1
|
Hara Y, Kuraku S. Intragenomic mutational heterogeneity: structural and functional insights from gene evolution. Trends Genet 2025:S0168-9525(25)00075-7. [PMID: 40328580 DOI: 10.1016/j.tig.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025]
Abstract
Variation of mutation rates between species has been documented over decades, but the variation between different regions of a genome has been less often discussed. Recent studies using high-quality sequence data have revealed previously unknown levels of intragenomic heterogeneity of mutation rates and their association with other structural and functional features of DNA sequences. This article reviews accumulating evidence of this intragenomic heterogeneity and speculates its cause and influence on organismal phenotypes.
Collapse
Affiliation(s)
- Yuichiro Hara
- Department of Data Science, Kitasato University School of Frontier Engineering, Sagamihara, Japan; Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, National Institute of Genetics, Mishima, Japan; Department of Genetics, SOKENDAI (Graduate University for Advanced Studies), Mishima, Japan.
| |
Collapse
|
2
|
Lim D, Blanchette M. EvoLSTM: context-dependent models of sequence evolution using a sequence-to-sequence LSTM. Bioinformatics 2021; 36:i353-i361. [PMID: 32657367 PMCID: PMC7355264 DOI: 10.1093/bioinformatics/btaa447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Motivation Accurate probabilistic models of sequence evolution are essential for a wide variety of bioinformatics tasks, including sequence alignment and phylogenetic inference. The ability to realistically simulate sequence evolution is also at the core of many benchmarking strategies. Yet, mutational processes have complex context dependencies that remain poorly modeled and understood. Results We introduce EvoLSTM, a recurrent neural network-based evolution simulator that captures mutational context dependencies. EvoLSTM uses a sequence-to-sequence long short-term memory model trained to predict mutation probabilities at each position of a given sequence, taking into consideration the 14 flanking nucleotides. EvoLSTM can realistically simulate mammalian and plant DNA sequence evolution and reveals unexpectedly strong long-range context dependencies in mutation probabilities. EvoLSTM brings modern machine-learning approaches to bear on sequence evolution. It will serve as a useful tool to study and simulate complex mutational processes. Availability and implementation Code and dataset are available at https://github.com/DongjoonLim/EvoLSTM. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dongjoon Lim
- School of Computer Science, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Mathieu Blanchette
- School of Computer Science, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
3
|
Premi S, Han L, Mehta S, Knight J, Zhao D, Palmatier MA, Kornacker K, Brash DE. Genomic sites hypersensitive to ultraviolet radiation. Proc Natl Acad Sci U S A 2019; 116:24196-24205. [PMID: 31723047 PMCID: PMC6883822 DOI: 10.1073/pnas.1907860116] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
If the genome contains outlier sequences extraordinarily sensitive to environmental agents, these would be sentinels for monitoring personal carcinogen exposure and might drive direct changes in cell physiology rather than acting through rare mutations. New methods, adductSeq and freqSeq, provided statistical resolution to quantify rare lesions at single-base resolution across the genome. Primary human melanocytes, but not fibroblasts, carried spontaneous apurinic sites and TG sequence lesions more frequent than ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs). UV exposure revealed hyperhotspots acquiring CPDs up to 170-fold more frequently than the genomic average; these sites were more prevalent in melanocytes. Hyperhotspots were disproportionately located near genes, particularly for RNA-binding proteins, with the most-recurrent hyperhotspots at a fixed position within 2 motifs. One motif occurs at ETS family transcription factor binding sites, known to be UV targets and now shown to be among the most sensitive in the genome, and at sites of mTOR/5' terminal oligopyrimidine-tract translation regulation. The second occurs at A2-15TTCTY, which developed "dark CPDs" long after UV exposure, repaired CPDs slowly, and had accumulated CPDs prior to the experiment. Motif locations active as hyperhotspots differed between cell types. Melanocyte CPD hyperhotspots aligned precisely with recurrent UV signature mutations in individual gene promoters of melanomas and with known cancer drivers. At sunburn levels of UV exposure, every cell would have a hyperhotspot CPD in each of the ∼20 targeted cell pathways, letting hyperhotspots act as epigenetic marks that create phenome instability; high prevalence favors cooccurring mutations, which would allow tumor evolution to use weak drivers.
