clinical cohorts. This lack of inclusion limits the study of human biological variation. Identifying and functionally validating candidate adaptive alleles in more global populations is necessary for understanding basic human biology and human disease.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Obed Garcia
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California Los Angeles, 341 Haines Hall, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Footprints of natural selection at the mannose-6-phosphate isomerase locus in barnacles. Proc Natl Acad Sci U S A 2020; 117:5376-5385. [PMID: 32098846 PMCID: PMC7071928 DOI: 10.1073/pnas.1918232117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The rocky intertidal is a natural laboratory to study how natural selection acts on the genes and proteins responsible for organismal survival and reproduction. Alternative forms of enzymes that differ across the intertidal have been known for decades and have provided examples of selection, but the genetic basis of such enzyme variation is known in only a few cases. In this paper, we present molecular evidence of natural selection at the Mpi gene, a key enzyme in energy metabolism that alters survival of barnacles living across the stress gradient imposed by the intertidal. Our study demonstrates how natural selection can facilitate survival in highly heterogeneous environments through the maintenance of multiple molecular solutions to ecological stresses. The mannose-6-phosphate isomerase (Mpi) locus in Semibalanus balanoides has been studied as a candidate gene for balancing selection for more than two decades. Previous work has shown that Mpi allozyme genotypes (fast and slow) have different frequencies across Atlantic intertidal zones due to selection on postsettlement survival (i.e., allele zonation). We present the complete gene sequence of the Mpi locus and quantify nucleotide polymorphism in S. balanoides, as well as divergence to its sister taxon Semibalanus cariosus. We show that the slow allozyme contains a derived charge-altering amino acid polymorphism, and both allozyme classes correspond to two haplogroups with multiple internal haplotypes. The locus shows several footprints of balancing selection around the fast/slow site: an enrichment of positive Tajima’s D for nonsynonymous mutations, an excess of polymorphism, and a spike in the levels of silent polymorphism relative to silent divergence, as well as a site frequency spectrum enriched for midfrequency mutations. We observe other departures from neutrality across the locus in both coding and noncoding regions. These include a nonsynonymous trans-species polymorphism and a recent mutation under selection within the fast haplogroup. The latter suggests ongoing allelic replacement of functionally relevant amino acid variants. Moreover, predicted models of Mpi protein structure provide insight into the functional significance of the putatively selected amino acid polymorphisms. While footprints of selection are widespread across the range of S. balanoides, our data show that intertidal zonation patterns are variable across both spatial and temporal scales. These data provide further evidence for heterogeneous selection on Mpi.
Collapse
|
11
|
An Evolutionary Perspective on the Impact of Genomic Copy Number Variation on Human Health. J Mol Evol 2019; 88:104-119. [PMID: 31522275 DOI: 10.1007/s00239-019-09911-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Copy number variants (CNVs), deletions and duplications of segments of DNA, account for at least five times more variable base pairs in humans than single-nucleotide variants. Several common CNVs were shown to change coding and regulatory sequences and thus dramatically affect adaptive phenotypes involving immunity, perception, metabolism, skin structure, among others. Some of these CNVs were also associated with susceptibility to cancer, infection, and metabolic disorders. These observations raise the possibility that CNVs are a primary contributor to human phenotypic variation and consequently evolve under selective pressures. Indeed, locus-specific haplotype-level analyses revealed signatures of natural selection on several CNVs. However, more traditional tests of selection which are often applied to single-nucleotide variation often have diminished statistical power when applied to CNVs because they often do not show strong linkage disequilibrium with nearby variants. Recombination-based formation mechanisms of CNVs lead to frequent recurrence and gene conversion events, breaking the linkage disequilibrium involving CNVs. Similar methodological challenges also prevent routine genome-wide association studies to adequately investigate the impact of CNVs on heritable human disease. Thus, we argue that the full relevance of CNVs to human health and evolution is yet to be elucidated. We further argue that a holistic investigation of formation mechanisms within an evolutionary framework would provide a powerful framework to understand the functional and biomedical impact of CNVs. In this paper, we review several cases where studies reveal diverse evolutionary histories and unexpected functional consequences of CNVs. We hope that this review will encourage further work on CNVs by both evolutionary and medical geneticists.
Collapse
|
12
|
Tarekegn GM, Wouobeng P, Jaures KS, Mrode R, Edea Z, Liu B, Zhang W, Mwai OA, Dessie T, Tesfaye K, Strandberg E, Berglund B, Mutai C, Osama S, Wolde AT, Birungi J, Djikeng A, Meutchieye F. Genome-wide diversity and demographic dynamics of Cameroon goats and their divergence from east African, north African, and Asian conspecifics. PLoS One 2019; 14:e0214843. [PMID: 31002664 PMCID: PMC6474588 DOI: 10.1371/journal.pone.0214843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/21/2019] [Indexed: 11/18/2022] Open
Abstract
Indigenous goats make significant contributions to Cameroon’s national and local economy, but little effort has been devoted to identifying the populations. Here, we assessed the genetic diversity and demographic dynamics of Cameroon goat populations using mitochondrial DNA (two populations) and autosomal markers (four populations) generated with the Caprine 50K SNP chip. To infer genetic relationships at continental and global level, genotype data on six goat populations from Ethiopia and one population each from Egypt, Morocco, Iran, and China were included in the analysis. The mtDNA analysis revealed 83 haplotypes, all belonging to haplogroup A, in Cameroon goats. Four haplotypes were shared between goats found in Cameroon, Mozambique, Namibia, Zimbabwe, Kenya, and Ethiopia. Analysis of autosomal SNPs in Cameroon goats revealed the lowest HO (0.335±0.13) and HE (0.352±0.15) in the North-west Highland and Central Highland populations, respectively. Overall, the highest HO (0.401±0.12) and HE (0.422±0.12) were found for Barki and Iranian goats, respectively. Barki goats had the highest average MAF, while Central Highland Cameroon goats had the lowest. Overall, Cameroon goats demonstrated high FIS. AMOVA revealed that 13.29% of the variation was explained by genetic differences between the six population groups. Low average FST (0.01) suggests intermixing among Cameroon goats. All measures indicated that Cameroon goats are closer to Moroccan goats than to other goat populations. PCA and STRUCTURE analyses poorly differentiated the Cameroon goats, as did genetic distance, Neighbor-Net network, and neighbor-joining tree analyses. The haplotype analysis of mtDNA showed the initial dispersion of goats to Cameroon and central Africa from north-east Africa following the Nile Delta. Whereas, the approximate Bayesian computation indicated Cameroon goats were separated from Moroccan goats after 506 generations in later times (~1518 YA), as supported by the phylogenetic net-work and admixture outputs. Overall, indigenous goats in Cameroon show weak phylogenetic structure, suggesting either extensive intermixing.
Collapse
Affiliation(s)
- Getinet Mekuriaw Tarekegn
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Animal Production and Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
- * E-mail: (GMT); (FM)
| | - Patrick Wouobeng
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
- Faculty of Agronomy and Agriculture, University of Dschang, Dschang, Cameroon
| | - Kouam Simo Jaures
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
- Faculty of Agronomy and Agriculture, University of Dschang, Dschang, Cameroon
| | - Raphael Mrode
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Zewdu Edea
- Department of Animal Science, Chungbuk National University, Cheongju, Korea
| | - Bin Liu
- Nei Mongol BioNew Technology Co.Ltd, Hohhot, China
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Okeyo Ally Mwai
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Tadelle Dessie
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Kassahun Tesfaye
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Erling Strandberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Britt Berglund
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Collins Mutai
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | - Sarah Osama
- The University of Queensland, Queensland, Australia
| | - Asaminew Tassew Wolde
- Department of Animal Production and Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Josephine Birungi
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | - Appolinaire Djikeng
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health, The University of Edinburgh, Scotland, United Kingdom
| | - Félix Meutchieye
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
- Faculty of Agronomy and Agriculture, University of Dschang, Dschang, Cameroon
- * E-mail: (GMT); (FM)
| |
Collapse
|
13
|
Nye J, Laayouni H, Kuhlwilm M, Mondal M, Marques-Bonet T, Bertranpetit J. Selection in the Introgressed Regions of the Chimpanzee Genome. Genome Biol Evol 2018; 10:1132-1138. [PMID: 29635458 PMCID: PMC5905441 DOI: 10.1093/gbe/evy077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
During the demographic history of the Pan clade, there has been gene-flow between species, likely >200,000 years ago. Bonobo haplotypes in three subspecies of chimpanzee have been identified to be segregating in modern-day chimpanzee populations, suggesting that these haplotypes, with increased differentiation, may be a target of natural selection. Here, we investigate signatures of adaptive introgression within the bonobo-like haplotypes in chimpanzees using site frequency spectrum-based tests. We find evidence for subspecies-specific adaptations in introgressed regions involved with male reproduction in central chimpanzees, the immune system in eastern chimpanzees, female reproduction and the nervous system in Nigeria-Cameroon chimpanzees. Furthermore, our results indicate signatures of balancing selection in some of the putatively introgressed regions. This might be the product of long-term balancing selection resulting in a similar genomic signature as introgression, or possibly balancing selection acting on alleles reintroduced through gene flow.
