1
|
Lagadec F, Singh PK, Calmels C, Lapaillerie D, Lindemann D, Parissi V, Cherepanov P, Engelman AN, Lesbats P. Timed chromatin invasion during mitosis governs prototype foamy virus integration site selection and infectivity. Nucleic Acids Res 2025; 53:gkaf449. [PMID: 40448500 DOI: 10.1093/nar/gkaf449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/05/2025] [Accepted: 05/15/2025] [Indexed: 06/02/2025] Open
Abstract
Selection of a suitable chromatin environment during retroviral integration is a tightly regulated process. Most retroviruses, including spumaretroviruses, require mitosis for nuclear entry. However, whether intrinsic chromatin dynamics during mitosis modulates retroviral genome invasion is unknown. Previous work uncovered critical interactions of prototype foamy virus (PFV) Gag with nucleosomes via a highly conserved arginine anchor residue. Yet, the regulation of Gag-chromatin interaction and its functional consequences for spumaretrovirus biology remain obscure. Here, we investigated the kinetics of chromatin binding by Gag during mitosis and proviral integration in synchronized cells. We showed that alteration of Gag affinity for nucleosome binding induced untimely chromatin tethering during mitosis, decreased infectivity, and redistributed viral integration sites to markers associated with late replication timing of chromosomes. Mutant Gag proteins were, moreover, defective in their ability to displace the histone H4 tail from the nucleosome acidic patch of highly condensed chromatin. These data indicate that the chromatin landscape during Gag-nucleosome interactions is important for PFV integration site selection and that spumaretroviruses evolved high-affinity chromatin binding to overcome early mitosis chromatin condensation.
Collapse
Affiliation(s)
- Floriane Lagadec
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SBM Department, F-33076 Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), F-33076 Bordeaux, France
| | - Parmit K Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Christina Calmels
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SBM Department, F-33076 Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), F-33076 Bordeaux, France
| | - Delphine Lapaillerie
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SBM Department, F-33076 Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), F-33076 Bordeaux, France
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Vincent Parissi
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SBM Department, F-33076 Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), F-33076 Bordeaux, France
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Paul Lesbats
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SBM Department, F-33076 Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), F-33076 Bordeaux, France
| |
Collapse
|
2
|
Bousios A, Kakutani T, Henderson IR. Centrophilic Retrotransposons of Plant Genomes. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:579-604. [PMID: 39952673 DOI: 10.1146/annurev-arplant-083123-082220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
The centromeres of eukaryotic chromosomes are required to load CENH3/CENP-A variant nucleosomes and the kinetochore complex, which connects to spindle microtubules during cell division. Despite their conserved function, plant centromeres show rapid sequence evolution within and between species and a range of monocentric, holocentric, and polymetacentric architectures, which vary in kinetochore numbers and spacing. Plant centromeres are commonly composed of tandem satellite repeat arrays, which are invaded by specific families of centrophilic retrotransposons, whereas in some species the entire centromere is composed of such retrotransposons. We review the diversity of plant centrophilic retrotransposons and their mechanisms of integration, together with how epigenetic information and small RNAs control their proliferation. We discuss models for rapid centromere sequence evolution and speculate on the roles that centrophilic retrotransposons may play in centromere dynamics. We focus on plants but draw comparisons with animal and fungal centromeric transposons to highlight conserved and divergent themes across the eukaryotes.
Collapse
Affiliation(s)
| | - Tetsuji Kakutani
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
3
|
Cho SY, Kim KD, Shin CG. Advances in foamy virus vector systems: Development and applications. Virology 2025; 601:110270. [PMID: 39509861 DOI: 10.1016/j.virol.2024.110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Foamy virus (FV) is a retrovirus with a safer integration profile than other retroviruses, rendering it appealing for gene therapy. Prototype FV (PFV) vector systems have been devised to yield high-titer vectors carrying large transgenes. Subsequent iterations of PFV vectors have been engineered to be replication-incompetent, enhancing their safety. A third generation PFV vector system, composed of four plasmids, has been adapted to accommodate large transgenes. Additionally, a novel dual-vector system shows promise for convenient and efficient gene delivery, particularly with the forthcoming development of stable producer cell lines expressing PFV Env. FVs exhibit a broad host spectrum due to the ubiquitous presence of the host factor, heparan sulfate (HS), on their surface. The receptor-binding domain (RBD) of FV Env proteins plays a crucial role in binding to the host cell HS. The FV vector system has been employed in hematopoietic stem cell (HSC) gene therapy to address monogenic diseases in dog and mouse models. In addition, FV vectors safely and efficiently deliver anti-HIV transgenes to HSCs, and vectors carrying HIV epitopes successfully induce antibodies against HIV, offering the promise of anti-HIV gene therapy and vaccine development. In this review, we delve into the development and utilization of FV vector systems, emphasizing their unique advantages in gene therapy, including their non-pathogenic nature, broad host tropism, large transgene capacity, and persistence in resting cells. Furthermore, we discuss the potential of FV vectors in tackling current challenges in gene therapy and their viability as valuable tools for treating genetic diseases.
Collapse
Affiliation(s)
- Soo-Yeon Cho
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17456, Republic of Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17456, Republic of Korea.
| | - Cha-Gyun Shin
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17456, Republic of Korea.
| |
Collapse
|
4
|
Wapenaar H, Clifford G, Rolls W, Pasquier M, Burdett H, Zhang Y, Deák G, Zou J, Spanos C, Taylor MRD, Mills J, Watson JA, Kumar D, Clark R, Das A, Valsakumar D, Bramham J, Voigt P, Sproul D, Wilson MD. The N-terminal region of DNMT3A engages the nucleosome surface to aid chromatin recruitment. EMBO Rep 2024; 25:5743-5779. [PMID: 39528729 PMCID: PMC11624362 DOI: 10.1038/s44319-024-00306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
DNA methyltransferase 3A (DNMT3A) plays a critical role in establishing and maintaining DNA methylation patterns in vertebrates. Here we structurally and biochemically explore the interaction of DNMT3A1 with diverse modified nucleosomes indicative of different chromatin environments. A cryo-EM structure of the full-length DNMT3A1-DNMT3L complex with a H2AK119ub nucleosome reveals that the DNMT3A1 ubiquitin-dependent recruitment (UDR) motif interacts specifically with H2AK119ub and makes extensive contacts with the core nucleosome histone surface. This interaction facilitates robust DNMT3A1 binding to nucleosomes, and previously unexplained DNMT3A disease-associated mutations disrupt this interface. Furthermore, the UDR-nucleosome interaction synergises with other DNMT3A chromatin reading elements in the absence of histone ubiquitylation. H2AK119ub does not stimulate DNMT3A DNA methylation activity, as observed for the previously described H3K36me2 mark, which may explain low levels of DNA methylation on H2AK119ub marked facultative heterochromatin. This study highlights the importance of multivalent binding of DNMT3A to histone modifications and the nucleosome surface and increases our understanding of how DNMT3A1 chromatin recruitment occurs.
Collapse
Affiliation(s)
- Hannah Wapenaar
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Gillian Clifford
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Willow Rolls
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Moira Pasquier
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Hayden Burdett
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Yujie Zhang
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Gauri Deák
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Juan Zou
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Mark R D Taylor
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Jacquie Mills
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
- Cancer Research UK Scotland Institute, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK
| | - James A Watson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Dhananjay Kumar
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Richard Clark
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Alakta Das
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Devisree Valsakumar
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Janice Bramham
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3JR, UK
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Duncan Sproul
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK.
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3JR, UK.