Collapse
Affiliation(s)
- Sanjay Premi
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Lynn Han
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Sameet Mehta
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - James Knight
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - Dejian Zhao
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - Meg A Palmatier
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Karl Kornacker
- Karl Kornacker & Associates, LLC, Worthington, OH 43085;
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040;
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
4
|
Liu L, De S, Michor F. DNA replication timing and higher-order nuclear organization determine single-nucleotide substitution patterns in cancer genomes. Nat Commun 2013; 4:1502. [PMID: 23422670 PMCID: PMC3633418 DOI: 10.1038/ncomms2502] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/16/2013] [Indexed: 01/28/2023] Open
Abstract
Single-nucleotide substitutions are a defining characteristic of cancer genomes. Many single-nucleotide substitutions in cancer genomes arise because of errors in DNA replication, which is spatio-temporally stratified. Here we propose that DNA replication patterns help shape the mutational landscapes of normal and cancer genomes. Using data on five fully sequenced cancer types and two personal genomes, we determined that the frequency of intergenic single-nucleotide substitution is significantly higher in late DNA replication timing regions, even after controlling for a number of genomic features. Furthermore, some substitution signatures are more frequent in certain DNA replication timing zones. Finally, integrating data on higher-order nuclear organization, we found that genomic regions in close spatial proximity to late-replicating domains display similar mutation spectra as the late-replicating regions themselves. These data suggest that DNA replication timing together with higher-order genomic organization contribute to the patterns of single-nucleotide substitution in normal and cancer genomes.
Collapse
Affiliation(s)
- Lin Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | - Subhajyoti De
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| |
Collapse
|
5
|
Natarajan AT. Reflections on a lifetime in cytogenetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:1-6. [DOI: 10.1016/j.mrrev.2012.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/25/2012] [Indexed: 11/28/2022]
|
6
|
Tanasova M, Sturla SJ. Chemistry and biology of acylfulvenes: sesquiterpene-derived antitumor agents. Chem Rev 2012; 112:3578-610. [PMID: 22482429 DOI: 10.1021/cr2001367] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marina Tanasova
- ETH Zurich, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | | |
Collapse
|
7
|
Abstract
In the tide of science nouveau after the completion of genome projects of various species, there appeared a movement to understand an organism as a system rather than the sum of cells directed for certain functions. With the advent and spread of microarray techniques, systematic and comprehensive genome-wide approaches have become reasonably possible and more required on the investigation of DNA damage and the subsequent repair. The immunoprecipitation-based technique combined with high-density microarrays or next-generation sequencing is one of the promising methods to provide access to such novel research strategies. Oxygen is necessary for most of the life on earth for electron transport. However, reactive oxygen species are inevitably generated, giving rise to steady-state levels of DNA damage in the genome, that may cause mutations leading to cancer, ageing and degenerative diseases. Previously, we showed that there are many factors involved in the genomic distribution of oxidatively generated DNA damage including chromosome territory, and proposed this sort of research area as oxygenomics. Recently, RNA is also recognized as a target of this kind of modification.
Collapse
Affiliation(s)
- Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
8
|
Akatsuka S, Toyokuni S. Genome-scale approaches to investigate oxidative DNA damage. J Clin Biochem Nutr 2010; 47:91-7. [PMID: 20838563 PMCID: PMC2935159 DOI: 10.3164/jcbn.10-38r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/10/2010] [Indexed: 12/22/2022] Open
Abstract
In the trend of biological science after the completion of the human genome project, appreciation of an organism as a system rather than the sum of many molecular functions is necessary. On the investigation of DNA damage and repair, therefore, the orientation toward systematic and comprehensive genome-scale approaches is rapidly growing. The immunoprecipitation-based technique combined with high-density microarrays is one of the promising methods to provide access to such novel research strategies. We propose this sort of research area as oxygenomics.
Collapse
Affiliation(s)
- Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | |
Collapse
|
9
|
Cooper DN, Ball EV, Mort M. Chromosomal distribution of disease genes in the human genome. Genet Test Mol Biomarkers 2010; 14:441-6. [PMID: 20642358 DOI: 10.1089/gtmb.2010.0081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genes are nonrandomly distributed in the human genome, both within and between chromosomes. Thus, genes of similar function and common evolutionary origin are often clustered, as are genes with similar expression profiles. We now report that the >2400 genes known to underlie human monogenic inherited disease are non-randomly distributed in the genome over and above the general nonrandomness evident in the distribution of human genes. Further, a subset of 315 inherited disease genes subject to gross deletion was found to exhibit a degree of clustering that was twice that manifested by disease genes in general. The clustering of human disease genes is likely to have important implications for understanding the genotype-phenotype relationship in contiguous gene syndromes as well as those conditions characterized by multigene deletions or complex chromosomal rearrangements.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom.
