1
|
Navals P, Rangaswamy AMM, Kasyanchyk P, Berezovski MV, Keillor JW. Conformational Modulation of Tissue Transglutaminase via Active Site Thiol Alkylating Agents: Size Does Not Matter. Biomolecules 2024; 14:496. [PMID: 38672511 PMCID: PMC11048362 DOI: 10.3390/biom14040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
TG2 is a unique member of the transglutaminase family as it undergoes a dramatic conformational change, allowing its mutually exclusive function as either a cross-linking enzyme or a G-protein. The enzyme's dysregulated activity has been implicated in a variety of pathologies (e.g., celiac disease, fibrosis, cancer), leading to the development of a wide range of inhibitors. Our group has primarily focused on the development of peptidomimetic targeted covalent inhibitors, the nature and size of which were thought to be important features to abolish TG2's conformational dynamism and ultimately inhibit both its activities. However, we recently demonstrated that the enzyme was unable to bind guanosine triphosphate (GTP) when catalytically inactivated by small molecule inhibitors. In this study, we designed a library of models targeting covalent inhibitors of progressively smaller sizes (15 to 4 atoms in length). We evaluated their ability to inactivate TG2 by measuring their respective kinetic parameters kinact and KI. Their impact on the enzyme's ability to bind GTP was then evaluated and subsequently correlated to the conformational state of the enzyme, as determined via native PAGE and capillary electrophoresis. All irreversible inhibitors evaluated herein locked TG2 in its open conformation and precluded GTP binding. Therefore, we conclude that steric bulk and structural complexity are not necessary factors to consider when designing TG2 inhibitors to abolish G-protein activity.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (P.N.); (A.M.M.R.); (P.K.); (M.V.B.)
| |
Collapse
|
2
|
Liu J, Mouradian MM. Pathogenetic Contributions and Therapeutic Implications of Transglutaminase 2 in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2364. [PMID: 38397040 PMCID: PMC10888553 DOI: 10.3390/ijms25042364] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Neurodegenerative diseases encompass a heterogeneous group of disorders that afflict millions of people worldwide. Characteristic protein aggregates are histopathological hallmark features of these disorders, including Amyloid β (Aβ)-containing plaques and tau-containing neurofibrillary tangles in Alzheimer's disease, α-Synuclein (α-Syn)-containing Lewy bodies and Lewy neurites in Parkinson's disease and dementia with Lewy bodies, and mutant huntingtin (mHTT) in nuclear inclusions in Huntington's disease. These various aggregates are found in specific brain regions that are impacted by neurodegeneration and associated with clinical manifestations. Transglutaminase (TG2) (also known as tissue transglutaminase) is the most ubiquitously expressed member of the transglutaminase family with protein crosslinking activity. To date, Aβ, tau, α-Syn, and mHTT have been determined to be substrates of TG2, leading to their aggregation and implicating the involvement of TG2 in several pathophysiological events in neurodegenerative disorders. In this review, we summarize the biochemistry and physiologic functions of TG2 and describe recent advances in the pathogenetic role of TG2 in these diseases. We also review TG2 inhibitors tested in clinical trials and discuss recent TG2-targeting approaches, which offer new perspectives for the design of future highly potent and selective drugs with improved brain delivery as a disease-modifying treatment for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - M. Maral Mouradian
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
3
|
Zhang S, Yao HF, Li H, Su T, Jiang SH, Wang H, Zhang ZG, Dong FY, Yang Q, Yang XM. Transglutaminases are oncogenic biomarkers in human cancers and therapeutic targeting of TGM2 blocks chemoresistance and macrophage infiltration in pancreatic cancer. Cell Oncol (Dordr) 2023; 46:1473-1492. [PMID: 37246171 DOI: 10.1007/s13402-023-00824-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/30/2023] Open
Abstract
PURPOSE Transglutaminases (TGs) are multifunctional enzymes exhibiting transglutaminase crosslinking, as well as atypical GTPase/ATPase and kinase activities. Here, we used an integrated comprehensive analysis to assess the genomic, transcriptomic and immunological landscapes of TGs across cancers. METHODS Gene expression and immune cell infiltration patterns across cancers were obtained from The Cancer Genome Atlas (TCGA) database and Gene Set Enrichment Analysis (GSEA) datasets. Western blotting, immunofluorescence staining, enzyme-linked immunosorbent assays, and orthotopic xenograft models were used to validate our database-derived results. RESULTS We found that the overall expression of TGs (designated as the TG score) is significantly upregulated in multiple cancers and related to a worse patient survival. The expression of TG family members can be regulated through multiple mechanisms at the genetic, epigenetic and transcriptional levels. The expression of transcription factors crucial for epithelial-to-mesenchymal transition (EMT) is commonly correlated with the TG score in many cancer types. Importantly, TGM2 expression displays a close connection with chemoresistance to a wide range of chemotherapeutic drugs. We found that TGM2 expression, F13A1 expression and the overall TG score were positively correlated with the infiltration of immune cells in all cancer types tested. Functional and clinical verification revealed that a higher TGM2 expression is linked with a worse patient survival, an increased IC50 value of gemcitabine, and a higher abundance of tumor-infiltrating macrophages in pancreatic cancer. Mechanistically, we found that increased C-C motif chemokine ligand 2 (CCL2) release mediated by TGM2 contributes to macrophage infiltration into the tumor microenvironment. CONCLUSIONS Our results reveal the relevance and molecular networks of TG genes in human cancers and highlight the importance of TGM2 in pancreatic cancer, which may provide promising directions for immunotherapy and for addressing chemoresistance.
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hong-Fei Yao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, People's Republic of China
| | - Hui Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tong Su
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hao Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Pudong District, Shanghai, 200123, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Fang-Yuan Dong
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, People's Republic of China.
| | - Qin Yang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiao-Mei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
4
|
Yiu TW, Holman SR, Kaidonis X, Graham RM, Iismaa SE. Transglutaminase 2 Facilitates Murine Wound Healing in a Strain-Dependent Manner. Int J Mol Sci 2023; 24:11475. [PMID: 37511238 PMCID: PMC10380275 DOI: 10.3390/ijms241411475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Transglutaminase 2 (TG2) plays a role in cellular processes that are relevant to wound healing, but to date no studies of wound healing in TG2 knockout mice have been reported. Here, using 129T2/SvEmsJ (129)- or C57BL/6 (B6)-backcrossed TG2 knockout mice, we show that TG2 facilitates murine wound healing in a strain-dependent manner. Early healing of in vivo cutaneous wounds and closure of in vitro scratch wounds in murine embryonic fibroblast (MEF) monolayers were delayed in 129, but not B6, TG2 knockouts, relative to their wild-type counterparts, with wound closure in 129 being faster than in B6 wild-types. A single dose of exogenous recombinant wild-type TG2 to 129 TG2-/- mice or MEFs immediately post-wounding accelerated wound closure. Neutrophil and monocyte recruitment to 129 cutaneous wounds was not affected by Tgm2 deletion up to 5 days post-wounding. Tgm2 mRNA and TG2 protein abundance were higher in 129 than in B6 wild-types and increased in abundance following cutaneous and scratch wounding. Tgm1 and factor XIIA (F13A) mRNA abundance increased post-wounding, but there was no compensation by TG family members in TG2-/- relative to TG2+/+ mice in either strain before or after wounding. 129 TG2+/+ MEF adhesion was greater and spreading was faster than that of B6 TG2+/+ MEFs, and was dependent on syndecan binding in the presence, but not absence, of RGD inhibition of integrin binding. Adhesion and spreading of 129, but not B6, TG2-/- MEFs was impaired relative to their wild-type counterparts and was accelerated by exogenous addition or transfection of TG2 protein or cDNA, respectively, and was independent of the transamidase or GTP-binding activity of TG2. Rho-family GTPase activation, central to cytoskeletal organization, was altered in 129 TG2-/- MEFs, with delayed RhoA and earlier Rac1 activation than in TG2+/+ MEFs. These findings indicate that the rate of wound healing is different between 129 and B6 mouse strains, correlating with TG2 abundance, and although not essential for wound healing, TG2 facilitates integrin- and syndecan-mediated RhoA- and Rac1-activation in fibroblasts to promote efficient wound contraction.