| |
Collapse
|
5
|
Lambert GS, Rice BL, Maldonado RJK, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. Retrovirology 2024; 21:13. [PMID: 38898526 PMCID: PMC11186191 DOI: 10.1186/s12977-024-00645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Retroviruses exploit host proteins to assemble and release virions from infected cells. Previously, most studies focused on interacting partners of retroviral Gag proteins that localize to the cytoplasm or plasma membrane. Given that several full-length Gag proteins have been found in the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings involving previously unknown host processes. Here we systematically compared nuclear factors identified in published HIV-1 proteomic studies and performed our own mass spectrometry analysis using affinity-tagged HIV-1 and RSV Gag proteins mixed with nuclear extracts. We identified 57 nuclear proteins in common between HIV-1 and RSV Gag, and a set of nuclear proteins present in our analysis and ≥ 1 of the published HIV-1 datasets. Many proteins were associated with nuclear processes which could have functional consequences for viral replication, including transcription initiation/elongation/termination, RNA processing, splicing, and chromatin remodeling. Examples include facilitating chromatin remodeling to expose the integrated provirus, promoting expression of viral genes, repressing the transcription of antagonistic cellular genes, preventing splicing of viral RNA, altering splicing of cellular RNAs, or influencing viral or host RNA folding or RNA nuclear export. Many proteins in our pulldowns common to RSV and HIV-1 Gag are critical for transcription, including PolR2B, the second largest subunit of RNA polymerase II (RNAPII), and LEO1, a PAF1C complex member that regulates transcriptional elongation, supporting the possibility that Gag influences the host transcription profile to aid the virus. Through the interaction of RSV and HIV-1 Gag with splicing-related proteins CBLL1, HNRNPH3, TRA2B, PTBP1 and U2AF1, we speculate that Gag could enhance unspliced viral RNA production for translation and packaging. To validate one putative hit, we demonstrated an interaction of RSV Gag with Mediator complex member Med26, required for RNA polymerase II-mediated transcription. Although 57 host proteins interacted with both Gag proteins, unique host proteins belonging to each interactome dataset were identified. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Breanna L Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Rebecca J Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Leslie J Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
6
|
Cho SY, Lee YJ, Jung SM, Son YM, Shin CG, Kim ET, Kim KD. Establishment of a Dual-Vector System for Gene Delivery Utilizing Prototype Foamy Virus. J Microbiol Biotechnol 2024; 34:804-811. [PMID: 38379304 DOI: 10.4014/jmb.2312.12026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Foamy viruses (FVs) are generally recognized as non-pathogenic, often causing asymptomatic or mild symptoms in infections. Leveraging these unique characteristics, FV vectors hold significant promise for applications in gene therapy. This study introduces a novel platform technology using a pseudo-virus with single-round infectivity. In contrast to previous vector approaches, we developed a technique employing only two vectors, pcHFV lacking Env and pCMV-Env, to introduce the desired genes into target cells. Our investigation demonstrated the efficacy of the prototype foamy virus (PFV) dual-vector system in producing viruses and delivering transgenes into host cells. To optimize viral production, we incorporated the codon-optimized Env (optEnv) gene in pCMV-Env and the Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE) at the 3' end of the transgene in the transfer vector. Consequently, the use of optEnv led to a significant enhancement in transgene expression in host cells. Additionally, the WPRE exhibited an enhancing effect. Furthermore, the introduced EGFP transgene was present in host cells for a month. In an effort to expand transgene capacity, we further streamlined the viral vector, anticipating the delivery of approximately 4.3 kbp of genes through our PFV dual-vector system. This study underscores the potential of PFVs as an alternative to lentiviruses or other retroviruses in the realm of gene therapy.
Collapse
Affiliation(s)
- Soo-Yeon Cho
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea
| | - Yoon Jae Lee
- Department of Microbiology and Immunology, Jeju National University College of Medicine, Jeju 63241, Republic of Korea
- Department of Biomedicine & Drug Development, Jeju National University, Jeju 63241, Republic of Korea
| | - Seong-Mook Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea
| | - Cha-Gyun Shin
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea
| | - Eui Tae Kim
- Department of Microbiology and Immunology, Jeju National University College of Medicine, Jeju 63241, Republic of Korea
- Department of Biomedicine & Drug Development, Jeju National University, Jeju 63241, Republic of Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea
| |
Collapse
|
7
|
Grandgenett DP, Engelman AN. Brief Histories of Retroviral Integration Research and Associated International Conferences. Viruses 2024; 16:604. [PMID: 38675945 PMCID: PMC11054761 DOI: 10.3390/v16040604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The field of retroviral integration research has a long history that started with the provirus hypothesis and subsequent discoveries of the retroviral reverse transcriptase and integrase enzymes. Because both enzymes are essential for retroviral replication, they became valued targets in the effort to discover effective compounds to inhibit HIV-1 replication. In 2007, the first integrase strand transfer inhibitor was licensed for clinical use, and subsequently approved second-generation integrase inhibitors are now commonly co-formulated with reverse transcriptase inhibitors to treat people living with HIV. International meetings specifically focused on integrase and retroviral integration research first convened in 1995, and this paper is part of the Viruses Special Issue on the 7th International Conference on Retroviral Integration, which was held in Boulder Colorado in the summer of 2023. Herein, we overview key historical developments in the field, especially as they pertain to the development of the strand transfer inhibitor drug class. Starting from the mid-1990s, research advancements are presented through the lens of the international conferences. Our overview highlights the impact that regularly scheduled, subject-specific international meetings can have on community-building and, as a result, on field-specific collaborations and scientific advancements.
Collapse
Affiliation(s)
- Duane P. Grandgenett
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Lambert GS, Rice BL, Kaddis Maldonado RJ, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.575255. [PMID: 38293010 PMCID: PMC10827203 DOI: 10.1101/2024.01.18.575255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Retroviruses exploit a variety of host proteins to assemble and release virions from infected cells. To date, most studies that examined possible interacting partners of retroviral Gag proteins focused on host proteins that localize primarily to the cytoplasm or plasma membrane. Given the recent findings that several full-length Gag proteins localize to the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings that reveal previously unknown host processes. In this study, we systematically compared nuclear factors identified in published HIV-1 proteomic studies which had used a variety of experimental approaches. In addition, to contribute to this body of knowledge, we report results from a mass spectrometry approach using affinity-tagged (His6) HIV-1 and RSV Gag proteins mixed with nuclear extracts. Taken together, the previous studies-as well as our own-identified potential binding partners of HIV-1 and RSV Gag involved in several nuclear processes, including transcription, splicing, RNA modification, and chromatin remodeling. Although a subset of host proteins interacted with both Gag proteins, there were also unique host proteins belonging to each interactome dataset. To validate one of the novel findings, we demonstrated the interaction of RSV Gag with a member of the Mediator complex, Med26, which is required for RNA polymerase II-mediated transcription. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S. Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Breanna L. Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Rebecca J. Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
9
|
Zheng K, Chen S, Ren Z, Wang Y. Protein arginine methylation in viral infection and antiviral immunity. Int J Biol Sci 2023; 19:5292-5318. [PMID: 37928266 PMCID: PMC10620831 DOI: 10.7150/ijbs.89498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Protein arginine methyltransferase (PRMT)-mediated arginine methylation is an important post-transcriptional modification that regulates various cellular processes including epigenetic gene regulation, genome stability maintenance, RNA metabolism, and stress-responsive signal transduction. The varying substrates and biological functions of arginine methylation in cancer and neurological diseases have been extensively discussed, providing a rationale for targeting PRMTs in clinical applications. An increasing number of studies have demonstrated an interplay between arginine methylation and viral infections. PRMTs have been found to methylate and regulate several host cell proteins and different functional types of viral proteins, such as viral capsids, mRNA exporters, transcription factors, and latency regulators. This modulation affects their activity, subcellular localization, protein-nucleic acid and protein-protein interactions, ultimately impacting their roles in various virus-associated processes. In this review, we discuss the classification, structure, and regulation of PRMTs and their pleiotropic biological functions through the methylation of histones and non-histones. Additionally, we summarize the broad spectrum of PRMT substrates and explore their intricate effects on various viral infection processes and antiviral innate immunity. Thus, comprehending the regulation of arginine methylation provides a critical foundation for understanding the pathogenesis of viral diseases and uncovering opportunities for antiviral therapy.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Siyu Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
10
|
Mauro E, Lapaillerie D, Tumiotto C, Charlier C, Martins F, Sousa SF, Métifiot M, Weigel P, Yamatsugu K, Kanai M, Munier-Lehmann H, Richetta C, Maisch M, Dutrieux J, Batisse J, Ruff M, Delelis O, Lesbats P, Parissi V. Modulation of the functional interfaces between retroviral intasomes and the human nucleosome. mBio 2023; 14:e0108323. [PMID: 37382440 PMCID: PMC10470491 DOI: 10.1128/mbio.01083-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 06/30/2023] Open
Abstract
Infection by retroviruses as HIV-1 requires the stable integration of their genome into the host cells. This process needs the formation of integrase (IN)-viral DNA complexes, called intasomes, and their interaction with the target DNA wrapped around nucleosomes within cell chromatin. To provide new tools to analyze this association and select drugs, we applied the AlphaLISA technology to the complex formed between the prototype foamy virus (PFV) intasome and nucleosome reconstituted on 601 Widom sequence. This system allowed us to monitor the association between both partners and select small molecules that could modulate the intasome/nucleosome association. Using this approach, drugs acting either on the DNA topology within the nucleosome or on the IN/histone tail interactions have been selected. Within these compounds, doxorubicin and histone binders calixarenes were characterized using biochemical, in silico molecular simulations and cellular approaches. These drugs were shown to inhibit both PFV and HIV-1 integration in vitro. Treatment of HIV-1-infected PBMCs with the selected molecules induces a decrease in viral infectivity and blocks the integration process. Thus, in addition to providing new information about intasome-nucleosome interaction determinants, our work also paves the way for further unedited antiviral strategies that target the final step of intasome/chromatin anchoring. IMPORTANCE In this work, we report the first monitoring of retroviral intasome/nucleosome interaction by AlphaLISA. This is the first description of the AlphaLISA application for large nucleoprotein complexes (>200 kDa) proving that this technology is suitable for molecular characterization and bimolecular inhibitor screening assays using such large complexes. Using this system, we have identified new drugs disrupting or preventing the intasome/nucleosome complex and inhibiting HIV-1 integration both in vitro and in infected cells. This first monitoring of the retroviral/intasome complex should allow the development of multiple applications including the analyses of the influence of cellular partners, the study of additional retroviral intasomes, and the determination of specific interfaces. Our work also provides the technical bases for the screening of larger libraries of drugs targeting specifically these functional nucleoprotein complexes, or additional nucleosome-partner complexes, as well as for their characterization.