Collapse
Affiliation(s)
- Jessica Nye
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Bioinformatics Studies, ESCI-UPF, Barcelona, Spain
| | - Martin Kuhlwilm
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Mayukh Mondal
- Institute of Genomics, University of Tartu, Estonian Biocentre, Tartu, Estonia
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| |
Collapse
|
14
|
Zhang P, Huang K, Zhang B, Dunn DW, Chen D, Li F, Qi X, Guo S, Li B. High polymorphism in MHC-DRB genes in golden snub-nosed monkeys reveals balancing selection in small, isolated populations. BMC Evol Biol 2018. [PMID: 29534675 PMCID: PMC5851093 DOI: 10.1186/s12862-018-1148-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Maintaining variation in immune genes, such as those of the major histocompatibility complex (MHC), is important for individuals in small, isolated populations to resist pathogens and parasites. The golden snub-nosed monkey (Rhinopithecus roxellana), an endangered primate endemic to China, has experienced a rapid reduction in numbers and severe population fragmentation over recent years. For this study, we measured the DRB diversity among 122 monkeys from three populations in the Qinling Mountains, and estimated the relative importance of different agents of selection in maintaining variation of DRB genes. Results We identified a total of 19 DRB sequences, in which five alleles were novel. We found high DRB variation in R. roxellana and three branches of evidence suggesting that balancing selection has contributed to maintaining MHC polymorphism over the long term in this species: i) different patterns of both genetic diversity and population differentiation were detected at MHC and neutral markers; ii) an excess of non-synonymous substitutions compared to synonymous substitutions at antigen binding sites, and maximum-likelihood-based random-site models, showed significant positive selection; and iii) phylogenetic analyses revealed a pattern of trans-species evolution for DRB genes. Conclusions High levels of DRB diversity in these R. roxellana populations may reflect strong selection pressure in this species. Patterns of genetic diversity and population differentiation, positive selection, as well as trans-species evolution, suggest that pathogen-mediated balancing selection has contributed to maintaining MHC polymorphism in R. roxellana over the long term. This study furthers our understanding of the role pathogen-mediated balancing selection has in maintaining variation in MHC genes in small and fragmented populations of free-ranging vertebrates. Electronic supplementary material The online version of this article (10.1186/s12862-018-1148-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pei Zhang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Kang Huang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Bingyi Zhang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Derek W Dunn
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Dan Chen
- Middle School Affiliated to Northwest University, Xi'an, China
| | - Fan Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaoguang Qi
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Songtao Guo
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China. .,Xi'an Branch of Chinese Academy of Science, Xi'an, China.
| |
Collapse
|
15
|
Simons ND, Eick GN, Ruiz-Lopez MJ, Omeja PA, Chapman CA, Goldberg TL, Ting N, Sterner KN. Cis-regulatory evolution in a wild primate: Infection-associated genetic variation drives differential expression of MHC-DQA1 in vitro. Mol Ecol 2017; 26:4523-4535. [PMID: 28665019 PMCID: PMC5570663 DOI: 10.1111/mec.14221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 06/10/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022]
Abstract
Few studies have combined genetic association analyses with functional characterization of infection-associated SNPs in natural populations of nonhuman primates. Here, we investigate the relationship between host genetic variation, parasitism and natural selection in a population of red colobus (Procolobus rufomitratus tephrosceles) in Kibale National Park, Uganda. We collected parasitological, cellular and genomic data to test the following hypotheses: (i) MHC-DQA1 regulatory genetic variation is associated with control of whipworm (Trichuris) infection in a natural population of red colobus; (ii) infection-associated SNPs are functional in driving differential gene expression in vitro; and (iii) balancing selection has shaped patterns of variation in the MHC-DQA1 promoter. We identified two SNPs in the MHC-DQA1 promoter, both in transcription factor binding sites, and both of which are associated with decreased control of Trichuris infection. We characterized the function of both SNPs by testing differences in gene expression between the two alleles of each SNP in two mammalian cell lines. Alleles of one of the SNPs drove differential gene expression in both cell lines, while the other SNP drove differences in expression in one of the cell lines. Additionally, we found evidence of balancing selection acting on the MHC-DQA1 promoter, including extensive trans-species polymorphisms between red colobus and other primates, and an excess of intermediate-frequency alleles relative to genome-wide, coding and noncoding RADseq data. Our data suggest that balancing selection provides adaptive regulatory flexibility that outweighs the consequences of increased parasite infection intensity in heterozygotes.
Collapse
Affiliation(s)
- Noah D. Simons
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| | - Geeta N. Eick
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| | | | - Patrick A. Omeja
- Makerere University Biological Field Station, P.O Box 967, Fort Portal, Uganda
| | - Colin A. Chapman
- Makerere University Biological Field Station, P.O Box 967, Fort Portal, Uganda
- Department of Anthropology and McGill School of Environment, Montreal, Quebec, H3A 2T7, Canada
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53725, USA
- Global Health Institute, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Nelson Ting
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
16
|
Hohenbrink P, Mundy NI, Radespiel U. Population genetics of mouse lemur vomeronasal receptors: current versus past selection and demographic inference. BMC Evol Biol 2017; 17:28. [PMID: 28109265 PMCID: PMC5251345 DOI: 10.1186/s12862-017-0874-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/05/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A major effort is underway to use population genetic approaches to identify loci involved in adaptation. One issue that has so far received limited attention is whether loci that show a phylogenetic signal of positive selection in the past also show evidence of ongoing positive selection at the population level. We address this issue using vomeronasal receptors (VRs), a diverse gene family in mammals involved in intraspecific communication and predator detection. In mouse lemurs, we previously demonstrated that both subfamilies of VRs (V1Rs and V2Rs) show a strong signal of directional selection in interspecific analyses. We predicted that ongoing sexual selection and/or co-evolution with predators may lead to current directional or balancing selection on VRs. Here, we re-sequence 17 VRs and perform a suite of selection and demographic analyses in sympatric populations of two species of mouse lemurs (Microcebus murinus and M. ravelobensis) in northwestern Madagascar. RESULTS M. ravelobensis had consistently higher genetic diversity at VRs than M. murinus. In general, we find little evidence for positive selection, with most loci evolving under purifying selection and one locus even showing evidence of functional loss in M. ravelobensis. However, a few loci in M. ravelobensis show potential evidence of positive selection. Using mismatch distributions and expansion models, we infer a more recent colonisation of the habitat by M. murinus than by M. ravelobensis, which most likely speciated in this region earlier on. CONCLUSIONS These findings suggest that the analysis of VR variation is useful in inferring demographic and phylogeographic history of mouse lemurs. In conclusion, this study reveals a substantial heterogeneity over time in selection on VR loci, suggesting that VR evolution is episodic.
Collapse
Affiliation(s)
- Philipp Hohenbrink
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany.,Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| | - Nicholas I Mundy
- Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
17
|
Emergence and evolution of inter-specific segregating retrocopies in cynomolgus monkey (Macaca fascicularis) and rhesus macaque (Macaca mulatta). Sci Rep 2016; 6:32598. [PMID: 27600022 PMCID: PMC5013489 DOI: 10.1038/srep32598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/10/2016] [Indexed: 11/13/2022] Open
Abstract
Retroposition is an RNA-mediated mechanism to generate gene duplication, and is believed to play an important role in genome evolution and phenotypic adaptation in various species including primates. Previous studies suggested an elevated rate of recent retroposition in the rhesus macaque genome. To better understand the impact of retroposition on macaque species which have undergone an adaptive radiation approximately 3–6 million years ago, we developed a bioinformatics pipeline to identify recently derived retrocopies in cynomolgus monkeys. As a result, we identified seven experimentally validated young retrocopies, all of which are polymorphic in cynomolgus monkeys. Unexpectedly, five of them are also present in rhesus monkeys and are still segregating. Molecular evolutionary analysis indicates that the observed inter-specific polymorphism is attribute to ancestral polymorphism. Further population genetics analysis provided strong evidence of balancing selection on at least one case (Crab-eating monkey retrocopy 6, or CER6) in both species. CER6 is in adjacent with an immunoglobulin related gene and may be involved in host-pathogen interaction, a well-known target of balancing selection. Altogether, our data support that retroposition is an important force to shape genome evolution and species adaptation.
Collapse
|
18
|
Song X, Zhang P, Huang K, Chen D, Guo S, Qi X, He G, Pan R, Li B. The influence of positive selection and trans-species evolution on DPB diversity in the golden snub-nosed monkeys (Rhinopithecus roxellana). Primates 2016; 57:489-99. [PMID: 27209173 DOI: 10.1007/s10329-016-0544-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Genetic variation plays a significant role in the adaptive potential of the endangered species. The variation at major histocompatibility complex (MHC) genes can offer valuable information on selective pressure related to natural selection and environmental adaptation, particularly the ability of a host to continuously resist evolving parasites. Thus, the genetic polymorphism on exon 2 of the MHC DPB1 gene in the golden snub-nosed monkeys (Rhinopithecus roxellana) was specifically analyzed. The results show that the 6 Rhro-DPB1 alleles identified from 87 individuals exhibit positive selection and trans-species polymorphism. The results also imply that although the populations of the species have experienced dramatic reduction and severe habitat fragmentation in recent Chinese history, balancing selection still maintains relatively consistent, with moderate DPB1 polymorphism. Thus, the study provides valuable information and evidence in developing effective strategies and tactics for genetic health and population size expansion of the species. It also offers strong genetic background for further studies on other primate species, particularly those in Rhinopithecus-a further endeavor that would result in fully understanding the MHC genetic information of the Asian colobines.
