1
|
Jeffery N, Mock PY, Yang K, Tham CL, Israf DA, Li H, Wang X, Lam KW. Therapeutic targeting of neuroinflammation in methamphetamine use disorder. Future Med Chem 2025; 17:237-257. [PMID: 39727147 PMCID: PMC11749361 DOI: 10.1080/17568919.2024.2447226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Methamphetamine (METH) is a highly addictive illicit psychostimulant with a significant annual fatality rate. Emerging studies highlight its role in neuroinflammation and a range of neurological disorders. This review examines the current landscape of potential drug targets for managing neuroinflammation in METH use disorders (MUDs), with a particular focus on the rationale behind targeting Toll-like receptor 4 (TLR4), the NLR family pyrin domain containing 3 (NLRP3) inflammasome, and other promising targets. Given the multifactorial neurological effects of METH, including cognitive impairment and neurodegeneration, addressing METH-induced neuroinflammation has shown considerable promise in partially mitigating the damaging effects on the central nervous system and improving behavioral outcomes. This article provides an overview of the existing understanding while charting a promising path forward for developing innovative MUD treatments, focusing on neuroinflammation as a therapeutic target. Targeting neuroinflammation in METH-induced neurological disorders shows significant promise in mitigating cognitive impairment and neurodegeneration, offering a potential therapeutic strategy for improving outcomes in MUD. While challenges remain in optimizing treatments, ongoing research into combination therapies, novel drug delivery systems, and neuroprotective agents suggests a positive outlook for more effective interventions.
Collapse
Affiliation(s)
- Natasha Jeffery
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Phooi Yan Mock
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kun Yang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Kok Wai Lam
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Structural Biology and Protein Engineering Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Testen A, VanRyzin JW, Bellinger TJ, Kim R, Wang H, Gastinger MJ, Witt EA, Franklin JP, Vecchiarelli HA, Picard K, Tremblay MÈ, Reissner KJ. Abstinence from cocaine self-administration promotes microglia pruning of astrocytes which drives cocaine-seeking behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614128. [PMID: 39345569 PMCID: PMC11429948 DOI: 10.1101/2024.09.20.614128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Rodent drug self-administration leads to compromised ability of astrocytes to maintain glutamate homeostasis within the brain's reward circuitry, as well as reductions in surface area, volume, and synaptic colocalization of astrocyte membranes. However, the mechanisms driving astrocyte responses to cocaine are unknown. Here, we report that long-access cocaine self-administration followed by prolonged home cage abstinence results in decreased branching complexity of nucleus accumbens astrocytes, characterized by the loss of peripheral processes. Using a combination of confocal fluorescence microcopy and immuno-gold electron microscopy, we show that alterations in astrocyte structural features are driven by microglia phagocytosis, as labeled astrocyte membranes are found within microglia phagolysosomes. Inhibition of complement C3-mediated phagocytosis using the neutrophil inhibitory peptide (NIF) rescued astrocyte structure and decreased cocaine seeking behavior following cocaine self-administration and abstinence. Collectively, these results provide evidence for microglia pruning of accumbens astrocytes across cocaine abstinence which mediates cocaine craving.
Collapse
Affiliation(s)
- Anze Testen
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Neuroscience - College of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Jonathan W VanRyzin
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Tania J Bellinger
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ronald Kim
- Section on Genetics of Neuronal Signaling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| | - Han Wang
- MS-HCI Program, Georgia Institute of Technology, Atlanta, Georgia, United States
| | | | - Emily A Witt
- Department of Medical Neuroscience, Dalhousie University, Nova Scotia, Canada
| | - Janay P Franklin
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Haley A Vecchiarelli
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Katherine Picard
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
3
|
Li H, Watkins LR, Wang X. Microglia in neuroimmunopharmacology and drug addiction. Mol Psychiatry 2024; 29:1912-1924. [PMID: 38302560 DOI: 10.1038/s41380-024-02443-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Drug addiction is a chronic and debilitating disease that is considered a global health problem. Various cell types in the brain are involved in the progression of drug addiction. Recently, the xenobiotic hypothesis has been proposed, which frames substances of abuse as exogenous molecules that are responded to by the immune system as foreign "invaders", thus triggering protective inflammatory responses. An emerging body of literature reveals that microglia, the primary resident immune cells in the brain, play an important role in the progression of addiction. Repeated cycles of drug administration cause a progressive, persistent induction of neuroinflammation by releasing microglial proinflammatory cytokines and their metabolic products. This contributes to drug addiction via modulation of neuronal function. In this review, we focus on the role of microglia in the etiology of drug addiction. Then, we discuss the dynamic states of microglia and the correlative and causal evidence linking microglia to drug addiction. Finally, possible mechanisms of how microglia sense drug-related stimuli and modulate the addiction state and how microglia-targeted anti-inflammation therapies affect addiction are reviewed. Understanding the role of microglia in drug addiction may help develop new treatment strategies to fight this devastating societal challenge.
Collapse
Affiliation(s)
- Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China.
| |
Collapse
|
4
|
Ye J, Gao S, Liu Z, Chen X, He J, Hu Z. The HMGB1-RAGE axis in nucleus accumbens facilitates cocaine-induced conditioned place preference via modulating microglial activation. Brain Behav 2024; 14:e3457. [PMID: 38450910 PMCID: PMC10918599 DOI: 10.1002/brb3.3457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Repeated exposure to cocaine induces microglial activation. Cocaine exposure also induces a release of high mobility group box-1 (HMGB1) from neurons into the extracellular space in the nucleus accumbens (NAc). HMGB1 is an important late inflammatory mediator of microglial activation. However, whether the secretion of HMGB1 acts on microglia or contributes to cocaine addiction is largely unknown. METHODS Rats were trained by intraperitoneal cocaine administration and cocaine-induced conditioned place preference (CPP). Expression of HMGB1 was regulated by viral vectors. Activation of microglia was inhibited by minocycline. Interaction of HMGB1 and the receptor for advanced glycation end products (RAGE) was disrupted by peptide. RESULTS Cocaine injection facilitated HMGB1 signaling, together with the delayed activation of microglia concurrently in the NAc. Furthermore, the inhibition of HMGB1 or microglia activation attenuated cocaine-induced CPP. Box A, a specific antagonist to interrupt the interaction of HMGB1 and RAGE, abolished the expression of cocaine reward memory. Meanwhile, the inhibition of HMGB1-RAGE interaction suppressed cocaine-induced microglial activation, as well as the consolidation of cocaine-induced memory. CONCLUSION All above results suggest that the neural HMGB1 induces activation of microglia through RAGE, which contributes to the consolidation of cocaine reward memory. These findings offer HMGB1-RAGE axis as a new target for the treatment of drug addiction.
Collapse
Affiliation(s)
- Jian Ye
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shuang‐Qi Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Departments of NeurosurgeryThird Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Zi‐Cun Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xi Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jin‐Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhuang‐Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhanChina
- The Research Center for Depression, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Jin S, Lin C, Wang Y, Wang H, Wen X, Xiao P, Li X, Peng Y, Sun J, Lu Y, Wang X. Cannabidiol Analogue CIAC001 for the Treatment of Morphine-Induced Addiction by Targeting PKM2. J Med Chem 2023; 66:11498-11516. [PMID: 37531582 DOI: 10.1021/acs.jmedchem.3c01029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Opioid addiction is a chronically relapsing disorder that causes critical public health problems. Currently, there is a lack of effective drug treatment. Herein, one cannabidiol derivative, CIAC001, was discovered as an effective agent for treating morphine-induced addiction. In vitro, CIAC001 exhibited significantly improved anti-neuroinflammatory activity with lower toxicity. In vivo, CIAC001 ameliorated the morphine-induced withdrawal reaction, behavioral sensitization, and conditional position preference by inhibiting morphine-induced microglia activation and neuroinflammation. Target fishing for CIAC001 by activity-based protein profiling led to the identification of pyruvate kinase M2 (PKM2) as the target protein. CIAC001 bound to the protein-protein interface of the PKM2 dimer and promoted the tetramerization of PKM2. Moreover, CIAC001 exhibited an anti-neuroinflammatory effect by reversing the decrease of the PKM2 tetramer and inhibiting the nuclear translocation of PKM2. In summary, this study identified CIAC001 as a lead compound in targeting PKM2 to treat morphine-induced addiction.
Collapse
Affiliation(s)
- Sha Jin
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xin Wen
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaodong Li
- Beijing Changping Huayou Hospital, Beijing 102299, China
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuyuan Lu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiaohui Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Brown KT, Levis SC, O'Neill CE, Levy C, Rice KC, Watkins LR, Bachtell RK. Toll-like receptor 4 antagonists reduce cocaine-primed reinstatement of drug seeking. Psychopharmacology (Berl) 2023; 240:1587-1600. [PMID: 37286899 PMCID: PMC10732226 DOI: 10.1007/s00213-023-06392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
RATIONALE Cocaine can increase inflammatory neuroimmune markers, including chemokines and cytokines characteristic of innate inflammatory responding. Prior work indicates that the Toll-like receptor 4 (TLR4) initiates this response, and administration of TLR4 antagonists provides mixed evidence that TLR4 contributes to cocaine reward and reinforcement. OBJECTIVE These studies utilize (+)-naltrexone, the TLR4 antagonist, and mu-opioid inactive enantiomer to examine the role of TLR4 on cocaine self-administration and cocaine seeking in rats. METHODS (+)-Naltrexone was continuously administered via an osmotic mini-pump during the acquisition or maintenance of cocaine self-administration. The motivation to acquire cocaine was assessed using a progressive ratio schedule following either continuous and acute (+)-naltrexone administration. The effects of (+)-naltrexone on cocaine seeking were assessed using both a cue craving model and a drug-primed reinstatement model. The highly selective TLR4 antagonist, lipopolysaccharide from Rhodobacter sphaeroides (LPS-Rs), was administered into the nucleus accumbens to determine the effectiveness of TLR4 blockade on cocaine-primed reinstatement. RESULTS (+)-Naltrexone administration did not alter the acquisition or maintenance of cocaine self-administration. Similarly, (+)-naltrexone was ineffective at altering the progressive ratio responding. Continuous administration of (+)-naltrexone during forced abstinence did not impact cued cocaine seeking. Acute systemic administration of (+)-naltrexone dose-dependently decreased cocaine-primed reinstatement of previously extinguished cocaine seeking, and administration of LPS-Rs into the nucleus accumbens shell also reduced cocaine-primed reinstatement of cocaine seeking. DISCUSSION These results complement previous studies suggesting that the TLR4 plays a role in cocaine-primed reinstatement of cocaine seeking, but may have a more limited role in cocaine reinforcement.
Collapse
Affiliation(s)
- Kyle T Brown
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Sophia C Levis
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Casey E O'Neill
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Catherine Levy
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Ryan K Bachtell
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA.