Collapse
Affiliation(s)
- E. Mauro
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed, Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
| | - D. Lapaillerie
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed, Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
| | - C. Tumiotto
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed, Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
| | - C. Charlier
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
- Nantes Université, CNRS, US2B, UMR 6286 and CHU Nantes, Inserm, CNRS, SFR Bonamy, IMPACT Platform, Nantes, France
| | - F. Martins
- UCIBIO@REQUIMTE, BioSIM Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - S. F. Sousa
- UCIBIO@REQUIMTE, BioSIM Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - M. Métifiot
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed, Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
| | - P. Weigel
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
- Nantes Université, CNRS, US2B, UMR 6286 and CHU Nantes, Inserm, CNRS, SFR Bonamy, IMPACT Platform, Nantes, France
| | - K. Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - M. Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - H. Munier-Lehmann
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
- Institut Pasteur, Unité de Chimie et Biocatalyse, CNRS UMR 3523, Paris, France
| | - C. Richetta
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
- LBPA, ENS Paris-Saclay, CNRS UMR8113, IDA FR3242, Université Paris-Saclay, Cachan, France
| | - M. Maisch
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS, UMR8104, Paris, France
| | - J. Dutrieux
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS, UMR8104, Paris, France
| | - J. Batisse
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
- Département de Biologie Structurale intégrative, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), UDS, U596 INSERM, UMR7104, CNRS, Strasbourg, France
| | - M. Ruff
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
- Département de Biologie Structurale intégrative, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), UDS, U596 INSERM, UMR7104, CNRS, Strasbourg, France
| | - O. Delelis
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
- LBPA, ENS Paris-Saclay, CNRS UMR8113, IDA FR3242, Université Paris-Saclay, Cachan, France
| | - P. Lesbats
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed, Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
| | - V. Parissi
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed, Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
| |
Collapse
|
11
|
Deák G, Wapenaar H, Sandoval G, Chen R, Taylor MRD, Burdett H, Watson J, Tuijtel M, Webb S, Wilson M. Histone divergence in trypanosomes results in unique alterations to nucleosome structure. Nucleic Acids Res 2023; 51:7882-7899. [PMID: 37427792 PMCID: PMC10450195 DOI: 10.1093/nar/gkad577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
Eukaryotes have a multitude of diverse mechanisms for organising and using their genomes, but the histones that make up chromatin are highly conserved. Unusually, histones from kinetoplastids are highly divergent. The structural and functional consequences of this variation are unknown. Here, we have biochemically and structurally characterised nucleosome core particles (NCPs) from the kinetoplastid parasite Trypanosoma brucei. A structure of the T. brucei NCP reveals that global histone architecture is conserved, but specific sequence alterations lead to distinct DNA and protein interaction interfaces. The T. brucei NCP is unstable and has weakened overall DNA binding. However, dramatic changes at the H2A-H2B interface introduce local reinforcement of DNA contacts. The T. brucei acidic patch has altered topology and is refractory to known binders, indicating that the nature of chromatin interactions in T. brucei may be unique. Overall, our results provide a detailed molecular basis for understanding evolutionary divergence in chromatin structure.
Collapse
Affiliation(s)
- Gauri Deák
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Hannah Wapenaar
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Gorka Sandoval
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Ruofan Chen
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Mark R D Taylor
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Hayden Burdett
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - James A Watson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Maarten W Tuijtel
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
12
|
Miklík D, Grim J, Elleder D, Hejnar J. Unraveling the palindromic and nonpalindromic motifs of retroviral integration site sequences by statistical mixture models. Genome Res 2023; 33:1395-1408. [PMID: 37463751 PMCID: PMC10547254 DOI: 10.1101/gr.277694.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
A weak palindromic nucleotide motif is the hallmark of retroviral integration site alignments. Given that the majority of target sequences are not palindromic, the current model explains the symmetry by an overlap of the nonpalindromic motif present on one of the half-sites of the sequences. Here, we show that the implementation of multicomponent mixture models allows for different interpretations consistent with the existence of both palindromic and nonpalindromic submotifs in the sets of integration site sequences. We further show that the weak palindromic motifs result from freely combined site-specific submotifs restricted to only a few positions proximal to the site of integration. The submotifs are formed by either palindrome-forming nucleotide preference or nucleotide exclusion. Using the mixture models, we also identify HIV-1-favored palindromic sequences in Alu repeats serving as local hotspots for integration. The application of the novel statistical approach provides deeper insight into the selection of retroviral integration sites and may prove to be a valuable tool in the analysis of any type of DNA motifs.
Collapse
Affiliation(s)
- Dalibor Miklík
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic
| | - Jiří Grim
- Pattern Recognition Department, Institute of Information Theory and Automation of the Czech Academy of Sciences, Prague 8, 182 08, Czech Republic
| | - Daniel Elleder
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic
| | - Jiří Hejnar
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic;
| |
Collapse
|
13
|
Identification of Cartilaginous Fish Endogenous Foamy Virus Rooting to Vertebrate Counterparts. J Virol 2023; 97:e0181622. [PMID: 36651746 PMCID: PMC9972966 DOI: 10.1128/jvi.01816-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Foamy viruses (FVs) are ideal models for studying the long-term evolutionary history between viruses and their hosts. Currently, FVs have been documented in nearly all major taxa of vertebrates, but evidence is lacking for true FV infiltration in cartilaginous fish, the most basal living vertebrates with jaws. Here, we screened 11 available genomes and 10 transcriptome sequence assemblies of cartilaginous fish and revealed a novel endogenous foamy virus, termed cartilaginous fish endogenous foamy virus (CFEFV), in the genomes of sharks and rays. Genomic analysis of CFEFVs revealed feature motifs that were retained among canonical FVs. Phylogenetic analysis using polymerase sequences revealed the rooting nature of CFEFVs to vertebrate FVs, indicating their deep origin. Interestingly, three viral lineages were found in a shark (Scyliorhinus torazame), one of which was clustered with ray-finned fish foamy-like viruses, indicating that multiple episodes of viral infiltrations had occurred in this species. These findings fill a major gap in the Spumaretrovirinae taxon and reveal the aquatic origin of FVs found in terrestrial vertebrates. IMPORTANCE Although foamy viruses (FVs) have been found in major branches of vertebrates, the presence of these viruses in cartilaginous fish, the most basal living vertebrates with jaws, remains to be explored. This study revealed a collection of cartilaginous endogenous FVs in sharks and rays through in silico genomic mining. These viruses were rooted in the polymerase (POL) phylogeny, indicating the ancient aquatic origin of FVs. However, their envelope (ENV) protein grouped with those of amphibian FVs, suggesting different evolutionary histories of different FV genes. Overall, we provide the last missing gap for the taxonomic investigation of Spumaretrovirinae and provide concrete support for the aquatic origin of FVs.
Collapse
|
14
|
Pellaers E, Bhat A, Christ F, Debyser Z. Determinants of Retroviral Integration and Implications for Gene Therapeutic MLV-Based Vectors and for a Cure for HIV-1 Infection. Viruses 2022; 15:32. [PMID: 36680071 PMCID: PMC9861059 DOI: 10.3390/v15010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
To complete their replication cycle, retroviruses need to integrate a DNA copy of their RNA genome into a host chromosome. Integration site selection is not random and is driven by multiple viral and cellular host factors specific to different classes of retroviruses. Today, overwhelming evidence from cell culture, animal experiments and clinical data suggests that integration sites are important for retroviral replication, oncogenesis and/or latency. In this review, we will summarize the increasing knowledge of the mechanisms underlying the integration site selection of the gammaretrovirus MLV and the lentivirus HIV-1. We will discuss how host factors of the integration site selection of retroviruses may steer the development of safer viral vectors for gene therapy. Next, we will discuss how altering the integration site preference of HIV-1 using small molecules could lead to a cure for HIV-1 infection.
Collapse
Affiliation(s)
| | | | | | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Epstein-Barr virus protein BKRF4 restricts nucleosome assembly to suppress host antiviral responses. Proc Natl Acad Sci U S A 2022; 119:e2203782119. [PMID: 36067323 PMCID: PMC9477414 DOI: 10.1073/pnas.2203782119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inhibition of host DNA damage response (DDR) is a common mechanism used by viruses to manipulate host cellular machinery and orchestrate viral life cycles. Epstein-Barr virus tegument protein BKRF4 associates with cellular chromatin to suppress host DDR signaling, but the underlying mechanism remains elusive. Here, we identify a BKRF4 histone binding domain (residues 15-102, termed BKRF4-HBD) that can accumulate at the DNA damage sites to disrupt 53BP1 foci formation. The high-resolution structure of the BKRF4-HBD in complex with a human H2A-H2B dimer shows that BKRF4-HBD interacts with the H2A-H2B dimer via the N-terminal region (NTR), the DWP motif (residues 80-86 containing D81, W84, P86), and the C-terminal region (CTR). The "triple-anchor" binding mode confers BKRF4-HBD the ability to associate with the partially unfolded nucleosomes, promoting the nucleosome disassembly. Importantly, disrupting the BKRF4-H2A-H2B interaction impairs the binding between BKRF4-HBD and nucleosome in vitro and inhibits the recruitment of BKRF4-HBD to DNA breaks in vivo. Together, our study reveals the structural basis of BKRF4 bindings to the partially unfolded nucleosome and elucidates an unconventional mechanism of host DDR signal attenuation.