Collapse
Affiliation(s)
- Ting W. Yiu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (T.W.Y.); (S.R.H.); (X.K.)
| | - Sara R. Holman
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (T.W.Y.); (S.R.H.); (X.K.)
| | - Xenia Kaidonis
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (T.W.Y.); (S.R.H.); (X.K.)
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (T.W.Y.); (S.R.H.); (X.K.)
- School of Clinical Medicine, UNSW Medicine and Health, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Siiri E. Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (T.W.Y.); (S.R.H.); (X.K.)
- School of Clinical Medicine, UNSW Medicine and Health, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
5
|
Katt WP, Aplin C, Cerione RA. Exploring the Role of Transglutaminase in Patients with Glioblastoma: Current Perspectives. Onco Targets Ther 2022; 15:277-290. [PMID: 35340676 PMCID: PMC8943831 DOI: 10.2147/ott.s329262] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/08/2022] [Indexed: 12/22/2022] Open
Abstract
Tissue transglutaminase (tTG) is a rather unique GTP-binding/protein crosslinking enzyme that has been shown to play important roles in a number of cellular processes that impact both normal physiology and disease states. This is especially the case in the context of aggressive brain tumors, such as glioblastoma. The diverse roles played by tTG in cancer survival and progression have led to significant interest in recent years in using tTG as a therapeutic target. In this review, we provide a brief overview of the transglutaminase family, and then discuss the primary biochemical activities exhibited by tTG with an emphasis on the role it plays in glioblastoma progression. Finally, we consider current approaches to target tTG which might eventually have clinical impact.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine, Cornell University, Ithaca, NY, 14850, USA
| | - Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, 14850, USA,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA,Correspondence: Richard A Cerione, Tel +1 607-253-3650, Email
| |
Collapse
|
6
|
Xu X, Zhang W, Berthelet J, Liu R, Michail C, Chaffotte AF, Dupret JM, Rodrigues-Lima F. From transglutaminases (TGs) to arylamine N-acetyltransferases (NATs): Insight into the role of a spatially conserved aromatic amino acid position in the active site of these two families of enzymes. Biochem Biophys Res Commun 2020; 525:308-312. [PMID: 32089267 DOI: 10.1016/j.bbrc.2020.02.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 11/29/2022]
Abstract
Transglutaminases (TG) and arylamine N-acetyltransferases (NAT) are important family of enzymes. Although they catalyze different reactions and have distinct structures, these two families of enzymes share a spatially conserved catalytic triad (Cys, His, Asp residues). In active TGs, a conserved Trp residue located close to the triad cysteine is crucial for catalysis through stabilization of transition states. Here, we show that in addition to sharing a similar catalytic triad with TGs, functional NAT enzymes also possess in their active site an aromatic residue (Phe, Tyr or Trp) occupying a structural position similar to the Trp residue of active TGs. More importantly, as observed in active TGs, our data indicates that in functional NAT enzymes this conserved aromatic residue is also involved in stabilization of transition states. These results thus indicate that in addition to the three triad residues, these two families of enzymes also share a spatially conserved aromatic amino acid position important for catalysis. Identification of residues involved in the stabilization of transition states is important to develop potent inhibitors. Interestingly, NAT enzymes have been shown as potential targets of clinical interest.
Collapse
Affiliation(s)
- Ximing Xu
- Université de Paris, BFA, UMR 8251, CNRS, 75013, Paris, France; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Wenchao Zhang
- Université de Paris, BFA, UMR 8251, CNRS, 75013, Paris, France
| | | | - Rongxing Liu
- Université de Paris, BFA, UMR 8251, CNRS, 75013, Paris, France
| | | | - Alain F Chaffotte
- Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, 75015, Paris, France
| | | | | |
Collapse
|
7
|
Inhibitors of blood coagulation factor XIII. Anal Biochem 2020; 605:113708. [PMID: 32335064 DOI: 10.1016/j.ab.2020.113708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
The blood coagulation factor XIII (FXIII) plays an essential role in the stabilization of fibrin clots. This factor, belonging to the class of transglutaminases, catalyzes the final step of secondary hemostasis, i.e. the crosslinking of fibrin polymers. These crosslinks protect the clots against premature fibrinolysis. Consequently, FXIII is an interesting target for the therapeutic treatment of cardiovascular diseases. In this context, inhibitors can influence FXIII in the activation process of the enzyme itself or in its catalytic activity. To date, there is no FXIII inhibitor in medical application, but several studies have been conducted in the past. These studies provided a better understanding of FXIII and identified new lead structures for FXIII inhibitors. Next to small molecule inhibitors, the most promising candidates for the development of clinically applicable FXIII inhibitors are the peptide inhibitors tridegin and transglutaminase-inhibiting Michael acceptors (TIMAs) due to their selectivity towards activated FXIII (FXIIIa). In this review, select FXIII inhibitors and their pharmacological potential are discussed.
Collapse
|
8
|
Zhang Y, Simpson BK. Food-related transglutaminase obtained from fish/shellfish. Crit Rev Food Sci Nutr 2019; 60:3214-3232. [DOI: 10.1080/10408398.2019.1681357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Québec, Canada
| | - Benjamin K. Simpson
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Québec, Canada
| |
Collapse
|
9
|
Balogh G, Muszbek L, Komáromi I. First Step of the Transglutaminase Reaction Catalyzed by Activated Factor XIII Subunit A, Hybrid Quantum Chemistry/Molecular Mechanics Calculations. J Phys Chem B 2019; 123:3887-3897. [DOI: 10.1021/acs.jpcb.9b00542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gábor Balogh
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - László Muszbek
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - István Komáromi
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
10
|
Pina Dore M, Pes GM, Errigo A, Manca A, Realdi G. Tissue transglutaminase activity in human gastric mucosa according to Helicobacter pylori infection. Exp Biol Med (Maywood) 2018; 243:1161-1164. [PMID: 30541347 DOI: 10.1177/1535370218819423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT Tissue transglutaminase (t-TG) is unique among TG enzymes because of its additional role in several physiological and pathological activities, including inflammation, fibrosis, and wound healing. The presence of t-TG has previously been described in the intestine of human and animal models, yet studies on t-TG activity in human gastric mucosa are missing. Helicobacter pylori infection is the major cause of gastritis and peptic ulcers. For the first time, our results show that t-TG activity was significantly higher in antral specimens of patients with chronic active gastritis associated with H. pylori infection compared to H. pylori negative chronic gastritis and normal antral mucosa. These findings suggest that t-TG has a role in the natural history of human gastritis, which requires further investigation but may be an avenue for new therapeutic options.