- Institute for Behavioral Genetics University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
7
|
González-Portilla M, Moya M, Montagud-Romero S, de Fonseca FR, Orio L, Rodríguez-Arias M. Oleoylethanolamide attenuates the stress-mediated potentiation of rewarding properties of cocaine associated with an increased TLR4 proinflammatory response. Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110722. [PMID: 36724838 DOI: 10.1016/j.pnpbp.2023.110722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
The lipid-derived messenger oleoylethanolamide (OEA) has been involved in multiple physiological functions including metabolism and the immune response. More recently, OEA has been observed to affect reward-related behavior. Stress is a major risk factor for drug use and a predictor of drug relapse. In the laboratory, social stress has been largely studied using the social defeat (SD) model. Here, we explored the effects of different OEA administration schedules on the increased rewarding properties of cocaine induced by SD. In addition, we evaluated the anti-inflammatory action of OEA pretreatment in TLR4 expression caused by SD in the cerebellum, a novel brain structure that has been involved in the development of cocaine addiction. Adult OF1 mice were assigned to an experimental group according to the stress condition (exploration or SD) and treatment (OEA before SD, OEA before conditioning or subchronic OEA treatment). Mice were administered with OEA i.p (10 mg/kg) 10 min previously to the corresponding event. Three weeks after the last SD encounter, conditioned place preference (CPP) was induced by a subthreshold cocaine dose (1 mg/kg). As expected, socially defeated mice presented greater vulnerability to the cocaine reinforcing effects and expressed CPP. Conversely, this effect was not observed under a non-stressed condition. Most importantly, we observed that OEA pretreatment before SD or before conditioning prevented cocaine CPP in defeated mice. Biochemical analysis showed that OEA administration before SD decreased proinflammatory TLR4 upregulation in the cerebellum caused by social stress. In summary, our results suggest that OEA may have a protective effect on stress-induced increased cocaine sensitivity by exerting an anti-inflammatory action.
Collapse
Affiliation(s)
- Macarena González-Portilla
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain.
| | - Marta Moya
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Pozuelo de Alarcón, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain
| | - Fernando Rodríguez de Fonseca
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Pozuelo de Alarcón, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain.
| |
Collapse
|
8
|
McCutcheon SR, Swartz AM, Brown MC, Barrera A, Amador CM, Siklenka K, Humayun L, Isaacs JM, Reddy TE, Nair S, Antonia S, Gersbach CA. Orthogonal CRISPR screens to identify transcriptional and epigenetic regulators of human CD8 T cell function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538906. [PMID: 37205457 PMCID: PMC10187198 DOI: 10.1101/2023.05.01.538906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The clinical response to adoptive T cell therapies is strongly associated with transcriptional and epigenetic state. Thus, technologies to discover regulators of T cell gene networks and their corresponding phenotypes have great potential to improve the efficacy of T cell therapies. We developed pooled CRISPR screening approaches with compact epigenome editors to systematically profile the effects of activation and repression of 120 transcription factors and epigenetic modifiers on human CD8+ T cell state. These screens nominated known and novel regulators of T cell phenotypes with BATF3 emerging as a high confidence gene in both screens. We found that BATF3 overexpression promoted specific features of memory T cells such as increased IL7R expression and glycolytic capacity, while attenuating gene programs associated with cytotoxicity, regulatory T cell function, and T cell exhaustion. In the context of chronic antigen stimulation, BATF3 overexpression countered phenotypic and epigenetic signatures of T cell exhaustion. CAR T cells overexpressing BATF3 significantly outperformed control CAR T cells in both in vitro and in vivo tumor models. Moreover, we found that BATF3 programmed a transcriptional profile that correlated with positive clinical response to adoptive T cell therapy. Finally, we performed CRISPR knockout screens with and without BATF3 overexpression to define co-factors and downstream factors of BATF3, as well as other therapeutic targets. These screens pointed to a model where BATF3 interacts with JUNB and IRF4 to regulate gene expression and illuminated several other novel targets for further investigation.
Collapse
Affiliation(s)
- Sean R. McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Adam M. Swartz
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael C. Brown
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Christian McRoberts Amador
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Pharmacology and Cancer Biology, Durham, NC 27710, USA
| | - Keith Siklenka
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Lucas Humayun
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - James M. Isaacs
- Duke Cancer Institute Center for Cancer Immunotherapy, Duke University School of Medicine, Durham, NC 27710, USA
| | - Timothy E. Reddy
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Smita Nair
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Duke Cancer Institute Center for Cancer Immunotherapy, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Scott Antonia
- Duke Cancer Institute Center for Cancer Immunotherapy, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charles A. Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
9
|
Karimi-Haghighi S, Chavoshinezhad S, Mozafari R, Noorbakhsh F, Borhani-Haghighi A, Haghparast A. Neuroinflammatory Response in Reward-Associated Psychostimulants and Opioids: A Review. Cell Mol Neurobiol 2023; 43:649-682. [PMID: 35461410 PMCID: PMC11415174 DOI: 10.1007/s10571-022-01223-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/26/2022] [Indexed: 11/03/2022]
Abstract
Substance abuse is one of the significant problems in social and public health worldwide. Vast numbers of evidence illustrate that motivational and reinforcing impacts of addictive drugs are primarily attributed to their ability to change dopamine signaling in the reward circuit. However, the roles of classic neurotransmitters, especially dopamine and neuromodulators, monoamines, and neuropeptides, in reinforcing characteristics of abused drugs have been extensively investigated. It has recently been revealed that central immune signaling includes cascades of chemokines and proinflammatory cytokines released by neurons and glia via downstream intracellular signaling pathways that play a crucial role in mediating rewarding behavioral effects of drugs. More interestingly, inflammatory responses in the central nervous system modulate the mesolimbic dopamine signaling and glutamate-dependent currents induced by addictive drugs. This review summarized researches in the alterations of inflammatory responses accompanied by rewarding and reinforcing properties of addictive drugs, including cocaine, methamphetamine, and opioids that were evaluated by conditioned place preference and self-administration procedures as highly common behavioral tests to investigate the motivational and reinforcing impacts of addictive drugs. The neuroinflammatory responses affect the rewarding properties of psychostimulants and opioids.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Roghayeh Mozafari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran.
| |
Collapse
|
10
|
Sex-specific inflammatory and white matter effects of prenatal opioid exposure: a pilot study. Pediatr Res 2023; 93:604-611. [PMID: 36280708 PMCID: PMC9998341 DOI: 10.1038/s41390-022-02357-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Preclinical data demonstrate that opioids modulate brain reward signaling through an inflammatory cascade, but this relationship has yet to be studied in opioid-exposed neonates. METHODS Saliva samples of 54 opioid-exposed and sex- and age-matched non-exposed neonates underwent transcriptomic analysis of inflammatory and reward genes. A subset of 22 neonates underwent brain magnetic resonance imaging (MRI) to evaluate white matter injury commonly associated with inflammatory response. Gene expression and brain MRI were compared between opioid- and non-exposed neonates and further stratified by sex and pharmacotherapy need. RESULTS Opioid-exposed females regardless of pharmacotherapy need had higher expression of inflammatory genes than their male counterparts, with notable differences in the expression of CCL2 and CXCL1 in females requiring pharmacotherapy (p = 0.01 and 0.06, respectively). Opioid-exposed males requiring pharmacotherapy had higher expression of DRD2 than exposed females (p = 0.07), validating our prior research. Higher expression of IL1β, IL6, TNFα, and IL10 was seen in opioid-exposed neonates with T1 white matter hyperintensity (WMH) compared to exposed neonates without WMH (p < 0.05). CONCLUSION Prenatal opioid exposure may promote inflammation resulting in changes in reward signaling and white matter injury in the developing brain, with unique sex-specific effects. The actions of opioids through non-neuronal pathways need further investigation. IMPACT Opioid-exposed neonates are at risk for punctate T1 white matter hyperintensity (WMH). Females carry a greater propensity for WMH. Salivary transcriptomic data showed significantly higher expression of inflammatory genes in opioid-exposed neonates with WMH than those without WMH, irrespective of pharmacotherapy need. Adding to prior studies, our findings suggest that prenatal opioid exposure may modulate white matter injury and reward signaling through a pro-inflammatory process that is sex specific. This novel study highlights the short-term molecular and structural effects of prenatal opioids and the need to elucidate the long-term impact of prenatal opioid exposure.
Collapse
|
11
|
Machado da Silva MC, Iglesias LP, Candelario-Jalil E, Khoshbouei H, Moreira FA, de Oliveira ACP. Role of Microglia in Psychostimulant Addiction. Curr Neuropharmacol 2023; 21:235-259. [PMID: 36503452 PMCID: PMC10190137 DOI: 10.2174/1570159x21666221208142151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
The use of psychostimulant drugs can modify brain function by inducing changes in the reward system, mainly due to alterations in dopaminergic and glutamatergic transmissions in the mesocorticolimbic pathway. However, the etiopathogenesis of addiction is a much more complex process. Previous data have suggested that microglia and other immune cells are involved in events associated with neuroplasticity and memory, which are phenomena that also occur in addiction. Nevertheless, how dependent is the development of addiction on the activity of these cells? Although the mechanisms are not known, some pathways may be involved. Recent data have shown psychoactive substances may act directly on immune cells, alter their functions and induce various inflammatory mediators that modulate synaptic activity. These could, in turn, be involved in the pathological alterations that occur in substance use disorder. Here, we extensively review the studies demonstrating how cocaine and amphetamines modulate microglial number, morphology, and function. We also describe the effect of these substances in the production of inflammatory mediators and a possible involvement of some molecular signaling pathways, such as the toll-like receptor 4. Although the literature in this field is scarce, this review compiles the knowledge on the neuroimmune axis that is involved in the pathogenesis of addiction, and suggests some pharmacological targets for the development of pharmacotherapy.
Collapse
Affiliation(s)
- Maria Carolina Machado da Silva
- Department of Pharmacology, Neuropharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil;
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lia Parada Iglesias
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fabrício Araujo Moreira
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
12
|
Cnpy3 2xHA mice reveal neuronal expression of Cnpy3 in the brain. J Neurosci Methods 2023; 383:109730. [PMID: 36280087 DOI: 10.1016/j.jneumeth.2022.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Identification of biallelic CNPY3 mutations in patients with epileptic encephalopathy and abnormal electroencephalography findings of Cnpy3 knock-out mice have indicated that the loss of CNPY3 function causes neurological disorders such as epilepsy. However, the basic property of CNPY3 in the brain remains unclear. NEW METHOD We generated C-terminal 2xHA-tag knock-in Cnpy3 mice by i-GONAD in vivo genome editing system to investigate the expression and function of Cnpy3 in the mouse brain. RESULTS 2xHA-tagged Cnpy3 was confirmed by immunoblot analysis using anti-HA and CNPY3 antibodies, although HA tagging caused the decreased Cnpy3 protein level. Immunohistochemical analysis of Cnpy32xHA knock-in mice showed that Cnpy3-2xHA was predominantly expressed in the neuron. In addition, Cnpy3 and Cnpy3-2xHA were both localized in the endoplasmic reticulum and synaptosome and showed age-dependent expression changes in the brain. COMPARISON WITH EXISTING METHODS Conventional Cnpy3 antibodies could not allow us to investigate the distribution of Cnpy3 expression in the brain, while HA-tagging revealed the expression of CNPY3 in neuronal cells. CONCLUSIONS Taken together, we demonstrated that Cnpy32xHA knock-in mice would be useful to further elucidate the property of Cnpy3 in brain function and neurological disorders.