Collapse
|
16
|
Jóźwik IK, Li W, Zhang DW, Wong D, Grawenhoff J, Ballandras-Colas A, Aiyer S, Cherepanov P, Engelman A, Lyumkis D. B-to-A transition in target DNA during retroviral integration. Nucleic Acids Res 2022; 50:8898-8918. [PMID: 35947647 PMCID: PMC9410886 DOI: 10.1093/nar/gkac644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023] Open
Abstract
Integration into host target DNA (tDNA), a hallmark of retroviral replication, is mediated by the intasome, a multimer of integrase (IN) assembled on viral DNA (vDNA) ends. To ascertain aspects of tDNA recognition during integration, we have solved the 3.5 Å resolution cryo-EM structure of the mouse mammary tumor virus (MMTV) strand transfer complex (STC) intasome. The tDNA adopts an A-like conformation in the region encompassing the sites of vDNA joining, which exposes the sugar-phosphate backbone for IN-mediated strand transfer. Examination of existing retroviral STC structures revealed conservation of A-form tDNA in the analogous regions of these complexes. Furthermore, analyses of sequence preferences in genomic integration sites selectively targeted by six different retroviruses highlighted consistent propensity for A-philic sequences at the sites of vDNA joining. Our structure additionally revealed several novel MMTV IN-DNA interactions, as well as contacts seen in prior STC structures, including conserved Pro125 and Tyr149 residues interacting with tDNA. In infected cells, Pro125 substitutions impacted the global pattern of MMTV integration without significantly altering local base sequence preferences at vDNA insertion sites. Collectively, these data advance our understanding of retroviral intasome structure and function, as well as factors that influence patterns of vDNA integration in genomic DNA.
Collapse
Affiliation(s)
- Ilona K Jóźwik
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Wen Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Center, Boston, MA 02215, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Da-Wei Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Center, Boston, MA 02215, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA,Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Doris Wong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Center, Boston, MA 02215, USA
| | - Julia Grawenhoff
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Center, Boston, MA 02215, USA
| | | | - Sriram Aiyer
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, UK,Department of Infectious Disease, St-Mary's Campus, Imperial College London, London W2 1PG, UK
| | - Alan N Engelman
- Correspondence may also be addressed to Alan N. Engelman. Tel: +1 617 632 4361; Fax: +1 617 632 4338;
| | - Dmitry Lyumkis
- To whom correspondence should be addressed. Tel: +1 858 453 4100 (Ext 1155);
| |
Collapse
|
17
|
Ballandras-Colas A, Chivukula V, Gruszka DT, Shan Z, Singh PK, Pye VE, McLean RK, Bedwell GJ, Li W, Nans A, Cook NJ, Fadel HJ, Poeschla EM, Griffiths DJ, Vargas J, Taylor IA, Lyumkis D, Yardimci H, Engelman AN, Cherepanov P. Multivalent interactions essential for lentiviral integrase function. Nat Commun 2022; 13:2416. [PMID: 35504909 PMCID: PMC9065133 DOI: 10.1038/s41467-022-29928-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
A multimer of retroviral integrase (IN) synapses viral DNA ends within a stable intasome nucleoprotein complex for integration into a host cell genome. Reconstitution of the intasome from the maedi-visna virus (MVV), an ovine lentivirus, revealed a large assembly containing sixteen IN subunits1. Herein, we report cryo-EM structures of the lentiviral intasome prior to engagement of target DNA and following strand transfer, refined at 3.4 and 3.5 Å resolution, respectively. The structures elucidate details of the protein-protein and protein-DNA interfaces involved in lentiviral intasome formation. We show that the homomeric interfaces involved in IN hexadecamer formation and the α-helical configuration of the linker connecting the C-terminal and catalytic core domains are critical for MVV IN strand transfer activity in vitro and for virus infectivity. Single-molecule microscopy in conjunction with photobleaching reveals that the MVV intasome can bind a variable number, up to sixteen molecules, of the lentivirus-specific host factor LEDGF/p75. Concordantly, ablation of endogenous LEDGF/p75 results in gross redistribution of MVV integration sites in human and ovine cells. Our data confirm the importance of the expanded architecture observed in cryo-EM studies of lentiviral intasomes and suggest that this organization underlies multivalent interactions with chromatin for integration targeting to active genes.
Collapse
Affiliation(s)
- Allison Ballandras-Colas
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Institut de Biologie Structurale (IBS) CNRS, CEA, University Grenoble, Grenoble, France
| | - Vidya Chivukula
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Dominika T Gruszka
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London, UK
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Zelin Shan
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Parmit K Singh
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Rebecca K McLean
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Gregory J Bedwell
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Wen Li
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Nicola J Cook
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Hind J Fadel
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Eric M Poeschla
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David J Griffiths
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Javier Vargas
- Departmento de Óptica, Universidad Complutense de Madrid, Madrid, Spain
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, UK
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London, UK.
| | - Alan N Engelman
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK.
- Department of Infectious Disease, St-Mary's Campus, Imperial College London, London, UK.
| |
Collapse
|
18
|
Targeting the Nucleosome Acidic Patch by Viral Proteins: Two Birds with One Stone? mBio 2022; 13:e0173321. [PMID: 35343785 PMCID: PMC9040877 DOI: 10.1128/mbio.01733-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The past decade illuminated the H2A-H2B acidic patch as a cornerstone for both nucleosome recognition and chromatin structure regulation. Higher-order folding of chromatin arrays is mediated by interactions of histone H4 tail with an adjacent nucleosome acidic patch. Dynamic chromatin folding ensures a proper regulation of nuclear functions fundamental to cellular homeostasis. Many cellular factors have been shown to act on chromatin by tethering nucleosomes via an arginine anchor binding to the acidic patch. This tethering mechanism has also been described for several viral proteins. In this minireview, we will discuss the structural basis for acidic patch engagement by viral proteins and the implications during respective viral infections. We will also discuss a model in which acidic patch occupancy by these non-self viral proteins alters the local chromatin state by preventing H4 tail-mediated higher-order chromatin folding.
Collapse
|
19
|
Winans S, Yu HJ, de Los Santos K, Wang GZ, KewalRamani VN, Goff SP. A point mutation in HIV-1 integrase redirects proviral integration into centromeric repeats. Nat Commun 2022; 13:1474. [PMID: 35304442 PMCID: PMC8933506 DOI: 10.1038/s41467-022-29097-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Retroviruses utilize the viral integrase (IN) protein to integrate a DNA copy of their genome into host chromosomal DNA. HIV-1 integration sites are highly biased towards actively transcribed genes, likely mediated by binding of the IN protein to specific host factors, particularly LEDGF, located at these gene regions. We here report a substantial redirection of integration site distribution induced by a single point mutation in HIV-1 IN. Viruses carrying the K258R IN mutation exhibit a high frequency of integrations into centromeric alpha satellite repeat sequences, as assessed by deep sequencing, a more than 10-fold increase over wild-type. Quantitative PCR and in situ immunofluorescence assays confirm this bias of the K258R mutant virus for integration into centromeric DNA. Immunoprecipitation studies identify host factors binding to IN that may account for the observed bias for integration into centromeres. Centromeric integration events are known to be enriched in the latent reservoir of infected memory T cells, as well as in elite controllers who limit viral replication without intervention. The K258R point mutation in HIV-1 IN is also present in databases of latent proviruses found in patients, and may reflect an unappreciated aspect of the establishment of viral latency. HIV-1 integration sites are biased towards actively transcribed genes, likely mediated by binding of the viral integrase (IN) protein to host factors. Here, Winans et al. show that the K258R point mutation in IN eredirects viral DNA integration to the centromeres of host chromosomes, which may affect HIV latency.
Collapse
Affiliation(s)
- Shelby Winans
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.,Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Hyun Jae Yu
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD, USA
| | - Kenia de Los Santos
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.,Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Gary Z Wang
- Department of Pathology, Columbia University Medical Center, New York, NY, USA
| | - Vineet N KewalRamani
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA. .,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA. .,Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Abstract
A hallmark of retroviral replication is establishment of the proviral state, wherein a DNA copy of the viral RNA genome is stably incorporated into a host cell chromosome. Integrase is the viral enzyme responsible for the catalytic steps involved in this process, and integrase strand transfer inhibitors are widely used to treat people living with HIV. Over the past decade, a series of X-ray crystallography and cryogenic electron microscopy studies have revealed the structural basis of retroviral DNA integration. A variable number of integrase molecules congregate on viral DNA ends to assemble a conserved intasome core machine that facilitates integration. The structures additionally informed on the modes of integrase inhibitor action and the means by which HIV acquires drug resistance. Recent years have witnessed the development of allosteric integrase inhibitors, a highly promising class of small molecules that antagonize viral morphogenesis. In this Review, we explore recent insights into the organization and mechanism of the retroviral integration machinery and highlight open questions as well as new directions in the field.