Collapse
Affiliation(s)
- Xiaoyue Song
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Pei Zhang
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Kang Huang
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Dan Chen
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Songtao Guo
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xiaoguang Qi
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Gang He
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ruliang Pan
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China.,The School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China. .,Xi'an Branch of Chinese Academy of Sciences, Xi'an, China.
| |
Collapse
|
19
|
The impact of host metapopulation structure on the population genetics of colonizing bacteria. J Theor Biol 2016; 396:53-62. [DOI: 10.1016/j.jtbi.2016.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/15/2016] [Accepted: 02/13/2016] [Indexed: 11/17/2022]
|
20
|
Zhong X, Peng J, Shen QS, Chen JY, Gao H, Luan X, Yan S, Huang X, Zhang SJ, Xu L, Zhang X, Tan BCM, Li CY. RhesusBase PopGateway: Genome-Wide Population Genetics Atlas in Rhesus Macaque. Mol Biol Evol 2016; 33:1370-5. [PMID: 26882984 PMCID: PMC4839223 DOI: 10.1093/molbev/msw025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although population genetics studies have significantly accelerated the evolutionary and functional interrogations of genes and regulations, limited polymorphism data are available for rhesus macaque, the model animal closely related to human. Here, we report the first genome-wide effort to identify and visualize the population genetics profile in rhesus macaque. On the basis of the whole-genome sequencing of 31 independent macaque animals, we profiled a comprehensive polymorphism map with 46,146,548 sites. The allele frequency for each polymorphism site, the haplotype structure, as well as multiple population genetics parameters were then calculated on a genome-wide scale. We further developed a specific interface, the RhesusBase PopGateway, to facilitate the visualization of these annotations, and highlighted the applications of this highly integrative platform in clarifying the selection signatures of genes and regulations in the context of the primate evolution. Overall, the updated RhesusBase provides a comprehensive monkey population genetics framework for in-depth evolutionary studies of human biology.
Collapse
Affiliation(s)
- Xiaoming Zhong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jiguang Peng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qing Sunny Shen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jia-Yu Chen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Han Gao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xuke Luan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China Peking-Tsinghua Center for Life Sciences, Beijing, China Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shouyu Yan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xin Huang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Shi-Jian Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Luying Xu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiuqin Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Chuan-Yun Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
21
|
Sato MP, Makino T, Kawata M. Natural selection in a population of Drosophila melanogaster explained by changes in gene expression caused by sequence variation in core promoter regions. BMC Evol Biol 2016; 16:35. [PMID: 26860869 PMCID: PMC4748610 DOI: 10.1186/s12862-016-0606-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/29/2016] [Indexed: 11/29/2022] Open
Abstract
Background Understanding the evolutionary forces that influence variation in gene regulatory regions in natural populations is an important challenge for evolutionary biology because natural selection for such variations could promote adaptive phenotypic evolution. Recently, whole-genome sequence analyses have identified regulatory regions subject to natural selection. However, these studies could not identify the relationship between sequence variation in the detected regions and change in gene expression levels. We analyzed sequence variations in core promoter regions, which are critical regions for gene regulation in higher eukaryotes, in a natural population of Drosophila melanogaster, and identified core promoter sequence variations associated with differences in gene expression levels subjected to natural selection. Results Among the core promoter regions whose sequence variation could change transcription factor binding sites and explain differences in expression levels, three core promoter regions were detected as candidates associated with purifying selection or selective sweep and seven as candidates associated with balancing selection, excluding the possibility of linkage between these regions and core promoter regions. CHKov1, which confers resistance to the sigma virus and related insecticides, was identified as core promoter regions that has been subject to selective sweep, although it could not be denied that selection for variation in core promoter regions was due to linked single nucleotide polymorphisms in the regulatory region outside core promoter regions. Nucleotide changes in core promoter regions of CHKov1 caused the loss of two basal transcription factor binding sites and acquisition of one transcription factor binding site, resulting in decreased gene expression levels. Of nine core promoter regions regions associated with balancing selection, brat, and CG9044 are associated with neuromuscular junction development, and Nmda1 are associated with learning, behavioral plasticity, and memory. Diversity of neural and behavioral traits may have been maintained by balancing selection. Conclusions Our results revealed the evolutionary process occurring by natural selection for differences in gene expression levels caused by sequence variation in core promoter regions in a natural population. The sequences of core promoter regions were diverse even within the population, possibly providing a source for natural selection. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0606-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mitsuhiko P Sato
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
| | - Takashi Makino
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
| | - Masakado Kawata
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
22
|
Mehlotra RK, Hall NB, Bruse SE, John B, Zikursh MJB, Stein CM, Siba PM, Zimmerman PA. CCR2, CCR5, and CXCL12 variation and HIV/AIDS in Papua New Guinea. INFECTION GENETICS AND EVOLUTION 2015; 36:165-173. [PMID: 26397046 DOI: 10.1016/j.meegid.2015.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/28/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
Polymorphisms in chemokine receptors, serving as HIV co-receptors, and their ligands are among the well-known host genetic factors associated with susceptibility to HIV infection and/or disease progression. Papua New Guinea (PNG) has one of the highest adult HIV prevalences in the Asia-Pacific region. However, information regarding the distribution of polymorphisms in chemokine receptor (CCR5, CCR2) and chemokine (CXCL12) genes in PNG is very limited. In this study, we genotyped a total of nine CCR2-CCR5 polymorphisms, including CCR2 190G >A, CCR5 -2459G >A and Δ32, and CXCL12 801G >A in PNG (n=258), North America (n=184), and five countries in West Africa (n=178). Using this data, we determined previously characterized CCR5 haplotypes. In addition, based on the previously reported associations of CCR2 190, CCR5 -2459, CCR5 open reading frame, and CXCL12 801 genotypes with HIV acquisition and/or disease progression, we calculated composite full risk scores, considering both protective as well as susceptibility effects of the CXCL12 801 AA genotype. We observed a very high frequency of the CCR5 -2459A allele (0.98) in the PNG population, which together with the absence of Δ32 resulted in a very high frequency of the HHE haplotype (0.92). These frequencies were significantly higher than in any other population (all P-values<0.001). Regardless of whether we considered the CXCL12 801 AA genotype protective or susceptible, the risk scores were significantly higher in the PNG population compared with any other population (all P-values<0.001). The results of this study provide new insights regarding CCR5 variation in the PNG population, and suggest that the collective variation in CCR2, CCR5, and CXCL12 may increase the risk of HIV/AIDS in a large majority of Papua New Guineans.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Noemi B Hall
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Shannon E Bruse
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Bangan John
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Melinda J Blood Zikursh
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Catherine M Stein
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA.,Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
23
|
Fish I, Boissinot S. Contrasted patterns of variation and evolutionary convergence at the antiviral OAS1 gene in old world primates. Immunogenetics 2015; 67:487-99. [PMID: 26156123 PMCID: PMC4809017 DOI: 10.1007/s00251-015-0855-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/24/2015] [Indexed: 11/13/2022]
Abstract
The oligoadenylate synthetase 1 (OAS1) enzyme acts as an innate sensor of viral infection and plays a major role in the defense against a wide diversity of viruses. Polymorphisms at OAS1 have been shown to correlate with differential susceptibility to several infections of great public health significance, including hepatitis C virus, SARS coronavirus, and West Nile virus. Population genetics analyses in hominoids have revealed interesting evolutionary patterns. In Central African chimpanzee, OAS1 has evolved under long-term balancing selection, resulting in the persistence of polymorphisms since the origin of hominoids, whereas human populations have acquired and retained OAS1 alleles from Neanderthal and Denisovan origin. We decided to further investigate the evolution of OAS1 in primates by characterizing intra-specific variation in four species commonly used as models in infectious disease research: the rhesus macaque, the cynomolgus macaque, the olive baboon, and the Guinea baboon. In baboons, OAS1 harbors a very low level of variation. In contrast, OAS1 in macaques exhibits a level of polymorphism far greater than the genomic average, which is consistent with the action of balancing selection. The region of the enzyme that directly interacts with viral RNA, the RNA-binding domain, contains a number of polymorphisms likely to affect the RNA-binding affinity of OAS1. This strongly suggests that pathogen-driven balancing selection acting on the RNA-binding domain of OAS1 is maintaining variation at this locus. Interestingly, we found that a number of polymorphisms involved in RNA-binding were shared between macaques and chimpanzees. This represents an unusual case of convergent polymorphism.