Collapse
|
13
|
Pate T, Anthony DC, Radford-Smith DE. cFOS expression in the prefrontal cortex correlates with altered cerebral metabolism in developing germ-free mice. Front Mol Neurosci 2023; 16:1155620. [PMID: 37152431 PMCID: PMC10157641 DOI: 10.3389/fnmol.2023.1155620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction The microbiota plays a critical role in modulating various aspects of host physiology, particularly through the microbiota-gut-brain (MGB) axis. However, the mechanisms that transduce and affect gut-to-brain communication are still not well understood. Recent studies have demonstrated that dysbiosis of the microbiome is associated with anxiety and depressive symptoms, which are common complications of metabolic syndrome. Germ-free (GF) animal models offer a valuable tool for studying the causal effects of microbiota on the host. Methods We employed gene expression and nuclear magnetic resonance (NMR)-based metabolomic techniques to investigate the relationships between brain plasticity and immune gene expression, peripheral immunity, and cerebral and liver metabolism in GF and specific pathogen-free (SPF) mice. Results Our principal findings revealed that brain acetate (p = 0.012) was significantly reduced in GF relative to SPF mice, whereas glutamate (p = 0.0013), glutamine (p = 0.0006), and N-acetyl aspartate (p = 0.0046) metabolites were increased. Notably, cFOS mRNA expression, which was significantly decreased in the prefrontal cortex of GF mice relative to SPF mice (p = 0.044), correlated with the abundance of a number of key brain metabolites altered by the GF phenotype, including glutamate and glutamine. Discussion These results highlight the connection between the GF phenotype, altered brain metabolism, and immediate-early gene expression. The study provides insight into potential mechanisms by which microbiota can regulate neurotransmission through modulation of the host's brain and liver metabolome, which may have implications for stress-related psychiatric disorders such as anxiety.
Collapse
|
14
|
Airapetov MI, Eresko SO, Kochkin DV, Nosov AM, Bychkov ER, Lebedev AA, Shabanov PD. [Ginsenosides affect the system of Toll-like receptors in the brain of rats under conditions of long-term alcohol withdrawal]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:459-469. [PMID: 36573411 DOI: 10.18097/pbmc20226806459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Long-term alcohol consumption causes the development of neuroinflammation in various brain structures. One of the mechanisms involved in this process is the increased activity of TLR-signaling intracellular pathways. Studies confirm the ability of ginseng extract or its individual ginsenosides to reduce the increased activity of TLR-signaling pathways. The aim of our study was to study the effect of the amount of ginsenosides obtained from the extract of the Panax japonicus cell line on the state of the TLR-signaling system in the nucleus accumbens and hippocampus of the rat brain in a model of long-term alcohol consumption during alcohol withdrawal. The results of the study showed that ginsenosides were able to make changes in the TLR signaling system, which has been altered by long-term alcohol consumption. A significant effect of ginsenosides on the level of TLR3 and TLR4 mRNA in the nucleus accumbens was found, while in the hippocampus, ginsenosides significantly affected the level of TLR7 mRNA. The effect of ginsenosides on the level of mRNA of transcription factors and cytokines involved in TLR-signaling was evaluated. Thus, results of our study confirm that ginsenosides are able to influence the state of TLR-signaling pathways, but this effect is multidirectional in relation to different brain structures. In the future, it seems interesting to evaluate the role of individual ginsenosides in relation to genes of TLR-signaling, as well as the effect of ginsenosides on other brain structures.
Collapse
Affiliation(s)
- M I Airapetov
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia; St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - S O Eresko
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia; Research and Training Center of Molecular and Cellular Technologies, St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - D V Kochkin
- Department of Plant Physiology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - A M Nosov
- Department of Plant Physiology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - E R Bychkov
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - A A Lebedev
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - P D Shabanov
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia; Department of Pharmacology, Kirov Military Medical Academy, St. Petersburg, Russia
| |
Collapse
|
15
|
Kim OH, Jeon KO, Jang EY. Alpha-pyrrolidinopentiothiophenone (α-PVT) activates the TLR-NF-κB-MAPK signaling pathway and proinflammatory cytokine production and induces behavioral sensitization in mice. Pharmacol Biochem Behav 2022; 221:173484. [PMID: 36272636 DOI: 10.1016/j.pbb.2022.173484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022]
Abstract
Synthetic cathinones are chemical derivatives of cathinone, a structural analog to amphetamine. It has been shown that synthetic cathinones have abuse potentials similar to psychomotor stimulants such as amphetamine and induce neuroinflammation. Among the novel synthetic cathinones, α-pyrrolidinopentiothiophenone (α-PVT) has been known to produce rewarding and reinforcing effects in rodent models. However, it has not yet been determined whether α-PVT induces neuroinflammation in vivo. In the present study, mice were exposed to repeated saline or α-PVT (20 mg/kg, intraperitoneally) for 7 days to test changes in locomotor activity and neuroinflammation-related factors in the striatum of mice. Repeated administration of α-PVT significantly induced locomotor sensitization. In addition, repeated α-PVT administration significantly increased the number of microglial cells, accompanied by marked increases in TLR1, TLR4, TLR6, and TLR7 mRNA levels in the striatum of mice. Furthermore, acute or repeated α-PVT administration increased the levels of phosphorylated NF-κB, ERK, p38, and JNK MAPK activation and repeated α-PVT, but not acute, increased the levels of TNF-α and IL-6 mRNA in the striatum of mice. Finally, systemic administration of TAK-242 (5 mg/kg, i.p.) or MPLA (50 μg/kg, i.p.), each an inhibitor or activator of TLR4, did not change α-PVT-induced behavioral sensitization in mice. These results suggest that the activation of TLR4 by repeated α-PVT administration may lead to neuroinflammation via TLR-mediated NF-κB and MAPK signaling pathways and the production of TNF-α and IL-6 in the striatum of mice, at least without the regulation of behavioral sensitization.
Collapse
Affiliation(s)
- Oc-Hee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Kyung Oh Jeon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Young Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
16
|
Roodsari SK, Cheng Y, Reed KM, Wellman LL, Sanford LD, Kim WK, Guo ML. Sleep Disturbance Alters Cocaine-Induced Locomotor Activity: Involvement of Striatal Neuroimmune and Dopamine Signaling. Biomedicines 2022; 10:biomedicines10051161. [PMID: 35625897 PMCID: PMC9138453 DOI: 10.3390/biomedicines10051161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
Sleep disorders have high comorbidity with drug addiction and function as major risk factors for developing drug addiction. Recent studies have indicated that both sleep disturbance (SD) and abused drugs could activate microglia, and that increased neuroinflammation plays a critical role in the pathogenesis of both diseases. Whether microglia are involved in the contribution of chronic SDs to drug addiction has never been explored. In this study, we employed a mouse model of sleep fragmentation (SF) with cocaine treatment and examined their locomotor activities, as well as neuroinflammation levels and dopamine signaling in the striatum, to assess their interaction. We also included mice with, or without, SF that underwent cocaine withdrawal and challenge. Our results showed that SF significantly blunted cocaine-induced locomotor stimulation while having marginal effects on locomotor activity of mice with saline injections. Meanwhile, SF modulated the effects of cocaine on neuroimmune signaling in the striatum and in ex vivo isolated microglia. We did not observe differences in dopamine signaling in the striatum among treatment groups. In mice exposed to cocaine and later withdrawal, SF reduced locomotor sensitivity and also modulated neuroimmune and dopamine signaling in the striatum. Taken together, our results suggested that SF was capable of blunting cocaine-induced psychoactive effects through modulating neuroimmune and dopamine signaling. We hypothesize that SF could affect neuroimmune and dopamine signaling in the brain reward circuitry, which might mediate the linkage between sleep disorders and drug addiction.
Collapse
Affiliation(s)
- Soheil Kazemi Roodsari
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (S.K.R.); (Y.C.); (K.M.R.)
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
| | - Yan Cheng
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (S.K.R.); (Y.C.); (K.M.R.)
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
| | - Kirstin M. Reed
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (S.K.R.); (Y.C.); (K.M.R.)
| | - Laurie L. Wellman
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Larry D. Sanford
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Woong-Ki Kim
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ming-Lei Guo
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (S.K.R.); (Y.C.); (K.M.R.)
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
- Correspondence: ; Tel.: +1-757-446-5891
| |
Collapse
|
17
|
TAAR1 regulates drug-induced reinstatement of cocaine-seeking via negatively modulating CaMKIIα activity in the NAc. Mol Psychiatry 2022; 27:2136-2145. [PMID: 35079125 PMCID: PMC9829124 DOI: 10.1038/s41380-022-01448-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 01/12/2023]
Abstract
Relapse remains a major challenge to the treatment of cocaine addiction. Recent studies suggested that the trace amine-associated receptor 1 (TAAR1) could be a promising target to treat cocaine addiction and relapse; however, the underlying mechanism remains unclear. Here, we aimed to investigate the neural mechanism underlying the role of TAAR1 in the drug priming-induced reinstatement of cocaine-seeking behavior in rats, an animal model of cocaine relapse. We focused on the shell subregion of nucleus accumbens (NAc), a key brain region of the brain reward system. We found that activation of TAAR1 by systemic and intra-NAc shell administration of the selective TAAR1 agonist RO5166017 attenuated drug-induced reinstatement of cocaine-seeking and prevented drug priming-induced CaMKIIα activity in the NAc shell. Activation of TAAR1 dampened the CaMKIIα/GluR1 signaling pathway in the NAc shell and reduced AMPAR-EPSCs on the NAc slice. Microinjection of the selective TAAR1 antagonist EPPTB into the NAc shell enhanced drug-induced reinstatement as well as potentiated CaMKIIα activity in the NAc shell. Furthermore, viral-mediated expression of CaMKIIα in the NAc shell prevented the behavioral effects of TAAR1 activation. Taken together, our findings indicate that TAAR1 regulates drug-induced reinstatement of cocaine-seeking by negatively regulating CaMKIIα activity in the NAc. Our findings elucidate a novel mechanism of TAAR1 in regulating drug-induced reinstatement of cocaine-seeking and further suggests that TAAR1 is a promising target for the treatment of cocaine relapse.