Collapse
Affiliation(s)
- Maria Pina Dore
- 1 Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, University of Sassari, Sassari 07100, Italy.,2 Baylor College of Medicine, Department of Medicine, Gastroenterology Section, Houston, TX 77030, USA
| | - Giovanni Mario Pes
- 1 Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, University of Sassari, Sassari 07100, Italy
| | - Alessandra Errigo
- 1 Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, University of Sassari, Sassari 07100, Italy
| | - Alessandra Manca
- 1 Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, University of Sassari, Sassari 07100, Italy
| | - Giuseppe Realdi
- 3 Department of Medicine, University of Padova, Padova 35121, Italy
| |
Collapse
|
11
|
Abstract
Tissue transglutaminase (tTG), also referred to as type 2 transglutaminase or Gαh, can bind and hydrolyze GTP, as well as function as a protein crosslinking enzyme. tTG is widely expressed and can be detected both inside cells and in the extracellular space. In contrast to many enzymes, the active and inactive conformations of tTG are markedly different. The catalytically inactive form of tTG adopts a compact “closed-state” conformation, while the catalytically active form of the protein adopts an elongated “open-state” conformation. tTG has long been appreciated as an important player in numerous diseases, including celiac disease, neuronal degenerative diseases, and cancer, and its roles in these diseases often depend as much upon its conformation as its catalytic activity. While its ability to promote these diseases has been traditionally thought to be dependent on its protein crosslinking activity, more recent findings suggest that the conformational state tTG adopts is also important for mediating its effects. In particular, we and others have shown that the closed-state of tTG is important for promoting cell growth and survival, while maintaining tTG in the open-state is cytotoxic. In this review, we examine the two unique conformations of tTG and how they contribute to distinct biological processes. We will also describe how this information can be used to generate novel therapies to treat diseases, with a special focus on cancer.
Collapse
|
12
|
Biocatalysis by Transglutaminases: A Review of Biotechnological Applications. MICROMACHINES 2018; 9:mi9110562. [PMID: 30715061 PMCID: PMC6265872 DOI: 10.3390/mi9110562] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023]
Abstract
The biocatalytic activity of transglutaminases (TGs) leads to the synthesis of new covalent isopeptide bonds (crosslinks) between peptide-bound glutamine and lysine residues, but also the transamidation of primary amines to glutamine residues, which ultimately can result into protein polymerisation. Operating with a cysteine/histidine/aspartic acid (Cys/His/Asp) catalytic triad, TGs induce the post-translational modification of proteins at both physiological and pathological conditions (e.g., accumulation of matrices in tissue fibrosis). Because of the disparate biotechnological applications, this large family of protein-remodelling enzymes have stimulated an escalation of interest. In the past 50 years, both mammalian and microbial TGs polymerising activity has been exploited in the food industry for the improvement of aliments' quality, texture, and nutritive value, other than to enhance the food appearance and increased marketability. At the same time, the ability of TGs to crosslink extracellular matrix proteins, like collagen, as well as synthetic biopolymers, has led to multiple applications in biomedicine, such as the production of biocompatible scaffolds and hydrogels for tissue engineering and drug delivery, or DNA-protein bio-conjugation and antibody functionalisation. Here, we summarise the most recent advances in the field, focusing on the utilisation of TGs-mediated protein multimerisation in biotechnological and bioengineering applications.
Collapse
|
13
|
Katt WP, Antonyak MA, Cerione RA. The diamond anniversary of tissue transglutaminase: a protein of many talents. Drug Discov Today 2018; 23:575-591. [PMID: 29362136 PMCID: PMC5864117 DOI: 10.1016/j.drudis.2018.01.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/28/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022]
Abstract
Tissue transglutaminase (tTG) is capable of binding and hydrolyzing GTP, as well as catalyzing an enzymatic transamidation reaction that crosslinks primary amines to glutamine residues. tTG adopts two vastly different conformations, depending on whether it is functioning as a GTP-binding protein or a crosslinking enzyme. It has been shown to have important roles in several different aspects of cancer progression, making it an attractive target for therapeutic intervention. Here, we highlight many of the major findings involving tTG since its discovery 60 years ago, and describe recent drug discovery efforts that target specific activities or conformations of this unique protein.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine, Cornell University, NY, USA
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, NY, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, NY, USA; Department of Chemistry and Chemical Biology, Cornell University, NY, USA.
| |
Collapse
|
14
|
Reaction profiling of a set of acrylamide-based human tissue transglutaminase inhibitors. J Mol Graph Model 2018; 79:157-165. [DOI: 10.1016/j.jmgm.2017.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 11/17/2022]
|
15
|
Eckert RL, Fisher ML, Grun D, Adhikary G, Xu W, Kerr C. Transglutaminase is a tumor cell and cancer stem cell survival factor. Mol Carcinog 2015; 54:947-58. [PMID: 26258961 DOI: 10.1002/mc.22375] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 12/15/2022]
Abstract
Recent studies indicate that cancer cells express elevated levels of type II transglutaminase (TG2), and that expression is further highly enriched in cancer stem cells derived from these cancers. Moreover, elevated TG2 expression is associated with enhanced cancer stem cell marker expression, survival signaling, proliferation, migration, invasion, integrin-mediated adhesion, epithelial-mesenchymal transition, and drug resistance. TG2 expression is also associated with formation of aggressive and metastatic tumors that are resistant to conventional therapeutic intervention. This review summarizes the role of TG2 as a cancer cell survival factor in a range of tumor types, and as a target for preventive and therapeutic intervention. The literature supports the idea that TG2, in the closed/GTP-binding/signaling conformation, drives cancer cell and cancer stem cell survival, and that TG2, in the open/crosslinking conformation, is associated with cell death.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland.,The Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Matthew L Fisher
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Dan Grun
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wen Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Candace Kerr
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland.,The Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
Király R, Thangaraju K, Nagy Z, Collighan R, Nemes Z, Griffin M, Fésüs L. Isopeptidase activity of human transglutaminase 2: disconnection from transamidation and characterization by kinetic parameters. Amino Acids 2015; 48:31-40. [PMID: 26250429 DOI: 10.1007/s00726-015-2063-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/27/2015] [Indexed: 12/24/2022]
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein with diverse catalytic activities and biological roles. Its best studied function is the Ca(2+)-dependent transamidase activity leading to formation of γ-glutamyl-ε-lysine isopeptide crosslinks between proteins and γ-glutamyl-amine derivatives. TG2 has a poorly studied isopeptidase activity cleaving these bonds. We have developed and characterised TG2 mutants which are significantly deficient in transamidase activity while have normal or increased isopeptidase activity (W332F) and vice versa (W278F). The W332F mutation led to significant changes of both the K m and the V max kinetic parameters of the isopeptidase reaction of TG2 while its calcium and GTP sensitivity was similar to the wild-type enzyme. The W278F mutation resulted in six times elevated amine incorporating transamidase activity demonstrating the regulatory significance of W278 and W332 in TG2 and that mutations can change opposed activities located at the same active site. The further application of our results in cellular systems may help to understand TG2-driven physiological and pathological processes better and lead to novel therapeutic approaches where an increased amount of crosslinked proteins correlates with the manifestation of degenerative disorders.
