1
|
Han CS, Won SY, Park SH, Kim YC. Identification of the Highly Polymorphic Prion Protein Gene ( PRNP) in Frogs (Rana dybowskii). Animals (Basel) 2025; 15:220. [PMID: 39858220 PMCID: PMC11758322 DOI: 10.3390/ani15020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Prion diseases are fatal neurodegenerative diseases that can be transmitted by infectious protein particles, PrPScs, encoded by the endogenous prion protein gene (PRNP). The origin of prion seeds is unclear, especially in non-human hosts, and this identification is pivotal to preventing the spread of prion diseases from host animals. Recently, an abnormally high amyloid propensity in prion proteins (PrPs) was found in a frog, of which the genetic variations in the PRNP gene have not been investigated. In this study, genetic polymorphisms in the PRNP gene were investigated in 194 Dybowski's frogs using polymerase chain reaction (PCR) and amplicon sequencing. We carried out in silico analyses to predict functional alterations according to non-synonymous single nucleotide polymorphisms (SNPs) using PolyPhen-2, PANTHER, SIFT, and MutPred2. We used ClustalW2 and MEGA X to compare frog PRNP and PrP sequences with those of prion-related animals. To evaluate the impact of the SNPs on protein aggregation propensity and 3D structure, we utilized AMYCO and ColabFold. We identified 34 novel genetic polymorphisms including 6 non-synonymous SNPs in the frog PRNP gene. The hydrogen bond length varied at codons 143 and 207 according to non-synonymous SNPs, even if the electrostatic potential was not changed. In silico analysis predicted S143N to increase the aggregation propensity, and W6L, C8Y, R211W, and L241F had damaging effects on frog PrPs. The PRNP and PrP sequences of frogs showed low homology with those of prion-related mammals. To the best of our knowledge, this study was the first to discover genetic polymorphisms in the PRNP gene in amphibians.
Collapse
Affiliation(s)
| | | | | | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea; (C.-S.H.); (S.-Y.W.); (S.-H.P.)
| |
Collapse
|
2
|
Allen SE, O'Toole D, Wood ME, Van Wick P, Parrie LE, Malmberg JL, Edwards WH. "Luck Be a Lady": Retrospective Study of Disease-Associated Prion (PrPSc) Distribution and Lesions in Captive, Environmentally Exposed Female Rocky Mountain Elk (Cervus canadensis nelsoni) with 132LL Genotype. J Wildl Dis 2025; 61:199-205. [PMID: 39287595 DOI: 10.7589/jwd-d-24-00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024]
Abstract
Chronic wasting disease (CWD) is a fatal neurodegenerative disease of cervids caused by an infectious misfolded protein (prion). Several members of the Cervidae, including Rocky Mountain elk (Cervus canadensis nelsoni), are susceptible to CWD. There is no evidence of complete genetic resistance to CWD; the M132L polymorphism in the elk prion protein gene influences the incubation period: longest in 132LL, intermediate in 132ML, and shortest in 132MM elk. We retrospectively analyzed six female 132LL elk housed in an environment heavily contaminated with prions to 1) document clinical outcomes and incubation periods, 2) describe PrPSc distribution and extent in tissues, and 3) characterize their histologic lesions. In five of six elk, PrPSc was detected postmortem, with a distribution pattern distinct from that of 132MM and 132ML elk; time to clinical CWD onset CWD ranged from 73 to 117 mo (6.1-9.8 yr). Although the remaining animal was observed for 220 mo (18.3 yr), PrPSc was not detected in its tissues postmortem. This study suggests that 132LL elk infected via natural exposure may live even longer with CWD than previously thought, but ultimately remain susceptible. We also report a distinct distribution of PrPSc in 132LL genotypes and highlight unusual histologic findings. Understanding the relationship between cervid genetics and CWD is of increasing importance, especially given the growing interest in leveraging genetics that delay disease onset despite not preventing infection.
Collapse
Affiliation(s)
- Samantha E Allen
- Veterinary Services, Wyoming Game and Fish Department, 1212 S. Adams St., Laramie, Wyoming 82070, USA
- Wyoming State Veterinary Laboratory, 1174 Snowy Range Rd., Laramie, Wyoming 82070, USA
| | - Donal O'Toole
- Wyoming State Veterinary Laboratory, 1174 Snowy Range Rd., Laramie, Wyoming 82070, USA
| | - Mary E Wood
- Wildlife Health Program, Colorado Parks and Wildlife, 4330 Laporte Ave., Fort Collins, Colorado 80521, USA
| | - Peach Van Wick
- Veterinary Services, Thorne/Williams Wildlife Research Facility, Wyoming Game and Fish Department, 2362 WY-34, Wheatland, Wyoming 82201, USA
| | - Lindsay E Parrie
- Wildlife Services, National Wildlife Research Center, Animal and Plant Health Inspection Service, US Department of Agriculture, 4101 LaPorte Ave., Fort Collins, Colorado 80521, USA
| | - Jennifer L Malmberg
- Wildlife Services, National Wildlife Research Center, Animal and Plant Health Inspection Service, US Department of Agriculture, 4101 LaPorte Ave., Fort Collins, Colorado 80521, USA
| | - William H Edwards
- Veterinary Services, Wildlife Health Laboratory, Wyoming Game and Fish Department, 1174 Snowy Range Rd., Laramie, Wyoming 82070, USA
| |
Collapse
|
3
|
Baron JN, Mysterud A, Hopp P, Rosendal T, Frössling J, Benestad SL, Våge J, Nöremark M, Viljugrein H. Assessing freedom from chronic wasting disease in semi-domesticated reindeer in Norway and Sweden. Prev Vet Med 2024; 229:106242. [PMID: 38924869 DOI: 10.1016/j.prevetmed.2024.106242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Establishing freedom from disease is a key component of surveillance and may have direct consequences for trade and economy. Transboundary populations pose challenges in terms of variable legislation, efforts, and data availability between countries, often limiting surveillance efficiency. Chronic wasting disease (CWD) is a contagious prion disease of cervids. The long incubation period and slow initial epidemic growth make it notoriously difficult to detect CWD in the early phase of an epidemic. The recent emergence of CWD in wild reindeer in Norway poses a threat to approximately 250,000 semi-domesticated reindeer in Norway and 250,000 in Sweden, including transboundary populations. Here, we provide a first analysis of surveillance data (2016-2022) from all reindeer districts in Norway and Sweden to determine the probability of freedom from CWD infection. During the six years, 6017 semi-domesticated reindeer were tested in Sweden and 51,974 in Norway. Most samples came from healthy slaughtered animals (low risk). Reindeer use large and remote areas and (high risk) samples from fallen stock and animals with clinical signs were difficult to obtain. A scenario tree model was run for seven different set of values for the input parameters (design prevalence within and between districts, probability of introduction, and relative risks) to determine the effect on surveillance sensitivity. At the national level, the mean probability of disease freedom was 59.0 % in Sweden and 87.0 % in Norway by 2021. The most marked effect on sensitivity was varying the design prevalence both within and between districts. Uncertainty about relative risk ratios affected sensitivity for Sweden more than for Norway, due to the higher proportion of animals in the high-risk group in the former (13.8 % vs. 2.1 %, respectively). A probability of disease freedom of 90 % or higher was reached in 8.2 % of the 49 districts in Sweden and 43.5 % of the 46 districts in Norway for a design prevalence of 0.5 %. The probability of freedom remained below 60 % in 29 districts (59.2 %) in Sweden and 10 districts (21.7 %) in Norway. At the national level, only Norway had a sufficiently large number of samples to reach a probability of more than 95 % of disease freedom within a period of 10 years. Our cross-border assessment forms an important knowledge base for designing future surveillance efforts depending on the spatial pattern of prevalence of CWD and risk of spread.