Collapse
|
21
|
Prototype Foamy Virus Integrase Displays Unique Biochemical Activities among Retroviral Integrases. Biomolecules 2021; 11:biom11121910. [PMID: 34944553 PMCID: PMC8699820 DOI: 10.3390/biom11121910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/01/2022] Open
Abstract
Integrases of different retroviruses assemble as functional complexes with varying multimers of the protein. Retroviral integrases require a divalent metal cation to perform one-step transesterification catalysis. Tetrameric prototype foamy virus (PFV) intasomes assembled from purified integrase and viral DNA oligonucleotides were characterized for their activity in the presence of different cations. While most retroviral integrases are inactive in calcium, PFV intasomes appear to be uniquely capable of catalysis in calcium. The PFV intasomes also contrast with other retroviral integrases by displaying an inverse correlation of activity with increasing manganese beginning at relatively low concentrations. The intasomes were found to be significantly more active in the presence of chloride co-ions compared to acetate. While HIV-1 integrase appears to commit to a target DNA within 20 s, PFV intasomes do not commit to target DNA during their reaction lifetime. Together, these data highlight the unique biochemical activities of PFV integrase compared to other retroviral integrases.
Collapse
|
22
|
Lapaillerie D, Lelandais B, Mauro E, Lagadec F, Tumiotto C, Miskey C, Ferran G, Kuschner N, Calmels C, Métifiot M, Rooryck C, Ivics Z, Ruff M, Zimmer C, Lesbats P, Toutain J, Parissi V. Modulation of the intrinsic chromatin binding property of HIV-1 integrase by LEDGF/p75. Nucleic Acids Res 2021; 49:11241-11256. [PMID: 34634812 PMCID: PMC8565322 DOI: 10.1093/nar/gkab886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
The stable insertion of the retroviral genome into the host chromosomes requires the association between integration complexes and cellular chromatin via the interaction between retroviral integrase and the nucleosomal target DNA. This final association may involve the chromatin-binding properties of both the retroviral integrase and its cellular cofactor LEDGF/p75. To investigate this and better understand the LEDGF/p75-mediated chromatin tethering of HIV-1 integrase, we used a combination of biochemical and chromosome-binding assays. Our study revealed that retroviral integrase has an intrinsic ability to bind and recognize specific chromatin regions in metaphase even in the absence of its cofactor. Furthermore, this integrase chromatin-binding property was modulated by the interaction with its cofactor LEDGF/p75, which redirected the enzyme to alternative chromosome regions. We also better determined the chromatin features recognized by each partner alone or within the functional intasome, as well as the chronology of efficient LEDGF/p75-mediated targeting of HIV-1 integrase to chromatin. Our data support a new chromatin-binding function of integrase acting in concert with LEDGF/p75 for the optimal association with the nucleosomal substrate. This work also provides additional information about the behavior of retroviral integration complexes in metaphase chromatin and the mechanism of action of LEDGF/p75 in this specific context.
Collapse
Affiliation(s)
- Delphine Lapaillerie
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Benoît Lelandais
- Imaging and modeling unit, Computational Biology Department, Institut Pasteur, Paris, France
| | - Eric Mauro
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Floriane Lagadec
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Camille Tumiotto
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Csaba Miskey
- Paul-Ehrlich-Institute, division of medical biotechnology, Langen, Germany
| | | | | | - Christina Calmels
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Mathieu Métifiot
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | | | - Zoltan Ivics
- Paul-Ehrlich-Institute, division of medical biotechnology, Langen, Germany
| | - Marc Ruff
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Biologie Structurale intégrative, UDS, U596 INSERM, UMR7104, CNRS, Strasbourg, France
| | - Christophe Zimmer
- Imaging and modeling unit, Computational Biology Department, Institut Pasteur, Paris, France
| | - Paul Lesbats
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Jérôme Toutain
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux France
| | - Vincent Parissi
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| |
Collapse
|
23
|
Retrovirology Editorial. The KT Jeang Retrovirology prize 2021: Peter Cherepanov. Retrovirology 2021; 18:28. [PMID: 34565404 PMCID: PMC8474919 DOI: 10.1186/s12977-021-00573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
24
|
Yan J, Zheng Y, Yuan P, Wang S, Han S, Yin J, Peng B, Li Z, Sun Y, He X, Liu W. Novel Host Protein TBC1D16, a GTPase Activating Protein of Rab5C, Inhibits Prototype Foamy Virus Replication. Front Immunol 2021; 12:658660. [PMID: 34367131 PMCID: PMC8339588 DOI: 10.3389/fimmu.2021.658660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Prototype foamy virus (PFV) is a member of the oldest family of retroviruses and maintains lifelong latent infection in the host. The lifelong latent infection of PFV may be maintained by the restriction factors of viral replication in the host. However, the mechanisms involved in PFV latent infection are poorly understood. Here, we found that TBC1D16, a TBC domain-containing protein, is significantly down-regulated after PFV infection. Tre2/Bub2/Cdc16 (TBC) domain-containing proteins function as Rab GTPase-activating proteins (GAPs) and are participates in the progression of some diseases and many signaling pathways. However, whether TBC proteins are involved in PFV replication has not been determined. Here, we found that TBC1D16 is a novel antiviral protein that targets Rab5C to suppress PFV replication. Overexpression TBC1D16 inhibited the transcription and expression of Tas and Gag, and silencing TBC1D16 enhanced the PFV replication. Moreover, the highly conserved amino acid residues R494 and Q531 in the TBC domain of TBC1D16 were essential for inhibiting PFV replication. We also found that TBC1D16 promoted the production of PFV-induced IFN-β and the transcription of downstream genes. These results suggest that TBC1D16 might be the first identified TBC proteins that inhibited PFV replication and the mechanism by which TBC1D16 inhibited PFV replication could provide new insights for PFV latency.
Collapse
Affiliation(s)
- Jun Yan
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yingcheng Zheng
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peipei Yuan
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Shanshan Wang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhi Li
- College of Life Sciences, Shanxi Normal University, Xi’an, China
| | - Yan Sun
- College of Life Sciences, Shanxi Normal University, Xi’an, China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Shenzhen Research Institute, Wuhan University, Shenzhen, China
| |
Collapse
|
25
|
McGinty RK, Tan S. Principles of nucleosome recognition by chromatin factors and enzymes. Curr Opin Struct Biol 2021; 71:16-26. [PMID: 34198054 DOI: 10.1016/j.sbi.2021.05.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
The recent torrent of structures of chromatin complexes determined by cryoelectron microscopy provides an opportunity to discern general principles for how chromatin factors and enzymes interact with their nucleosome substrate. We find that many chromatin proteins use a strikingly similar arginine anchor and variant arginine interactions to bind to the nucleosome acidic patch. We also observe that many chromatin proteins target the H3 and H2B histone fold α1-loop1 elbows and the H2B C-terminal helix on the nucleosomal histone face. These interactions with the histones can be complemented with interactions with and distortions of nucleosomal DNA.
Collapse
Affiliation(s)
- Robert K McGinty
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Song Tan
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
26
|
Jaguva Vasudevan AA, Becker D, Luedde T, Gohlke H, Münk C. Foamy Viruses, Bet, and APOBEC3 Restriction. Viruses 2021; 13:504. [PMID: 33803830 PMCID: PMC8003144 DOI: 10.3390/v13030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/24/2023] Open
Abstract
Non-human primates (NHP) are an important source of viruses that can spillover to humans and, after adaptation, spread through the host population. Whereas HIV-1 and HTLV-1 emerged as retroviral pathogens in humans, a unique class of retroviruses called foamy viruses (FV) with zoonotic potential are occasionally detected in bushmeat hunters or zookeepers. Various FVs are endemic in numerous mammalian natural hosts, such as primates, felines, bovines, and equines, and other animals, but not in humans. They are apathogenic, and significant differences exist between the viral life cycles of FV and other retroviruses. Importantly, FVs replicate in the presence of many well-defined retroviral restriction factors such as TRIM5α, BST2 (Tetherin), MX2, and APOBEC3 (A3). While the interaction of A3s with HIV-1 is well studied, the escape mechanisms of FVs from restriction by A3 is much less explored. Here we review the current knowledge of FV biology, host restriction factors, and FV-host interactions with an emphasis on the consequences of FV regulatory protein Bet binding to A3s and outline crucial open questions for future studies.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
27
|
CENP-A nucleosome-a chromatin-embedded pedestal for the centromere: lessons learned from structural biology. Essays Biochem 2021; 64:205-221. [PMID: 32720682 PMCID: PMC7475651 DOI: 10.1042/ebc20190074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
The centromere is a chromosome locus that directs equal segregation of chromosomes during cell division. A nucleosome containing the histone H3 variant CENP-A epigenetically defines the centromere. Here, we summarize findings from recent structural biology studies, including several CryoEM structures, that contributed to elucidate specific features of the CENP-A nucleosome and molecular determinants of its interactions with CENP-C and CENP-N, the only two centromere proteins that directly bind to it. Based on those findings, we propose a role of the CENP-A nucleosome in the organization of centromeric chromatin beyond binding centromeric proteins.