Collapse
Affiliation(s)
- Róbert Király
- Department of Biochemistry and Molecular Biology, University of Debrecen, Egyetem tér 1., Debrecen, 4012, Hungary
| | - Kiruphagaran Thangaraju
- Department of Biochemistry and Molecular Biology, University of Debrecen, Egyetem tér 1., Debrecen, 4012, Hungary
| | - Zsófia Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Egyetem tér 1., Debrecen, 4012, Hungary
| | - Russell Collighan
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Zoltán Nemes
- Department of Biochemistry and Molecular Biology, University of Debrecen, Egyetem tér 1., Debrecen, 4012, Hungary
| | - Martin Griffin
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, University of Debrecen, Egyetem tér 1., Debrecen, 4012, Hungary. .,MTA-DE Stem Cell, Apoptosis and Genomics Research Group of Hungarian Academy of Sciences, Faculty of Medicine, University of Debrecen, Egyetem tér 1., Debrecen, 4012, Hungary.
| |
Collapse
|
17
|
Abstract
Papain has long been known to cause the gelation of mammalian fibrinogens. It has also been reported that papain-fibrin is insoluble in dispersing solvents like strong urea or sodium bromide solutions, similar to what is observed with thrombin-generated clots in the presence of factor XIIIa and calcium. In those old studies, both the gelation and subsequent clot stabilization were attributed to papain, although the possibility that the second step might be due to contaminating factor XIII in fibrinogen preparations was considered. I have revisited this problem in light of knowledge acquired over the past half-century about thiol proteases like papain, which mostly cleave peptide bonds, and transglutaminases like factor XIIIa that catalyze the formation of ε-lysyl-γ-glutamyl cross-links. Recombinant fibrinogen, inherently free of factor XIII and other plasma proteins, formed a stable gel when treated with papain alone. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the intermolecular cross-linking in papain-fibrin leads to γ-chain dimers, trimers, and tetramers, just as is the case with thrombin-factor XIIIa-stabilized fibrin. Mass spectrometry of bands excised from gels showed that the cross-linked material is quite different from what occurs with factor XIIIa, however. With papain, the cross-linking occurs between γ chains in neighboring protofibrils becoming covalently linked in a "head-to-tail" fashion by a transpeptidation reaction involving the α-amino group of γ-Tyr1 and a papain cleavage site at γ-Gly403 near the carboxy terminus, rather than by the (reciprocal) "tail-to-tail" manner that occurs with factor XIIIa and that depends on cross-links between γ-Lys406 and γ-Gln398.
Collapse
Affiliation(s)
- Russell F Doolittle
- Departments of Chemistry & Biochemistry and Molecular Biology, University of California at San Diego , La Jolla, California 92093-0314, United States
| |
Collapse
|
18
|
Abstract
Tissue transglutaminase (transglutaminase 2) is a multifunctional enzyme with many interesting properties resulting in versatile roles in both physiology and pathophysiology. Herein, the particular involvement of the enzyme in human diseases will be outlined with special emphasis on its role in cancer and in tissue interactions with biomaterials. Despite recent progress in unraveling the different cellular functions of transglutaminase 2, several questions remain. Transglutaminase 2 features in both confirmed and some still ambiguous roles within pathological conditions, raising interest in developing inhibitors and imaging probes which target this enzyme. One important prerequisite for identifying and characterizing such molecular tools are reliable assay methods to measure the enzymatic activity. This digest Letter will provide clarification about the various assay methods described to date, accompanied by a discussion of recent progress in the development of inhibitors and imaging probes targeting transglutaminase 2.
Collapse
|
19
|
Keillor JW, Clouthier CM, Apperley KYP, Akbar A, Mulani A. Acyl transfer mechanisms of tissue transglutaminase. Bioorg Chem 2014; 57:186-197. [PMID: 25035302 DOI: 10.1016/j.bioorg.2014.06.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/14/2014] [Accepted: 06/18/2014] [Indexed: 02/01/2023]
Abstract
Tissue transglutaminase (TG2) is a calcium-dependent enzyme that catalyses several acyl transfer reactions. The most biologically relevant of these involve protein-bound Gln residues as an acyl-donor substrate, and either water or a primary amine as an acyl-acceptor substrate. The former leads to deamidation of Gln to Glu, whereas the latter leads to transamidation, typically resulting in protein cross-linking when the amine substrate is a protein-bound Lys residue. In this review, we present an overview of over fifty years of mechanistic studies that have led to our current understanding of TG2-mediated hydrolysis and transamidation.
Collapse
Affiliation(s)
- Jeffrey W Keillor
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada.
| | - Christopher M Clouthier
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada
| | - Kim Y P Apperley
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada
| | - Abdullah Akbar
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada
| | - Amina Mulani
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
20
|
Ku BM, Kim SJ, Kim N, Hong D, Choi YB, Lee SH, Gong YD, Kim SY. Transglutaminase 2 inhibitor abrogates renal cell carcinoma in xenograft models. J Cancer Res Clin Oncol 2014; 140:757-67. [PMID: 24610445 DOI: 10.1007/s00432-014-1623-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/12/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE To test whether transglutaminase 2 (TGase 2) inhibitor GK921 alone reverses renal cell carcinoma (RCC) tumor growth. RCC is resistant to both radiation and chemotherapy, and the prognosis remains poor. Despite the recent therapeutic success of vascular endothelial growth factor inhibition in RCC, approximately one-third of RCC patients develop metastatic disease. The expression of TGase 2 is markedly increased in most RCC cell lines, as well as in clinical samples. METHODS Previously, we introduced the quinoxaline derivative GK13 as a lead compound for TGase 2 inhibitor. The inhibitory effect of GK13 on TGase 2 was improved in GK921 (3-(phenylethynyl)-2-(2-(pyridin-2-yl)ethoxy)pyrido[3,2-b]pyrazine). GK921 efficacy was tested using sulforhodamine in vitro as well as a xenograft tumor models using ACHN and CAKI-1 RCC cells. RESULTS GK921 showed cytotoxicity to RCC (average GI50 in eight RCC cell lines: 0.905 μM). A single treatment with GK921 almost completely reduced tumor growth by stabilizing p53 in the ACHN and CAKI-1 preclinical xenograft tumor models. CONCLUSION TGase 2 inhibitor GK921 abrogates RCC growth in xenograft tumor models, suggesting the possibility of a new therapeutic approach to RCC.
Collapse
Affiliation(s)
- Bo Mi Ku
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rosenfeld MA, Bychkova AV, Shchegolikhin AN, Leonova VB, Biryukova MI, Kostanova EA. Ozone-induced oxidative modification of plasma fibrin-stabilizing factor. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2470-9. [DOI: 10.1016/j.bbapap.2013.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/15/2013] [Accepted: 08/05/2013] [Indexed: 12/26/2022]
|
22
|
Jeitner TM, Battaile K, Cooper AJL. γ-Glutamylamines and neurodegenerative diseases. Amino Acids 2012; 44:129-42. [PMID: 22407484 DOI: 10.1007/s00726-011-1209-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/22/2011] [Indexed: 12/12/2022]
Abstract
Transglutaminases catalyze the formation of γ-glutamylamines utilizing glutamyl residues and amine-bearing compounds such as lysyl residues and polyamines. These γ-glutamylamines can be released from proteins by proteases in an intact form. The free γ-glutamylamines can be catabolized to 5-oxo-L-proline and the free amine by γ-glutamylamine cyclotransferase. Free γ-glutamylamines, however, accumulate in the CSF and affected areas of Huntington Disease brain. This observation suggests transglutaminase-derived γ-glutamylamines may play a more significant role in neurodegeneration than previously thought. The following monograph reviews the metabolism of γ-glutamylamines and examines the possibility that these species contribute to neurodegeneration.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Neurosciences, Biomedical Research Core, Winthrop University Hospital, 222 Station Plaza North, Mineola, USA.
| | | | | |
Collapse
|
23
|
Nurminskaya MV, Belkin AM. Cellular functions of tissue transglutaminase. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:1-97. [PMID: 22364871 PMCID: PMC3746560 DOI: 10.1016/b978-0-12-394305-7.00001-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transglutaminase 2 (TG2 or tissue transglutaminase) is a highly complex multifunctional protein that acts as transglutaminase, GTPase/ATPase, protein disulfide isomerase, and protein kinase. Moreover, TG2 has many well-documented nonenzymatic functions that are based on its noncovalent interactions with multiple cellular proteins. A vast array of biochemical activities of TG2 accounts for its involvement in a variety of cellular processes, including adhesion, migration, growth, survival, apoptosis, differentiation, and extracellular matrix organization. In turn, the impact of TG2 on these processes implicates this protein in various physiological responses and pathological states, contributing to wound healing, inflammation, autoimmunity, neurodegeneration, vascular remodeling, tumor growth and metastasis, and tissue fibrosis. TG2 is ubiquitously expressed and is particularly abundant in endothelial cells, fibroblasts, osteoblasts, monocytes/macrophages, and smooth muscle cells. The protein is localized in multiple cellular compartments, including the nucleus, cytosol, mitochondria, endolysosomes, plasma membrane, and cell surface and extracellular matrix, where Ca(2+), nucleotides, nitric oxide, reactive oxygen species, membrane lipids, and distinct protein-protein interactions in the local microenvironment jointly regulate its activities. In this review, we discuss the complex biochemical activities and molecular interactions of TG2 in the context of diverse subcellular compartments and evaluate its wide ranging and cell type-specific biological functions and their regulation.