Collapse
Affiliation(s)
- Jerome N Baron
- Department of Epidemiology, Surveillance and Risk Assessment, Swedish Veterinary Agency (SVA), Uppsala SE-751 89, Sweden
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo NO-0316, Norway; Norwegian Institute for Nature Research, Trondheim NO-7485, Norway
| | - Petter Hopp
- Norwegian Veterinary Institute (NVI), P.O. Box 64, Ås NO-1431, Norway
| | - Thomas Rosendal
- Department of Epidemiology, Surveillance and Risk Assessment, Swedish Veterinary Agency (SVA), Uppsala SE-751 89, Sweden
| | - Jenny Frössling
- Department of Epidemiology, Surveillance and Risk Assessment, Swedish Veterinary Agency (SVA), Uppsala SE-751 89, Sweden; Department of Animal Environment and Health, Swedish University of Agricultural Sciences, PO Box 234, Skara SE-532 23, Sweden
| | - Sylvie L Benestad
- Norwegian Veterinary Institute (NVI), P.O. Box 64, Ås NO-1431, Norway
| | - Jørn Våge
- Norwegian Veterinary Institute (NVI), P.O. Box 64, Ås NO-1431, Norway
| | - Maria Nöremark
- Department of Epidemiology, Surveillance and Risk Assessment, Swedish Veterinary Agency (SVA), Uppsala SE-751 89, Sweden.
| | | |
Collapse
|
4
|
Hoar BR, Ernest HB, Johnson LNL, LaCava MEF, Sandidge DJ, Gerow K, Mousel MR, Galloway NL, Swain W, Malmberg JL. Ecology and Chronic Wasting Disease Epidemiology Shape Prion Protein Gene Variation in Rocky Mountain Elk (Cervus elaphus nelsoni). J Wildl Dis 2024; 60:496-501. [PMID: 38287919 DOI: 10.7589/jwd-d-23-00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/06/2023] [Indexed: 01/31/2024]
Abstract
As chronic wasting disease (CWD) continues to spread across North America, the relationship between CWD and host genetics has become of interest. In Rocky Mountain elk (Cervus elaphus nelsoni), one or two copies of a leucine allele at codon 132 of the prion protein gene (132L*) has been shown to prolong the incubation period of CWD. Our study examined the relationship between CWD epidemiology and codon 132 evolution in elk from Wyoming, USA, from 2011 to 2018. Using PCR and Sanger sequencing, we genotyped 997 elk and assessed the relationship between genotype and CWD prevalence estimated from surveillance data. Using logistic regression, we showed that each 1% increase in CWD prevalence is associated with a 9.6% increase in the odds that an elk would have at least one copy of leucine at codon 132. In some regions, however, 132L* variants were found in the absence of CWD, indicating that evolutionary and epidemiologic patterns can be heterogeneous across space and time. We also provide evidence that naturally occurring CWD is not rare in 132L* elk, which merits the study of shedding kinetics in 132L* elk and the influence of genotype on CWD strain diversity. The management implications of cervid adaptations to CWD are difficult to predict. Studies that investigate the degree to which evolutionary outcomes are shaped by host spatial structure can provide useful epidemiologic insight, which can in turn aid management by informing scale and extent of mitigation actions.
Collapse
Affiliation(s)
| | | | - Laura N L Johnson
- Wyoming Game and Fish Department, 1212 South Adams Street, Laramie, Wyoming 82070, USA
| | - Melanie E F LaCava
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | - Ken Gerow
- Department of Mathematics and Statistics, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming 82071, USA
| | - Michelle R Mousel
- Animal Disease Research, Agricultural Research Service, US Department of Agriculture, 2020 Northeast Wilson Road, Pullman, Washington 99163, USA
- School for Global Health, Washington State University, 1155 Northeast College Avenue, Pullman, Washington 99164, USA
| | - Nathan L Galloway
- Biological Resources Division, National Park Service, 1201 Oakridge Drive #200, Fort Collins, Colorado 80525, USA
| | - William Swain
- One Health Institute, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, California 95616, USA
| | - Jennifer L Malmberg
- Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, Laramie, Wyoming 82070, USA
- Current affiliation: National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, US Department of Agriculture, 4101 LaPorte Avenue, Fort Collins, Colorado 80521, USA
| |
Collapse
|
5
|
Hopp P, Rolandsen CM, Korpenfelt SL, Våge J, Sörén K, Solberg EJ, Averhed G, Pusenius J, Rosendal T, Ericsson G, Bakka HC, Mysterud A, Gavier-Widén D, Hautaniemi M, Ågren E, Isomursu M, Madslien K, Benestad SL, Nöremark M. Sporadic cases of chronic wasting disease in old moose - an epidemiological study. J Gen Virol 2024; 105. [PMID: 38265285 DOI: 10.1099/jgv.0.001952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Transmissible spongiform encephalopathies or prion diseases comprise diseases with different levels of contagiousness under natural conditions. The hypothesis has been raised that the chronic wasting disease (CWD) cases detected in Nordic moose (Alces alces) may be less contagious, or not contagious between live animals under field conditions. This study aims to investigate the epidemiology of CWD cases detected in moose in Norway, Sweden and Finland using surveillance data from 2016 to 2022.In total, 18 CWD cases were detected in Nordic moose. All moose were positive for prion (PrPres) detection in the brain, but negative in lymph nodes, all were old (mean 16 years; range 12-20) and all except one, were female. Age appeared to be a strong risk factor, and the sex difference may be explained by few males reaching high age due to hunting targeting calves, yearlings and males.The cases were geographically scattered, distributed over 15 municipalities. However, three cases were detected in each of two areas, Selbu in Norway and Arjeplog-Arvidsjaur in Sweden. A Monte Carlo simulation approach was applied to investigate the likelihood of such clustering occurring by chance, given the assumption of a non-contagious disease. The empirical P-value for obtaining three cases in one Norwegian municipality was less than 0.05, indicating clustering. However, the moose in Selbu were affected by different CWD strains, and over a 6 year period with intensive surveillance, the apparent prevalence decreased, which would not be expected for an ongoing outbreak of CWD. Likewise, the three cases in Arjeplog-Arvidsjaur could also indicate clustering, but management practices promotes a larger proportion of old females and the detection of the first CWD case contributed to increased awareness and sampling.The results of our study show that the CWD cases detected so far in Nordic moose have a different epidemiology compared to CWD cases reported from North America and in Norwegian reindeer (Rangifer tarandus tarandus). The results support the hypothesis that these cases are less contagious or not contagious between live animals under field conditions. To enable differentiation from other types of CWD, we support the use of sporadic CWD (sCWD) among the names already in use.