Collapse
|
18
|
Zhu C, Li H, Kong X, Wang Y, Sun T, Wang F. Possible Mechanisms Underlying the Effects of Glucagon-Like Peptide-1 Receptor Agonist on Cocaine Use Disorder. Front Pharmacol 2022; 13:819470. [PMID: 35300299 PMCID: PMC8921771 DOI: 10.3389/fphar.2022.819470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Cocaine use disorder (CUD) is a major public health challenge with a high relapse rate and lack of effective pharmacotherapies; therefore, there is a substantial need to identify novel medications to treat this epidemic. Since the advent of glucagon-like peptide-1 (GLP-1) receptors (GLP-1Rs) agonists (GLP-1RAs), their potential has been extensively explored and expanded. In this review, we first summarized the biological effects of GLP-1, GLP-1Rs, and GLP-1RAs. Subsequently, the recent literature examining the behavioral effects and the possible pharmacological mechanisms of GLP-1RAs on CUD was reviewed. Increasing preclinical evidence suggests that GLP-1RAs are promising in regulating dopamine release, dopamine transporter (DAT) surface expression and function, mesolimbic reward system and GABAergic neurons, and maladaptive behaviors in animal models of self-administration and conditioned place preference. In addition, the emerging role of GLP-1RAs in inhibiting inflammatory cytokines was reported. These findings indicate that GLP-1RAs perform essential functions in the modulation of cocaine-seeking and cocaine-taking behaviors likely through multifaceted mechanisms. Although the current preclinical evidence provides convincing evidence to support GLP-1RA as a promising pharmacotherapy for CUD, other questions concerning clinical availability, impact and specific mechanisms remain to be addressed in further studies.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Hailiang Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xuerui Kong
- Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yezhong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Olsen CM, Corrigan JD. Does Traumatic Brain Injury Cause Risky Substance Use or Substance Use Disorder? Biol Psychiatry 2022; 91:421-437. [PMID: 34561027 PMCID: PMC8776913 DOI: 10.1016/j.biopsych.2021.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Accepted: 07/12/2021] [Indexed: 01/22/2023]
Abstract
There is a high co-occurrence of risky substance use among adults with traumatic brain injury (TBI), although it is unknown if the neurologic sequelae of TBI can promote this behavior. We propose that to conclude that TBI can cause risky substance use, it must be determined that TBI precedes risky substance use, that confounders with the potential to increase the likelihood of both TBI and risky substance use must be ruled out, and that there must be a plausible mechanism of action. In this review, we address these factors by providing an overview of key clinical and preclinical studies and list plausible mechanisms by which TBI could increase risky substance use. Human and animal studies have identified an association between TBI and risky substance use, although the strength of this association varies. Factors that may limit detection of this relationship include differential variability due to substance, sex, age of injury, and confounders that may influence the likelihood of both TBI and risky substance use. We propose possible mechanisms by which TBI could increase substance use that include damage-associated neuroplasticity, chronic changes in neuroimmune signaling, and TBI-associated alterations in brain networks.
Collapse
Affiliation(s)
- Christopher M Olsen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - John D Corrigan
- Department of Physical Medicine & Rehabilitation, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
20
|
Zhu C, Hong T, Li H, Jiang S, Guo B, Wang L, Ding J, Gao C, Sun Y, Sun T, Wang F, Wang Y, Wan D. Glucagon-Like Peptide-1 Agonist Exendin-4 Facilitates the Extinction of Cocaine-Induced Condition Place Preference. Front Syst Neurosci 2022; 15:711750. [PMID: 35024034 PMCID: PMC8744468 DOI: 10.3389/fnsys.2021.711750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Accumulating studies suggest that the glucagon-like peptide-1 receptor agonist exendin-4 (Ex4) and toll-like receptor 4 (TLR4) play a pivotal role in the maladaptive behavior of cocaine. However, few studies have assessed whether Ex4 can facilitate the extinction of drug-associated behavior and attenuate the reinstatement of cocaine-induced condition place preference (CPP) in mice. The main objective of the present study was to evaluate Ex4's ability to regulate the extinction and reinstatement of cocaine-induced CPP. C57BL/6 mice were conditioned to either cocaine (20 mg/kg) or an equivalent volume of saline to establish a cocaine-mediated CPP paradigm. To investigate the potential effects of Ex4 on extinction, animals received an intraperitoneal injection of Ex4 either immediately or 6 h after each extinction or only on the test day. The persistence of extinction was measured using the reinstatement paradigm evoked by 10 mg/kg of cocaine. To explore the possible impacts of Ex4 and neuroinflammation on cocaine, the expression levels of TLR4 within the hippocampus was detected using western blotting. As a result, we found that systemic administration of Ex4 immediately after each extinction training, instead of 6 h after each extinction and on the day of extinction test, was capable of facilitating extinction in the confined or non-confined CPP extinction paradigms and blocking the cocaine-primed reinstatement of cocaine-induced CPP. Additionally, we also observed that Ex4 was competent to alleviate TLR4 signaling that has been up-regulated by cocaine. Altogether, our findings indicated that the combination of Ex4 with daily extinction training was sufficient to facilitate extinction of the conditioned behavior, attenuate reinstatement of cocaine-induced CPP and inhibit TLR4 signaling. Thus, Ex4 deserves further investigation as a potential intervention for the treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hailiang Li
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Baorui Guo
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Caibin Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yu Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Din Wan
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
21
|
Caslin HL, Cottam MA, Piñon JM, Boney LY, Hasty AH. Weight cycling induces innate immune memory in adipose tissue macrophages. Front Immunol 2022; 13:984859. [PMID: 36713396 PMCID: PMC9876596 DOI: 10.3389/fimmu.2022.984859] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Weight loss improves obesity-associated diabetes risk. However, most individuals regain weight, which worsens the risk of developing diabetes and cardiovascular disease. We previously reported that male mice retain obesity-associated immunological changes even after weight loss, suggesting that immune cells may remember the state of obesity. Therefore, we hypothesized that cycles of weight gain and loss, otherwise known as weight cycling, can induce innate memory in adipose macrophages. Methods Bone marrow derived macrophages were primed with palmitic acid or adipose tissue conditioned media in a culture model of innate immune memory. Mice also put on low fat or high fat diets over 14-27 weeks to induce weight gain, weight loss, and weight cycling. Results Priming cells with palmitic acid or adipose tissue conditioned media from obese mice increased maximal glycolysis and oxidative phosphorylation and increased LPS-induced TNFα and IL-6 production. Palmitic acid effects were dependent on TLR4 and impaired by methyltransferase inhibition and AMPK activation. While weight loss improved glucose tolerance in mice, adipose macrophages were primed for greater activation to subsequent stimulation by LPS ex vivo as measured by cytokine production. In the model of weight cycling, adipose macrophages had elevated metabolism and secreted higher levels of basal TNFα, suggesting that weight loss can also prime macrophages for heighted activation to weight regain. Discussion Together, these data suggest that weight loss following obesity can prime adipose macrophages for enhanced inflammation upon weight regain. This innate immune memory response may contribute to worsened glucose tolerance following weight cycling.
Collapse
Affiliation(s)
- Heather L Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
| | - Jacqueline M Piñon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Likem Y Boney
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States.,Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| |
Collapse
|
22
|
Liu J, Li JX, Wu R. Toll-Like Receptor 4: A Novel Target to Tackle Drug Addiction? Handb Exp Pharmacol 2022; 276:275-290. [PMID: 35434747 PMCID: PMC9829382 DOI: 10.1007/164_2022_586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Drug addiction is a chronic brain disease characterized by compulsive drug-seeking and drug-taking behaviors despite the major negative consequences. Current well-established neuronal underpinnings of drug addiction have promoted the substantial progress in understanding this disorder. However, non-neuronal mechanisms of drug addiction have long been underestimated. Fortunately, increased evidence indicates that neuroimmune system, especially Toll-like receptor 4 (TLR4) signaling, plays an important role in the different stages of drug addiction. Drugs like opioids, psychostimulants, and alcohol activate TLR4 signaling and enhance the proinflammatory response, which is associated with drug reward-related behaviors. While extensive studies have shown that inhibition of TLR4 attenuated drug-related responses, there are conflicting findings implicating that TLR4 signaling may not be essential to drug addiction. In this chapter, preclinical and clinical studies will be discussed to further evaluate whether TLR4-based neuroimmune pharmacotherapy can be used to treat drug addiction. Furthermore, the possible mechanisms underlying the effects of TLR4 inhibition in modulating drug-related behaviors will also be discussed.
Collapse
Affiliation(s)
- Jianfeng Liu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA,Corresponding authors: Dr. Jun-Xu Li, , Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14214. Tel: +1 716 829 2482; Fax: +1 716 829 2801 And Dr. Ruyan Wu, , School of Medicine, Yangzhou University, Yangzhou 225000, China
| | - Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA,School of Medicine, Yangzhou University, Yangzhou, China,Corresponding authors: Dr. Jun-Xu Li, , Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14214. Tel: +1 716 829 2482; Fax: +1 716 829 2801 And Dr. Ruyan Wu, , School of Medicine, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
23
|
NLRP3 Inflammasome Is Involved in Cocaine-Mediated Potentiation on Behavioral Changes in CX3CR1-Deficient Mice. J Pers Med 2021; 11:jpm11100963. [PMID: 34683104 PMCID: PMC8540128 DOI: 10.3390/jpm11100963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Microglia, the primary immunocompetent cells of the brain, are suggested to play a role in the development of drug addiction. Previous studies have identified the microglia-derived pro-inflammatory factor IL1β can promote the progression of cocaine addiction. Additionally, the activation status of microglia and “two-hit hypothesis” have been proposed in the field of drug addiction to explain how early life stress (ELS) could significantly increase the incidence of drug addiction in later life. However, the mechanisms underlying microglia prime and full activation and their roles in drug addiction remain greatly unexplored. Here, we employed CX3CR1-GFP mice (CX3CR1 functional deficiency, CX3CR1−/−) to explore whether primed microglia could potentiate cocaine-mediated behavioral changes and the possible underlying mechanisms. CX3CR1−/− mice revealed higher hyperlocomotion activity and conditional place preference than wild-type (WT) mice did under cocaine administration. In parallel, CX3CR1−/− mice showed higher activity of NLR family pyrin domain-containing 3 (NLRP3) inflammasome than WT mice. Interestingly, CX3CR1 deficiency itself could prime NLRP3 signaling by increasing the expression of NLPR3 and affect lysosome biogenesis under basal conditions. Taken together, our findings demonstrated that the functional status of microglia could have an impact on cocaine-mediated reward effects, and NLRP3 inflammasome activity was associated with this phenomenon. This study was consistent with the two-hit hypothesis and provided solid evidence to support the involvement of microglia in drug addiction. Targeting the NLRP3 inflammasome may represent a novel therapeutic approach for ameliorating or blocking the development of drug addiction.