Collapse
Affiliation(s)
- Maria V Nurminskaya
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
24
|
Király R, Demény M, Fésüs L. Protein transamidation by transglutaminase 2 in cells: a disputed Ca2+-dependent action of a multifunctional protein. FEBS J 2011; 278:4717-39. [PMID: 21902809 DOI: 10.1111/j.1742-4658.2011.08345.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transglutaminase 2 (TG2) is the first described cellular member of an enzyme family catalyzing Ca(2+)-dependent transamidation of proteins. During the last two decades its additional enzymatic (GTP binding and hydrolysis, protein disulfide isomerase, protein kinase) and non-enzymatic (multiple interactions in protein scaffolds) activities, which do not require Ca(2+) , have been recognized. It became a prevailing view that TG2 is silent as a transamidase, except in extreme stress conditions, in the intracellular environment characterized by low Ca(2+) and high GTP concentrations. To counter this presumption a critical review of the experimental evidence supporting the role of this enzymatic activity in cellular processes is provided. It includes the structural basis of TG2 regulation through non-canonical Ca(2+) binding sites, mechanisms making it sensitive to low Ca(2+) concentrations, techniques developed for the detection of protein transamidation in cells and examples of basic cellular phenomena as well as pathological conditions influenced by this irreversible post-translational protein modification.
Collapse
Affiliation(s)
- Róbert Király
- Department of Biochemistry and Molecular Biology, Apoptosis and Genomics Group of the Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary
| | | | | |
Collapse
|
25
|
Bergamini CM, Collighan RJ, Wang Z, Griffin M. Structure and regulation of type 2 transglutaminase in relation to its physiological functions and pathological roles. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:1-46. [PMID: 22220471 DOI: 10.1002/9781118105771.ch1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Carlo M Bergamini
- Deparment of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | | | | | | |
Collapse
|
26
|
Li B, Cerione RA, Antonyak M. Tissue transglutaminase and its role in human cancer progression. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:247-93. [PMID: 22220476 DOI: 10.1002/9781118105771.ch6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Bo Li
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
27
|
Muszbek L, Bereczky Z, Bagoly Z, Komáromi I, Katona É. Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev 2011; 91:931-72. [PMID: 21742792 DOI: 10.1152/physrev.00016.2010] [Citation(s) in RCA: 362] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Factor XIII (FXIII) is unique among clotting factors for a number of reasons: 1) it is a protransglutaminase, which becomes activated in the last stage of coagulation; 2) it works on an insoluble substrate; 3) its potentially active subunit is also present in the cytoplasm of platelets, monocytes, monocyte-derived macrophages, dendritic cells, chondrocytes, osteoblasts, and osteocytes; and 4) in addition to its contribution to hemostasis, it has multiple extra- and intracellular functions. This review gives a general overview on the structure and activation of FXIII as well as on the biochemical function and downregulation of activated FXIII with emphasis on new developments in the last decade. New aspects of the traditional functions of FXIII, stabilization of fibrin clot, and protection of fibrin against fibrinolysis are summarized. The role of FXIII in maintaining pregnancy, its contribution to the wound healing process, and its proangiogenic function are reviewed in details. Special attention is given to new, less explored, but promising fields of FXIII research that include inhibition of vascular permeability, cardioprotection, and its role in cartilage and bone development. FXIII is also considered as an intracellular enzyme; a separate section is devoted to its intracellular activation, intracellular action, and involvement in platelet, monocyte/macrophage, and dendritic cell functions.
Collapse
Affiliation(s)
- László Muszbek
- Clinical Research Center and Thrombosis, Haemostasis and Vascular Biology Research Group of the Hungarian Academy of Sciences, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary.
| | | | | | | | | |
Collapse
|
28
|
Cervellati C, Montin K, Squerzanti M, Mischiati C, Ferrari C, Spinozzi F, Mariani P, Amenitsch H, Bergamini CM, Lanzara V. Effects of the regulatory ligands calcium and GTP on the thermal stability of tissue transglutaminase. Amino Acids 2011; 42:2233-42. [PMID: 21706296 DOI: 10.1007/s00726-011-0963-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/11/2011] [Indexed: 12/16/2022]
Abstract
Tissue transglutaminase undergoes thermal inactivation with first-order kinetics at moderate temperatures, in a process which is affected in opposite way by the regulatory ligands calcium and GTP, which stabilize different conformations. We have explored the processes of inactivation and of unfolding of transglutaminase and the effects of ligands thereon, combining approaches of differential scanning calorimetry (DSC) and of thermal analysis coupled to fluorescence spectroscopy and small angle scattering. At low temperature (38-45°C), calcium promotes and GTP protects from inactivation, which occurs without detectable disruption of the protein structure but only local perturbations at the active site. Only at higher temperatures (52-56°C), the protein structure undergoes major rearrangements with alterations in the interactions between the N- and C-terminal domain pairs. Experiments by DSC and fluorescence spectroscopy clearly indicate reinforced and weakened interactions of the domains in the presence of GTP and of calcium, and different patterns of unfolding. Small angle scattering experiments confirm different pathways of unfolding, with attainment of limiting values of gyration radius of 52, 60 and 90 Å in the absence of ligands and in the presence of GTP and calcium. Data by X-rays scattering indicate that ligands influence retention of a relatively compact structure in the protein even after denaturation at 70°C. These results suggest that the complex regulation of the enzyme by ligands involves both short- and long-range effects which might be relevant for understanding the turnover of the protein in vivo.
Collapse
Affiliation(s)
- Carlo Cervellati
- Department of Biochemistry and Molecular Biology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wildberger P, Luley-Goedl C, Nidetzky B. Aromatic interactions at the catalytic subsite of sucrose phosphorylase: Their roles in enzymatic glucosyl transfer probed with Phe52
→ Ala and Phe52
→ Asn mutants. FEBS Lett 2011; 585:499-504. [DOI: 10.1016/j.febslet.2010.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/23/2010] [Accepted: 12/29/2010] [Indexed: 10/18/2022]
|
30
|
Abstract
Factor (F)XIII is a protransglutaminase that, in addition to maintaining hemostasis, has multiple plasmatic and intracellular functions. Its plasmatic form (pFXIII) is a tetramer of two potentially active A (FXIII-A) and two inhibitory/carrier B (FXIII-B) subunits, whereas its cellular form (cFXIII) is a dimer of FXIII-A. FXIII-A belongs to the family of transglutaminases (TGs), which show modest similarity in the primary structure, but a high degree of conservatism in their domain and sub-domain secondary structure. FXIII-A consists of an activation peptide, a β-sandwich, a catalytic and two β-barrel domains. FXIII-B is a glycoprotein consisting of 10 repetitive sushi domains each held together by two internal disulfide bonds. The structural elements of FXIII-A involved in the interaction with FXIII-B have not been elucidated; in FXIII-B the first sushi domain seems important for complex formation. In the circulation pFXIII is bound to the fibrinogen γ'-chain through its B subunit. In the process of pFXIII activation first thrombin cleaves off the activation peptide from FXIII-A, then in the presence of Ca(2+) FXIII-B dissociates and FXIII-A becomes transformed into an active transglutaminase (FXIIIa). The activation is highly accelerated by the presence of fibrin(ogen). cFXIII does not require proteolysis for intracellular activation. The three-dimensional structure of FXIIIa has not been resolved. Based on analogies with transglutaminase-2, a three-dimensional structure of FXIIIa was developed by molecular modeling, which shows good agreement with the drastic structural changes demonstrated by biochemical studies. The structural requirements for enzyme-substrate interaction and for transglutaminase activity are also reviewed.