Collapse
Affiliation(s)
- Ian Fish
- Biology Department, Queens College, the City University of New York, Flushing, NY USA
- Graduate Center, the City University of New York, New York, NY USA
| | | |
Collapse
|
24
|
Epigenetic mechanisms, T-cell activation, and CCR5 genetics interact to regulate T-cell expression of CCR5, the major HIV-1 coreceptor. Proc Natl Acad Sci U S A 2015; 112:E4762-71. [PMID: 26307764 DOI: 10.1073/pnas.1423228112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
T-cell expression levels of CC chemokine receptor 5 (CCR5) are a critical determinant of HIV/AIDS susceptibility, and manifest wide variations (i) between T-cell subsets and among individuals and (ii) in T-cell activation-induced increases in expression levels. We demonstrate that a unifying mechanism for this variation is differences in constitutive and T-cell activation-induced DNA methylation status of CCR5 cis-regulatory regions (cis-regions). Commencing at an evolutionarily conserved CpG (CpG -41), CCR5 cis-regions manifest lower vs. higher methylation in T cells with higher vs. lower CCR5 levels (memory vs. naïve T cells) and in memory T cells with higher vs. lower CCR5 levels. HIV-related and in vitro induced T-cell activation is associated with demethylation of these cis-regions. CCR5 haplotypes associated with increased vs. decreased gene/surface expression levels and HIV/AIDS susceptibility magnify vs. dampen T-cell activation-associated demethylation. Methylation status of CCR5 intron 2 explains a larger proportion of the variation in CCR5 levels than genotype or T-cell activation. The ancestral, protective CCR5-HHA haplotype bears a polymorphism at CpG -41 that is (i) specific to southern Africa, (ii) abrogates binding of the transcription factor CREB1 to this cis-region, and (iii) exhibits a trend for overrepresentation in persons with reduced susceptibility to HIV and disease progression. Genotypes lacking the CCR5-Δ32 mutation but with hypermethylated cis-regions have CCR5 levels similar to genotypes heterozygous for CCR5-Δ32. In HIV-infected individuals, CCR5 cis-regions remain demethylated, despite restoration of CD4+ counts (≥800 cells per mm(3)) with antiretroviral therapy. Thus, methylation content of CCR5 cis-regions is a central epigenetic determinant of T-cell CCR5 levels, and possibly HIV-related outcomes.
Collapse
|
25
|
Teixeira JC, de Filippo C, Weihmann A, Meneu JR, Racimo F, Dannemann M, Nickel B, Fischer A, Halbwax M, Andre C, Atencia R, Meyer M, Parra G, Pääbo S, Andrés AM. Long-Term Balancing Selection in LAD1 Maintains a Missense Trans-Species Polymorphism in Humans, Chimpanzees, and Bonobos. Mol Biol Evol 2015; 32:1186-96. [PMID: 25605789 DOI: 10.1093/molbev/msv007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Balancing selection maintains advantageous genetic and phenotypic diversity in populations. When selection acts for long evolutionary periods selected polymorphisms may survive species splits and segregate in present-day populations of different species. Here, we investigate the role of long-term balancing selection in the evolution of protein-coding sequences in the Homo-Pan clade. We sequenced the exome of 20 humans, 20 chimpanzees, and 20 bonobos and detected eight coding trans-species polymorphisms (trSNPs) that are shared among the three species and have segregated for approximately 14 My of independent evolution. Although the majority of these trSNPs were found in three genes of the major histocompatibility locus cluster, we also uncovered one coding trSNP (rs12088790) in the gene LAD1. All these trSNPs show clustering of sequences by allele rather than by species and also exhibit other signatures of long-term balancing selection, such as segregating at intermediate frequency and lying in a locus with high genetic diversity. Here, we focus on the trSNP in LAD1, a gene that encodes for Ladinin-1, a collagenous anchoring filament protein of basement membrane that is responsible for maintaining cohesion at the dermal-epidermal junction; the gene is also an autoantigen responsible for linear IgA disease. This trSNP results in a missense change (Leucine257Proline) and, besides altering the protein sequence, is associated with changes in gene expression of LAD1.
Collapse
Affiliation(s)
- João C Teixeira
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cesare de Filippo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Antje Weihmann
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Juan R Meneu
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fernando Racimo
- Department of Integrative Biology, University of California, Berkeley
| | - Michael Dannemann
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Fischer
- International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Michel Halbwax
- Clinique vétérinaire du Dr. Jacquemin, Maisons-Alfort, France
| | - Claudine Andre
- Lola Ya Bonobo sanctuary, Kinshasa, Democratic Republic Congo
| | - Rebeca Atencia
- Réserve Naturelle Sanctuaire à Chimpanzés de Tchimpounga, Jane Goodall Institute, Pointe-Noire, Republic of Congo
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Genís Parra
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Aida M Andrés
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
26
|
Árnason E, Halldórsdóttir K. Nucleotide variation and balancing selection at the Ckma gene in Atlantic cod: analysis with multiple merger coalescent models. PeerJ 2015; 3:e786. [PMID: 25755922 PMCID: PMC4349156 DOI: 10.7717/peerj.786] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/03/2015] [Indexed: 01/11/2023] Open
Abstract
High-fecundity organisms, such as Atlantic cod, can withstand substantial natural selection and the entailing genetic load of replacing alleles at a number of loci due to their excess reproductive capacity. High-fecundity organisms may reproduce by sweepstakes leading to highly skewed heavy-tailed offspring distribution. Under such reproduction the Kingman coalescent of binary mergers breaks down and models of multiple merger coalescent are more appropriate. Here we study nucleotide variation at the Ckma (Creatine Kinase Muscle type A) gene in Atlantic cod. The gene shows extreme differentiation between the North (Canada, Greenland, Iceland, Norway, Barents Sea) and the South (Faroe Islands, North-, Baltic-, Celtic-, and Irish Seas) with FST > 0.8 between regions whereas neutral loci show no differentiation. This is evidence of natural selection. The protein sequence is conserved by purifying selection whereas silent and non-coding sites show extreme differentiation. The unfolded site-frequency spectrum has three modes, a mode at singleton sites and two high frequency modes at opposite frequencies representing divergent branches of the gene genealogy that is evidence for balancing selection. Analysis with multiple-merger coalescent models can account for the high frequency of singleton sites and indicate reproductive sweepstakes. Coalescent time scales vary with population size and with the inverse of variance in offspring number. Parameter estimates using multiple-merger coalescent models show that times scales are faster than under the Kingman coalescent.
Collapse
Affiliation(s)
- Einar Árnason
- Institute of Life and Environmental Sciences, University of Iceland , Reykjavík , Iceland
| | - Katrín Halldórsdóttir
- Institute of Life and Environmental Sciences, University of Iceland , Reykjavík , Iceland
| |
Collapse
|
27
|
Heyer E, Quintana-Murci L. Evolutionary genetics as a tool to target genes involved in phenotypes of medical relevance. Evol Appl 2015; 2:71-80. [PMID: 25567848 PMCID: PMC3352415 DOI: 10.1111/j.1752-4571.2008.00061.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/04/2008] [Indexed: 12/01/2022] Open
Abstract
There is an increasing interest in detecting genes, or genomic regions, that have been targeted by natural selection. Indeed, the evolutionary approach for inferring the action of natural selection in the human genome represents a powerful tool for predicting regions of the genome potentially associated with disease and of interest in epidemiological genetic studies. Here, we review several examples going from candidate gene studies associated with specific phenotypes, including nutrition, infectious disease and climate adaptation, to whole genome scans for natural selection. All these studies illustrate the power of the evolutionary approach in identifying regions of the genome having played a major role in human survival and adaptation.
Collapse
Affiliation(s)
- Evelyne Heyer
- MNHN, Eco-Anthropologie, UMR 5145, CNRS-MNHN-P7, Musée de l'Homme Paris, France
| | - Lluis Quintana-Murci
- Institut Pasteur, Unit of Human Evolutionary Genetics, CNRS URA3012 Paris Cedex, France
| |
Collapse
|
28
|
Al-Mahruqi SH, Zadjali F, Beja-Pereira A, Koh CY, Balkhair A, Al-Jabri AA. Genetic diversity and prevalence of CCR2-CCR5 gene polymorphisms in the Omani population. Genet Mol Biol 2014; 37:7-14. [PMID: 24688285 PMCID: PMC3958329 DOI: 10.1590/s1415-47572014000100004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/11/2013] [Indexed: 11/22/2022] Open
Abstract
Polymorphisms in the regulatory region of the CCR5 gene affect protein expression and modulate the progress of HIV-1 disease. Because of this prominent role, variations in this gene have been under differential pressure and their frequencies vary among human populations. The CCR2V64I mutation is tightly linked to certain polymorphisms in the CCR5 gene. The current Omani population is genetically diverse, a reflection of their history as traders who ruled extensive regions around the Indian Ocean. In this study, we examined the CCR2-CCR5 haplotypes in Omanis and compared the patterns of genetic diversity with those of other populations. Blood samples were collected from 115 Omani adults and genomic DNA was screened to identify the polymorphic sites in the CCR5 gene and the CCR2V64I mutation. Four minor alleles were common: CCR5-2554T and CCR5-2086G showed frequencies of 49% and 46%, respectively, whereas CCR5-2459A and CCR5-2135C both had a frequency of 36%. These alleles showed moderate levels of heterozygosity, indicating that they were under balancing selection. However, the well-known allele CCR5Δ32 was relatively rare. Eleven haplotypes were identified, four of which were common: HHC (46%), HHE (20%), HHA (14%) and HHF*2 (12%).