Collapse
|
24
|
Prowse N, Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci Biobehav Rev 2021; 131:135-163. [PMID: 34537262 DOI: 10.1016/j.neubiorev.2021.09.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Collapse
Affiliation(s)
- Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
25
|
Zengeler KE, Lukens JR. Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat Rev Immunol 2021; 21:454-468. [PMID: 33479477 PMCID: PMC9213174 DOI: 10.1038/s41577-020-00487-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/29/2022]
Abstract
The immune and nervous systems have unique developmental trajectories that individually build intricate networks of cells with highly specialized functions. These two systems have extensive mechanistic overlap and frequently coordinate to accomplish the proper growth and maturation of an organism. Brain resident innate immune cells - microglia - have the capacity to sculpt neural circuitry and coordinate copious and diverse neurodevelopmental processes. Moreover, many immune cells and immune-related signalling molecules are found in the developing nervous system and contribute to healthy neurodevelopment. In particular, many components of the innate immune system, including Toll-like receptors, cytokines, inflammasomes and phagocytic signals, are critical contributors to healthy brain development. Accordingly, dysfunction in innate immune signalling pathways has been functionally linked to many neurodevelopmental disorders, including autism and schizophrenia. This review discusses the essential roles of microglia and innate immune signalling in the assembly and maintenance of a properly functioning nervous system.
Collapse
Affiliation(s)
- Kristine E Zengeler
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), Charlottesville, VA, USA.
- Neuroscience Graduate Program, Charlottesville, VA, USA.
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), Charlottesville, VA, USA.
- Neuroscience Graduate Program, Charlottesville, VA, USA.
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
26
|
Li Y, Chen L, Zhao W, Sun L, Zhang R, Zhu S, Xie K, Feng X, Wu X, Sun Z, Shu G, Wang S, Gao P, Zhu X, Wang L, Jiang Q. Food reward depends on TLR4 activation in dopaminergic neurons. Pharmacol Res 2021; 169:105659. [PMID: 33971268 DOI: 10.1016/j.phrs.2021.105659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 01/07/2023]
Abstract
The rising prevalence of obesity and being overweight is a worldwide health concern. Food reward dysregulation is the basic factor for the development of obesity. Dopamine (DA) neurons in the ventral tegmental area (VTA) play a vital role in food reward. Toll-like receptor 4 (TLR4) is a transmembrane pattern recognition receptor that can be activated by saturated fatty acids. Here, we show that the deletion of TLR4 specifically in DA neurons increases body weight, increases food intake, and decreases food reward. Conditional deletion of TLR4 also decreased the activity of DA neurons while suppressing the expression of tyrosine hydroxylase (TH) in the VTA, which regulates the concentration of DA in the nucleus accumbens (NAc) to affect food reward. Meanwhile, AAV-Cre-GFP mediated VTA-specific TLR4-deficient mice recapitulates food reward of DAT-TLR4-KO mice. Food reward could be rescued by re-expressing TLR4 in VTA DA neurons. Moreover, effects of intra-VTA infusion of lauric acid (a saturated fatty acid with 12 carbon) on food reward were abolished in mice lacking TLR4 in DA neurons. Our study demonstrates the critical role of TLR4 signaling in regulating the activity of VTA DA neurons and the normal function of the mesolimbic DA system that may contribute to food reward.
Collapse
Affiliation(s)
- Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lvshuang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Weijie Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lijuan Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ruixue Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuqing Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Kailai Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiajie Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhonghua Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
27
|
Assis MA, Carranza PG, Ambrosio E. A "Drug-Dependent" Immune System Can Compromise Protection against Infection: The Relationships between Psychostimulants and HIV. Viruses 2021; 13:v13050722. [PMID: 33919273 PMCID: PMC8143316 DOI: 10.3390/v13050722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Psychostimulant use is a major comorbidity in people living with HIV, which was initially explained by them adopting risky behaviors that facilitate HIV transmission. However, the effects of drug use on the immune system might also influence this phenomenon. Psychostimulants act on peripheral immune cells even before they reach the central nervous system (CNS) and their effects on immunity are likely to influence HIV infection. Beyond their canonical activities, classic neurotransmitters and neuromodulators are expressed by peripheral immune cells (e.g., dopamine and enkephalins), which display immunomodulatory properties and could be influenced by psychostimulants. Immune receptors, like Toll-like receptors (TLRs) on microglia, are modulated by cocaine and amphetamine exposure. Since peripheral immunocytes also express TLRs, they may be similarly affected by psychostimulants. In this review, we will summarize how psychostimulants are currently thought to influence peripheral immunity, mainly focusing on catecholamines, enkephalins and TLR4, and shed light on how these drugs might affect HIV infection. We will try to shift from the classic CNS perspective and adopt a more holistic view, addressing the potential impact of psychostimulants on the peripheral immune system and how their systemic effects could influence HIV infection.
Collapse
Affiliation(s)
- María Amparo Assis
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4200, Argentina;
- Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero G4206, Argentina
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
- Correspondence:
| | - Pedro Gabriel Carranza
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4200, Argentina;
- Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero G4206, Argentina
- Facultad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, Santiago del Estero G4206, Argentina
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| |
Collapse
|
28
|
Mancini A, Ghiglieri V, Parnetti L, Calabresi P, Di Filippo M. Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Front Immunol 2021; 12:644294. [PMID: 33953715 PMCID: PMC8091963 DOI: 10.3389/fimmu.2021.644294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
The basal ganglia network is represented by an interconnected group of subcortical nuclei traditionally thought to play a crucial role in motor learning and movement execution. During the last decades, knowledge about basal ganglia physiology significantly evolved and this network is now considered as a key regulator of important cognitive and emotional processes. Accordingly, the disruption of basal ganglia network dynamics represents a crucial pathogenic factor in many neurological and psychiatric disorders. The striatum is the input station of the circuit. Thanks to the synaptic properties of striatal medium spiny neurons (MSNs) and their ability to express synaptic plasticity, the striatum exerts a fundamental integrative and filtering role in the basal ganglia network, influencing the functional output of the whole circuit. Although it is currently established that the immune system is able to regulate neuronal transmission and plasticity in specific cortical areas, the role played by immune molecules and immune/glial cells in the modulation of intra-striatal connections and basal ganglia activity still needs to be clarified. In this manuscript, we review the available evidence of immune-based regulation of synaptic activity in the striatum, also discussing how an abnormal immune activation in this region could be involved in the pathogenesis of inflammatory and degenerative central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | | | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Section of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
29
|
Namba MD, Leyrer-Jackson JM, Nagy EK, Olive MF, Neisewander JL. Neuroimmune Mechanisms as Novel Treatment Targets for Substance Use Disorders and Associated Comorbidities. Front Neurosci 2021; 15:650785. [PMID: 33935636 PMCID: PMC8082184 DOI: 10.3389/fnins.2021.650785] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies examining the neurobiology of substance abuse have revealed a significant role of neuroimmune signaling as a mechanism through which drugs of abuse induce aberrant changes in synaptic plasticity and contribute to substance abuse-related behaviors. Immune signaling within the brain and the periphery critically regulates homeostasis of the nervous system. Perturbations in immune signaling can induce neuroinflammation or immunosuppression, which dysregulate nervous system function including neural processes associated with substance use disorders (SUDs). In this review, we discuss the literature that demonstrates a role of neuroimmune signaling in regulating learning, memory, and synaptic plasticity, emphasizing specific cytokine signaling within the central nervous system. We then highlight recent preclinical studies, within the last 5 years when possible, that have identified immune mechanisms within the brain and the periphery associated with addiction-related behaviors. Findings thus far underscore the need for future investigations into the clinical potential of immunopharmacology as a novel approach toward treating SUDs. Considering the high prevalence rate of comorbidities among those with SUDs, we also discuss neuroimmune mechanisms of common comorbidities associated with SUDs and highlight potentially novel treatment targets for these comorbid conditions. We argue that immunopharmacology represents a novel frontier in the development of new pharmacotherapies that promote long-term abstinence from drug use and minimize the detrimental impact of SUD comorbidities on patient health and treatment outcomes.
Collapse
Affiliation(s)
- Mark D. Namba
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Erin K. Nagy
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | | |
Collapse
|
30
|
Turner BD, Smith NK, Manz KM, Chang BT, Delpire E, Grueter CA, Grueter BA. Cannabinoid type 1 receptors in A2a neurons contribute to cocaine-environment association. Psychopharmacology (Berl) 2021; 238:1121-1131. [PMID: 33454843 PMCID: PMC8386588 DOI: 10.1007/s00213-021-05759-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
RATIONALE Cannabinoid type 1 receptors (CB1Rs) are widely expressed within the brain's reward circuits and are implicated in regulating drug induced behavioral adaptations. Understanding how CB1R signaling in discrete circuits and cell types contributes to drug-related behavior provides further insight into the pathology of substance use disorders. OBJECTIVE AND METHODS We sought to determine how cell type-specific expression of CB1Rs within striatal circuits contributes to cocaine-induced behavioral plasticity, hypothesizing that CB1R function in distinct striatal neuron populations would differentially impact behavioral outcomes. We crossed conditional Cnr1fl/fl mice and striatal output pathway cre lines (Drd1a -cre; D1, Adora2a -cre; A2a) to generate cell type-specific CB1R knockout mice and assessed their performance in cocaine locomotor and associative behavioral assays. RESULTS Both knockout lines retained typical locomotor activity at baseline. D1-Cre x Cnr1fl/fl mice did not display hyperlocomotion in response to acute cocaine dosing, and both knockout lines exhibited blunted locomotor activity across repeated cocaine doses. A2a-cre Cnr1fl/fl, mice did not express a preference for cocaine paired environments in a two-choice place preference task. CONCLUSIONS This study aids in mapping CB1R-dependent cocaine-induced behavioral adaptations onto distinct striatal neuron subtypes. A reduction of cocaine-induced locomotor activation in the D1- and A2a-Cnr1 knockout mice supports a role for CB1R function in the motor circuit. Furthermore, a lack of preference for cocaine-associated context in A2a-Cnr1 mice suggests that CB1Rs on A2a-neuron inhibitory terminals are necessary for either reward perception, memory consolidation, or recall. These results direct future investigations into CB1R-dependent adaptations underlying the development and persistence of substance use disorders.
Collapse
MESH Headings
- Animals
- Cocaine-Related Disorders/psychology
- Conditioning, Operant/drug effects
- Corpus Striatum/drug effects
- Environment
- Male
- Mice
- Mice, Knockout
- Motor Activity/drug effects
- Neurons/drug effects
- Receptor, Adenosine A2A/drug effects
- Receptor, Adenosine A2A/genetics
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Reward
Collapse
Affiliation(s)
- Brandon D Turner
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Nicholas K Smith
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kevin M Manz
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Betty T Chang
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eric Delpire
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Carrie A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
- Anesthesiology Research Division, Vanderbilt University School of Medicine, 2213 Garland Avenue, P435H MRB IV, Nashville, TN, 37232-0413, USA.
| |
Collapse
|
31
|
Gipson CD, Rawls S, Scofield MD, Siemsen BM, Bondy EO, Maher EE. Interactions of neuroimmune signaling and glutamate plasticity in addiction. J Neuroinflammation 2021; 18:56. [PMID: 33612110 PMCID: PMC7897396 DOI: 10.1186/s12974-021-02072-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/05/2021] [Indexed: 02/28/2023] Open
Abstract
Chronic use of drugs of abuse affects neuroimmune signaling; however, there are still many open questions regarding the interactions between neuroimmune mechanisms and substance use disorders (SUDs). Further, chronic use of drugs of abuse can induce glutamatergic changes in the brain, but the relationship between the glutamate system and neuroimmune signaling in addiction is not well understood. Therefore, the purpose of this review is to bring into focus the role of neuroimmune signaling and its interactions with the glutamate system following chronic drug use, and how this may guide pharmacotherapeutic treatment strategies for SUDs. In this review, we first describe neuroimmune mechanisms that may be linked to aberrant glutamate signaling in addiction. We focus specifically on the nuclear factor-kappa B (NF-κB) pathway, a potentially important neuroimmune mechanism that may be a key player in driving drug-seeking behavior. We highlight the importance of astroglial-microglial crosstalk, and how this interacts with known glutamatergic dysregulations in addiction. Then, we describe the importance of studying non-neuronal cells with unprecedented precision because understanding structure-function relationships in these cells is critical in understanding their role in addiction neurobiology. Here we propose a working model of neuroimmune-glutamate interactions that underlie drug use motivation, which we argue may aid strategies for small molecule drug development to treat substance use disorders. Together, the synthesis of this review shows that interactions between glutamate and neuroimmune signaling may play an important and understudied role in addiction processes and may be critical in developing more efficacious pharmacotherapies to treat SUDs.