Collapse
Affiliation(s)
- Petter Hopp
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431 Ås, Norway
| | - Christer Moe Rolandsen
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, NO-7485 Trondheim, Norway
| | | | - Jørn Våge
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431 Ås, Norway
| | - Kaisa Sörén
- National Veterinary Institute (SVA), Uppsala, Sweden
| | - Erling Johan Solberg
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, NO-7485 Trondheim, Norway
| | | | - Jyrki Pusenius
- Natural Resources Institute Finland (LUKE), Yliopistokatu 6, FI-80100 Joensuu, Finland
| | | | - Göran Ericsson
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Haakon Christopher Bakka
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431 Ås, Norway
- Present address: Kontali, Fred Olsens gate 1, NO-0152 Oslo, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316 Oslo, Norway
| | | | | | - Erik Ågren
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Knut Madslien
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431 Ås, Norway
| | | | | |
Collapse
|
6
|
Sola D, Artigas R, Mediano DR, Zaragoza P, Badiola JJ, Martín-Burriel I, Acín C. Novel polymorphisms in the prion protein gene (PRNP) and stability of the resultant prion protein in different horse breeds. Vet Res 2023; 54:94. [PMID: 37848924 PMCID: PMC10583458 DOI: 10.1186/s13567-023-01211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/22/2023] [Indexed: 10/19/2023] Open
Abstract
Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. Most prion diseases and their susceptibility and pathogenesis are mainly modulated by the PRNP gene that codes for PrP. Mutations and polymorphisms in the PRNP gene can alter PrPC amino acid sequence, leading to a change in transmission efficiency depending on the place where it occurs. Horses are animals that are considered to be highly resistant to prions. Several studies have attempted to identify polymorphisms in the PRNP gene that explain the reason for this high resistance. In this study, we have analysed 207 horses from 20 different breeds, discovering 3 novel PRNP polymorphisms. By using computer programmes such as PolyPhen-2, PROVEAN, PANTHER, Meta-SNP and PredictSNP, we have predicted the possible impact that these new polymorphisms would have on the horse prion protein. In addition, we measured the propensity for amyloid aggregation using AMYCO and analysed the lack of hydrogen bridges that these changes would entail together with their electrostatic potentials using Swiss-PdbViewer software, showing that an increased amyloid propensity could be due to changes at the level of electrostatic potentials.
Collapse
Affiliation(s)
- Diego Sola
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain.
| | - Rody Artigas
- Facultad de Veterinaria, Unidad Académica de Genética Y Mejora Animal, Universidad de La República, Ruta 8 Km18, 13000, Montevideo, Uruguay
| | - Diego R Mediano
- Laboratory of Biochemical Genetics (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratory of Biochemical Genetics (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28029, Madrid, Spain
| | - Juan José Badiola
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
- Laboratory of Biochemical Genetics (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28029, Madrid, Spain
| | - Cristina Acín
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| |
Collapse
|
7
|
Lee YR, Kim YC, Won SY, Jeong MJ, Park KJ, Park HC, Roh IS, Kang HE, Sohn HJ, Jeong BH. Identification of a novel risk factor for chronic wasting disease (CWD) in elk: S100G single nucleotide polymorphism (SNP) of the prion protein gene (PRNP). Vet Res 2023; 54:48. [PMID: 37328789 DOI: 10.1186/s13567-023-01177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/06/2023] [Indexed: 06/18/2023] Open
Abstract
Prion diseases are fatal and malignant infectious encephalopathies induced by the pathogenic form of prion protein (PrPSc) originating from benign prion protein (PrPC). A previous study reported that the M132L single nucleotide polymorphism (SNP) of the prion protein gene (PRNP) is associated with susceptibility to chronic wasting disease (CWD) in elk. However, a recent meta-analysis integrated previous studies that did not find an association between the M132L SNP and susceptibility to CWD. Thus, there is controversy about the effect of M132L SNP on susceptibility to CWD. In the present study, we investigated novel risk factors for CWD in elk. We investigated genetic polymorphisms of the PRNP gene by amplicon sequencing and compared genotype, allele, and haplotype frequencies between CWD-positive and CWD-negative elk. In addition, we performed a linkage disequilibrium (LD) analysis by the Haploview version 4.2 program. Furthermore, we evaluated the 3D structure and electrostatic potential of elk prion protein (PrP) according to the S100G SNP using AlphaFold and the Swiss-PdbViewer 4.1 program. Finally, we analyzed the free energy change of elk PrP according to the S100G SNP using I-mutant 3.0 and CUPSAT. We identified 23 novel SNP of the elk PRNP gene in 248 elk. We found a strong association between PRNP SNP and susceptibility to CWD in elk. Among those SNP, S100G is the only non-synonymous SNP. We identified that S100G is predicted to change the electrostatic potential and free energy of elk PrP. To the best of our knowledge, this was the first report of a novel risk factor, the S100G SNP, for CWD.
Collapse
Affiliation(s)
- Yu-Ran Lee
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong, 36729, Republic of Korea
| | - Sae-Young Won
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Min-Ju Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kyung-Je Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Hoo-Chang Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - In-Soon Roh
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Hae-Eun Kang
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Hyun-Joo Sohn
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
8
|
Mathiason CK. Large animal models for chronic wasting disease. Cell Tissue Res 2023; 392:21-31. [PMID: 35113219 PMCID: PMC8811588 DOI: 10.1007/s00441-022-03590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022]
Abstract
Chronic wasting disease (CWD) is a fatal neurodegenerative prion disease of cervid species including deer, elk, moose and reindeer. The disease has shown both geographic and species expansion since its discovery in the late 1960's and is now recognized in captive and free-ranging cervid populations in North America, Asia and Europe. The facile transmission of CWD is unique among prion diseases and has resulted in growing concern for cervid populations and human public health. The development of native cervid host models with longitudinal monitoring has revealed new insights about CWD pathogenesis and transmission dynamics. More than 20 years of experimental studies conducted in these models, using biologically relevant routes of infection, have led to better understanding of many aspect of CWD infections. This review addresses some of these insights, including: (i) the temporal intra-host trafficking of CWD prions in tissues and bodily fluids, (ii) the presence of infectivity shed in bodily excretions that may help explain the facile transmission of CWD, (iii) mother-to-offspring CWD transmission, (iv) the influence of some Prnp polymorphisms on CWD susceptibility, and (vi) continued development of vaccine strategies to mitigate CWD.
Collapse
Affiliation(s)
- C K Mathiason
- College of Veterinary Medicine and Biomedical Sciences, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States, 80523.
| |
Collapse
|
9
|
Cook M, Hensley-McBain T, Grindeland A. Mouse models of chronic wasting disease: A review. FRONTIERS IN VIROLOGY 2023. [DOI: 10.3389/fviro.2023.1055487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Animal models are essential tools for investigating and understanding complex prion diseases like chronic wasting disease (CWD), an infectious prion disease of cervids (elk, deer, moose, and reindeer). Over the past several decades, numerous mouse models have been generated to aid in the advancement of CWD knowledge and comprehension. These models have facilitated the investigation of pathogenesis, transmission, and potential therapies for CWD. Findings have impacted CWD management and disease outcomes, though much remains unknown, and a cure has yet to be discovered. Studying wildlife for CWD effects is singularly difficult due to the long incubation time, subtle clinical signs at early stages, lack of convenient in-the-field live testing methods, and lack of reproducibility of a controlled laboratory setting. Mouse models in many cases is the first step to understanding the mechanisms of disease in a shortened time frame. Here, we provide a comprehensive review of studies with mouse models in CWD research. We begin by reviewing studies that examined the use of mouse models for bioassays for tissues, bodily fluids, and excreta that spread disease, then address routes of infectivity and infectious load. Next, we delve into studies of genetic factors that influence protein structure. We then move on to immune factors, possible transmission through environmental contamination, and species barriers and differing prion strains. We conclude with studies that make use of cervidized mouse models in the search for therapies for CWD.
Collapse
|
10
|
Fameli AF, Edson J, Banfield JE, Rosenberry CS, Walter WD. Variability in prion protein genotypes by spatial unit to inform susceptibility to chronic wasting disease. Prion 2022; 16:254-264. [PMID: 36104983 PMCID: PMC9481152 DOI: 10.1080/19336896.2022.2117535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal encephalopathy affecting North American cervids. Certain alleles in a host's prion protein gene are responsible for reduced susceptibility to CWD. We assessed for the first time variability in the prion protein gene of elk (Cervus canadensis) present in Pennsylvania, United States of America, a reintroduced population for which CWD cases have never been reported. We sequenced the prion protein gene (PRNP) of 565 elk samples collected over 7 years (2014-2020) and found two polymorphic sites (codon 21 and codon 132). The allele associated with reduced susceptibility to CWD is present in the population, and there was no evidence of deviations from Hardy-Weinberg equilibrium in any of our sampling years (p-values between 0.14 and 1), consistent with the lack of selective pressure on the PRNP. The less susceptible genotypes were found in a frequency similar to the ones reported for elk populations in the states of Wyoming and South Dakota before CWD was detected. We calculated the proportion of less susceptible genotypes in each hunt zone in Pennsylvania as a proxy for their vulnerability to the establishment of CWD, and interpolated these results to obtain a surface representing expected proportion of the less susceptible genotypes across the area. Based on this analysis, hunt zones located in the southern part of our study area have a low proportion of less susceptible genotypes, which is discouraging for elk persistence in Pennsylvania given that these hunt zones are adjacent to the deer Disease Management Area 3, where CWD has been present since 2014.