Collapse
|
28
|
HIV-1 Gag Forms Ribonucleoprotein Complexes with Unspliced Viral RNA at Transcription Sites. Viruses 2020; 12:v12111281. [PMID: 33182496 PMCID: PMC7696413 DOI: 10.3390/v12111281] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023] Open
Abstract
The ability of the retroviral Gag protein of Rous sarcoma virus (RSV) to transiently traffic through the nucleus is well-established and has been implicated in genomic RNA (gRNA) packaging Although other retroviral Gag proteins (human immunodeficiency virus type 1, HIV-1; feline immunodeficiency virus, FIV; Mason-Pfizer monkey virus, MPMV; mouse mammary tumor virus, MMTV; murine leukemia virus, MLV; and prototype foamy virus, PFV) have also been observed in the nucleus, little is known about what, if any, role nuclear trafficking plays in those viruses. In the case of HIV-1, the Gag protein interacts in nucleoli with the regulatory protein Rev, which facilitates nuclear export of gRNA. Based on the knowledge that RSV Gag forms viral ribonucleoprotein (RNPs) complexes with unspliced viral RNA (USvRNA) in the nucleus, we hypothesized that the interaction of HIV-1 Gag with Rev could be mediated through vRNA to form HIV-1 RNPs. Using inducible HIV-1 proviral constructs, we visualized HIV-1 Gag and USvRNA in discrete foci in the nuclei of HeLa cells by confocal microscopy. Two-dimensional co-localization and RNA-immunoprecipitation of fractionated cells revealed that interaction of nuclear HIV-1 Gag with USvRNA was specific. Interestingly, treatment of cells with transcription inhibitors reduced the number of HIV-1 Gag and USvRNA nuclear foci, yet resulted in an increase in the degree of Gag co-localization with USvRNA, suggesting that Gag accumulates on newly synthesized viral transcripts. Three-dimensional imaging analysis revealed that HIV-1 Gag localized to the perichromatin space and associated with USvRNA and Rev in a tripartite RNP complex. To examine a more biologically relevant cell, latently infected CD4+ T cells were treated with prostratin to stimulate NF-κB mediated transcription, demonstrating striking localization of full-length Gag at HIV-1 transcriptional burst site, which was labelled with USvRNA-specific riboprobes. In addition, smaller HIV-1 RNPs were observed in the nuclei of these cells. These data suggest that HIV-1 Gag binds to unspliced viral transcripts produced at the proviral integration site, forming vRNPs in the nucleus.
Collapse
|
29
|
Mauch-Mücke K, Schön K, Paulus C, Nevels MM. Evidence for Tethering of Human Cytomegalovirus Genomes to Host Chromosomes. Front Cell Infect Microbiol 2020; 10:577428. [PMID: 33117732 PMCID: PMC7561393 DOI: 10.3389/fcimb.2020.577428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/17/2020] [Indexed: 11/27/2022] Open
Abstract
Tethering of viral genomes to host chromosomes has been recognized in a variety of DNA and RNA viruses. It can occur during both the productive cycle and latent infection and may impact viral genomes in manifold ways including their protection, localization, transcription, replication, integration, and segregation. Tethering is typically accomplished by dedicated viral proteins that simultaneously associate with both the viral genome and cellular chromatin via nucleic acid, histone and/or non-histone protein interactions. Some of the most prominent tethering proteins have been identified in DNA viruses establishing sustained latent infections, including members of the papillomaviruses and herpesviruses. Herpesvirus particles have linear genomes that circularize in infected cell nuclei and usually persist as extrachromosomal episomes. In several γ-herpesviruses, tethering facilitates the nuclear retention and faithful segregation of viral episomes during cell division, thus contributing to persistence of these viruses in the absence of infectious particle production. However, it has not been studied whether the genomes of human Cytomegalovirus (hCMV), the prototypical β-herpesvirus, are tethered to host chromosomes. Here we provide evidence by fluorescence in situ hybridization that hCMV genomes associate with the surface of human mitotic chromosomes following infection of both non-permissive myeloid and permissive fibroblast cells. This chromosome association occurs at lower frequency in the absence of the immediate-early 1 (IE1) proteins, which bind to histones and have been implicated in the maintenance of hCMV episomes. Our findings point to a mechanism of hCMV genome maintenance through mitosis and suggest a supporting but non-essential role of IE1 in this process.
Collapse
Affiliation(s)
- Katrin Mauch-Mücke
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Kathrin Schön
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Christina Paulus
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Michael M Nevels
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
30
|
Sundaram R, Vasudevan D. Structural Basis of Nucleosome Recognition and Modulation. Bioessays 2020; 42:e1900234. [DOI: 10.1002/bies.201900234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/05/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Rajivgandhi Sundaram
- Laboratory of Macromolecular Crystallography Institute of Life Sciences Bhubaneswar 751023 India
- Manipal Academy of Higher Education Manipal 576104 India
| | - Dileep Vasudevan
- Laboratory of Macromolecular Crystallography Institute of Life Sciences Bhubaneswar 751023 India
| |
Collapse
|
31
|
Maldonado RJK, Rice B, Chen EC, Tuffy KM, Chiari EF, Fahrbach KM, Hope TJ, Parent LJ. Visualizing Association of the Retroviral Gag Protein with Unspliced Viral RNA in the Nucleus. mBio 2020; 11:e00524-20. [PMID: 32265329 PMCID: PMC7157774 DOI: 10.1128/mbio.00524-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 11/20/2022] Open
Abstract
Packaging of genomic RNA (gRNA) by retroviruses is essential for infectivity, yet the subcellular site of the initial interaction between the Gag polyprotein and gRNA remains poorly defined. Because retroviral particles are released from the plasma membrane, it was previously thought that Gag proteins initially bound to gRNA in the cytoplasm or at the plasma membrane. However, the Gag protein of the avian retrovirus Rous sarcoma virus (RSV) undergoes active nuclear trafficking, which is required for efficient gRNA encapsidation (L. Z. Scheifele, R. A. Garbitt, J. D. Rhoads, and L. J. Parent, Proc Natl Acad Sci U S A 99:3944-3949, 2002, https://doi.org/10.1073/pnas.062652199; R. Garbitt-Hirst, S. P. Kenney, and L. J. Parent, J Virol 83:6790-6797, 2009, https://doi.org/10.1128/JVI.00101-09). These results raise the intriguing possibility that the primary contact between Gag and gRNA might occur in the nucleus. To examine this possibility, we created a RSV proviral construct that includes 24 tandem repeats of MS2 RNA stem-loops, making it possible to track RSV viral RNA (vRNA) in live cells in which a fluorophore-conjugated MS2 coat protein is coexpressed. Using confocal microscopy, we observed that both wild-type Gag and a nuclear export mutant (Gag.L219A) colocalized with vRNA in the nucleus. In live-cell time-lapse images, the wild-type Gag protein trafficked together with vRNA as a single ribonucleoprotein (RNP) complex in the nucleoplasm near the nuclear periphery, appearing to traverse the nuclear envelope into the cytoplasm. Furthermore, biophysical imaging methods suggest that Gag and the unspliced vRNA physically interact in the nucleus. Taken together, these data suggest that RSV Gag binds unspliced vRNA to export it from the nucleus, possibly for packaging into virions as the viral genome.IMPORTANCE Retroviruses cause severe diseases in animals and humans, including cancer and acquired immunodeficiency syndromes. To propagate infection, retroviruses assemble new virus particles that contain viral proteins and unspliced vRNA to use as gRNA. Despite the critical requirement for gRNA packaging, the molecular mechanisms governing the identification and selection of gRNA by the Gag protein remain poorly understood. In this report, we demonstrate that the Rous sarcoma virus (RSV) Gag protein colocalizes with unspliced vRNA in the nucleus in the interchromatin space. Using live-cell confocal imaging, RSV Gag and unspliced vRNA were observed to move together from inside the nucleus across the nuclear envelope, suggesting that the Gag-gRNA complex initially forms in the nucleus and undergoes nuclear export into the cytoplasm as a viral ribonucleoprotein (vRNP) complex.
Collapse
Affiliation(s)
| | - Breanna Rice
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Eunice C Chen
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Kevin M Tuffy
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Estelle F Chiari
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Kelly M Fahrbach
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, USA
| | - Thomas J Hope
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, USA
| | - Leslie J Parent
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
32
|
Simantirakis E, Tsironis I, Vassilopoulos G. FV Vectors as Alternative Gene Vehicles for Gene Transfer in HSCs. Viruses 2020; 12:E332. [PMID: 32204324 PMCID: PMC7150843 DOI: 10.3390/v12030332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/08/2020] [Accepted: 03/15/2020] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic Stem Cells (HSCs) are a unique population of cells, capable of reconstituting the blood system of an organism through orchestrated self-renewal and differentiation. They play a pivotal role in stem cell therapies, both autologous and allogeneic. In the field of gene and cell therapy, HSCs, genetically modified or otherwise, are used to alleviate or correct a genetic defect. In this concise review, we discuss the use of SFVpsc_huHSRV.13, formerly known as Prototype Foamy Viral (PFV or FV) vectors, as vehicles for gene delivery in HSCs. We present the properties of the FV vectors that make them ideal for HSC delivery vehicles, we review their record in HSC gene marking studies and their potential as therapeutic vectors for monogenic disorders in preclinical animal models. FVs are a safe and efficient tool for delivering genes in HSCs compared to other retroviral gene delivery systems. Novel technological advancements in their production and purification in closed systems, have allowed their production under cGMP compliant conditions. It may only be a matter of time before they find their way into the clinic.