Collapse
Affiliation(s)
- Cassandra D Gipson
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA.
| | - Scott Rawls
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Michael D Scofield
- Department of Anesthesiology, Medical University of South Carolina, Charleston, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, USA
| | - Benjamin M Siemsen
- Department of Anesthesiology, Medical University of South Carolina, Charleston, USA
| | - Emma O Bondy
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA
| | - Erin E Maher
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA
| |
Collapse
|
32
|
Drug addiction co-morbidity with alcohol: Neurobiological insights. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:409-472. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Addiction is a chronic disorder that consists of a three-stage cycle of binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These stages involve, respectively, neuroadaptations in brain circuits involved in incentive salience and habit formation, stress surfeit and reward deficit, and executive function. Much research on addiction focuses on the neurobiology underlying single drug use. However, alcohol use disorder (AUD) can be co-morbid with substance use disorder (SUD), called dual dependence. The limited epidemiological data on dual dependence indicates that there is a large population of individuals suffering from addiction who are dependent on more than one drug and/or alcohol, yet dual dependence remains understudied in addiction research. Here, we review neurobiological data on neurotransmitter and neuropeptide systems that are known to contribute to addiction pathology and how the involvement of these systems is consistent or divergent across drug classes. In particular, we highlight the dopamine, opioid, corticotropin-releasing factor, norepinephrine, hypocretin/orexin, glucocorticoid, neuroimmune signaling, endocannabinoid, glutamate, and GABA systems. We also discuss the limited research on these systems in dual dependence. Collectively, these studies demonstrate that the use of multiple drugs can produce neuroadaptations that are distinct from single drug use. Further investigation into the neurobiology of dual dependence is necessary to develop effective treatments for addiction to multiple drugs.
Collapse
|
33
|
ELMostafi H, Bahbiti Y, Elhessni A, Bousalham R, Doumar H, Ouichou A, Benmhammed H, Touil T, Mesfioui A. Neuroprotective potential of Argan oil in neuropsychiatric disorders in rats: A review. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
34
|
Wu R, Li JX. Toll-Like Receptor 4 Signaling and Drug Addiction. Front Pharmacol 2020; 11:603445. [PMID: 33424612 PMCID: PMC7793839 DOI: 10.3389/fphar.2020.603445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
The emphasis of neuronal alterations and adaptations have long been the main focus of the studies of the mechanistic underpinnings of drug addiction. Recent studies have begun to appreciate the role of innate immune system, especially toll-like receptor 4 (TLR4) signaling in drug reward-associated behaviors and physiology. Drugs like opioids, alcohol and psychostimulants activate TLR4 signaling and subsequently induce proinflammatory responses, which in turn contributes to the development of drug addiction. Inhibition of TLR4 or its downstream effectors attenuated the reinforcing effects of opioids, alcohol and psychostimulants, and this effect is also involved in the withdrawal and relapse-like behaviors of different drug classes. However, conflicting results also argue that TLR4-related immune response may play a minimal part in drug addiction. This review discussed the preclinical evidence that whether TLR4 signaling is involved in multiple drug classes action and the possible mechanisms underlying this effect. Moreover, clinical studies which examined the potential efficacy of immune-base pharmacotherapies in treating drug addiction are also discussed.
Collapse
Affiliation(s)
- Ruyan Wu
- School of Medicine, Yangzhou University, Yangzhou, China.,Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
35
|
Peng S, Peng Z, Qin M, Huang L, Zhao B, Wei L, Ning J, Tuo QH, Yuan TF, Shi Z, Liao DF. Targeting neuroinflammation: The therapeutic potential of ω-3 PUFAs in substance abuse. Nutrition 2020; 83:111058. [PMID: 33360033 DOI: 10.1016/j.nut.2020.111058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/23/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
Substance abuse is a chronic relapsing disorder that results in serious health and socioeconomic issues worldwide. Addictive drugs induce long-lasting morphologic and functional changes in brain circuits and account for the formation of compulsive drug-seeking and drug-taking behaviors. Yet, there remains a lack of reliable therapy. In recent years, accumulating evidence indicated that neuroinflammation was implicated in the development of drug addiction. Findings from both our and other laboratories suggest that ω-3 polyunsaturated fatty acids (PUFAs) are effective in treating neuroinflammation-related mental diseases, and indicate that they could exert positive effects in treating drug addiction. Thus, in the present review, we summarized and evaluated recently published articles reporting the neuroinflammation mechanism in drug addiction and the immune regulatory ability of ω-3 PUFAs. We also sought to identify some of the challenges ahead in the translation of ω-3 PUFAs into addiction treatment.
Collapse
Affiliation(s)
- Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Bin Zhao
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lai Wei
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jie Ning
- Department of Metabolic Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China.
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China.
| |
Collapse
|
36
|
Lucerne KE, Kiraly DD. The role of gut-immune-brain signaling in substance use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:311-370. [PMID: 33648673 DOI: 10.1016/bs.irn.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Substance use disorders (SUDs) are debilitating neuropsychiatric conditions that exact enormous costs in terms of loss of life and individual suffering. While much progress has been made defining the neurocircuitry and intracellular signaling cascades that contribute to SUDs, these studies have yielded limited effective treatment options. This has prompted greater exploration of non-traditional targets in addiction. Emerging data suggest inputs from peripheral systems, such as the immune system and the gut microbiome, impact multiple neuropsychiatric diseases, including SUDs. Until recently the gut microbiome, peripheral immune system, and the CNS have been studied independently; however, current work shows the gut microbiome and immune system critically interact to modulate brain function. Additionally, the gut microbiome and immune system intimately regulate one another via extensive bidirectional communication. Accumulating evidence suggests an important role for gut-immune-brain communication in the pathogenesis of substance use disorders. Thus, a better understanding of gut-immune-brain signaling could yield important insight to addiction pathology and potential treatment options.
Collapse
Affiliation(s)
- Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
37
|
Critical role of TLR4 in uncovering the increased rewarding effects of cocaine and ethanol induced by social defeat in male mice. Neuropharmacology 2020; 182:108368. [PMID: 33132187 DOI: 10.1016/j.neuropharm.2020.108368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Substance use disorders and social stress are currently associated with changes in the immune system response by which they induce a proinflammatory state in neurons and glial cells that eventually modulates the reward system. AIMS The aim of the present work was to assess the role of the immune TLR4 (Toll-like receptors 4) and its signaling response in the increased contextual reinforcing effects of cocaine and reinforcing effects of ethanol (EtOH) induced by social defeat (SD) stress. METHODS Adult male C57BL/6 J wild-type (WT) mice and mice deficient in TLR4 (TLR4-KO) were assigned to experimental groups according to stress condition (exploration or SD). Three weeks after the last SD, conditioned place preference (CPP) was induced by a subthreshold cocaine dose (1 mg/kg), while another set underwent EtOH 6% operant self-administration (SA). Several inflammatory molecules were analyzed in the hippocampus and the striatum. RESULTS SD induced higher vulnerability to the conditioned rewarding effects of cocaine only in defeated WT mice. Similarly, defeated WT mice exhibited higher 6% EtOH consumption, an effect that was not observed in the defeated TLR4-KO group. However, the motivation to obtain the drug was observed in both genotypes of defeated animals. Notably, a significant upregulation of the protein proinflammatory markers NFkBp-p65, IL-1β, IL-17 A and COX-2 were observed only in the defeated WT mice, but not in their defeated TLR4-KO counterparts. CONCLUSIONS These results suggest that TLR4 receptors mediate the neuroinflammatory response underlying the increase in the rewarding effects of cocaine and EtOH induced by social stress.
Collapse
|
38
|
Abstract
Fetal neurodevelopment in utero is profoundly shaped by both systemic maternal immunity and local processes at the maternal-fetal interface. Immune pathways are a critical participant in the normal physiology of pregnancy and perturbations of maternal immunity due to infections during this period have been increasingly linked to a diverse array of poor neurological outcomes, including diseases that manifest much later in postnatal life. While experimental models of maternal immune activation (MIA) have provided groundbreaking characterizations of the maternal pathways underlying pathogenesis, less commonly examined are the immune factors that serve pathogen-independent developmental functions in the embryo and fetus. In this review, we explore what is known about the in vivo role of immune factors in fetal neurodevelopment during normal pregnancy and provide an overview of how MIA perturbs the proper orchestration of this sequence of events. Finally, we discuss how the dysregulation of immune factors may contribute to the manifestation of a variety of neurological disorders.
Collapse
Affiliation(s)
- Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06519, USA; .,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06519, USA
| |
Collapse
|
39
|
Filippini HF, Molska GR, Zanjir M, Arudchelvan Y, Gong SG, Campos MM, Avivi-Arber L, Sessle BJ. Toll-Like Receptor 4 in the Rat Caudal Medulla Mediates Tooth Pulp Inflammatory Pain. Front Neurosci 2020; 14:643. [PMID: 32655361 PMCID: PMC7324534 DOI: 10.3389/fnins.2020.00643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The aims of this study were to investigate if Toll-like receptor 4 (TLR4) is expressed in the medullary dorsal horn (MDH) and if medullary application of a TLR4 antagonist (lipopolysaccharides from Rhodobacter sphaeroides, LPS-RS) can attenuate changes in nociceptive sensorimotor responses or TLR4 expression that might be evoked by mustard oil (MO) application to the right maxillary first molar tooth pulp. Of 41 adult male Sprague-Dawley rats used in the study, 23 received intrathecal application of the TLR4 antagonist LPS-RS (25 μg/10 μl; LPS-RS group) or isotonic saline (10 μl; vehicle control group) 10 min before pulpal application of MO (95%; 0.2 μl). Bilateral electromyographic (EMG) activities of the anterior digastric and masseter muscles were recorded continuously before and until 15 min after the MO application to the pulp. In 6 of these 23 rats and an additional 18 rats, the caudal medulla containing the ipsilateral and contralateral MDH was removed after euthanasia for subsequent Western Blot analysis of TLR4 expression in LPS-RS (n = 8) and vehicle (n = 8) groups and a naïve group (n = 8). The % change from baseline in the MO-evoked EMG activities within the anterior digastric muscles were significantly smaller in the LPS-RS group than the control group (two-way ANOVA, post hoc Bonferroni, P < 0.0001). Western Blot analysis revealed similar levels of TLR4 expression in the caudal medulla of the naïve, vehicle and LPS-RS groups. These novel findings suggest that TLR4 signaling in the caudal medulla may mediate MO-induced acute dental inflammatory pain in rats.