Collapse
Affiliation(s)
- Alberto F. Fameli
- Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA, USA,CONTACT Alberto F. Fameli Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA16802, USA
| | - Jessie Edson
- Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA, USA
| | - Jeremiah E. Banfield
- Pennsylvania Game Commission, Bureau of Wildlife Management, 2001 Elmerton Avenue,Harrisburg, PA, USA
| | - Christopher S. Rosenberry
- Pennsylvania Game Commission, Bureau of Wildlife Management, 2001 Elmerton Avenue,Harrisburg, PA, USA
| | - W. David Walter
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, 403 Forest Resources Building, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
11
|
Brandell EE, Cross PC, Smith DW, Rogers W, Galloway N, MacNulty DR, Stahler DR, Treanor J, Hudson PJ. Examination of the interaction between age-specific predation and chronic disease in the Greater Yellowstone Ecosystem. J Anim Ecol 2022; 91:1373-1384. [PMID: 34994978 PMCID: PMC9912199 DOI: 10.1111/1365-2656.13661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/28/2021] [Indexed: 11/27/2022]
Abstract
Predators may create healthier prey populations by selectively removing diseased individuals. Predators typically prefer some ages of prey over others, which may, or may not, align with those prey ages that are most likely to be diseased. The interaction of age-specific infection and predation has not been previously explored and likely has sizable effects on disease dynamics. We hypothesize that predator cleansing effects will be greater when the disease and predation occur in the same prey age groups. We examine the predator cleansing effect using a model where both vulnerability to predators and pathogen prevalence vary with age. We tailor this model to chronic wasting disease (CWD) in mule deer and elk populations in the Greater Yellowstone Ecosystem, with empirical data from Yellowstone grey wolves and cougars. Model results suggest that under moderate, yet realistic, predation pressure from cougars and wolves independently, predators may decrease CWD outbreak size substantially and delay the accumulation of symptomatic deer and elk. The magnitude of this effect is driven by the ability of predators to selectively remove late-stage CWD infections that are likely the most responsible for transmission, but this may not be the age class they typically select. Thus, predators that select for infected young adults over uninfected juveniles have a stronger cleansing effect, and these effects are strengthened when transmission rates increase with increasing prey morbidity. There are also trade-offs from a management perspective-that is, increasing predator kill rates can result in opposing forces on prey abundance and CWD prevalence. Our modelling exploration shows that predators have the potential to reduce prevalence in prey populations when prey age and disease severity are considered, yet the strength of this effect is influenced by predators' selection for demography or body condition. Current CWD management focuses on increasing cervid hunting as the primary management tool, and our results suggest predators may also be a useful tool under certain conditions, but not necessarily without additional impacts on host abundance and demography. Protected areas with predator populations will play a large role in informing the debate over predator impacts on disease.
Collapse
Affiliation(s)
- Ellen E. Brandell
- Center for Infectious Disease Dynamics and Department of Biology, Huck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPAUSA,Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Paul C. Cross
- U.S. Geological SurveyNorthern Rocky Mountain Science CenterBozemanMTUSA
| | - Douglas W. Smith
- Yellowstone Center for ResourcesYellowstone National ParkWyomingWYUSA
| | - Will Rogers
- Department of EcologyMontana State UniversityBozemanMTUSA
| | | | | | - Daniel R. Stahler
- Yellowstone Center for ResourcesYellowstone National ParkWyomingWYUSA
| | - John Treanor
- Yellowstone Center for ResourcesYellowstone National ParkWyomingWYUSA
| | - Peter J. Hudson
- Center for Infectious Disease Dynamics and Department of Biology, Huck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
12
|
Selection and demography drive range-wide patterns of MHC-DRB variation in mule deer. BMC Ecol Evol 2022; 22:42. [PMID: 35387584 PMCID: PMC8988406 DOI: 10.1186/s12862-022-01998-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Standing genetic variation is important especially in immune response-related genes because of threats to wild populations like the emergence of novel pathogens. Genetic variation at the major histocompatibility complex (MHC), which is crucial in activating the adaptive immune response, is influenced by both natural selection and historical population demography, and their relative roles can be difficult to disentangle. To provide insight into the influences of natural selection and demography on MHC evolution in large populations, we analyzed geographic patterns of variation at the MHC class II DRB exon 2 locus in mule deer (Odocoileus hemionus) using sequence data collected across their entire broad range. RESULTS We identified 31 new MHC-DRB alleles which were phylogenetically similar to other cervid MHC alleles, and one allele that was shared with white-tailed deer (Odocoileus virginianus). We found evidence for selection on the MHC including high dN/dS ratios, positive neutrality tests, deviations from Hardy-Weinberg Equilibrium (HWE) and a stronger pattern of isolation-by-distance (IBD) than expected under neutrality. Historical demography also shaped variation at the MHC, as indicated by similar spatial patterns of variation between MHC and microsatellite loci and a lack of association between genetic variation at either locus type and environmental variables. CONCLUSIONS Our results show that both natural selection and historical demography are important drivers in the evolution of the MHC in mule deer and work together to shape functional variation and the evolution of the adaptive immune response in large, well-connected populations.
Collapse
|
13
|
Wagner K, Pierce R, Gordon E, Hay A, Lessard A, Telling GC, Ballard JR, Moreno JA, Zabel MD. Tissue-specific biochemical differences between chronic wasting disease prions isolated from free-ranging white-tailed deer (Odocoileus virginianus). J Biol Chem 2022; 298:101834. [PMID: 35304100 PMCID: PMC9019250 DOI: 10.1016/j.jbc.2022.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 01/21/2023] Open
Abstract
Chronic wasting disease (CWD) is an invariably fatal prion disease affecting cervid species worldwide. Prions can manifest as distinct strains that can influence disease pathology and transmission. CWD is profoundly lymphotropic, and most infected cervids likely shed peripheral prions replicated in lymphoid organs. However, CWD is a neurodegenerative disease, and most research on prion strains has focused on neurogenic prions. Thus, a knowledge gap exists comparing neurogenic prions to lymphogenic prions. In this study, we compared prions from the obex and lymph nodes of naturally exposed white-tailed deer to identify potential biochemical strain differences. Here, we report biochemical evidence of strain differences between the brain and lymph node from these animals. Conformational stability assays, glycoform ratio analyses, and immunoreactivity scanning across the structured domain of the prion protein that refolds into the amyloid aggregate of the infectious prion reveal significantly more structural and glycoform variation in lymphogenic prions than neurogenic prions. Surprisingly, we observed greater biochemical differences among neurogenic prions than lymphogenic prions across individuals. We propose that the lymphoreticular system propagates a diverse array of prions from which the brain selects a more restricted pool of prions that may be quite different than those from another individual of the same species. Future work should examine the biological and zoonotic impact of these biochemical differences and examine more cervids from multiple locations to determine if these differences are conserved across species and locations.