Collapse
Affiliation(s)
- I Komáromi
- Clinical Research Center Thrombosis, Haemostasis and Vascular Biology Research Group of the Hungarian Academy of Sciences, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | | | | |
Collapse
|
31
|
Bergamini CM, Dondi A, Lanzara V, Squerzanti M, Cervellati C, Montin K, Mischiati C, Tasco G, Collighan R, Griffin M, Casadio R. Thermodynamics of binding of regulatory ligands to tissue transglutaminase. Amino Acids 2009; 39:297-304. [PMID: 20033238 DOI: 10.1007/s00726-009-0442-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 12/01/2009] [Indexed: 01/10/2023]
Abstract
The transamidating activity of tissue transglutaminase is regulated by the ligands calcium and GTP, via conformational changes which facilitate or interfere with interaction with the peptidyl-glutamine substrate. We have analysed binding of these ligands by calorimetric and computational approaches. In the case of GTP we have detected a single high affinity site (K (D) approximately 1 microM), with moderate thermal effects suggestive that binding GTP involves replacement of GDP, normally bound to the protein. On line with this possibility no significant binding was observed during titration with GDP and computational studies support this view. Titration with calcium at a high cation molar excess yielded a complex binding isotherm with a number of "apparent binding sites" in large excess over those detectable by equilibrium dialysis (6 sites). This binding pattern is ascribed to occurrence of additional thermal contributions, beyond those of binding, due to the occurrence of conformational changes and to catalysis itself (with protein self-crosslinking). In contrast only one site for binding calcium with high affinity (K (D) approximately 0.15 microM) is observed with samples of enzyme inactivated by alkylation at the active site (to prevent enzyme crosslinkage and thermal effects of catalysis). These results indicate an intrinsic ability of tissue transglutaminase to bind calcium with high affinity and the necessity of careful reassessment of the enzyme regulatory pattern in relation to the concentrations of ligands in living cells, taking also in account effects of ligands on protein subcellular compartimentation.
Collapse
Affiliation(s)
- Carlo M Bergamini
- Department of Biochemistry and Molecular Biology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tee AEL, Marshall GM, Liu PY, Xu N, Haber M, Norris MD, Iismaa SE, Liu T. Opposing effects of two tissue transglutaminase protein isoforms in neuroblastoma cell differentiation. J Biol Chem 2009; 285:3561-3567. [PMID: 20007697 DOI: 10.1074/jbc.m109.053041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have demonstrated previously that the Myc oncoprotein blocks cancer cell differentiation by forming a novel transcriptional repressor complex with histone deacetylase and inhibiting gene transcription of tissue transglutaminase (TG2). Moreover, induction of TG2 gene transcription and transamidase activity is essential for the differentiating effects of retinoids in cancer cells. Here, we show that two structurally distinct TG2 protein isoforms, the full-length (TG2-L) and the short form (TG2-S), exert opposing effects on cell differentiation. Repression of TG2-L with small interfering RNA, which did not affect TG2-S expression, induced dramatic neuritic differentiation in neuroblastoma cells. In contrast, overexpression of TG2-S or a GTP-binding-deficient mutant of TG2-L (R580A), both of which lack the GTP-binding Arg-580 residue, induced neuroblastoma cell differentiation, which was blocked by an inhibitor of transamidase activity. Whereas N-Myc repressed and retinoid activated both TG2 isoforms, repression of TG2-L, but not simultaneous repression of TG2-L and TG2-S, enhanced neuroblastoma cell differentiation due to N-Myc small interfering RNA or retinoid. Moreover, suppression of vasoactive intestinal peptide (VIP) expression alone induced neuroblastoma cell differentiation, and VIP was up-regulated by TG2-L, but not TG2-S. Taken together, our data indicate that TG2-L and TG2-S exert opposite effects on cell differentiation due to differences in GTP binding and modulation of VIP gene transcription. Our findings highlight the potential importance of repressing the GTP binding activity of TG2-L or activating the transamidase activity of TG2-L or TG2-S for the treatment of neuroblastoma, and possibly also other Myc-induced malignancies, and for enhancing retinoid anticancer effects.
Collapse
Affiliation(s)
- Andrew E L Tee
- From the Children's Cancer Institute Australia, Sydney Children's Hospital, Sydney, New South Wales 2031
| | - Glenn M Marshall
- From the Children's Cancer Institute Australia, Sydney Children's Hospital, Sydney, New South Wales 2031; the Centre for Children's Cancer and Blood Disorders, Sydney Children's Hospital, Sydney, New South Wales 2031 and
| | - Pei Y Liu
- From the Children's Cancer Institute Australia, Sydney Children's Hospital, Sydney, New South Wales 2031
| | - Ning Xu
- From the Children's Cancer Institute Australia, Sydney Children's Hospital, Sydney, New South Wales 2031
| | - Michelle Haber
- From the Children's Cancer Institute Australia, Sydney Children's Hospital, Sydney, New South Wales 2031
| | - Murray D Norris
- From the Children's Cancer Institute Australia, Sydney Children's Hospital, Sydney, New South Wales 2031
| | - Siiri E Iismaa
- the Victor Chang Cardiac Research Institute, University of New South Wales, Sydney, New South Wales 2050, Australia
| | - Tao Liu
- From the Children's Cancer Institute Australia, Sydney Children's Hospital, Sydney, New South Wales 2031.
| |
Collapse
|
33
|
Iismaa SE, Mearns BM, Lorand L, Graham RM. Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 2009; 89:991-1023. [PMID: 19584319 DOI: 10.1152/physrev.00044.2008] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The human transglutaminase (TG) family consists of a structural protein, protein 4.2, that lacks catalytic activity, and eight zymogens/enzymes, designated factor XIII-A (FXIII-A) and TG1-7, that catalyze three types of posttranslational modification reactions: transamidation, esterification, and hydrolysis. These reactions are essential for biological processes such as blood coagulation, skin barrier formation, and extracellular matrix assembly but can also contribute to the pathophysiology of various inflammatory, autoimmune, and degenerative conditions. Some members of the TG family, for example, TG2, can participate in biological processes through actions unrelated to transamidase catalytic activity. We present here a comprehensive review of recent insights into the physiology and pathophysiology of TG family members that have come from studies of genetically engineered mouse models and/or inherited disorders. The review focuses on FXIII-A, TG1, TG2, TG5, and protein 4.2, as mice deficient in TG3, TG4, TG6, or TG7 have not yet been reported, nor have mutations in these proteins been linked to human disease.