Collapse
Affiliation(s)
- Helena F Filippini
- Programa de Pós-graduação em Odontologia, Escola de Ciência da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Maryam Zanjir
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Siew-Ging Gong
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Maria M Campos
- Programa de Pós-graduação em Odontologia, Escola de Ciência da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Limor Avivi-Arber
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| | - Barry J Sessle
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada.,Departament of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Cruz-Carrillo G, Montalvo-Martínez L, Cárdenas-Tueme M, Bernal-Vega S, Maldonado-Ruiz R, Reséndez-Pérez D, Rodríguez-Ríos D, Lund G, Garza-Ocañas L, Camacho-Morales A. Fetal Programming by Methyl Donors Modulates Central Inflammation and Prevents Food Addiction-Like Behavior in Rats. Front Neurosci 2020; 14:452. [PMID: 32581665 PMCID: PMC7283929 DOI: 10.3389/fnins.2020.00452] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Fetal programming by hypercaloric intake leads to food addiction-like behavior and brain pro-inflammatory gene expression in offspring. The role of methylome modulation during programming on central immune activation and addiction-like behavior has not been characterized. We employed a nutritional programming model exposing female Wistar rats to chow diet, cafeteria (CAF), or CAF-methyl donor’s diet from pre-pregnancy to weaning. Addiction-like behavior in offspring was characterized by the operant training response using Skinner boxes. Food intake in offspring was determined after fasting–refeeding schedule and subcutaneous injection of ghrelin. Genome-wide DNA methylation in the nucleus accumbens (NAc) shell was performed by fluorescence polarization, and brain immune activation was evaluated using real-time PCR for pro-inflammatory cytokines (IL-1β, TNF-1α, and IL-6). Molecular effects of methyl modulators [S-adenosylmethionine (SAM) or 5-azatidine (5-AZA)] on pro-inflammatory cytokine expression and phagocytosis were identified in the cultures of immortalized SIM-A9 microglia cells following palmitic acid (100 μM) or LPS (100 nM) stimulation for 6 or 24 h. Our results show that fetal programming by CAF exposure increases the number of offspring subjects and reinforcers under the operant training response schedule, which correlates with an increase in the NAc shell global methylation. Notably, methyl donor’s diet selectively decreases lever-pressing responses for reinforcers and unexpectedly decreases the NAc shell global methylation. Also, programmed offspring by CAF diet shows a selective IL-6 gene expression in the NAc shell, which is reverted to control values by methyl diet exposure. In vitro analysis identified that LPS and palmitic acid activate IL-1β, TNF-1α, and IL-6 gene expression, which is repressed by the methyl donor SAM. Finally, methylation actively represses phagocytosis activity of SIM-A9 microglia cells induced by LPS and palmitic acid stimulation. Our in vivo and in vitro data suggest that fetal programming by methyl donors actively decreases addiction-like behavior to palatable food in the offspring, which correlates with a decrease in NAc shell methylome, expression of pro-inflammatory cytokine genes, and activity of phagocytic microglia. These results support the role of fetal programming in brain methylome on immune activation and food addiction-like behavior in the offspring.
Collapse
Affiliation(s)
- Gabriela Cruz-Carrillo
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Larisa Montalvo-Martínez
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Marcela Cárdenas-Tueme
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Sofia Bernal-Vega
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Roger Maldonado-Ruiz
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Diana Reséndez-Pérez
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| | - Lourdes Garza-Ocañas
- Department of Pharmacology and Toxicology, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
41
|
Gondré-Lewis MC, Bassey R, Blum K. Pre-clinical models of reward deficiency syndrome: A behavioral octopus. Neurosci Biobehav Rev 2020; 115:164-188. [PMID: 32360413 DOI: 10.1016/j.neubiorev.2020.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Individuals with mood disorders or with addiction, impulsivity and some personality disorders can share in common a dysfunction in how the brain perceives reward, where processing of natural endorphins or the response to exogenous dopamine stimulants is impaired. Reward Deficiency Syndrome (RDS) is a polygenic trait with implications that suggest cross-talk between different neurological systems that include the known reward pathway, neuroendocrine systems, and motivational systems. In this review we evaluate well-characterized animal models for their construct validity and as potential models for RDS. Animal models used to study substance use disorder, major depressive disorder (MDD), early life stress, immune dysregulation, attention deficit hyperactivity disorder (ADHD), post traumatic stress disorder (PTSD), compulsive gambling and compulsive eating disorders are discussed. These disorders recruit underlying reward deficiency mechanisms in multiple brain centers. Because of the widespread and remarkable array of associated/overlapping behavioral manifestations with a common root of hypodopaminergia, the basic endophenotype recognized as RDS is indeed likened to a behavioral octopus. We conclude this review with a look ahead on how these models can be used to investigate potential therapeutics that target the underlying common deficiency.
Collapse
Affiliation(s)
- Marjorie C Gondré-Lewis
- Department of Anatomy, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States; Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States.
| | - Rosemary Bassey
- Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States; Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, 500 Hofstra University, Hempstead, NY 11549, United States
| | - Kenneth Blum
- Western University Health Sciences, Graduate College of Biomedical Sciences, Pomona, California, United States
| |
Collapse
|
42
|
Cocaine self-administration differentially activates microglia in the mouse brain. Neurosci Lett 2020; 728:134951. [PMID: 32278944 DOI: 10.1016/j.neulet.2020.134951] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/04/2023]
Abstract
The evidence showing the involvement of microglial activation in the development of drug addiction remain scarce as microglia have not been systematically investigated in self-administered mice, a gold standard rodent model for drug addiction. Here we established the stable cocaine self-administration mice to examine microglial activation levels in various brain regions related to reward circuitry. Immunostaining for Iba1 showed a significant upregulation of intensity in the striatum but not in the medial prefrontal cortex (mPFc), hippocampus or thalamus. Further validation experiments showed that cocaine self-administered mice had significantly increased mRNA expression of ccl2 and IL1β in the striatum but not the mPFc compared to saline controls. Consistently, we found elevated protein levels of Iba1, CCL2, TLR4 and mature IL1β in the striatum, not in the mPFc of cocaine-receiving mice. In addition, cocaine-stimulated microglia had modified morphology including a reduced number of intersections, a shortened length and number of processes in the NAc. In summary, our results demonstrated that cocaine mediated microglial activation in a region-specific manner in vivo. These findings indicate that microglia could be activated in the early stage of cocaine addiction directly supporting the rationale that dysregulation on neuroimmune signaling is inherently involved in the development of drug addiction.
Collapse
|
43
|
Gao S, Zhang H, He J, Zheng H, Zhang P, Xu J, Shen Z, Zhao H, Wang F, Hu Z, Chen J. Neuronal HMGB1 in nucleus accumbens regulates cocaine reward memory. Addict Biol 2020; 25:e12739. [PMID: 31056833 DOI: 10.1111/adb.12739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/29/2022]
Abstract
Cocaine is a common abused drug that can induce abnormal synaptic and immune responses in the central nervous system (CNS). High mobility group box 1 (HMGB1) is one kind of inflammatory molecules that is expressed both on neurons and immune cells. Previous studies of HMGB1 in the CNS have largely focused on immune function, and the role of HMGB1 in neurons and cocaine addiction remains unknown. Here, we show that cocaine exposure induced the translocation and release of HMGB1 in the nucleus accumbens (NAc) neurons. Gain and loss of HMGB1 in the NAc bidirectionally regulate cocaine-induced conditioned place preference. From the nucleus to the cytosol, HMGB1 binds to glutamate receptor subunits (GluA2/GluN2B) on the membrane, which regulates cocaine-induced synaptic adaptation and the formation of cocaine-related memory. These data unveil the role of HMGB1 in neurons and provide the evidence for the HMGB1 involvement in drug addiction.
Collapse
Affiliation(s)
- Shuang‐Qi Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Hai Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology Wuhan China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain ResearchHuazhong University of Science and Technology Wuhan China
- The Key Laboratory of Neurological DiseasesHuazhong University of Science and Technology, Ministry of Education of China Wuhan China
| | - Jin‐Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Hui‐Ling Zheng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Pei‐Wei Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jun‐Feng Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Zu‐Cheng Shen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Huan‐Huan Zhao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology Wuhan China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain ResearchHuazhong University of Science and Technology Wuhan China
- The Collaborative‐Innovation Center for Brain ScienceHuazhong University of Science and Technology Wuhan China
- The Key Laboratory of Neurological DiseasesHuazhong University of Science and Technology, Ministry of Education of China Wuhan China
| | - Zhuang‐Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology Wuhan China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain ResearchHuazhong University of Science and Technology Wuhan China
- The Key Laboratory of Neurological DiseasesHuazhong University of Science and Technology, Ministry of Education of China Wuhan China
| | - Jian‐Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology Wuhan China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain ResearchHuazhong University of Science and Technology Wuhan China
- The Collaborative‐Innovation Center for Brain ScienceHuazhong University of Science and Technology Wuhan China
- The Key Laboratory of Neurological DiseasesHuazhong University of Science and Technology, Ministry of Education of China Wuhan China
| |
Collapse
|
44
|
Thorpe HHA, Hamidullah S, Jenkins BW, Khokhar JY. Adolescent neurodevelopment and substance use: Receptor expression and behavioral consequences. Pharmacol Ther 2019; 206:107431. [PMID: 31706976 DOI: 10.1016/j.pharmthera.2019.107431] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Adolescence is the transitional period between childhood and adulthood, during which extensive brain development occurs. Since this period also overlaps with the initiation of drug use, it is important to consider how substance use during this time might produce long-term neurobiological alterations, especially against the backdrop of developmental changes in neurotransmission. Alcohol, cannabis, nicotine, and opioids all produce marked changes in the expression and function of the neurotransmitter and receptor systems with which they interact. These acute and chronic alterations also contribute to behavioral consequences ranging from increased addiction risk to cognitive or neuropsychiatric behavioral dysfunctions. The current review provides an in-depth overview and update of the developmental changes in neurotransmission during adolescence, as well as the impact of drug exposure during this neurodevelopmental window. While most of these factors have been studied in animal models, which are the focus of this review, future longitudinal studies in humans that assess neural function and behavior will help to confirm pre-clinical findings. Furthermore, the neural changes induced by each drug should also be considered in the context of other contributing factors, such as sex. Further understanding of these consequences can help in the identification of novel approaches for preventing and reversing the neurobiological effects of adolescent substance use.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Shahnaza Hamidullah
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Bryan W Jenkins
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada.
| |
Collapse
|
45
|
Chen CY, Shih YC, Hung YF, Hsueh YP. Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors. J Biomed Sci 2019; 26:90. [PMID: 31684953 PMCID: PMC6827257 DOI: 10.1186/s12929-019-0584-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are well known as critical pattern recognition receptors that trigger innate immune responses. In addition, TLRs are expressed in neurons and may act as the gears in the neuronal detection/alarm system for making good connections. As neuronal differentiation and circuit formation take place along with programmed cell death, neurons face the challenge of connecting with appropriate targets while avoiding dying or dead neurons. Activation of neuronal TLR3, TLR7 and TLR8 with nucleic acids negatively modulates neurite outgrowth and alters synapse formation in a cell-autonomous manner. It consequently influences neural connectivity and brain function and leads to deficits related to neuropsychiatric disorders. Importantly, neuronal TLR activation does not simply duplicate the downstream signal pathways and effectors of classical innate immune responses. The differences in spatial and temporal expression of TLRs and their ligands likely account for the diverse signaling pathways of neuronal TLRs. In conclusion, the accumulated evidence strengthens the idea that the innate immune system of neurons serves as an alarm system that responds to exogenous pathogens as well as intrinsic danger signals and fine-tune developmental processes of neurons.