Collapse
Affiliation(s)
- Emmanouil Simantirakis
- Gene Therapy Lab, Biomedical Research Foundation of the Academy of Athens, Division of Genetics and Gene Therapy, Basic Research II, 11527 Athens, Greece; (E.S.); (I.T.)
| | - Ioannis Tsironis
- Gene Therapy Lab, Biomedical Research Foundation of the Academy of Athens, Division of Genetics and Gene Therapy, Basic Research II, 11527 Athens, Greece; (E.S.); (I.T.)
| | - George Vassilopoulos
- Gene Therapy Lab, Biomedical Research Foundation of the Academy of Athens, Division of Genetics and Gene Therapy, Basic Research II, 11527 Athens, Greece; (E.S.); (I.T.)
- Division of Hematology, University of Thessaly Medical School, 41500 Larissa, Greece
| |
Collapse
|
33
|
Loyola L, Achuthan V, Gilroy K, Borland G, Kilbey A, Mackay N, Bell M, Hay J, Aiyer S, Fingerman D, Villanueva RA, Cameron E, Kozak CA, Engelman AN, Neil J, Roth MJ. Disrupting MLV integrase:BET protein interaction biases integration into quiescent chromatin and delays but does not eliminate tumor activation in a MYC/Runx2 mouse model. PLoS Pathog 2019; 15:e1008154. [PMID: 31815961 PMCID: PMC6974304 DOI: 10.1371/journal.ppat.1008154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/21/2020] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Murine leukemia virus (MLV) integrase (IN) lacking the C-terminal tail peptide (TP) loses its interaction with the host bromodomain and extraterminal (BET) proteins and displays decreased integration at promoter/enhancers and transcriptional start sites/CpG islands. MLV lacking the IN TP via an altered open reading frame was used to infect tumorigenesis mouse model (MYC/Runx2) animals to observe integration patterns and phenotypic effects, but viral passage resulted in the restoration of the IN TP through small deletions. Mice subsequently infected with an MLV IN lacking the TP coding sequence (TP-) showed an improved median survival by 15 days compared to wild type (WT) MLV infection. Recombination with polytropic endogenous retrovirus (ERV), Pmv20, was identified in seven mice displaying both fast and slow tumorigenesis, highlighting the strong selection within the mouse to maintain the full-length IN protein. Mapping the genomic locations of MLV in tumors from an infected mouse with no observed recombination with ERVs, TP-16, showed fewer integrations at TSS and CpG islands, compared to integrations observed in WT tumors. However, this mouse succumbed to the tumor in relatively rapid fashion (34 days). Analysis of the top copy number integrants in the TP-16 tumor revealed their proximity to known MLV common insertion site genes while maintaining the MLV IN TP- genotype. Furthermore, integration mapping in K562 cells revealed an insertion preference of MLV IN TP- within chromatin profile states associated with weakly transcribed heterochromatin with fewer integrations at histone marks associated with BET proteins (H3K4me1/2/3, and H3K27Ac). While MLV IN TP- showed a decreased overall rate of tumorigenesis compared to WT virus in the MYC/Runx2 model, MLV integration still occurred at regions associated with oncogenic driver genes independently from the influence of BET proteins, either stochastically or through trans-complementation by functional endogenous Gag-Pol protein.
Collapse
Affiliation(s)
- Lorenz Loyola
- Rutgers-Robert Wood Johnson Medical School, Dept of Pharmacology, Piscataway, New Jersey, United States of America
| | - Vasudevan Achuthan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Department of Medicine, Boston, Massachusetts, United States of America
| | - Kathryn Gilroy
- Beatson Institute for Cancer Research, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gillian Borland
- MRC Univ. of Glasgow Centre for Virus Research, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anna Kilbey
- MRC Univ. of Glasgow Centre for Virus Research, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nancy Mackay
- MRC Univ. of Glasgow Centre for Virus Research, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret Bell
- Univ. of Glasgow School of Veterinary Medicine, Department of Veterinary Pathology Bearsden, United Kingdom
| | - Jodie Hay
- MRC Univ. of Glasgow Centre for Virus Research, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sriram Aiyer
- Rutgers-Robert Wood Johnson Medical School, Dept of Pharmacology, Piscataway, New Jersey, United States of America
| | - Dylan Fingerman
- Rutgers-Robert Wood Johnson Medical School, Dept of Pharmacology, Piscataway, New Jersey, United States of America
| | - Rodrigo A. Villanueva
- Rutgers-Robert Wood Johnson Medical School, Dept of Pharmacology, Piscataway, New Jersey, United States of America
| | - Ewan Cameron
- Univ. of Glasgow School of Veterinary Medicine, Department of Veterinary Pathology Bearsden, United Kingdom
| | | | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Department of Medicine, Boston, Massachusetts, United States of America
| | - James Neil
- MRC Univ. of Glasgow Centre for Virus Research, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Monica J. Roth
- Rutgers-Robert Wood Johnson Medical School, Dept of Pharmacology, Piscataway, New Jersey, United States of America
| |
Collapse
|
34
|
De Leo A, Calderon A, Lieberman PM. Control of Viral Latency by Episome Maintenance Proteins. Trends Microbiol 2019; 28:150-162. [PMID: 31624007 DOI: 10.1016/j.tim.2019.09.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
The human DNA tumor viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV) share the common property of persisting as multicopy episomes in the nuclei of rapidly dividing host cells. These episomes form the molecular basis for viral latency and are etiologically linked to virus-associated cancers. Episome maintenance requires epigenetic programming to ensure the proper control of viral gene expression, DNA replication, and genome copy number. For these viruses, episome maintenance requires a dedicated virus-encoded episome maintenance protein (EMP), namely LANA (KSHV), EBNA1 (EBV), and E2 (HPV). Here, we review common features of these viral EMPs and discuss recent advances in understanding how they contribute to the epigenetic control of viral episome maintenance during latency.
Collapse
|
35
|
Aiewsakun P, Simmonds P, Katzourakis A. The First Co-Opted Endogenous Foamy Viruses and the Evolutionary History of Reptilian Foamy Viruses. Viruses 2019; 11:v11070641. [PMID: 31336856 PMCID: PMC6669660 DOI: 10.3390/v11070641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/17/2022] Open
Abstract
A recent study reported the discovery of an endogenous reptilian foamy virus (FV), termed ERV-Spuma-Spu, found in the genome of tuatara. Here, we report two novel reptilian foamy viruses also identified as endogenous FVs (EFVs) in the genomes of panther gecko (ERV-Spuma-Ppi) and Schlegel’s Japanese gecko (ERV-Spuma-Gja). Their presence indicates that FVs are capable of infecting reptiles in addition to mammals, amphibians, and fish. Numerous copies of full length ERV-Spuma-Spu elements were found in the tuatara genome littered with in-frame stop codons and transposable elements, suggesting that they are indeed endogenous and are not functional. ERV-Spuma-Ppi and ERV-Spuma-Gja, on the other hand, consist solely of a foamy virus-like env gene. Examination of host flanking sequences revealed that they are orthologous, and despite being more than 96 million years old, their env reading frames are fully coding competent with evidence for strong purifying selection to maintain expression and for them likely being transcriptionally active. These make them the oldest EFVs discovered thus far and the first documented EFVs that may have been co-opted for potential cellular functions. Phylogenetic analyses revealed a complex virus–host co-evolutionary history and cross-species transmission routes of ancient FVs.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK.
| |
Collapse
|
36
|
Wöhrl BM. Structural and Functional Aspects of Foamy Virus Protease-Reverse Transcriptase. Viruses 2019; 11:v11070598. [PMID: 31269675 PMCID: PMC6669543 DOI: 10.3390/v11070598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022] Open
Abstract
Reverse transcription describes the process of the transformation of single-stranded RNA into double-stranded DNA via an RNA/DNA duplex intermediate, and is catalyzed by the viral enzyme reverse transcriptase (RT). This event is a pivotal step in the life cycle of all retroviruses. In contrast to orthoretroviruses, the domain structure of the mature RT of foamy viruses is different, i.e., it harbors the protease (PR) domain at its N-terminus, thus being a PR-RT. This structural feature has consequences on PR activation, since the enzyme is monomeric in solution and retroviral PRs are only active as dimers. This review focuses on the structural and functional aspects of simian and prototype foamy virus reverse transcription and reverse transcriptase, as well as special features of reverse transcription that deviate from orthoretroviral processes, e.g., PR activation.