Collapse
Affiliation(s)
- Siiri E Iismaa
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute and Universityof New South Wales, Sydney, New South Wales 2010, Australia
| | | | | | | |
Collapse
|
34
|
Jeitner TM, Muma NA, Battaile KP, Cooper AJL. Transglutaminase activation in neurodegenerative diseases. FUTURE NEUROLOGY 2009; 4:449-467. [PMID: 20161049 PMCID: PMC2746681 DOI: 10.2217/fnl.09.17] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The following review examines the role of calcium in promoting the in vitro and in vivo activation of transglutaminases in neurodegenerative disorders. Diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease exhibit increased transglutaminase activity and rises in intracellular calcium concentrations, which may be related. The aberrant activation of transglutaminase by calcium is thought to give rise to a variety of pathological moieties in these diseases, and the inhibition has been shown to have therapeutic benefit in animal and cellular models of neurodegeneration. Given the potential clinical relevance of transglutaminase inhibitors, we have also reviewed the recent development of such compounds.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Applied Bench Core, Winthrop University Hospital, 222 Station Plaza North, Suite 502, Mineola, NY 11501, USA Tel.: +1 516 663 3455 Fax: +1 516 663 3456
| | - Nancy A Muma
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, 5064 Malott Hall, Lawrence, KS 66045, USA Tel.: +1 785 864 4002 Fax: +1 785 864 5219
| | - Kevin P Battaile
- IMCA-CAT, University of Chicago, 9700 S. Cass Ave, Bldg 435A, Argonne, IL 60439, USA Tel.: +1 630 252 0529 Fax: +1 630 252 0521
| | - Arthur JL Cooper
- Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, NY 10595, USA Tel.: +1 914 594 3330 Fax: +1 914 594 4058
| |
Collapse
|
35
|
Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 2008; 5:e327. [PMID: 18092889 PMCID: PMC2140088 DOI: 10.1371/journal.pbio.0050327] [Citation(s) in RCA: 357] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 11/01/2007] [Indexed: 02/05/2023] Open
Abstract
Human transglutaminase 2 (TG2), a member of a large family of enzymes that catalyze protein crosslinking, plays an important role in the extracellular matrix biology of many tissues and is implicated in the gluten-induced pathogenesis of celiac sprue. Although vertebrate transglutaminases have been studied extensively, thus far all structurally characterized members of this family have been crystallized in conformations with inaccessible active sites. We have trapped human TG2 in complex with an inhibitor that mimics inflammatory gluten peptide substrates and have solved, at 2-Å resolution, its x-ray crystal structure. The inhibitor stabilizes TG2 in an extended conformation that is dramatically different from earlier transglutaminase structures. The active site is exposed, revealing that catalysis takes place in a tunnel, bridged by two tryptophan residues that separate acyl-donor from acyl-acceptor and stabilize the tetrahedral reaction intermediates. Site-directed mutagenesis was used to investigate the acyl-acceptor side of the tunnel, yielding mutants with a marked increase in preference for hydrolysis over transamidation. By providing the ability to visualize this activated conformer, our results create a foundation for understanding the catalytic as well as the non-catalytic roles of TG2 in biology, and for dissecting the process by which the autoantibody response to TG2 is induced in celiac sprue patients. The transglutaminase family of enzymes is best known for crosslinking proteins to form networks that strengthen tissues. Although this enzyme family has been extensively studied, a detailed understanding of the catalytic mechanism has been hampered by the lack of a structure in which the enzyme is active. We have solved, at atomic resolution, the structure of transglutaminase 2 (TG2) in complex with a molecule that mimics a natural substrate. The structure exposes the active site, giving direct insights into the catalytic mechanism. Unexpectedly, we observed a very large conformational change with respect to previous transglutaminase structures. Very few proteins have been observed to undergo this type of large-scale transformation. We propose a role for this structural rearrangement in the early stages of celiac disease, an autoimmune disorder in which TG2 is the principal autoantigen. Besides the fundamental implications, our results should allow for the rational design of better inhibitors of TG2 for pharmacological and therapeutic purposes. By using a chemical biological approach, the authors observed a 12-nanometer conformational change in this ubiquitous and multifunctional protein, revealing its active site. Fundamental, pathological, and pharmacological implications are discussed.
Collapse
|
36
|
Affiliation(s)
- Laszlo Lorand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Ward Building, Room 7-334, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
37
|
Begg GE, Carrington L, Stokes PH, Matthews JM, Wouters MA, Husain A, Lorand L, Iismaa SE, Graham RM. Mechanism of allosteric regulation of transglutaminase 2 by GTP. Proc Natl Acad Sci U S A 2006; 103:19683-8. [PMID: 17179049 PMCID: PMC1750866 DOI: 10.1073/pnas.0609283103] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allosteric regulation is a fundamental mechanism of biological control. Here, we investigated the allosteric mechanism by which GTP inhibits cross-linking activity of transglutaminase 2 (TG2), a multifunctional protein, with postulated roles in receptor signaling, extracellular matrix assembly, and apoptosis. Our findings indicate that at least two components are involved in functionally coupling the allosteric site and active center of TG2, namely (i) GTP binding to mask a conformationally destabilizing switch residue, Arg-579, and to facilitate interdomain interactions that promote adoption of a compact, catalytically inactive conformation and (ii) stabilization of the inactive conformation by an uncommon H bond between a cysteine (Cys-277, an active center residue) and a tyrosine (Tyr-516, a residue located on a loop of the beta-barrel 1 domain that harbors the GTP-binding site). Although not essential for GTP-mediated inhibition of cross-linking, this H bond enhances the rate of formation of the inactive conformer.
Collapse
Affiliation(s)
- Gillian E. Begg
- *Victor Chang Cardiac Research Institute, University of New South Wales, 384 Victoria Street, Darlinghurst NSW 2010, Australia
| | | | | | | | - Merridee A. Wouters
- *Victor Chang Cardiac Research Institute, University of New South Wales, 384 Victoria Street, Darlinghurst NSW 2010, Australia
| | - Ahsan Husain
- University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Laszlo Lorand
- Northwestern University Medical School, Chicago, IL 60611
- To whom correspondence may be addressed. E-mail:
, , or
| | - Siiri E. Iismaa
- *Victor Chang Cardiac Research Institute, University of New South Wales, 384 Victoria Street, Darlinghurst NSW 2010, Australia
- To whom correspondence may be addressed. E-mail:
, , or
| | - Robert M. Graham
- *Victor Chang Cardiac Research Institute, University of New South Wales, 384 Victoria Street, Darlinghurst NSW 2010, Australia
- To whom correspondence may be addressed. E-mail:
, , or
| |
Collapse
|
38
|
Yeh MS, Kao LR, Huang CJ, Tsai IH. Biochemical characterization and cloning of transglutaminases responsible for hemolymph clotting in Penaeus monodon and Marsupenaeus japonicus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1167-78. [PMID: 16769260 DOI: 10.1016/j.bbapap.2006.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 03/22/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
To investigate the shrimp blood clotting enzyme, a transglutaminase in the hemocytes of Penaeus monodon (abbreviated as TGH) was purified. TGH is an abundant homodimeric cytosolic protein with 84.2 kDa subunits. It clotted shrimp plasma and incorporated fluorescent dansylcadaverine into succinyl casein upon activation by CaCl(2) in vitro. IC(50) for the activation was 3 mM, which is below the shrimp plasma Ca(2+) level. Showing similar properties as other type II transglutaminase, TGH was particularly unstable after activation. MALDI-TOF/TOF mass-analyses of tryptic peptides of P. monodon TGH confirmed its identity to STG I (AY074924) previously cloned. A possible allele of the other isozyme STG II (AY771615) has also been cloned from the P. monodon cDNA and designated as PmTG. The predicted PmTG protein sequence is 58% similar to that of STG I and 99.2% to that of STG II. Likewise, a novel enzyme Mj-TGH was purified and cloned from Marsupenaeus japonicus hemocytes. Results of sequence alignment and phylogenetic analyses of these transglutaminases suggest that STG I and Mj-TGH are 83% identical and orthologous to each other, while PmTG/STG II and a previously cloned M. japonicus transglutaminase (AB162767) are their paralogs. Protein of the latter two could not be isolated, their regulated expression was discussed.