| | | | | |
Collapse
|
10
|
Rochette PJ, Brash DE. Human telomeres are hypersensitive to UV-induced DNA Damage and refractory to repair. PLoS Genet 2010; 6:e1000926. [PMID: 20442874 PMCID: PMC2861706 DOI: 10.1371/journal.pgen.1000926] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 03/29/2010] [Indexed: 12/23/2022] Open
Abstract
Telomeric repeats preserve genome integrity by stabilizing chromosomes, a function that appears to be important for both cancer and aging. In view of this critical role in genomic integrity, the telomere's own integrity should be of paramount importance to the cell. Ultraviolet light (UV), the preeminent risk factor in skin cancer development, induces mainly cyclobutane pyrimidine dimers (CPD) which are both mutagenic and lethal. The human telomeric repeat unit (5′TTAGGG/CCCTAA3′) is nearly optimal for acquiring UV-induced CPD, which form at dipyrimidine sites. We developed a ChIP–based technique, immunoprecipitation of DNA damage (IPoD), to simultaneously study DNA damage and repair in the telomere and in the coding regions of p53, 28S rDNA, and mitochondrial DNA. We find that human telomeres in vivo are 7-fold hypersensitive to UV-induced DNA damage. In double-stranded oligonucleotides, this hypersensitivity is a property of both telomeric and non-telomeric repeats; in a series of telomeric repeat oligonucleotides, a phase change conferring UV-sensitivity occurs above 4 repeats. Furthermore, CPD removal in the telomere is almost absent, matching the rate in mitochondria known to lack nucleotide excision repair. Cells containing persistent high levels of telomeric CPDs nevertheless proliferate, and chronic UV irradiation of cells does not accelerate telomere shortening. Telomeres are therefore unique in at least three respects: their biophysical UV sensitivity, their prevention of excision repair, and their tolerance of unrepaired lesions. Utilizing a lesion-tolerance strategy rather than repair would prevent double-strand breaks at closely-opposed excision repair sites on opposite strands of a damage-hypersensitive repeat. Telomeres consist of a repeated sequence located at each end of each chromosome. This repeated sequence is required for chromosomal stability and integrity, a function important for both cancer and aging. The DNA sequence of human telomeres is 5–10 kb of a repeated double-strand hexamer (5′TTAGGG/5′CCCTAA). In theory, this sequence is nearly optimal for acquiring UV-induced DNA damage. We developed a novel technique, the immunoprecipitation of DNA damage (IPoD), to study DNA damage induction and repair in the telomere and in coding regions (p53, 28S rDNA, and mitochondrial DNA). We find that human telomeres are hypersensitive to UV-induced DNA photoproducts and that the removal of those DNA photoproducts is almost absent. Cells containing persistent high levels of telomeric DNA damage nevertheless proliferate and chronic UV irradiation of cells does not accelerate telomere shortening. Telomeres are therefore unique in at least three respects: their biophysical UV sensitivity, their prevention of excision repair, and their tolerance of unrepaired lesions.
Collapse
Affiliation(s)
- Patrick J. Rochette
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Douglas E. Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Gene expression is a complex trait determined by various genetic and nongenetic factors. Among the genetic factors, allelic difference may play a critical role in gene regulation. In this study we globally dissected cis (allelic) and trans sources of genetic variation in F(1) hybrids between two Arabidopsis thaliana wild accessions, Columbia (Col) and Vancouver (Van), using a new high-density SNP-tiling array. This array tiles the whole genome with 35-bp resolution and interrogates 250,000 SNPs identified from resequencing of 20 diverse A. thaliana strains. Quantitative assessment of 12,311 genes identified 3811 genes differentially expressed between parents, 1665 genes with allele-specific expression, and 1688 genes controlled by composite trans-regulatory variation. Loci with cis- or trans-regulatory variation were mapped onto sequence polymorphisms, epigenetic modifications, and transcriptional specificity. Genes regulated in cis tend to be located in polymorphic chromosomal regions, are preferentially associated with repressive epigenetic marks, and exhibit high tissue expression specificity. Genes that vary due to trans regulation reside in relatively conserved chromosome regions, show activating epigenetic marks and generally constitutive gene expression. Our findings demonstrate a method of global functional characterization of allele-specific expression and highlight that chromatin structure is intertwined with evolution of cis- and trans-regulatory variation.