Collapse
Affiliation(s)
- Samira H Al-Mahruqi
- Division of Immunology, Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fahad Zadjali
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Albano Beja-Pereira
- Center for Research in Biodiversity and Genetic Resources & Department of Biology, Faculty of Sciences, Universidade do Porto, Portugal
| | - Crystal Y Koh
- Division of Immunology, Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Abdullah Balkhair
- Infectious Diseases Unit, Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman
| | - Ali A Al-Jabri
- Division of Immunology, Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
29
|
Hull R, Dlamini Z. The role played by alternative splicing in antigenic variability in human endo-parasites. Parasit Vectors 2014; 7:53. [PMID: 24472559 PMCID: PMC4015677 DOI: 10.1186/1756-3305-7-53] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/17/2014] [Indexed: 01/03/2023] Open
Abstract
Endo-parasites that affect humans include Plasmodium, the causative agent of malaria, which remains one of the leading causes of death in human beings. Despite decades of research, vaccines to this and other endo-parasites remain elusive. This is in part due to the hyper-variability of the parasites surface proteins. Generally these surface proteins are encoded by a large family of genes, with only one being dominantly expressed at certain life stages. Another layer of complexity can be introduced through the alternative splicing of these surface proteins. The resulting isoforms may differ from each other with regard to cell localisation, substrate affinities and functions. They may even differ in structure to the extent that they are no longer recognised by the host’s immune system. In many cases this leads to changes in the N terminus of these proteins. The geographical localisation of endo-parasitic infections around the tropics and the highest incidences of HIV-1 infection in the same areas, adds a further layer of complexity as parasitic infections affect the host immune system resulting in higher HIV infection rates, faster disease progression, and an increase in the severity of infections and complications in HIV diagnosis. This review discusses some examples of parasite surface proteins that are alternatively spliced in trypanosomes, Plasmodium and the parasitic worm Schistosoma as well as what role alternate splicing may play in the interaction between HIV and these endo-parasites.
Collapse
Affiliation(s)
| | - Zodwa Dlamini
- University of South Africa, College of Agriculture and Environmental Sciences, College of Agriculture and Environmental Sciences, C/o Christiaan de Wet and Pioneer Avenue, Private Bag X6, Florida Science Campus, Florida, Johannesburg 1710, South Africa.
| |
Collapse
|
30
|
Abstract
Adaptive evolution has provided us with a unique set of characteristics that define us as humans, including morphological, physiological and cellular changes. Yet, natural selection provides no assurances that adaptation is without human health consequences; advantageous mutations will increase in frequency so long as there is a net gain in fitness. As such, the current incidence of human disease can depend on previous adaptations. Here, I review genome-wide and gene-specific studies in which adaptive evolution has played a role in shaping human genetic disease. In addition to the disease consequences of adaptive phenotypes, such as bipedal locomotion and resistance to certain pathogens, I review evidence that adaptive mutations have influenced the frequency of linked disease alleles through genetic hitchhiking. Taken together, the links between human adaptation and disease highlight the importance of their combined influence on functional variation within the human genome and offer opportunities to discover and characterize such variation.
Collapse
Affiliation(s)
- Justin C. Fay
- 4444 Forest Park Ave. Rm 5526, St. Louis, MO 63108, United States. Tel.: + 1 314 747 1808; fax: + 1 314 362 2156.
| |
Collapse
|
31
|
Genetic diversity of the HLA-G coding region in Amerindian populations from the Brazilian Amazon: a possible role of natural selection. Genes Immun 2013; 14:518-26. [PMID: 24089150 DOI: 10.1038/gene.2013.47] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/01/2013] [Accepted: 08/07/2013] [Indexed: 11/08/2022]
Abstract
HLA-G has an important role in the modulation of the maternal immune system during pregnancy, and evidence that balancing selection acts in the promoter and 3'UTR regions has been previously reported. To determine whether selection acts on the HLA-G coding region in the Amazon Rainforest, exons 2, 3 and 4 were analyzed in a sample of 142 Amerindians from nine villages of five isolated tribes that inhabit the Central Amazon. Six previously described single-nucleotide polymorphisms (SNPs) were identified and the Expectation-Maximization (EM) and PHASE algorithms were used to computationally reconstruct SNP haplotypes (HLA-G alleles). A new HLA-G allele, which originated in Amerindian populations by a crossing-over event between two widespread HLA-G alleles, was identified in 18 individuals. Neutrality tests evidenced that natural selection has a complex part in the HLA-G coding region. Although balancing selection is the type of selection that shapes variability at a local level (Native American populations), we have also shown that purifying selection may occur on a worldwide scale. Moreover, the balancing selection does not seem to act on the coding region as strongly as it acts on the flanking regulatory regions, and such coding signature may actually reflect a hitchhiking effect.
Collapse
|
32
|
Yoshiuchi I. Evidence of selection at insulin receptor substrate-1 gene loci. Acta Diabetol 2013; 50:775-9. [PMID: 22797928 DOI: 10.1007/s00592-012-0414-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/14/2012] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease characterized by insulin resistance and defect of insulin secretion. The worldwide prevalence of T2DM is steadily increasing. T2DM is also significantly associated with obesity, coronary artery disease (CAD), and metabolic syndrome. There is a clear difference in the prevalence of T2DM among populations, and T2DM is highly heritable. Human adaptations to environmental changes in food supply, lifestyle, and geography may have pressured the selection of genes associated with the metabolism of glucose, lipids, carbohydrates, and energy. The insulin receptor substrate-1 (IRS1) gene is considered a major T2DM gene, and common genetic variations near the IRS1 gene were found to be associated with T2DM, insulin resistance, adiposity, and CAD. Here, we aimed to find evidence of selection at the IRS1 gene loci using the HapMap population data. We investigated a 3-step test procedure-Wright's F statistics (Fst), the long-range haplotype (LRH) test, and the integrated haplotype score (iHS) test-to detect selection at the IRS1 gene loci using the HapMap population data. We observed that 1 CAD-associated SNP (rs2943634) and 1 adiposity- and insulin resistance-associated SNP (rs2943650) exhibited high Fst values. We also found selection at the IRS1 gene loci by the LRH test and the iHS test. These findings suggest evidence of selection at the IRS1 gene loci and that further studies should examine the adaptive evolution of T2DM genes.
Collapse
Affiliation(s)
- Issei Yoshiuchi
- Departments of Genetics, Diabetes Mellitus, and Medicine, Yoshiuchi Medical Diabetes Institute, 2-16-41 Kamakurayama, Kamakura City, Kanagawa, 248-0031, Japan,
| |
Collapse
|
33
|
Local selection of human populations shapes complex evolution patterns of CXCL10 gene. Immunogenetics 2013; 65:635-44. [PMID: 23754659 DOI: 10.1007/s00251-013-0712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
CXC motif chemokine 10 (CXCL10) is a small cytokine belonging to the CXC chemokine family, and it is secreted by several cell types in response to IFN-γ and regulates immune responses through the recruitment and activation of lymphocytes. As CXCL10 is very important in T-cell immunity and infectious diseases, we studied the effect of natural selection on the CXCL10 locus. By sequencing 74 individuals from three human populations, we found a complex pattern of natural selection acting on the CXCL10 locus. We discovered a signature of balancing selection in the European population with a significant positive Tajima's D value (2.57, P=0.005) and an excess of intermediate frequency alleles. However, we observed an excess of high frequency-derived alleles and a significant Fay and Wu's test statistics (P=0.015) in the Chinese population, which suggests that recent selective sweeps under positive selection had occurred. Also, there are a lot of alleles showing great frequency difference among populations. These results demonstrate that local selection has shaped CXCL10 evolution and indicates that there exist different actions of natural selection on the CXCL10 locus in different populations. This study provides insights into the likely relative roles of natural selection and population history in shaping today's genetic variation at the CXCL10 locus, indicates the relationship between adaptation to past infection and predisposition to autoimmunity in modern populations, improves our understanding of CXCL10 evolution, and motivates further investigations of the role of CXCL10 in infectious diseases and autoimmune diseases.
Collapse
|
34
|
de Groot NG, Bontrop RE. The HIV-1 pandemic: does the selective sweep in chimpanzees mirror humankind's future? Retrovirology 2013; 10:53. [PMID: 23705941 PMCID: PMC3667106 DOI: 10.1186/1742-4690-10-53] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/04/2013] [Indexed: 12/31/2022] Open
Abstract
An HIV-1 infection progresses in most human individuals sooner or later into AIDS, a devastating disease that kills more than a million people worldwide on an annual basis. Nonetheless, certain HIV-1-infected persons appear to act as long-term non-progressors, and elite control is associated with the presence of particular MHC class I allotypes such as HLA-B*27 or -B*57. The HIV-1 pandemic in humans arose from the cross-species transmission of SIVcpz originating from chimpanzees. Chimpanzees, however, appear to be relatively resistant to developing AIDS after HIV-1/SIVcpz infection. Mounting evidence illustrates that, in the distant past, chimpanzees experienced a selective sweep resulting in a severe reduction of their MHC class I repertoire. This was most likely caused by an HIV-1/SIV-like retrovirus, suggesting that chimpanzees may have experienced long-lasting host-virus relationships with SIV-like viruses. Hence, if natural selection is allowed to follow its course, prospects for the human population may look grim, thus underscoring the desperate need for an effective vaccine.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands.