Collapse
Affiliation(s)
- Kaitlyn Wagner
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Robyn Pierce
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth Gordon
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Arielle Hay
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Avery Lessard
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Glenn C. Telling
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jennifer R. Ballard
- Research Division, Arkansas Game and Fish Commission, Little Rock, Arkansas, USA
| | - Julie A. Moreno
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Mark D. Zabel
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,For correspondence: Mark D. Zabel
| |
Collapse
|
14
|
Ketz AC, Robinson SJ, Johnson CJ, Samuel MD. Pathogen‐mediated selection and management implications for white‐tailed deer exposed to chronic wasting disease. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alison C. Ketz
- Wisconsin Cooperative Research Unit Department of Forest and Wildlife Ecology University of Wisconsin Madison WI USA
| | - Stacie J. Robinson
- NOAA Hawaiian Monk Seal Research Program Pacific Islands Fisheries Science Center Honolulu HI USA
| | - Chad J. Johnson
- Medical Microbiology and Immunology University of Wisconsin Madison WI USA
| | - Michael D. Samuel
- Department of Forest and Wildlife Ecology University of Wisconsin Madison WI USA
| |
Collapse
|
15
|
Fisher MC, Prioreschi RA, Wolfe LL, Runge JP, Griffin KA, Swanson HM, Miller MW. Apparent stability masks underlying change in a mule deer herd with unmanaged chronic wasting disease. Commun Biol 2022; 5:15. [PMID: 35017638 PMCID: PMC8752592 DOI: 10.1038/s42003-021-02951-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
The contagious prion disease "chronic wasting disease" (CWD) infects mule deer (Odocoileus hemionus) and related species. Unchecked epidemics raise ecological, socioeconomic, and public health concerns. Prion infection shortens a deer's lifespan, and when prevalence (proportion of adults infected) becomes sufficiently high CWD can affect herd dynamics. Understanding population responses over time is key to forecasting long-term impacts. Here we describe unexpected stability in prevalence and abundance in a mule deer herd where CWD has been left unmanaged. High apparent prevalence (~30%) since at least 2005 likely drove observed changes in the proportion and age distribution of wild-type native prion protein (PRNP) gene homozygotes among deer sampled. Predation by mountain lions (Puma concolor) may be helping keep CWD in check. Despite stable appearances, prion disease nonetheless impairs adult survival and likely resilience in this deer herd, limiting its potential for growth despite refuge from hunter harvest and favorable habitat and winter conditions.
Collapse
Affiliation(s)
- Mark C Fisher
- Colorado Division of Parks and Wildlife, 4330 Laporte Avenue, Fort Collins, Colorado, 80521-2153, USA
| | - Ryan A Prioreschi
- City of Boulder Open Space and Mountain Parks, 66 South Cherryvale Road, Boulder, Colorado, 80302, USA
| | - Lisa L Wolfe
- Colorado Division of Parks and Wildlife, 4330 Laporte Avenue, Fort Collins, Colorado, 80521-2153, USA
| | - Jonathan P Runge
- Colorado Division of Parks and Wildlife, 4330 Laporte Avenue, Fort Collins, Colorado, 80521-2153, USA
| | - Karen A Griffin
- Colorado Division of Parks and Wildlife, 4330 Laporte Avenue, Fort Collins, Colorado, 80521-2153, USA
| | - Heather M Swanson
- City of Boulder Open Space and Mountain Parks, 66 South Cherryvale Road, Boulder, Colorado, 80302, USA
| | - Michael W Miller
- Colorado Division of Parks and Wildlife, 4330 Laporte Avenue, Fort Collins, Colorado, 80521-2153, USA.
| |
Collapse
|
16
|
Nichols TA, Nicholson EM, Liu Y, Tao W, Spraker TR, Lavelle M, Fischer J, Kong Q, VerCauteren KC. Detection of two dissimilar chronic wasting disease isolates in two captive Rocky Mountain elk ( Cervus canadensis) herds. Prion 2021; 15:207-215. [PMID: 34913829 PMCID: PMC8682864 DOI: 10.1080/19336896.2021.1982333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Chronic wasting disease (CWD) continues to spread in both wild and captive cervid herds in North America and has now been identified in wild reindeer and moose in Norway, Finland and Sweden. There is limited knowledge about the variety and characteristics of isolates or strains of CWD that exist in the landscape and their implications on wild and captive cervid herds. In this study, we evaluated brain samples from two captive elk herds that had differing prevalence, history and timelines of CWD incidence. Site 1 had a 16-year history of CWD with a consistently low prevalence between 5% and 10%. Twelve of fourteen naïve animals placed on the site remained CWD negative after 5 years of residence. Site 2 herd had a nearly 40-year known history of CWD with long-term environmental accrual of prion leading to nearly 100% of naïve animals developing clinical CWD within two to 12 years. Obex samples of several elk from each site were compared for CWD prion strain deposition, genotype in prion protein gene codon 132, and conformational stability of CWD prions. CWD prions in the obex from site 2 had a lower conformational stability than those from site 1, which was independent of prnp genotype at codon 132. These findings suggest the existence of different CWD isolates between the two sites and suggest potential differential disease attack rates for different CWD strains.
Collapse
Affiliation(s)
- Tracy A Nichols
- Veterinary Services Cervid Health Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA
| | - Eric M Nicholson
- Us Department of Agriculture, Agricultural Research Service, Ames, Iowa, USA
| | - Yihui Liu
- Departments of Pathology, Neurology, National Center for Regenerative Medicine, and National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Wanyun Tao
- Departments of Pathology, Neurology, National Center for Regenerative Medicine, and National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Terry R Spraker
- Prion Research Center and the Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University Prion Research Center, Fort Collins, Colorado, USA
| | - Michael Lavelle
- Wildlife Services National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA
| | - Justin Fischer
- Wildlife Services National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA
| | - Qingzhong Kong
- Departments of Pathology, Neurology, National Center for Regenerative Medicine, and National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kurt C VerCauteren
- Wildlife Services National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA
| |
Collapse
|
17
|
Perrin-Stowe TIN, Ishida Y, Terrill EE, Beetem D, Ryder OA, Novakofski JE, Mateus-Pinilla NE, Roca AL. Variation in the PRNP gene of Pere David’s deer (Elaphurus davidianus) may impact genetic vulnerability to chronic wasting disease. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Moazami-Goudarzi K, Andréoletti O, Vilotte JL, Béringue V. Review on PRNP genetics and susceptibility to chronic wasting disease of Cervidae. Vet Res 2021; 52:128. [PMID: 34620247 PMCID: PMC8499490 DOI: 10.1186/s13567-021-00993-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
To date, chronic wasting disease (CWD) is the most infectious form of prion disease affecting several captive, free ranging and wild cervid species. Responsible for marked population declines in North America, its geographical spread is now becoming a major concern in Europe. Polymorphisms in the prion protein gene (PRNP) are an important factor influencing the susceptibility to prions and their rate of propagation. All reported cervid PRNP genotypes are affected by CWD. However, in each species, some polymorphisms are associated with lower attack rates and slower progression of the disease. This has potential consequences in terms of genetic selection, CWD diffusion and strain evolution. CWD also presents a zoonotic risk due to prions capacity to cross species barriers. This review summarizes our current understanding of CWD control, focusing on PRNP genetic, strain diversity and capacity to infect other animal species, including humans.