Collapse
Affiliation(s)
- Birgitta M Wöhrl
- Lehrstuhl Biopolymere, Universität Bayreuth, D-95440 Bayreuth, Germany.
| |
Collapse
|
37
|
Kale S, Goncearenco A, Markov Y, Landsman D, Panchenko AR. Molecular recognition of nucleosomes by binding partners. Curr Opin Struct Biol 2019; 56:164-170. [PMID: 30991239 PMCID: PMC6656623 DOI: 10.1016/j.sbi.2019.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
Nucleosomes represent the elementary units of chromatin packing and hubs in epigenetic signaling pathways. Across the chromatin and over the lifetime of the eukaryotic cell, nucleosomes experience a broad repertoire of alterations that affect their structure and binding with various chromatin factors. Dynamics of the histone core, nucleosomal and linker DNA, and intrinsic disorder of histone tails add further complexity to the nucleosome interaction landscape. In light of our understanding through the growing number of experimental and computational studies, we review the emerging patterns of molecular recognition of nucleosomes by their binding partners and assess the basic mechanisms of its regulation.
Collapse
Affiliation(s)
- Seyit Kale
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Alexander Goncearenco
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yaroslav Markov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
38
|
Twelfth International Foamy Virus Conference-Meeting Report. Viruses 2019; 11:v11020134. [PMID: 30717288 PMCID: PMC6409691 DOI: 10.3390/v11020134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
The 12th International Foamy Virus Conference took place on 30–31 August 2018 at the Technische Universität Dresden, Dresden, Germany. The meeting included presentations on current research on non-human primate and non-primate foamy viruses (FVs; also called spumaretroviruses) as well as keynote talks on related research areas in retroviruses. The taxonomy of foamy viruses was updated earlier this year to create five new genera in the subfamily, Spumaretrovirinae, based on their animal hosts. Research on viruses from different genera was presented on topics of potential relevance to human health, such as natural infections and cross-species transmission, replication, and viral-host interactions in particular with the immune system, dual retrovirus infections, virus structure and biology, and viral vectors for gene therapy. This article provides an overview of the current state-of-the-field, summarizes the meeting highlights, and presents some important questions that need to be addressed in the future.
Collapse
|
39
|
Zhou K, Gaullier G, Luger K. Nucleosome structure and dynamics are coming of age. Nat Struct Mol Biol 2018; 26:3-13. [PMID: 30532059 DOI: 10.1038/s41594-018-0166-x] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 11/09/2022]
Abstract
Since the first high-resolution structure of the nucleosome was reported in 1997, the available information on chromatin structure has increased very rapidly. Here, we review insights derived from cutting-edge biophysical and structural approaches applied to the study of nucleosome dynamics and nucleosome-binding factors, with a focus on the experimental advances driving the research. In addition, we highlight emerging challenges in nucleosome structural biology.
Collapse
Affiliation(s)
- Keda Zhou
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Guillaume Gaullier
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
40
|
Wei G, Kehl T, Bao Q, Benner A, Lei J, Löchelt M. The chromatin binding domain, including the QPQRYG motif, of feline foamy virus Gag is required for viral DNA integration and nuclear accumulation of Gag and the viral genome. Virology 2018; 524:56-68. [PMID: 30145377 DOI: 10.1016/j.virol.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 01/15/2023]
Abstract
The retroviral Gag protein, the major component of released particles, plays different roles in particle assembly, maturation or infection of new host cells. Here, we characterize the Gag chromatin binding site including the highly conserved QPQRYG motif of feline foamy virus, a member of the Spumaretrovirinae. Mutagenesis of critical residues in the chromatin binding site/QPQRYG motif almost completely abrogates viral DNA integration and reduces nuclear accumulation of Gag and viral DNA. Genome packaging, reverse transcription, particle release and uptake into new target cells are not affected. The integrity of the QPQRYG motif appears to be important for processes after cytosolic entry, likely influencing incoming virus capsids or disassembly intermediates but not Gag synthesized de novo in progeny virus-producing cells. According to our data, chromatin binding is a shared feature among foamy viruses but further work is needed to understand the mechanisms involved.
Collapse
Affiliation(s)
- Guochao Wei
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Timo Kehl
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Qiuying Bao
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Janet Lei
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Martin Löchelt
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany.
| |
Collapse
|
41
|
Paris J, Tobaly-Tapiero J, Giron ML, Burlaud-Gaillard J, Buseyne F, Roingeard P, Lesage P, Zamborlini A, Saïb A. The invariant arginine within the chromatin-binding motif regulates both nucleolar localization and chromatin binding of Foamy virus Gag. Retrovirology 2018; 15:48. [PMID: 29996845 PMCID: PMC6042332 DOI: 10.1186/s12977-018-0428-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/25/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Nuclear localization of Gag is a property shared by many retroviruses and retrotransposons. The importance of this stage for retroviral replication is still unknown, but studies on the Rous Sarcoma virus indicate that Gag might select the viral RNA genome for packaging in the nucleus. In the case of Foamy viruses, genome encapsidation is mediated by Gag C-terminal domain (CTD), which harbors three clusters of glycine and arginine residues named GR boxes (GRI-III). In this study we investigated how PFV Gag subnuclear distribution might be regulated. RESULTS We show that the isolated GRI and GRIII boxes act as nucleolar localization signals. In contrast, both the entire Gag CTD and the isolated GRII box, which contains the chromatin-binding motif, target the nucleolus exclusively upon mutation of the evolutionary conserved arginine residue at position 540 (R540), which is a key determinant of FV Gag chromatin tethering. We also provide evidence that Gag localizes in the nucleolus during FV replication and uncovered that the viral protein interacts with and is methylated by Protein Arginine Methyltransferase 1 (PRMT1) in a manner that depends on the R540 residue. Finally, we show that PRMT1 depletion by RNA interference induces the concentration of Gag C-terminus in nucleoli. CONCLUSION Altogether, our findings suggest that methylation by PRMT1 might finely tune the subnuclear distribution of Gag depending on the stage of the FV replication cycle. The role of this step for viral replication remains an open question.
Collapse
Affiliation(s)
- Joris Paris
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Joëlle Tobaly-Tapiero
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marie-Lou Giron
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Burlaud-Gaillard
- Plateforme IBiSA de Microscopie Electronique, Université François Rabelais and CHRU de Tours, Tours, France
- INSERM U1259, Université François Rabelais and CHRU de Tours, Tours, France
| | - Florence Buseyne
- Institut Pasteur, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
- CNRS UMR3569, Insitut Pasteur, Paris, France
| | - Philippe Roingeard
- Plateforme IBiSA de Microscopie Electronique, Université François Rabelais and CHRU de Tours, Tours, France
- INSERM U1259, Université François Rabelais and CHRU de Tours, Tours, France
| | - Pascale Lesage
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alessia Zamborlini
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire PVM, Conservatoire National des Arts et Métiers (Cnam), Paris, France
| | - Ali Saïb
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
42
|
Wanaguru M, Barry DJ, Benton DJ, O’Reilly NJ, Bishop KN. Murine leukemia virus p12 tethers the capsid-containing pre-integration complex to chromatin by binding directly to host nucleosomes in mitosis. PLoS Pathog 2018; 14:e1007117. [PMID: 29906285 PMCID: PMC6021111 DOI: 10.1371/journal.ppat.1007117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/27/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
The murine leukaemia virus (MLV) Gag cleavage product, p12, is essential for both early and late steps in viral replication. The N-terminal domain of p12 binds directly to capsid (CA) and stabilises the mature viral core, whereas defects in the C-terminal domain (CTD) of p12 can be rescued by addition of heterologous chromatin binding sequences (CBSs). We and others hypothesised that p12 tethers the pre-integration complex (PIC) to host chromatin ready for integration. Using confocal microscopy, we have observed for the first time that CA localises to mitotic chromatin in infected cells in a p12-dependent manner. GST-tagged p12 alone, however, did not localise to chromatin and mass-spectrometry analysis of its interactions identified only proteins known to bind the p12 region of Gag. Surprisingly, the ability to interact with chromatin was conferred by a single amino acid change, M63I, in the p12 CTD. Interestingly, GST-p12_M63I showed increased phosphorylation in mitosis relative to interphase, which correlated with an increased interaction with mitotic chromatin. Mass-spectrometry analysis of GST-p12_M63I revealed nucleosomal histones as primary interactants. Direct binding of MLV p12_M63I peptides to histones was confirmed by biolayer-interferometry (BLI) assays using highly-avid recombinant poly-nucleosomal arrays. Excitingly, using this method, we also observed binding between MLV p12_WT and nucleosomes. Nucleosome binding was additionally detected with p12 orthologs from feline and gibbon ape leukemia viruses using both pull-down and BLI assays, indicating that this a common feature of gammaretroviral p12 proteins. Importantly, p12 peptides were able to block the binding of the prototypic foamy virus CBS to nucleosomes and vice versa, implying that their docking sites overlap and suggesting a conserved mode of chromatin tethering for different retroviral genera. We propose that p12 is acting in a similar capacity to CPSF6 in HIV-1 infection by facilitating initial chromatin targeting of CA-containing PICs prior to integration.
Collapse
Affiliation(s)
- Madushi Wanaguru
- Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David J. Barry
- Advanced Light Microscopy Facility, The Francis Crick Institute, London, United Kingdom
| | - Donald J. Benton
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Kate N. Bishop
- Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|