| | | |
Collapse
|
35
|
Gokcumen O, Zhu Q, Mulder LCF, Iskow RC, Austermann C, Scharer CD, Raj T, Boss JM, Sunyaev S, Price A, Stranger B, Simon V, Lee C. Balancing selection on a regulatory region exhibiting ancient variation that predates human-neandertal divergence. PLoS Genet 2013; 9:e1003404. [PMID: 23593015 PMCID: PMC3623772 DOI: 10.1371/journal.pgen.1003404] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 02/07/2013] [Indexed: 11/25/2022] Open
Abstract
Ancient population structure shaping contemporary genetic variation has been recently appreciated and has important implications regarding our understanding of the structure of modern human genomes. We identified a ∼36-kb DNA segment in the human genome that displays an ancient substructure. The variation at this locus exists primarily as two highly divergent haplogroups. One of these haplogroups (the NE1 haplogroup) aligns with the Neandertal haplotype and contains a 4.6-kb deletion polymorphism in perfect linkage disequilibrium with 12 single nucleotide polymorphisms (SNPs) across diverse populations. The other haplogroup, which does not contain the 4.6-kb deletion, aligns with the chimpanzee haplotype and is likely ancestral. Africans have higher overall pairwise differences with the Neandertal haplotype than Eurasians do for this NE1 locus (p<10−15). Moreover, the nucleotide diversity at this locus is higher in Eurasians than in Africans. These results mimic signatures of recent Neandertal admixture contributing to this locus. However, an in-depth assessment of the variation in this region across multiple populations reveals that African NE1 haplotypes, albeit rare, harbor more sequence variation than NE1 haplotypes found in Europeans, indicating an ancient African origin of this haplogroup and refuting recent Neandertal admixture. Population genetic analyses of the SNPs within each of these haplogroups, along with genome-wide comparisons revealed significant FST (p = 0.00003) and positive Tajima's D (p = 0.00285) statistics, pointing to non-neutral evolution of this locus. The NE1 locus harbors no protein-coding genes, but contains transcribed sequences as well as sequences with putative regulatory function based on bioinformatic predictions and in vitro experiments. We postulate that the variation observed at this locus predates Human–Neandertal divergence and is evolving under balancing selection, especially among European populations. Natural selection shapes the genome in a non-random way, as an allele that contributes more to the reproductive fitness of a species increases in frequency within the population. Under balancing selection, a particular kind of natural selection, more than one allele increases in frequency in the population, likely due to a reproductive advantage of individuals carrying both alleles. Only a handful of loci have been well documented to evolve under balancing selection, with the HBB gene (sickle cell locus) being the best studied. Here, we report a non-coding (but putatively functional) locus that has maintained two divergent alleles in the human population since before the Human–Neandertal divergence and is therefore likely to be under balancing selection. These findings also provide a clear example for ancient African substructure.
Collapse
Affiliation(s)
- Omer Gokcumen
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Qihui Zhu
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lubbertus C. F. Mulder
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Rebecca C. Iskow
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christian Austermann
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Christopher D. Scharer
- Department of Microbiology, Emory University, Atlanta, Georgia, United States of America
| | - Towfique Raj
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Jeremy M. Boss
- Department of Microbiology, Emory University, Atlanta, Georgia, United States of America
| | - Shamil Sunyaev
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Alkes Price
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Barbara Stranger
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Viviana Simon
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, New York, New York, United States of America
- * E-mail: (VS); (CL)
| | - Charles Lee
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (VS); (CL)
| |
Collapse
|
36
|
Garfield D, Haygood R, Nielsen WJ, Wray GA. Population genetics of cis-regulatory sequences that operate during embryonic development in the sea urchin Strongylocentrotus purpuratus. Evol Dev 2013; 14:152-67. [PMID: 23017024 DOI: 10.1111/j.1525-142x.2012.00532.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Despite the fact that noncoding sequences comprise a substantial fraction of functional sites within all genomes, the evolutionary mechanisms that operate on genetic variation within regulatory elements remain poorly understood. In this study, we examine the population genetics of the core, upstream cis-regulatory regions of eight genes (AN, CyIIa, CyIIIa, Endo16, FoxB, HE, SM30 a, and SM50) that function during the early development of the purple sea urchin, Strongylocentrotus purpuratus. Quantitative and qualitative measures of segregating variation are not conspicuously different between cis-regulatory and closely linked "proxy neutral" noncoding regions containing no known functional sites. Length and compound mutations are common in noncoding sequences; conventional descriptive statistics ignore such mutations, under-representing true genetic variation by approximately 28% for these loci in this population. Patterns of variation in the cis-regulatory regions of six of the genes examined (CyIIa, CyIIIa, Endo16, FoxB, AN, and HE) are consistent with directional selection. Genetic variation within annotated transcription factor binding sites is comparable to, and frequently greater than, that of surrounding sequences. Comparisons of two paralog pairs (CyIIa/CyIIIa and AN/HE) suggest that distinct evolutionary processes have operated on their cis-regulatory regions following gene duplication. Together, these analyses provide a detailed view of the evolutionary mechanisms operating on noncoding sequences within a natural population, and underscore how little is known about how these processes operate on cis-regulatory sequences.
Collapse
Affiliation(s)
- David Garfield
- Department of Biology and Institute for Genome Sciences & Policy, Duke University, Box 90338, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
37
|
Abstract
The AIDS era has seen multiple advances in the power of genetics research; scores of host genetic protective factors have been nominated and several have translated to the bedside. We discuss how genomics may inform HIV/AIDS prevention, treatment and eradication.
Collapse
|
38
|
Vernot B, Stergachis AB, Maurano MT, Vierstra J, Neph S, Thurman RE, Stamatoyannopoulos JA, Akey JM. Personal and population genomics of human regulatory variation. Genome Res 2013; 22:1689-97. [PMID: 22955981 PMCID: PMC3431486 DOI: 10.1101/gr.134890.111] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The characteristics and evolutionary forces acting on regulatory variation in humans remains elusive because of the difficulty in defining functionally important noncoding DNA. Here, we combine genome-scale maps of regulatory DNA marked by DNase I hypersensitive sites (DHSs) from 138 cell and tissue types with whole-genome sequences of 53 geographically diverse individuals in order to better delimit the patterns of regulatory variation in humans. We estimate that individuals likely harbor many more functionally important variants in regulatory DNA compared with protein-coding regions, although they are likely to have, on average, smaller effect sizes. Moreover, we demonstrate that there is significant heterogeneity in the level of functional constraint in regulatory DNA among different cell types. We also find marked variability in functional constraint among transcription factor motifs in regulatory DNA, with sequence motifs for major developmental regulators, such as HOX proteins, exhibiting levels of constraint comparable to protein-coding regions. Finally, we perform a genome-wide scan of recent positive selection and identify hundreds of novel substrates of adaptive regulatory evolution that are enriched for biologically interesting pathways such as melanogenesis and adipocytokine signaling. These data and results provide new insights into patterns of regulatory variation in individuals and populations and demonstrate that a large proportion of functionally important variation lies beyond the exome.
Collapse
Affiliation(s)
- Benjamin Vernot
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Darc M, Schrago CG, Soares EA, Pissinatti A, Menezes AN, Soares MA, Seuánez HN. Molecular evolution of α4 integrin binding site to lentiviral envelope proteins in new world primates. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2012; 12:1501-7. [PMID: 22691367 DOI: 10.1016/j.meegid.2012.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/02/2012] [Accepted: 05/25/2012] [Indexed: 01/09/2023]
Abstract
Integrin epitopes encoded by ITGA4 exons 5 and 6 encompass the α4β7 binding site to natural ligands and HIV-1 gp120. Functional assays of α4 variants of new world primates (NWP) showed reduced binding of several ligands, including the HIV-1 envelope, probably accounting for restriction phenotypes conferring resistance to lentiviral infection (Darc et al., 2011). In this paper, we have analyzed, by cloning and sequencing, the α4 domain polymorphisms present in 10 NWP species and four old world primates (including human). Analyses of differential selection at codon sites and along evolutionary lineages were carried out. We identified codons under positive selection, including polymorphic variations at codon 201, presumably convergent during NWP radiation and significant positive selection leading to a single allele (SagVar2).
Collapse
Affiliation(s)
- Mirela Darc
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
40
|
Ishida Y, Kimura A, Kuninaka Y, Inui M, Matsushima K, Mukaida N, Kondo T. Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing. J Clin Invest 2012; 122:711-721. [PMID: 22214846 PMCID: PMC3266771 DOI: 10.1172/jci43027] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/16/2011] [Indexed: 12/28/2022] Open
Abstract
BM-derived endothelial progenitor cells (EPCs) are critical and essential for neovascularization in tissue repair and tumorigenesis. EPCs migrate from BM to tissues via the bloodstream, but specific chemotactic cues have not been identified. Here we show in mice that the absence of CCR5 reduced vascular EPC accumulation and neovascularization, but not macrophage recruitment, and eventually delayed healing in wounded skin. When transferred into Ccr5-/- mice, Ccr5+/+ BM cells, but not Ccr5-/- cells, accumulated in the wound site, were incorporated into the vasculature, and restored normal neovascularization. Consistent with these observations, CCL5 induced in vitro EPC migration in a CCR5-dependent manner. Moreover, expression of VEGF and TGF-β was substantially diminished at wound sites in Ccr5-/- mice, which suggests that EPCs are important not only as the progenitors of endothelial cells, but also as the source of growth factors during tissue repair. Taken together, these data identify the CCL5/CCR5 interaction as what we believe to be a novel molecular target for modulation of neovascularization and eventual tissue repair.
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine and
Department of Molecular Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan.
Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan.
Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine and
Department of Molecular Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan.
Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan.
Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine and
Department of Molecular Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan.
Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan.
Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masanori Inui
- Department of Forensic Medicine and
Department of Molecular Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan.
Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan.
Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kouji Matsushima
- Department of Forensic Medicine and
Department of Molecular Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan.
Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan.
Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Naofumi Mukaida
- Department of Forensic Medicine and
Department of Molecular Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan.
Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan.
Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine and
Department of Molecular Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan.
Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan.
Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
41
|
Sun C, Huo D, Southard C, Nemesure B, Hennis A, Cristina Leske M, Wu SY, Witonsky DB, Olopade OI, Di Rienzo A. A signature of balancing selection in the region upstream to the human UGT2B4 gene and implications for breast cancer risk. Hum Genet 2011; 130:767-75. [PMID: 21660508 PMCID: PMC4478588 DOI: 10.1007/s00439-011-1025-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/28/2011] [Indexed: 10/18/2022]
Abstract
UDP-glucuronosyltransferase 2 family, polypeptide B4 (UGT2B4) is an important metabolizing enzyme involved in the clearance of many xenobiotics and endogenous substrates, especially steroid hormones and bile acids. The HapMap data show that numerous SNPs upstream of UGT2B4 are in near-perfect linkage disequilibrium with each other and occur at intermediate frequency, indicating that this region might contain a target of natural selection. To investigate this possibility, we chose three regions (4.8 kb in total) for resequencing and observed a striking excess of intermediate-frequency alleles that define two major haplotypes separated by many mutation events and with little differentiation across populations, thus suggesting that the variation pattern upstream UGT2B4 is highly unusual and may be the result of balancing selection. We propose that this pattern is due to the maintenance of a regulatory polymorphism involved in the fine tuning of UGT2B4 expression so that heterozygous genotypes result in optimal enzyme levels. Considering the important role of steroid hormones in breast cancer susceptibility, we hypothesized that variation in this region could predispose to breast cancer. To test this hypothesis, we genotyped tag SNP rs13129471 in 1,261 patients and 825 normal women of African ancestry from three populations. The frequency comparison indicated that rs13129471 was significantly associated with breast cancer after adjusting for ethnicity [P = 0.003; heterozygous odds ratio (OR) 1.02, 95% confidence interval (CI) 0.81-1.28; homozygous OR 1.50, 95% CI 1.15-1.95]. Our results provide new insights into UGT2B4 sequence variation and indicate that a signal of natural selection may lead to the identification of disease susceptibility variants.
Collapse
Affiliation(s)
- Chang Sun
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Evolution of the bovine TLR gene family and member associations with Mycobacterium avium subspecies paratuberculosis infection. PLoS One 2011; 6:e27744. [PMID: 22164200 PMCID: PMC3227585 DOI: 10.1371/journal.pone.0027744] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/24/2011] [Indexed: 02/06/2023] Open
Abstract
Members of the Toll-like receptor (TLR) gene family occupy key roles in the mammalian innate immune system by functioning as sentries for the detection of invading pathogens, thereafter provoking host innate immune responses. We utilized a custom next-generation sequencing approach and allele-specific genotyping assays to detect and validate 280 biallelic variants across all 10 bovine TLR genes, including 71 nonsynonymous single nucleotide polymorphisms (SNPs) and one putative nonsense SNP. Bayesian haplotype reconstructions and median joining networks revealed haplotype sharing between Bos taurus taurus and Bos taurus indicus breeds at every locus, and specialized beef and dairy breeds could not be differentiated despite an average polymorphism density of 1 marker/158 bp. Collectively, 160 tagSNPs and two tag insertion-deletion mutations (indels) were sufficient to predict 100% of the variation at 280 variable sites for both Bos subspecies and their hybrids, whereas 118 tagSNPs and 1 tagIndel predictively captured 100% of the variation at 235 variable sites for B. t. taurus. Polyphen and SIFT analyses of amino acid (AA) replacements encoded by bovine TLR SNPs indicated that up to 32% of the AA substitutions were expected to impact protein function. Classical and newly developed tests of diversity provide strong support for balancing selection operating on TLR3 and TLR8, and purifying selection acting on TLR10. An investigation of the persistence and continuity of linkage disequilibrium (r2≥0.50) between adjacent variable sites also supported the presence of selection acting on TLR3 and TLR8. A case-control study employing validated variants from bovine TLR genes recognizing bacterial ligands revealed six SNPs potentially eliciting small effects on susceptibility to Mycobacterium avium spp paratuberculosis infection in dairy cattle. The results of this study will broadly impact domestic cattle research by providing the necessary foundation to explore several avenues of bovine translational genomics, and the potential for marker-assisted vaccination.
Collapse
|
43
|
Thomas JC, Godfrey PA, Feldgarden M, Robinson DA. Candidate targets of balancing selection in the genome of Staphylococcus aureus. Mol Biol Evol 2011; 29:1175-86. [PMID: 22114360 DOI: 10.1093/molbev/msr286] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Signatures of balancing selection can highlight polymorphisms and functions that are important to the long-term fitness of a species. We performed a first genome-wide scan for balancing selection in a bacterial species, Staphylococcus aureus, which is a common cause of serious antimicrobial-resistant infections of humans. Using a sliding window approach, the genomes of 16 strains of S. aureus, including 5 new genome sequences presented here, and 1 outgroup strain of S. epidermidis were scanned for signatures of balancing selection. A total of 195 short windows were investigated based on their extreme values of both Tajima's D (>2.03) and π/K ratios (>0.12) relative to the rest of the genome. To test the unusualness of these windows, an Approximate Bayesian Computation framework was used to select a null demographic model that better accounted for the observed data than did the standard neutral model. A total of 186 windows were demonstrated to be unusual under the null model and, thus, represented candidate loci under balancing selection. These 186 candidate windows were located within 99 candidate genes that were spread across 62 different loci. Nearly all the signal (97.2%) was located within coding sequences; balancing selection on gene regulation apparently occurs through the targeting of global regulators such as agr and gra/aps. The agr locus had some of the strongest signatures of balancing selection, which provides new insight into the causes of diversity at this locus. The list of candidate genes included multiple virulence-associated genes and was significantly enriched for functions in amino acid and inorganic ion transport and metabolism and in defense mechanisms against innate immunity and antimicrobials, highlighting these particular functions as important to the fitness of this pathogen.
Collapse
Affiliation(s)
- Jonathan C Thomas
- Department of Microbiology, University of Mississippi Medical Center, USA
| | | | | | | |
Collapse
|
44
|
Ferguson W, Dvora S, Fikes RW, Stone AC, Boissinot S. Long-term balancing selection at the antiviral gene OAS1 in Central African chimpanzees. Mol Biol Evol 2011; 29:1093-103. [PMID: 22104212 DOI: 10.1093/molbev/msr247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Oligoadenylate synthetases (OAS) are interferon-induced enzymes that participate in the first line of defense against a wide range of viral infection in animals. Upon activation by viral double-stranded RNA, OAS synthesizes (2-5) oligoadenylates, which activate RNase L, leading to the nonspecific degradation of cellular and viral RNA. Some association studies in humans suggest that variation at one of the OAS genes, OAS1, could be influencing host susceptibility to viral infection. We assessed the diversity of OAS1 in hominoid primates with a focus on chimpanzees. We found that the OAS1 gene is extremely polymorphic in Central African chimpanzee and exhibits levels of silent and replacement diversity much higher than neutral regions of the chimpanzee genome. This level of variation strongly suggests that balancing selection is acting on OAS1, and indeed, this conclusion was validated by several tests of neutrality. We further demonstrated that balancing selection has been acting at this locus since the split between chimpanzees, humans, and gorillas (~8.6 Ma) and caused the persistence of two deeply divergent allelic lineages in Central African chimpanzees. These two groups of OAS1 alleles differ by a large number of amino acids (a.a.), including several a.a. putatively involved in RNA binding. It is therefore very likely that variation at the OAS1 locus affects the innate immune response of individuals to specific viral infection. Our data strongly suggest that interactions between viral RNA and OAS1 are responsible for the maintenance of ancestral polymorphisms at this locus for at least 13.2 My.
Collapse
Affiliation(s)
- William Ferguson
- Department of Biology, Queens College, the City University of New York, NY, USA
| | | | | | | | | |
Collapse
|
45
|
Williams LM, Oleksiak MF. Evolutionary and functional analyses of cytochrome P4501A promoter polymorphisms in natural populations. Mol Ecol 2011; 20:5236-47. [PMID: 22093087 DOI: 10.1111/j.1365-294x.2011.05360.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The functional importance of variable, transcriptional regulatory sequences within and among natural populations is largely unexplored. We analysed the cytochrome P4501A (CYP1A) promoter in three populations of the minnow, Fundulus heteroclitus, because two SNPs in the promoter and first intron of CYP1A are under selection in populations adapted to pollutants. To define the importance of these SNPs, 1630 bp of the CYP1A promoter and first intron and exon were sequenced in eight individuals from three populations: a population from a polluted environment resistant to some aromatic pollutants and two flanking reference populations. CYP1A is induced by many aromatic pollutants, but in populations adapted to pollutants, CYP1A has been shown to be refractory to induction. We were interested in understanding whether variation in the CYP1A promoter explains mechanism(s) of adaptation to these aromatic pollutants. The CYP1A promoter was extremely variable (an average of 9.3% of the promoter nucleotides varied among all populations) and exhibited no fixed differences between populations. As CYP1A is poorly inducible in adapted fish, we hypothesized that CYP1A promoter regions might vary functionally between populations. Unexpectedly, in vitro analysis showed significantly greater transcription from CYP1A promoters found in the population from the polluted environment relative to promoters found in both reference populations. Thus, despite extensive variation among populations and lack of fixed differences between populations, individuals from a polluted environment have significantly enhanced promoter activity. These data demonstrate that intraspecific variation, which provides the raw material for natural selection to act on, can occur while maintaining promoter function.