Collapse
Affiliation(s)
- Maw-Sheng Yeh
- Department of Food and Nutrition, Hung Kuang University, Sha Lu, Taiwan
| | | | | | | |
Collapse
|
39
|
Begg GE, Holman SR, Stokes PH, Matthews JM, Graham RM, Iismaa SE. Mutation of a critical arginine in the GTP-binding site of transglutaminase 2 disinhibits intracellular cross-linking activity. J Biol Chem 2006; 281:12603-9. [PMID: 16522628 DOI: 10.1074/jbc.m600146200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transglutaminase type 2 (TG2; also known as G(h)) is a multifunctional protein involved in diverse cellular processes. It has two well characterized enzyme activities: receptor-stimulated signaling that requires GTP binding and calcium-activated transamidation or cross-linking that is inhibited by GTP. In addition to the GDP binding residues identified from the human TG2 crystal structure (Liu, S., Cerione, R. A., and Clardy, J. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 2743-2747), we have previously implicated Ser171 in GTP binding, as binding is lost with glutamate substitution (Iismaa, S. E., Wu, M.-J., Nanda, N., Church, W. B., and Graham, R. M. (2000) J. Biol. Chem. 275, 18259-18265). Here, we have shown that alanine substitution of homologous residues in rat TG2 (Phe174 in the core domain or Arg476, Arg478, or Arg579 in barrel 1) does not affect TG activity but reduces or abolishes GTP binding and GTPgammaS inhibition of TG activity in vitro, indicating that these residues are important in GTP binding. Alanine substitution of Ser171 does not impair GTP binding, indicating this residue does not interact directly with GTP. Arg579 is particularly important for GTP binding, as isothermal titration calorimetry demonstrated a 100-fold reduction in GTP binding affinity by the R579A mutant. Unlike wild-type TG2 or its S171E or F174A mutants, which are sensitive to both trypsin and mu-calpain digestion, R579A is inherently more resistant to mu-calpain, but not trypsin, digestion, indicating reduced accessibility and/or flexibility of this mutant in the region of the calpain cleavage site(s). Basal TG activity of intact R579A stable SH-SY5Y neuroblastoma cell transfectants was slightly increased relative to wild-type transfectants and, in contrast to the TG activity of the latter, was further stimulated by muscarinic receptor-activated calcium mobilization. Thus, loss of GTP binding sensitizes TG2 to intracellular calcium concentrations. These findings are consistent with the notion that intracellularly, under physiological conditions, TG2 is maintained largely as a latent enzyme, its calcium-activated cross-linking activity being suppressed allosterically by guanine nucleotide binding.
Collapse
Affiliation(s)
- Gillian E Begg
- Molecular Cardiology Program, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- L Lorand
- Department of Cell and Molecular Biology, Northwestern University Feinberg Medical School, Chicago, IL 60611, USA.
| |
Collapse
|
41
|
Gendek EG, Kedziora J, Gendek-Kubiak H. Can tissue transglutaminase be a marker of idiopathic inflammatory myopathies? Immunol Lett 2005; 97:245-9. [PMID: 15752564 DOI: 10.1016/j.imlet.2004.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 10/27/2004] [Accepted: 11/08/2004] [Indexed: 11/18/2022]
Abstract
In the normal striated muscle, tissue transglutaminase (TG2) content is vestigial. However, this protein's presence has been reported to occur in myoblasts and myotubes during the fetal period. Its increased expression has been also found in the muscle tissue in the course of sporadic inclusion body myositis, as well as in polymyositis (PM) and dermatomyositis (DM), which are considered to be diseases of immunological origin. Based on in vitro studies, a substantial TG2 role in the infiltration of some T cell subsets into inflamed tissues has been suggested lately. In this study, the immunohistochemical reactions in the guinea pig experimental myositis specimens and in the ones from PM/DM patients were compared. The guinea pig tissue specimens were taken from muscles affected by experimental myositis induced by intramuscular injections of: 1/sera from 30 neoplasm patients with no metastases; 2/sera from 10 healthy people; 3/sera from 2 DM patients; 4/neuropeptides (SP, NPY or VIP) and from 5/the muscles affected by the reversed passive Arthus reaction (RPAR). The immunostaining for TG2 revealed substantial presence of this protein in single, damaged muscle fibers and a weak reaction in regenerating fibers appearing in PM/DM patients' specimens. From among experimental myositis specimens, a very intensive reaction appeared only in the damaged and regenerating muscle fibers present in the slides from guinea pig muscles injected with DM patients' sera. Such results suggest some presence of a specific factor(s) (the one(s) responsible for TG2 expression in the damaged muscle fibers) in DM patients' sera. The results suggest that transglutaminase can be a marker of inflammatory myopathies. A probable correlation between TG2 expression in muscles and organismal immunological factors, including the complement activation status, requires additional studies.
Collapse
Affiliation(s)
- Ewa G Gendek
- Department of Chemistry and Clinical Biochemistry, Medical University of Lodz, Pl. Hallera 1, 90-647 Lodz, Poland.
| | | | | |
Collapse
|
42
|
Ahvazi B, Boeshans KM, Rastinejad F. The emerging structural understanding of transglutaminase 3. J Struct Biol 2005; 147:200-7. [PMID: 15193648 DOI: 10.1016/j.jsb.2004.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 03/29/2004] [Indexed: 11/29/2022]
Abstract
Transglutaminases (TGase; protein-glutamine: amine gamma-glutamyl-transferase) are a family of calcium-dependent acyl-transfer enzymes ubiquitously expressed in mammalian cells and responsible for catalyzing covalent cross-links between proteins or peptides. A series of recent crystal structures have revealed the overall architecture of TGase enzymes, and provided a deep look at their active site, calcium and magnesium ions, and the manner by which guanine nucleotides interact with this enzyme. These structures, backed with extensive biochemical studies, are providing new insights as to how access to the enzyme's active site may be gated through the coordinated changes in cellular calcium and magnesium concentrations and GTP/GDP. Calcium-activated TGase 3 can bind, hydrolyze, and is inhibited by GTP, despite lacking structural homology with other GTP binding proteins. A structure based sequence homology among the TGase enzyme family shows that these essential structural features are shared among other members of the TGase family.
Collapse
Affiliation(s)
- Bijan Ahvazi
- X-ray Crystallography Facility, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-8023, USA.
| | | | | |
Collapse
|
43
|
Zanetti L, Ristoratore F, Bertoni A, Cariello L. Characterization of sea urchin transglutaminase, a protein regulated by guanine/adenine nucleotides. J Biol Chem 2004; 279:49289-97. [PMID: 15381689 DOI: 10.1074/jbc.m405926200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transglutaminases (TGs) are calcium-dependent enzymes that catalyze the transamidation of glutamine residues to form intermolecular isopeptide bonds. Nine distinct TGs have been identified in mammals, and three of them (types 2, 3, and 5) are regulated by GTP/ATP and are able to hydrolyze GTP, working as bifunctional enzymes. We have isolated a cDNA clone encoding a TG from a cDNA library prepared from the blastula stage of sea urchin Paracentrotus lividus (PlTG). The cDNA sequence has an open reading frame coding for a protein of 738 amino acids, including a Cys active site and two other residues critical for catalytic activity, His and Asp. We have studied its expression pattern by in situ hybridization and have also demonstrated that the in vitro expressed PlTG had GTP- and ATP-hydrolyzing activity; moreover, GTP inhibited the transamidating activity of this enzyme as it does that of human TG2, TG3, and TG5.
Collapse
Affiliation(s)
- Laura Zanetti
- Biochemistry and Molecular Biology Laboratory, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | | | | | | |
Collapse
|