Collapse
|
12
|
Olofsson BA, Kelly CM, Kim J, Hornsby SM, Azizkhan-Clifford J. Phosphorylation of Sp1 in response to DNA damage by ataxia telangiectasia-mutated kinase. Mol Cancer Res 2008; 5:1319-30. [PMID: 18171990 DOI: 10.1158/1541-7786.mcr-07-0374] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sp1, a transcription factor that regulates expression of a wide array of essential genes, contains two SQ/TQ cluster domains, which are characteristic of ATM kinase substrates. ATM substrates are transducers and effectors of the DNA damage response, which involves sensing damage, checkpoint activation, DNA repair, and/or apoptosis. A role for Sp1 in the DNA damage response is supported by our findings: Activation of ATM induces Sp1 phosphorylation with kinetics similar to H2AX; inhibition of ATM activity blocks Sp1 phosphorylation; depletion of Sp1 sensitizes cells to DNA damage and increases the frequency of double strand breaks. We have identified serine 101 as a critical site phosphorylated by ATM; Sp1 with serine 101 mutated to alanine (S101A) is not significantly phosphorylated in response to damage and cannot restore increased sensitivity to DNA damage of cells depleted of Sp1. Together, these data show that Sp1 is a novel ATM substrate that plays a role in the cellular response to DNA damage.
Collapse
Affiliation(s)
- Beatrix A Olofsson
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | |
Collapse
|
13
|
Tenaillon MI, Austerlitz F, Tenaillon O. Apparent mutational hotspots and long distance linkage disequilibrium resulting from a bottleneck. J Evol Biol 2008; 21:541-50. [PMID: 18205779 DOI: 10.1111/j.1420-9101.2007.01490.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genome wide patterns of nucleotide diversity and recombination reveal considerable variation including hotspots. Some studies suggest that these patterns are primarily dictated by individual locus history related at a broader scale to the population demographic history. Because bottlenecks have occurred in the history of numerous species, we undertook a simulation approach to investigate their impact on the patterns of aggregation of polymorphic sites and linkage disequilibrium (LD). We developed a new index (Polymorphism Aggregation Index) to characterize this aggregation and showed that variation in the density of polymorphic sites results from an interplay between the bottleneck scenario and the recombination rate. Under particular conditions, aggregation is maximized and apparent mutation hotspots resulting in a 50-fold increase in polymorphic sites density can occur. In similar conditions, long distance LD can be detected.
Collapse
Affiliation(s)
- M I Tenaillon
- UMR8120 de Génétique Végétale, INRA/Univ. Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
14
|
Castella M, Puerto S, Creus A, Marcos R, Surralles J. Telomere length modulates human radiation sensitivity in vitro. Toxicol Lett 2007; 172:29-36. [PMID: 17604920 DOI: 10.1016/j.toxlet.2007.05.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The molecular basis of the interindividual differences of normal individuals to ionizing radiation is poorly understood. Several studies in telomerase KO mice with short telomeres have uncovered an inverse relationship between telomere length and radiation sensitivity. The present work aims to determine if chromosome radiosensitivity is correlated with telomere length in healthy individuals. With this purpose, individual radiosensitivity was determined by the micronucleus assay in peripheral blood lymphocytes from two groups of individuals of the same age but with highly heterogeneous telomere length, selected from a population of 181 individuals where we previously measured telomere length. Our study demonstrates that telomere length modulates chromosome in vitro radiosensitivity in healthy individuals as the group with short telomeres presented higher frequencies of ionizing radiation-induced micronuclei when compared to the long telomeres group. This result supports the conclusion that individual telomere length acts as biomarker of individual chromosome instability upon exposure to ionizing radiation.
Collapse
Affiliation(s)
- M Castella
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Edifici C, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | |
Collapse
|
15
|
Prendergast JGD, Campbell H, Gilbert N, Dunlop MG, Bickmore WA, Semple CAM. Chromatin structure and evolution in the human genome. BMC Evol Biol 2007; 7:72. [PMID: 17490477 PMCID: PMC1876461 DOI: 10.1186/1471-2148-7-72] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 05/09/2007] [Indexed: 11/16/2022] Open
Abstract
Background Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time. Results In this study we have shown that, paradoxically, synonymous site divergence (dS) at non-CpG sites is highest in regions of open chromatin, primarily as a result of an increased number of transitions, while the rates of other traditional measures of mutation (intergenic, intronic and ancient repeat divergence as well as SNP density) are highest in closed regions of the genome. Analysis of human-chimpanzee divergence across intron-exon boundaries indicates that although genes in relatively open chromatin generally display little selection at their synonymous sites, those in closed regions show markedly lower divergence at their fourfold degenerate sites than in neighbouring introns and intergenic regions. Exclusion of known Exonic Splice Enhancer hexamers has little affect on the divergence observed at fourfold degenerate sites across chromatin categories; however, we show that closed chromatin is enriched with certain classes of ncRNA genes whose RNA secondary structure may be particularly important. Conclusion We conclude that, overall, non-CpG mutation rates are lowest in open regions of the genome and that regions of the genome with a closed chromatin structure have the highest background mutation rate. This might reflect lower rates of DNA damage or enhanced DNA repair processes in regions of open chromatin. Our results also indicate that dS is a poor measure of mutation rates, particularly when used in closed regions of the genome, as genes in closed regions generally display relatively strong levels of selection at their synonymous sites.