Collapse
Affiliation(s)
| | - Olivier Andréoletti
- UMR INRAE ENVT 1225 - IHAP, École Nationale Vétérinaire de Toulouse, 31076, Toulouse, France
| | - Jean-Luc Vilotte
- University Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Vincent Béringue
- University Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| |
Collapse
|
19
|
Selective Breeding for Disease-Resistant PRNP Variants to Manage Chronic Wasting Disease in Farmed Whitetail Deer. Genes (Basel) 2021; 12:genes12091396. [PMID: 34573378 PMCID: PMC8471411 DOI: 10.3390/genes12091396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/18/2023] Open
Abstract
Chronic wasting disease (CWD) is a fatal transmissible spongiform encephalopathy (TSE) of cervids caused by a misfolded variant of the normal cellular prion protein, and it is closely related to sheep scrapie. Variations in a host's prion gene, PRNP, and its primary protein structure dramatically affect susceptibility to specific prion disorders, and breeding for PRNP variants that prevent scrapie infection has led to steep declines in the disease in North American and European sheep. While resistant alleles have been identified in cervids, a PRNP variant that completely prevents CWD has not yet been identified. Thus, control of the disease in farmed herds traditionally relies on quarantine and depopulation. In CWD-endemic areas, depopulation of private herds becomes challenging to justify, leading to opportunities to manage the disease in situ. We developed a selective breeding program for farmed white-tailed deer in a high-prevalence CWD-endemic area which focused on reducing frequencies of highly susceptible PRNP variants and introducing animals with less susceptible variants. With the use of newly developed primers, we found that breeding followed predictable Mendelian inheritance, and early data support our project's utility in reducing CWD prevalence. This project represents a novel approach to CWD management, with future efforts building on these findings.
Collapse
|
20
|
Otero A, Velásquez CD, Aiken J, McKenzie D. Chronic wasting disease: a cervid prion infection looming to spillover. Vet Res 2021; 52:115. [PMID: 34488900 PMCID: PMC8420063 DOI: 10.1186/s13567-021-00986-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
The spread of chronic wasting disease (CWD) during the last six decades has resulted in cervid populations of North America where CWD has become enzootic. This insidious disease has also been reported in wild and captive cervids from other continents, threatening ecosystems, livestock and public health. These CWD "hot zones" are particularly complex given the interplay between cervid PRNP genetics, the infection biology, the strain diversity of infectious prions and the long-term environmental persistence of infectivity, which hinder eradication efforts. Here, we review different aspects of CWD including transmission mechanisms, pathogenesis, epidemiology and assessment of interspecies infection. Further understanding of these aspects could help identify "control points" that could help reduce exposure for humans and livestock and decrease CWD spread between cervids.
Collapse
Affiliation(s)
- Alicia Otero
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Camilo Duque Velásquez
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. .,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
21
|
Güere ME, Våge J, Tharaldsen H, Kvie KS, Bårdsen BJ, Benestad SL, Vikøren T, Madslien K, Rolandsen CM, Tranulis MA, Røed KH. Chronic wasting disease in Norway-A survey of prion protein gene variation among cervids. Transbound Emerg Dis 2021; 69:e20-e31. [PMID: 34346562 DOI: 10.1111/tbed.14258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022]
Abstract
Susceptibility of cervids to Chronic Wasting Disease (CWD), a prion disease, can be modulated by variations in the prion protein gene (PRNP), encoding the cellular prion protein (PrPC ). In prion diseases, PrPC is conformationally converted to pathogenic conformers (PrPSc ), aggregates of which comprise infectious prions. CWD has recently been observed in its contagious form in Norwegian reindeer (Rangifer tarandus) and in novel, potentially sporadic forms, here called 'atypical CWD', in moose (Alces alces) and red deer (Cervus elaphus). To estimate relative susceptibility of different Norwegian cervid species to CWD, their non-synonymous PRNP variants were analyzed. In reindeer, seven PRNP alleles were observed and in red deer and moose two alleles were present, whereas roe deer (Capreolus capreolus) PRNP was monomorphic. One 'archetypal' PRNP allele associated with susceptibility was common to all four cervid species. The distribution of PRNP alleles differed between wild and semi-domesticated reindeer, with alleles associated with a high susceptibility occurring, on average, above 55% in wild reindeer and below 20% in semi-domesticated reindeer. This difference may reflect the diverse origins of the populations and/or selection processes during domestication and breeding. Overall, PRNP genetic data indicate considerable susceptibility to CWD among Norwegian cervids and suggest that PRNP homozygosity may be a risk factor for the atypical CWD observed in moose. The CWD isolates found in the Norwegian cervid species differ from those previously found in Canada and USA. Our study provides an overview of the PRNP genetics in populations exposed to these emerging strains that will provide a basis for understanding these strains' dynamics in relation to PRNP variability.
Collapse
Affiliation(s)
- Mariella Evelyn Güere
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Jørn Våge
- Norwegian Veterinary Institute, OIE Reference Laboratory for CWD, Ås, Norway
| | - Helene Tharaldsen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Kjersti Sternang Kvie
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Bård-Jørgen Bårdsen
- Arctic Ecology Department, Fram Centre, Norwegian Institute for Nature Research, Tromsø, Norway
| | | | - Turid Vikøren
- Norwegian Veterinary Institute, OIE Reference Laboratory for CWD, Ås, Norway
| | - Knut Madslien
- Norwegian Veterinary Institute, OIE Reference Laboratory for CWD, Ås, Norway
| | - Christer Moe Rolandsen
- Terrestrial Ecology Department, Norwegian Institute for Nature Research, Trondheim, Norway
| | - Michael Andreas Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Knut Håkon Røed
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
22
|
LaCava MEF, Malmberg JL, Edwards WH, Johnson LNL, Allen SE, Ernest HB. Spatio-temporal analyses reveal infectious disease-driven selection in a free-ranging ungulate. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210802. [PMID: 34430048 PMCID: PMC8355672 DOI: 10.1098/rsos.210802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/06/2021] [Indexed: 05/07/2023]
Abstract
Infectious diseases play an important role in wildlife population dynamics by altering individual fitness, but detecting disease-driven natural selection in free-ranging populations is difficult due to complex disease-host relationships. Chronic wasting disease (CWD) is a fatal infectious prion disease in cervids for which mutations in a single gene have been mechanistically linked to disease outcomes, providing a rare opportunity to study disease-driven selection in wildlife. In Wyoming, USA, CWD has gradually spread across mule deer (Odocoileus hemionus) populations, producing natural variation in disease history to evaluate selection pressure. We used spatial variation and a novel temporal comparison to investigate the relationship between CWD and a mutation at codon 225 of the mule deer prion protein gene that slows disease progression. We found that individuals with the 'slow' 225F allele were less likely to test positive for CWD, and the 225F allele was more common in herds exposed to CWD longer. We also found that in the past 2 decades, the 225F allele frequency increased more in herds with higher CWD prevalence. This study expanded on previous research by analysing spatio-temporal patterns of individual and herd-based disease data to present multiple lines of evidence for disease-driven selection in free-ranging wildlife.
Collapse
Affiliation(s)
- Melanie E. F. LaCava
- Wildlife Genomics and Disease Ecology Laboratory, Department of Veterinary Sciences, Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| | - Jennifer L. Malmberg
- Department of Veterinary Sciences, Wyoming State Veterinary Laboratory, University of Wyoming, Laramie, WY 82070, USA
| | - William H. Edwards
- Wyoming Game and Fish Department, Wildlife Health Laboratory, Laramie, WY 82070, USA
| | - Laura N. L. Johnson
- Wildlife Genomics and Disease Ecology Laboratory, Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82071, USA
| | - Samantha E. Allen
- Wyoming Game and Fish Department, Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82070, USA
| | - Holly B. Ernest
- Wildlife Genomics and Disease Ecology Laboratory, Department of Veterinary Sciences, Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
23
|
Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2021. [PMID: 33622992 PMCID: PMC7371965 DOI: 10.1007/s12041-020-01225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease-mediated extinctions and wildlife epidemics. We then focus on elucidating how host–parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
|
24
|
CHRONIC WASTING DISEASE MODELING: AN OVERVIEW. J Wildl Dis 2021; 56:741-758. [PMID: 32544029 DOI: 10.7589/2019-08-213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/13/2019] [Indexed: 11/20/2022]
Abstract
Chronic wasting disease (CWD) is an infectious and fatal prion disease occurring in the family Cervidae. To update the research community regarding the status quo of CWD epidemic models, we conducted a meta-analysis on CWD research. We collected data from peer-reviewed articles published since 1980, when CWD was first diagnosed, until December 2018. We explored the analytical methods used historically to understand CWD. We used 14 standardized variables to assess overall analytical approaches of CWD research communities, data used, and the modeling methods used. We found that CWD modeling initiated in the early 2000s and has increased since then. Connectivity of the research community was heavily reliant on a cluster of CWD researchers. Studies focused primarily on regression and compartment-based models, population-level approaches, and host species of game management concern. Similarly, CWD research focused on single populations, species, and locations, neglecting modeling using community ecology and biogeographic approaches. Chronic wasting disease detection relied on classic diagnostic methods with limited sensitivity for most stages of infection. Overall, we found that past modeling efforts generated a solid baseline for understanding CWD in wildlife and increased our knowledge on infectious prion ecology. Future analytical efforts should consider more sensitive diagnostic methods to quantify uncertainty and broader scale studies to elucidate CWD transmission beyond population-level approaches. Considering that infectious prions may not follow biological rules of well-known wildlife pathogens (i.e., viruses, bacteria, fungi), assumptions used when modeling other infectious disease may not apply for CWD. Chronic wasting disease is a new challenge in wildlife epidemiology.