Collapse
Affiliation(s)
- Chiung-Ya Chen
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan, Republic of China.
| | - Yi-Chun Shih
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan, Republic of China
| | - Yun-Fen Hung
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan, Republic of China
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan, Republic of China.
| |
Collapse
|
46
|
Heterosynaptic GABA B Receptor Function within Feedforward Microcircuits Gates Glutamatergic Transmission in the Nucleus Accumbens Core. J Neurosci 2019; 39:9277-9293. [PMID: 31578230 DOI: 10.1523/jneurosci.1395-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/03/2019] [Accepted: 09/22/2019] [Indexed: 11/21/2022] Open
Abstract
Complex circuit interactions within the nucleus accumbens (NAc) facilitate goal-directed behavior. Medium spiny neurons (MSNs) mediate NAc output by projecting to functionally divergent brain regions, a property conferred, in part, by the differential projection patterns of D1- and D2 dopamine receptor-expressing MSNs. Glutamatergic afferents to the NAc direct MSN output by recruiting feedforward inhibitory microcircuits comprised of parvalbumin (PV)-expressing interneurons (INs). Furthermore, the GABAB heteroreceptor (GABABR), a Gi/o-coupled G-protein-coupled receptor, is expressed at glutamatergic synapses throughout the mesolimbic network, yet its physiological context and synaptic mechanism within the NAc remains unknown. Here, we explored GABABR function at glutamatergic synapses within PV-IN-embedded microcircuits in the NAc core of male mice. We found that GABABR is expressed presynaptically and recruits a noncanonical signaling mechanism to reduce glutamatergic synaptic efficacy at D1(+) and D1(-) (putative D2) MSN subtypes. Furthermore, PV-INs, a robust source of neuronal GABA in the NAc, heterosynaptically target GABABR to selectively modulate glutamatergic transmission onto D1(+) MSNs. These findings elucidate a new mechanism of feedforward inhibition and refine mechanisms by which GABAB heteroreceptors modulate mesolimbic circuit function.SIGNIFICANCE STATEMENT Glutamatergic transmission in the nucleus accumbens (NAc) critically contributes to goal-directed behaviors. However, intrinsic microcircuit mechanisms governing the integration of these synapses remain largely unknown. Here, we show that parvalbumin-expressing interneurons within feedforward microcircuits heterosynaptically target GABAB heteroreceptors (GABABR) on glutamate terminals. Activation of presynaptically-expressed GABABR decreases glutamatergic synaptic strength by engaging a non-canonical signaling pathway that interferes with vesicular exocytotic release machinery. These findings offer mechanistic insight into the role of GABAB heteroreceptors within reward circuitry, elucidate a novel arm to feedforward inhibitory networks, and inform the growing use of GABABR-selective pharmacotherapy for various motivational disorders, including addiction, major depressive disorder, and autism (Cousins et al., 2002; Kahn et al., 2009; Jacobson et al., 2018; Stoppel et al., 2018; Pisansky et al., 2019).
Collapse
|
47
|
A potential role for microglia in stress- and drug-induced plasticity in the nucleus accumbens: A mechanism for stress-induced vulnerability to substance use disorder. Neurosci Biobehav Rev 2019; 107:360-369. [PMID: 31550452 DOI: 10.1016/j.neubiorev.2019.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
Abstract
Stress is an important risk factor for the development of substance use disorder (SUD). Exposure to both stress and drugs abuse lead to changes in synaptic plasticity and stress-induced alterations in synaptic plasticity may contribute to later vulnerability to SUD. Recent developmental neuroscience studies have identified microglia as regulators of synaptic plasticity. As both stress and drugs of abuse lead to microglial activation, we propose this as a potential mechanism underlying their ability to change synaptic plasticity. This review focuses on three components of synaptic plasticity: spine density, brain-derived neurotrophic factor (BDNF) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor expression. Their roles in addiction, stress, and development will be reviewed, as well as possible mechanisms by which microglia could regulate their function. Potential links between stress, vulnerability to addiction, and microglial activity will be explored.
Collapse
|
48
|
Hofford RS, Russo SJ, Kiraly DD. Neuroimmune mechanisms of psychostimulant and opioid use disorders. Eur J Neurosci 2019; 50:2562-2573. [PMID: 30179286 PMCID: PMC6531363 DOI: 10.1111/ejn.14143] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/20/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Substance use disorders are global health problems with few effective treatment options. Unfortunately, most potential pharmacological treatments are hindered by abuse potential of their own, limited efficacy, or adverse side effects. As a consequence, there is a pressing need for the development of addiction treatments with limited abuse potential and fewer off target effects. Given the difficulties in developing new pharmacotherapies for substance use disorders, there has been growing interest in medications that act on non-traditional targets. Recent evidence suggests a role for dysregulated immune signaling in the pathophysiology of multiple psychiatric diseases. While there is evidence that immune responses in the periphery and the central nervous system are altered by exposure to drugs of abuse, the contributions of neuroimmune interactions to addictive behaviors are just beginning to be appreciated. In this review, we discuss the data on immunological changes seen in clinical populations with substance use disorders, as well as in translational animal models of addiction. Importantly, we highlight those mechanistic findings showing causal roles for central or peripheral immune mediators in substance use disorder and appropriate animal models. Based on the literature reviewed here, it is clear that brain-immune system interactions in substance use disorders are much more complex and important than previously understood. While much work remains to be done, there are tremendous potential therapeutic implications for immunomodulatory treatments in substance use disorders.
Collapse
Affiliation(s)
- Rebecca S Hofford
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Scott J Russo
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Drew D Kiraly
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
49
|
Stellwagen D, Kemp GM, Valade S, Chambon J. Glial regulation of synaptic function in models of addiction. Curr Opin Neurobiol 2019; 57:179-185. [PMID: 31163290 DOI: 10.1016/j.conb.2019.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 02/26/2019] [Indexed: 12/25/2022]
Abstract
The glial regulation of synaptic function provides important modulation of the synaptic and behavioral changes induced by drugs of abuse. In some cases, this regulation is adaptive, reducing drug-induced change, and in other cases maladaptive, contributing to the induction or maintenance of these changes. Understanding the contribution of glia to addictive behaviors will be important to fully understand the development of addiction, and a critical entry into methods to potentially mitigate this affliction. This review will cover recent advances in elucidating the contribution of the major types of glia - microglia and astrocytes - to drug-induced synaptic plasticity.
Collapse
Affiliation(s)
- David Stellwagen
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
| | - Gina M Kemp
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Simone Valade
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Julien Chambon
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Thangaraj A, Periyasamy P, Guo ML, Chivero ET, Callen S, Buch S. Mitigation of cocaine-mediated mitochondrial damage, defective mitophagy and microglial activation by superoxide dismutase mimetics. Autophagy 2019; 16:289-312. [PMID: 30990365 DOI: 10.1080/15548627.2019.1607686] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although cocaine exposure has been shown to potentiate neuroinflammation by upregulating glial activation in the brain, the role of mitophagy in this process remains an enigma. In the present study, we sought to examine the role of impaired mitophagy in cocaine-mediated activation of microglia and to determine the ameliorative potential of superoxide dismutase mimetics in this context. Our findings demonstrated that exposure of mouse primary microglial cells (mPMs) to cocaine resulted in decreased mitochondrial membrane potential, that was accompanied by increased expression of mitophagy markers, PINK1 and PRKN. Exposure of microglia to cocaine also resulted in increased expression of DNM1L and OPTN with a concomitant decrease in the rate of mitochondrial oxygen consumption as well as impaired mitochondrial functioning. Additionally, in the presence of cocaine, microglia also exhibited upregulated expression of autophagosome markers, BECN1, MAP1LC3B-II, and SQSTM1. Taken together, these findings suggested diminished mitophagy flux and accumulation of mitophagosomes in the presence of cocaine. These findings were further confirmed by imaging techniques such as transmission electron microscopy and confocal microscopy. Cocaine-mediated activation of microglia was further monitored by assessing the expression of the microglial marker (ITGAM) and the inflammatory cytokine (Tnf, Il1b, and Il6) mRNAs. Pharmacological, as well as gene-silencing approaches aimed at blocking both the autophagy/mitophagy and SIGMAR1 expression, underscored the role of impaired mitophagy in cocaine-mediated activation of microglia. Furthermore, superoxide dismutase mimetics such as TEMPOL and MitoTEMPO were shown to alleviate cocaine-mediated impaired mitophagy as well as microglial activation.Abbreviations: 3-MA: 3-methyladenine; Δψm: mitochondrial membrane potential; ACTB: actin, beta; AIF1: allograft inflammatory factor 1; ATP: adenosine triphosphate; BAF: bafilomycin A1; BECN1: beclin 1, autophagy related; CNS: central nervous system; DNM1L: dynamin 1 like; DMEM: Dulbecco modified Eagle medium; DAPI: 4,6-Diamidino-2-phenylindole; DRD2: dopamine receptor D2; ECAR: extracellular acidification rate; FBS: fetal bovine serum; FCCP: Trifluoromethoxy carbonylcyanide phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; IL1B: interleukin 1, beta; IL6: interleukin 6; ITGAM: integrin subunit alpha M; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mPMs: mouse primary microglial cells; MRC: maximal respiratory capacity; NFKB: nuclear factor kappa B; NLRP3: NLR family pyrin domain containing 3; NTRK2: neurotrophic receptor tyrosine kinase 2; OCR: oxygen consumption rate; OPTN: optineurin; PBS: phosphate buffered saline; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; siRNA: small interfering RNA; SQSTM1: sequestosome 1; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|