Collapse
Affiliation(s)
- James GD Prendergast
- Colon Cancer Genetics Group, Division of Oncology, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Harry Campbell
- Public Health Sciences, Department of Community Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU,UK
| | - Malcolm G Dunlop
- Colon Cancer Genetics Group, Division of Oncology, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU,UK
| | - Colin AM Semple
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU,UK
| |
Collapse
|
16
|
Bogliolo M, Lyakhovich A, Callén E, Castellà M, Cappelli E, Ramírez MJ, Creus A, Marcos R, Kalb R, Neveling K, Schindler D, Surrallés J. Histone H2AX and Fanconi anemia FANCD2 function in the same pathway to maintain chromosome stability. EMBO J 2007; 26:1340-51. [PMID: 17304220 PMCID: PMC1817623 DOI: 10.1038/sj.emboj.7601574] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 01/03/2007] [Indexed: 01/01/2023] Open
Abstract
Fanconi anemia (FA) is a chromosome fragility syndrome characterized by bone marrow failure and cancer susceptibility. The central FA protein FANCD2 is known to relocate to chromatin upon DNA damage in a poorly understood process. Here, we have induced subnuclear accumulation of DNA damage to prove that histone H2AX is a novel component of the FA/BRCA pathway in response to stalled replication forks. Analyses of cells from H2AX knockout mice or expressing a nonphosphorylable H2AX (H2AX(S136A/S139A)) indicate that phosphorylated H2AX (gammaH2AX) is required for recruiting FANCD2 to chromatin at stalled replication forks. FANCD2 binding to gammaH2AX is BRCA1-dependent and cells deficient or depleted of H2AX show an FA-like phenotype, including an excess of chromatid-type chromosomal aberrations and hypersensitivity to MMC. This MMC hypersensitivity of H2AX-deficient cells is not further increased by depleting FANCD2, indicating that H2AX and FANCD2 function in the same pathway in response to DNA damage-induced replication blockage. Consequently, histone H2AX is functionally connected to the FA/BRCA pathway to resolve stalled replication forks and prevent chromosome instability.
Collapse
Affiliation(s)
- Massimo Bogliolo
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alex Lyakhovich
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Elsa Callén
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Maria Castellà
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Enrico Cappelli
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - María J Ramírez
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Amadeu Creus
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Reinhard Kalb
- Department of Human Genetics, University of Wurzburg, Wurzburg, Germany
| | - Kornelia Neveling
- Department of Human Genetics, University of Wurzburg, Wurzburg, Germany
| | - Detlev Schindler
- Department of Human Genetics, University of Wurzburg, Wurzburg, Germany
| | - Jordi Surrallés
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Bellaterra, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autonoma de Barcelona, Campus de Bellaterra, Bellaterra, Barcelona 08193, Spain. Tel.: + 34 93 581 18 30; Fax: + 34 93 581 23 87; E-mail:
| |
Collapse
|
17
|
Manova V, Gecheff K, Stoilov L. Efficient repair of bleomycin-induced double-strand breaks in barley ribosomal genes. Mutat Res 2006; 601:179-90. [PMID: 16930631 DOI: 10.1016/j.mrfmmm.2006.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 06/28/2006] [Accepted: 07/11/2006] [Indexed: 05/11/2023]
Abstract
Ability of barley ribosomal genes to cope with damage produced in vivo by the radiomimetic agent bleomycin was investigated. Repair kinetics of bleomycin-induced double-strand breaks in ribosomal and total genomic DNA was compared. Induction and repair of double-strand breaks in defined regions of the ribosomal genes was also analyzed. Preferential sensitivity of barley linker DNA towards bleomycin treatment in vivo was established. Relatively higher yield of initially induced double-strand breaks in genomic DNA in comparison to ribosomal DNA was also found. Fragments containing intergenic spacers of barley rRNA genes displayed higher sensitivity to bleomycin than the coding sequences. No heterogeneity in the repair of DSB between transcribed and non-transcribed regions of ribosomal genes was detected. Data indicate that DSB repair in barley rDNA, although more efficient than in genomic DNA, does not correlate with the activity of nucleolus organizer regions.