Collapse
|
25
|
Arifin MI, Hannaoui S, Chang SC, Thapa S, Schatzl HM, Gilch S. Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22052271. [PMID: 33668798 PMCID: PMC7956812 DOI: 10.3390/ijms22052271] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal's susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymorphisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. PrP polymorphisms are unique to one or two cervid species and most confer a certain degree of reduced susceptibility to CWD. However, to date, there are no reports of polymorphic cervid PrP alleles providing absolute resistance to CWD. Studies on polymorphisms have focused on those found in CWD-endemic areas, with the hope that understanding the role of an animal's genetics in CWD can help to predict, contain, or prevent transmission of CWD.
Collapse
Affiliation(s)
- Maria Immaculata Arifin
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Samia Hannaoui
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sheng Chun Chang
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Simrika Thapa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hermann M. Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
26
|
Russell RE, DiRenzo GV, Szymanski JA, Alger KE, Grant EHC. Principles and Mechanisms of Wildlife Population Persistence in the Face of Disease. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.569016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Maloney M, Merkle JA, Aadland D, Peck D, Horan RD, Monteith KL, Winslow T, Logan J, Finnoff D, Sims C, Schumaker B. Chronic wasting disease undermines efforts to control the spread of brucellosis in the Greater Yellowstone Ecosystem. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02129. [PMID: 32223053 DOI: 10.1002/eap.2129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/20/2019] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Wildlife diseases pose a substantial threat to the provisioning of ecosystem services. We use a novel modeling approach to study the potential loss of these services through the imminent introduction of chronic wasting disease (CWD) to elk populations in the Greater Yellowstone Ecosystem (GYE). A specific concern is that concentrating elk at feedgrounds may exacerbate the spread of CWD, whereas eliminating feedgrounds may increase the number of elk on private ranchlands and the transmission of a second disease, brucellosis, from elk to cattle. To evaluate the consequences of management strategies given the threat of two concurrent wildlife diseases, we develop a spatiotemporal bioeconomic model. GPS data from elk and landscape attributes are used to predict migratory behavior and population densities with and without supplementary feeding. We use a 4,800 km2 area around Pinedale, Wyoming containing four existing feedgrounds as a case study. For this area, we simulate welfare estimates under a variety of management strategies. Our results indicate that continuing to feed elk could result in substantial welfare losses for the case-study region. Therefore, to maximize the present value of economic net benefits generated by the local elk population upon CWD's arrival in the region, wildlife managers may wish to consider discontinuing elk feedgrounds while simultaneously developing new methods to mitigate the financial impact to ranchers of possible brucellosis transmission to livestock. More generally, our methods can be used to weigh the costs and benefits of human-wildlife interactions in the presence of multiple disease risks.
Collapse
Affiliation(s)
- Matthew Maloney
- HS Strategy Department 01114, University of Utah Health Sciences, 102 S 200 E, Salt Lake City, Utah, 84109, USA
| | - Jerod A Merkle
- Department of Zoology and Physiology, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming, 82071, USA
| | - David Aadland
- Department of Economics, University of Wyoming, 1000 E. University Avenue, Laramie, Wyoming, 82072, USA
| | - Dannele Peck
- USDA Agricultural Research Service, 1701 Centre Avenue, Fort Collins, Colorado, 80526, USA
| | - Richard D Horan
- Department of Agricultural, Food, and Resource Economics, Justin S Morrill Hall of Agriculture, Michigan State University, 446 W. Circle Drive, Rm 303B, East Lansing, Michigan, 48824, USA
| | - Kevin L Monteith
- Haub School of Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Bim Kendall House, 804 East Fremont Street, Laramie, Wyoming, 82072, USA
| | - Thach Winslow
- Wyoming Livestock Board, 1934 Wyott Drive, Cheyenne, Wyoming, 82002, USA
| | - Jim Logan
- Wyoming Livestock Board, 1934 Wyott Drive, Cheyenne, Wyoming, 82002, USA
| | - David Finnoff
- Department of Economics, University of Wyoming, 1000 E. University Avenue, Laramie, Wyoming, 82072, USA
| | - Charles Sims
- Howard H. Baker Jr. Center for Public Policy and Department of Economics, The University of Tennessee, 1640 Cumberland Avenue, Knoxville, Tennessee, 37996, USA
| | - Brant Schumaker
- Department of Veterinary Sciences, College of Agriculture & Natural Resources, University of Wyoming, 1174 Snowy Range Road, Laramie, Wyoming, 82070, USA
| |
Collapse
|
28
|
Webber QMR, Vander Wal E. Heterogeneity in social network connections is density-dependent: implications for disease dynamics in a gregarious ungulate. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02860-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Haley N, Henderson D, Donner R, Wyckoff S, Merrett K, Tennant J, Hoover E, Love D, Kline E, Lehmkuhl A, Thomsen B. Management of chronic wasting disease in ranched elk: conclusions from a longitudinal three-year study. Prion 2020; 14:76-87. [PMID: 32033521 PMCID: PMC7009334 DOI: 10.1080/19336896.2020.1724754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic wasting disease is a fatal, horizontally transmissible prion disease of cervid species that has been reported in free-ranging and farmed animals in North America, Scandinavia, and Korea. Like other prion diseases, CWD susceptibility is partly dependent on the sequence of the prion protein encoded by the host's PRNP gene; it is unknown if variations in PRNP have any meaningful effects on other aspects of health. Conventional diagnosis of CWD relies on ELISA or IHC testing of samples collected post-mortem, with recent efforts focused on antemortem testing approaches. We report on the conclusions of a study evaluating the role of antemortem testing of rectal biopsies collected from over 570 elk in a privately managed herd, and the results of both an amplification assay (RT-QuIC) and conventional IHC among animals with a several PRNP genotypes. Links between PRNP genotype and potential markers of evolutionary fitness, including pregnancy rates, body condition, and annual return rates were also examined. We found that the RT-QuIC assay identified significantly more CWD positive animals than conventional IHC across the course of the study, and was less affected by factors known to influence IHC sensitivity - including follicle count and PRNP genotype. We also found that several evolutionary markers of fitness were not adversely correlated with specific PRNP genotypes. While the financial burden of the disease in this herd was ultimately unsustainable for the herd owners, our scientific findings and the hurdles encountered will assist future CWD management strategies in both wild and farmed elk and deer.