Collapse
Affiliation(s)
- Larissa M Williams
- Department of Environmental and Molecular Toxicology, PO Box 7633, North Carolina State University, Raleigh, NC 27695-7633, USA
| | | |
Collapse
|
46
|
Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admetlla A, Pattini L, Nielsen R. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet 2011; 7:e1002355. [PMID: 22072984 PMCID: PMC3207877 DOI: 10.1371/journal.pgen.1002355] [Citation(s) in RCA: 348] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 09/08/2011] [Indexed: 12/27/2022] Open
Abstract
Previous genome-wide scans of positive natural selection in humans have identified a number of non-neutrally evolving genes that play important roles in skin pigmentation, metabolism, or immune function. Recent studies have also shown that a genome-wide pattern of local adaptation can be detected by identifying correlations between patterns of allele frequencies and environmental variables. Despite these observations, the degree to which natural selection is primarily driven by adaptation to local environments, and the role of pathogens or other ecological factors as selective agents, is still under debate. To address this issue, we correlated the spatial allele frequency distribution of a large sample of SNPs from 55 distinct human populations to a set of environmental factors that describe local geographical features such as climate, diet regimes, and pathogen loads. In concordance with previous studies, we detected a significant enrichment of genic SNPs, and particularly non-synonymous SNPs associated with local adaptation. Furthermore, we show that the diversity of the local pathogenic environment is the predominant driver of local adaptation, and that climate, at least as measured here, only plays a relatively minor role. While background demography by far makes the strongest contribution in explaining the genetic variance among populations, we detected about 100 genes which show an unexpectedly strong correlation between allele frequencies and pathogenic environment, after correcting for demography. Conversely, for diet regimes and climatic conditions, no genes show a similar correlation between the environmental factor and allele frequencies. This result is validated using low-coverage sequencing data for multiple populations. Among the loci targeted by pathogen-driven selection, we found an enrichment of genes associated to autoimmune diseases, such as celiac disease, type 1 diabetes, and multiples sclerosis, which lends credence to the hypothesis that some susceptibility alleles for autoimmune diseases may be maintained in human population due to past selective processes. Adaptation to local environments is one of the most important factors shaping human genetic variation among different geographically distributed populations. Here we develop a statistical framework aimed at identifying signals of genetic adaptation. We correlate the spatial distribution of allele frequencies of a large sample of SNPs, genotyped in more than 50 populations distributed worldwide, to a set of environmental factors, describing local geographical features such as climate conditions, diet regimes, and pathogens load. Our results show an excess of putative functional variants for high levels of population differentiation, measured by the degree to which genetic variation correlates with a set of environmental variables. We demonstrate that selection on pathogens is the primary driver of local adaptation and affects the distribution of genetic variation at a large number of genes. Among the selected genes, we also identify an excess of genes associated with autoimmune diseases, such as celiac disease, type 1 diabetes, and multiples sclerosis.
Collapse
Affiliation(s)
- Matteo Fumagalli
- Scientific Institute IRCCS E. Medea, Bioinformatic Lab, Bosisio Parini, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Ermini L, Wilson IJ, Goodship THJ, Sheerin NS. Complement polymorphisms: geographical distribution and relevance to disease. Immunobiology 2011; 217:265-71. [PMID: 21899915 DOI: 10.1016/j.imbio.2011.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 06/20/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
Abstract
The evolution of man has been characterised by recurrent episodes of migration and settlement with infectious disease a constant threat. This long history of demographic change, together with the action of evolutionary forces such as natural selection and genetic drift, has shaped human genetic diversity. In particular, the interaction between humans, pathogens and the environment has played a crucial role in generating patterns of human genetic variation. The complement system plays a crucial role in the early protective immune response after exposure to a pathogen. Pathogens, over time, have developed mechanisms to circumvent the effects of complement which in turn has led to development of a more complex complement system. During the evolution of the complement system genes coding complement proteins have evolved polymorphisms, some of which have a functional effect, and this may reflect human-pathogen interaction and geographical origin. An example is the polymorphism Ile62Val (rs800292 (A>G)) in the complement regulator Factor H gene which alters the susceptibility to age-related macular degeneration (AMD), with the Ile62 polymorphism protecting against AMD. When sub-Saharan African and European populations are compared, the frequency of this polymorphism shows a very marked geographical distribution. Polymorphisms in other complement genes such as complement factor B show similar trends. This paper describes the geographical variation present in complement genes and discusses the implications of these observations. The analysis of genetic variation in complement genes is a promising tool to unravel mechanisms of host-pathogen interaction and can provide new insights into the evolution of the human immune system.
Collapse
Affiliation(s)
- L Ermini
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
48
|
Cagliani R, Riva S, Fumagalli M, Biasin M, Caputo SL, Mazzotta F, Piacentini L, Pozzoli U, Bresolin N, Clerici M, Sironi M. A positively selected APOBEC3H haplotype is associated with natural resistance to HIV-1 infection. Evolution 2011; 65:3311-22. [PMID: 22023594 DOI: 10.1111/j.1558-5646.2011.01368.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
APOBEC3 genes encode cytidine deaminases endowed with the ability to inhibit retroviruses and retrotransposons. These genes have been targets of natural selection throughout primate evolutionary history. We analyzed their selection pattern in human populations observing that APOBEC3F and 3G are neutrally evolving. Conversely, nucleotide diversity was extremely high for APOBEC3H, and most tests rejected the hypothesis of selective neutrality in Eurasian populations. Haplotype analysis and the derived intraallelic nucleotide diversity test indicated that positive selection has driven the increase in frequency of one haplotype (Hap I) outside Africa. Consistently, population genetic differentiation between African and non-African populations was higher than expected under neutrality. A case-control association analysis indicated that Hap I is associated with protection from sexually transmitted HIV-1 infection. Hap I carries a protein-destabilizing variant and a residue conferring resistance to Vif-mediated degradation. Data herein suggest that lower protein stability might have been traded-off with a higher ability to circumvent Vif-mediated hijacking. Alternatively, transcription regulatory variants might represent the selection target. Our data represent an example of how the selective pressures exerted by extinct or unknown viral agents can be exploited to provide valuable information on the allelic determinants of susceptibility to modern infections.
Collapse
Affiliation(s)
- Rachele Cagliani
- Scientific Institute IRCCS E. Medea, Via don L. Monza 20, Bosisio Parini (LC), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Casanova JL, Abel L, Quintana-Murci L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol 2011; 29:447-91. [PMID: 21219179 DOI: 10.1146/annurev-immunol-030409-101335] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs) have TIR intracellular domains that engage two main signaling pathways, via the TIR-containing adaptors MyD88 (which is not used by TLR3) and TRIF (which is used only by TLR3 and TLR4). Extensive studies in inbred mice in various experimental settings have attributed key roles in immunity to TLR- and IL-1R-mediated responses, but what contribution do human TLRs and IL-1Rs actually make to host defense in the natural setting? Evolutionary genetic studies have shown that human intracellular TLRs have evolved under stronger purifying selection than surface-expressed TLRs, for which the frequency of missense and nonsense alleles is high in the general population. Epidemiological genetic studies have yet to provide convincing evidence of a major contribution of common variants of human TLRs, IL-1Rs, or their adaptors to host defense. Clinical genetic studies have revealed that rare mutations affecting the TLR3-TRIF pathway underlie herpes simplex virus encephalitis, whereas mutations in the TIR-MyD88 pathway underlie pyogenic bacterial diseases in childhood. A careful reconsideration of the contributions of TLRs and IL-1Rs to host defense in natura is required.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
50
|
Castelli EC, Mendes-Junior CT, Veiga-Castelli LC, Roger M, Moreau P, Donadi EA. A comprehensive study of polymorphic sites along the HLA-G gene: implication for gene regulation and evolution. Mol Biol Evol 2011; 28:3069-86. [PMID: 21622995 DOI: 10.1093/molbev/msr138] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
HLA-G molecule plays an important role on immune response regulation and has been implicated on the inhibition of T and natural killer cell cytolytic function and inhibition of allogeneic T-cell proliferation. Due to its immune-modulator properties, the HLA-G gene expression has been associated with the outcome of allograft and of autoimmune, infectious, and malignant disorders. Several lines of evidence indicate that HLA-G polymorphisms at the 5'-upstream regulatory region (5' URR) and 3'-untranslated region (3' UTR) may influence the HLA-G expression levels. Because Brazilians represent one of the most heterogeneous populations in the world with the widest HLA-G coding region variability already detected among the studied populations, a high level of variability and haplotype diversity would be expected in Brazilians. On this basis, the 5' URR, coding, and 3' UTR variability were evaluated in a Brazilian series consisting of 100 healthy bone marrow donors, as well as the linkage disequilibrium pattern along the gene and the extended haplotypes encompassing several gene segment variations. The HLA-G locus seems to present six different HLA-G lineages showing functional variations mainly in nucleotides of the regulatory regions. Differences were observed at the 5' URR in positions that either coincide with or are close to transcription factor-binding sites and at the 3' UTR mainly in positions that have already been reported to influence HLA-G mRNA availability. We report several lines of evidence for balancing selection acting on the regulatory regions, which may indicate that these HLA-G lineages may be related to the differential HLA-G expression profiles.
Collapse
Affiliation(s)
- Erick C Castelli
- Laboratório de Genética Molecular e Citogenética, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brasil.
| | | | | | | | | | | |
Collapse
|