Collapse
Affiliation(s)
- Vasilissa Manova
- Department of Molecular Genetics, Institute of Genetics, Acad D Kostoff, BAS, Sofia, Bulgaria
| | | | | |
Collapse
|
18
|
Hellmann I, Prüfer K, Ji H, Zody MC, Pääbo S, Ptak SE. Why do human diversity levels vary at a megabase scale? Genome Res 2005; 15:1222-31. [PMID: 16140990 PMCID: PMC1199536 DOI: 10.1101/gr.3461105] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 02/26/2005] [Indexed: 01/14/2023]
Abstract
Levels of diversity vary across the human genome. This variation is caused by two forces: differences in mutation rates and the differential impact of natural selection. Pertinent to the question of the relative importance of these two forces is the observation that both diversity within species and interspecies divergence increase with recombination rates. This suggests that mutation and recombination are either directly coupled or linked through some third factor. Here, we test these possibilities using the recently generated sequence of the chimpanzee genome and new estimates of human diversity. We find that measures of GC and CpG content, simple-repeat structures, as well as the distance from the centromeres and the telomeres predict diversity as well as divergence. After controlling for these factors, large-scale recombination rates measured from pedigrees are still significant predictors of human diversity and human-chimpanzee divergence. Furthermore, the correlation between human diversity and recombination remains significant even after controlling for human-chimpanzee divergence. Two plausible and non-mutually exclusive explanations are, first, that natural selection has shaped the patterns of diversity seen in humans and, second, that recombination rates across the genome have changed since humans and chimpanzees shared a common ancestor, so that current recombination rates are a better predictor of diversity than of divergence. Because there are indications that recombination rates may have changed rapidly during human evolution, we favor the latter explanation.
Collapse
Affiliation(s)
- Ines Hellmann
- Max-Planck-Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Quina AS, Parreira L. Telomere-surrounding regions are transcription-permissive 3D nuclear compartments in human cells. Exp Cell Res 2005; 307:52-64. [PMID: 15922726 DOI: 10.1016/j.yexcr.2005.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 02/12/2005] [Accepted: 02/19/2005] [Indexed: 11/16/2022]
Abstract
Positioning of genes relative to nuclear heterochromatic compartments is thought to help regulate their transcriptional activity. Given that human subtelomeric regions are rich in highly expressed genes, we asked whether human telomeres are related to transcription-permissive nuclear compartments. To address this question, we investigated in the nuclei of normal human lymphocytes the spatial relations of two constitutively expressed genes (ACTB and RARA) and three nuclear transcripts (ACTB, IL2RA and TCRB) to telomeres and centromeres, as a function of gene activity and transcription levels. We observed that genes and gene transcripts locate close to telomere clusters and away from chromocenters upon activation of transcription. These findings, together with the observation that SC35 domains, which are enriched in pre-mRNA processing factors, are in close proximity to telomeres, indicate that telomere-neighboring regions are permissive to gene expression in human cells. Therefore, the associations of telomeres observed in the interphase nucleus might contribute, as opposed to chromocenters, for the establishment of transcription-permissive 3D nuclear compartments.
Collapse
Affiliation(s)
- Ana Sofia Quina
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | | |
Collapse
|
20
|
Jha AN. Genotoxicological studies in aquatic organisms: an overview. Mutat Res 2004; 552:1-17. [PMID: 15352315 DOI: 10.1016/j.mrfmmm.2004.06.034] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 06/25/2004] [Indexed: 01/20/2023]
Abstract
Substantial progress has been made in the lat two decades to evaluate the impact of physical and chemical genotoxins in aquatic organisms. This overview (a) summarises the major high lights in this stimulating area of research, (b) compares the developments in this field with the developments in mammalian genotoxicological studies, where appropriate, (c) introduces 18 different articles presented in this special issue of Mutation Research in the backdrop of main advances and , (d) hypothesises on future directions of research in this exciting field.
Collapse
Affiliation(s)
- Awadhesh N Jha
- School of Biological Sciences, Plymouth Environmental Research Centre, University of Plymouth, PL48AA, UK.
| |
Collapse
|
21
|
Surrallés J, Jackson SP, Jasin M, Kastan MB, West SC, Joenje H. Molecular cross-talk among chromosome fragility syndromes. Genes Dev 2004; 18:1359-70. [PMID: 15198978 PMCID: PMC423188 DOI: 10.1101/gad.1216304] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jordi Surrallés
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autonòma de Barcelona, 08193-Bellaterra, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Piñeiro E, Fernàndez-López L, Gamez J, Marcos R, Surrallés J, Velázquez A. Mutagenic stress modulates the dynamics of CTG repeat instability associated with myotonic dystrophy type 1. Nucleic Acids Res 2004; 31:6733-40. [PMID: 14627806 PMCID: PMC290266 DOI: 10.1093/nar/gkg898] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The molecular basis of the myotonic dystrophy type 1 is the expansion of a CTG repeat at the DMPK locus. The expanded disease-associated repeats are unstable in both somatic and germ lines, with a high tendency towards expansion. The rate of expansion is directly related to the size of the pathogenic allele, increasing the size heterogeneity with age. It has also been suggested that additional factors, including as yet unidentified environmental factors, might affect the instability of the expanded CTG repeats to account for the observed CTG size dynamics over time. To investigate the effect of environmental factors in the CTG repeat instability, three lymphoblastoid cell lines were established from two myotonic dystrophy patients and one healthy individual, and parallel cultures were concurrently expanded in the presence or absence of the mutagenic chemical mitomycin C for a total of 12 population doublings. The new alleles arising along the passages were analysed by radioactive small pool PCR and sequencing gels. An expansion bias of the stepwise mutation was observed in a (CTG)124 allele of a cell line harbouring two modal alleles of 28 and 124 CTG repeats. Interestingly, this expansion bias was clearly enhanced in the presence of mitomycin C. The effect of mitomycin C was also evident in the normal size alleles in two cell lines with alleles of 13/13 and 12/69 repeats, where treated cultures showed new longer alleles. In conclusion, our results indicate that mitomycin C modulates the dynamics of myotonic dystrophy-associated CTG repeats in LBCLs, enhancing the expansion bias of long-pathogenic repeats and promoting the expansion of normal length repeats.
Collapse
Affiliation(s)
- Elisabeth Piñeiro
- Grup de Mutagènesi, Unitat de Genètica, Departament de Genètica i de Microbiologia, Edifici Cn, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Hurst LD, Pál C, Lercher MJ. The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 2004; 5:299-310. [PMID: 15131653 DOI: 10.1038/nrg1319] [Citation(s) in RCA: 524] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Laurence D Hurst
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | | | | |
Collapse
|
24
|
Licht CL, Stevnsner T, Bohr VA. Cockayne syndrome group B cellular and biochemical functions. Am J Hum Genet 2003; 73:1217-39. [PMID: 14639525 PMCID: PMC1180389 DOI: 10.1086/380399] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 10/01/2003] [Indexed: 01/17/2023] Open
Abstract
The devastating genetic disorder Cockayne syndrome (CS) arises from mutations in the CSA and CSB genes. CS is characterized by progressive multisystem degeneration and is classified as a segmental premature-aging syndrome. The CS complementation group B (CSB) protein is at the interface of transcription and DNA repair and is involved in transcription-coupled and global genome-DNA repair, as well as in general transcription. Recent structure-function studies indicate a process-dependent variation in the molecular mechanism employed by CSB and provide a starting ground for a description of the mechanisms and their interplay.
Collapse
Affiliation(s)
- Cecilie Löe Licht
- Laboratory of DNA Repair, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark; and Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore
| | - Tinna Stevnsner
- Laboratory of DNA Repair, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark; and Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore
| | - Vilhelm A. Bohr
- Laboratory of DNA Repair, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark; and Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore
| |
Collapse
|
25
|
van Driel R, Fransz PF, Verschure PJ. The eukaryotic genome: a system regulated at different hierarchical levels. J Cell Sci 2003; 116:4067-75. [PMID: 12972500 DOI: 10.1242/jcs.00779] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eukaryotic gene expression can be viewed within a conceptual framework in which regulatory mechanisms are integrated at three hierarchical levels. The first is the sequence level, i.e. the linear organization of transcription units and regulatory sequences. Here, developmentally co-regulated genes seem to be organized in clusters in the genome, which constitute individual functional units. The second is the chromatin level, which allows switching between different functional states. Switching between a state that suppresses transcription and one that is permissive for gene activity probably occurs at the level of the gene cluster, involving changes in chromatin structure that are controlled by the interplay between histone modification, DNA methylation, and a variety of repressive and activating mechanisms. This regulatory level is combined with control mechanisms that switch individual genes in the cluster on and off, depending on the properties of the promoter. The third level is the nuclear level, which includes the dynamic 3D spatial organization of the genome inside the cell nucleus. The nucleus is structurally and functionally compartmentalized and epigenetic regulation of gene expression may involve repositioning of loci in the nucleus through changes in large-scale chromatin structure.
Collapse
Affiliation(s)
- Roel van Driel
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 318,1098SM Amsterdam, The Netherlands.
| | | | | |
Collapse
|
26
|
Castillo V, Cabré O, Marcos R, Surrallés J. Molecular cloning of the Drosophila Fanconi anaemia gene FANCD2 cDNA. DNA Repair (Amst) 2003; 2:751-8. [PMID: 12767353 DOI: 10.1016/s1568-7864(03)00046-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fanconi anaemia (FA) is a rare disease characterized by chromosome instability and cancer susceptibility. With the exception of FANCD2, none of the Fanconi anaemia genes are conserved in evolution, limiting the study of the Fanconi anaemia pathway in genetically tractable models. Here we report the cloning and sequencing of a Drosophila full length cDNA homologous to human FANCD2 (dmFANCD2) as a first step in using Drosophila in Fanconi anaemia research. dmFANCD2 is composed of 14 exons coding for a protein of 1478 aminoacids. Southern blot and in situ hybridization analysis indicated that dmFANCD2 is present at single copy in the Drosophila genome and maps at the chromosomal band 92-F3. Sequence and structural biocomputational analysis indicated that, although the aminoacidic sequence, and specially the N-terminus region, is not highly conserved between humans and flies (23% identity and 43% similarity), both proteins are of the same size, globular and compact, with several transmembrane helixes and related to nuclear membrane proteins. Interestingly, the human ATM phosphorylation site at S222 and the complex-dependent monoubiquitination site at K561 are highly conserved in Drosophila at positions S267 and K595, respectively. The same is true for other putative ATM sites and their aminoacidic environment and for two out of three aminoacid mutations associated with human pathology. These results suggest that the key FANCD2 features have been conserved during over 500 million years of divergent evolution, highlighting their biological importance.
Collapse
Affiliation(s)
- Vernon Castillo
- Group of Mutagenesis, Department of Genetics and Microbiology, Campus de Bellaterra s/n, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
27
|
Lestou VS, Ludkovski O, Connors JM, Gascoyne RD, Lam WL, Horsman DE. Characterization of the recurrent translocation t(1;1)(p36.3;q21.1-2) in non-Hodgkin lymphoma by multicolor banding and fluorescence in situ hybridization analysis. Genes Chromosomes Cancer 2003; 36:375-81. [PMID: 12619161 DOI: 10.1002/gcc.10181] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Aberrations of chromosomal bands 1p36 and 1q11-q23 are among the most common chromosomal alterations in non-Hodgkin lymphoma (NHL). In this study, 16 cases of NHL showing recurrent unbalanced translocation t(1;1)(p36;q11-23) by G-band analysis were selected for further analysis. To delineate the exact breakpoints, multicolor band analysis for chromosome 1 (M-BAND1), and locus-specific fluorescence in situ hybridization (LS-FISH) using human genome designated BAC clones were performed. In all but one dicentric case, the breakpoint was determined to involve chromosomal bands 1p36.3 and 1q21.1-2. LS-FISH analysis for the TP73, MEL1, SKI, and CASP9 loci at 1p36, and the loci IRTA1, IRTA2, BCL9, AF1Q, JTB, and MUC1 at 1q21, verified the MBAND1 results and further delineated the breakpoints. In band 1p36, two hybridization patterns were observed, one involving deletions of MEL1, TP73, and SKI, but not CASP9, and the second involving a breakpoint telomeric to TP73. In region 1q21, four hybridization patterns were observed, the first involving duplication/translocation of all five genes; the second involving duplication/translocation of BCL9, AF1Q, JTB, and MUC1; the third involving duplication/translocation of AF1Q, JTB, and MUC1; and the fourth with a breakpoint telomeric to MUC1. Using an alpha-satellite probe for chromosome 1 (D1Z5), centromeric involvement in the unbalanced translocation t(1;1)(p36.3;q21.1-2) was excluded in all but the one dicentric case, that is, dic(1;1)(p36.3;q10). In conclusion, deletion of 1p36 and duplication of 1q21 through formation of an unbalanced translocation t(1;1)(p36.3;q21.1-2) is a non-random event in NHL, suggesting a deletion-duplication mechanism involved in lymphoma progression and justifying further systematic research.
Collapse
Affiliation(s)
- Valia S Lestou
- Department of Pathology, and Laboratory Medicine, British Columbia Cancer Agency, 600 W. 10th Avenue, Vancouver, BC, V5Z 4E6 Canada.
| | | | | | | | | | | |
Collapse
|