Collapse
Affiliation(s)
- N.J. Haley
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA,CONTACT N.J. Haley Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - D.M. Henderson
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - R. Donner
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - S. Wyckoff
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - K. Merrett
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - J Tennant
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - E.A. Hoover
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - D. Love
- Colorado Department of Agriculture Animal Health Division, Broomfield, CO, USA
| | - E. Kline
- Colorado Department of Agriculture Animal Health Division, Broomfield, CO, USA
| | - A.D. Lehmkuhl
- National Veterinary Services Laboratories, United States Department of Agriculture, APHIS, VS, Ames, IA, USA
| | - B.V. Thomsen
- National Veterinary Services Laboratories, United States Department of Agriculture, APHIS, VS, Ames, IA, USA,Center for Veterinary Biologics, United States Department of Agriculture, APHIS, VS, Ames, IA, USA
| |
Collapse
|
30
|
Gupta P, Robin VV, Dharmarajan G. Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2020; 99:65. [PMID: 33622992 PMCID: PMC7371965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 08/23/2024]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease mediated extinctions and wildlife epidemics. We then focus on elucidating how host-parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
Affiliation(s)
- Pooja Gupta
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29801, USA.
| | | | | |
Collapse
|
31
|
Mysterud A, Madslien K, Viljugrein H, Vikøren T, Andersen R, Güere ME, Benestad SL, Hopp P, Strand O, Ytrehus B, Røed KH, Rolandsen CM, Våge J. The demographic pattern of infection with chronic wasting disease in reindeer at an early epidemic stage. Ecosphere 2019. [DOI: 10.1002/ecs2.2931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES) Department of Biosciences University of Oslo NO‐0316 P.O. Box 1066 Blindern Oslo Norway
| | - Knut Madslien
- Norwegian Veterinary Institute NO‐0106 P.O. Box 750 Sentrum Oslo Norway
| | | | - Turid Vikøren
- Norwegian Veterinary Institute NO‐0106 P.O. Box 750 Sentrum Oslo Norway
| | - Roy Andersen
- Norwegian Institute for Nature Research (NINA) NO‐7485 P. O. Box 5685 Torgarden Trondheim Norway
| | - Mariella Evelyn Güere
- Department of Basic Sciences and Aquatic Medicine Norwegian University of Life Sciences NO‐0102 P.O. Box 369 Sentrum Oslo Norway
| | | | - Petter Hopp
- Norwegian Veterinary Institute NO‐0106 P.O. Box 750 Sentrum Oslo Norway
| | - Olav Strand
- Norwegian Institute for Nature Research (NINA) NO‐7485 P. O. Box 5685 Torgarden Trondheim Norway
| | - Bjørnar Ytrehus
- Norwegian Institute for Nature Research (NINA) NO‐7485 P. O. Box 5685 Torgarden Trondheim Norway
| | - Knut H. Røed
- Department of Basic Sciences and Aquatic Medicine Norwegian University of Life Sciences NO‐0102 P.O. Box 369 Sentrum Oslo Norway
| | - Christer M. Rolandsen
- Norwegian Institute for Nature Research (NINA) NO‐7485 P. O. Box 5685 Torgarden Trondheim Norway
| | - Jørn Våge
- Norwegian Veterinary Institute NO‐0106 P.O. Box 750 Sentrum Oslo Norway
| |
Collapse
|
32
|
Miller WL, Walter WD. Spatial heterogeneity of prion gene polymorphisms in an area recently infected by chronic wasting disease. Prion 2019; 13:65-76. [PMID: 30777498 PMCID: PMC7000142 DOI: 10.1080/19336896.2019.1583042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genetic variability in the prion protein (Prnp) gene influences host susceptibility to many pathogenic prion diseases. Understanding the distribution of susceptible Prnp variants and determining factors influencing spatial genetic patterns are important components of many chronic wasting disease mitigation strategies. Here, we describe Prnp variability in white-tailed deer (Odocoileus virginianus) from the Mid-Atlantic region of the United States of America, an area with a recent history of infection and low disease incidence. This population is characterized by lower rates of polymorphism and significantly higher frequencies of the more susceptible 96GG genotype compared to previously surveyed populations. The prevalence of the most susceptible genotypes at disease-associated loci did vary among subregions, indicating that populations have innate differences in genotype-dictated susceptibility.
Collapse
Affiliation(s)
- William L Miller
- a Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and Management, Intercollege Graduate Degree Program in Ecology , The Pennsylvania State University , University Park , PA , USA
| | - W David Walter
- b U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit , The Pennsylvania State University , University Park , PA , USA
| |
Collapse
|
33
|
Gehman AM, Satterfield DA, Keogh CL, McKay AF, Budischak SA. To improve ecological understanding, collect infection data. Ecosphere 2019. [DOI: 10.1002/ecs2.2770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Alyssa‐Lois M. Gehman
- Odum School of Ecology University of Georgia Athens Georgia USA
- Hakai Institute End of Kwakshua Channel, Calvert Island British Columbia Canada
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
| | - Dara A. Satterfield
- Odum School of Ecology University of Georgia Athens Georgia USA
- Smithsonian Migratory Bird Center Smithsonian Conservation Biology Institute Washington D.C. USA
| | - Carolyn L. Keogh
- Odum School of Ecology University of Georgia Athens Georgia USA
- Department of Environmental Sciences Emory University Atlanta Georgia USA
| | | | - Sarah A. Budischak
- Odum School of Ecology University of Georgia Athens Georgia USA
- W. M. Keck Science Department of Claremont McKenna College Claremont California USA
- W. M. Keck Science Department of Pitzer College Claremont California USA
- W. M. Keck Science Department of Scripps College Claremont California USA
| |
Collapse
|
34
|
McNulty E, Nalls AV, Mellentine S, Hughes E, Pulscher L, Hoover EA, Mathiason CK. Comparison of conventional, amplification and bio-assay detection methods for a chronic wasting disease inoculum pool. PLoS One 2019; 14:e0216621. [PMID: 31071138 PMCID: PMC6508678 DOI: 10.1371/journal.pone.0216621] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/24/2019] [Indexed: 11/18/2022] Open
Abstract
Longitudinal studies of chronic wasting disease (CWD) in the native host have provided considerable understanding of how this prion disease continues to efficiently spread among cervid species. These studies entail great cost in animal, time and financial support. A variety of methods have emerged including transgenic mouse bioassay, western blot, enzyme-linked immunoassay (ELISA), immunohistochemistry (IHC), serial protein misfolding cyclic amplification (sPMCA) and real time quaking-induced conversion (RT-QuIC), that deepen our understanding of this and other protein misfolding disorders. To further characterize an inoculum source used for ongoing CWD studies and to determine how the readouts from each of these assays compare, we assayed a CWD-positive brain pool homogenate (CBP6) and a mouse dilutional bioassay of this homogenate using the above detection methods. We demonstrate that: (i) amplification assays enhanced detection of amyloid seeding activity in the CWD+ cervid brain pool to levels beyond mouse LD50, (ii) conventional detection methods (IHC and western blot) performed well in identifying the presence of PrPSc in terminal brain tissue yet lack sufficient detection sensitivity to identify all CWD-infected mice, and (iii) the incorporation of amplification assays enhanced detection of CWD-infected mice near the LD50. This cross-platform analysis provides a basis to calibrate the relative sensitivities of CWD detection assays.
Collapse
Affiliation(s)
- Erin McNulty
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Amy V. Nalls
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Samuel Mellentine
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Erin Hughes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Laura Pulscher
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Edward A. Hoover
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
35
|
Won SY, Kim YC, Kim K, Kim AD, Jeong BH. The First Report of Polymorphisms and Genetic Features of the prion-like Protein Gene ( PRND) in a Prion Disease-Resistant Animal, Dog. Int J Mol Sci 2019; 20:ijms20061404. [PMID: 30897750 PMCID: PMC6470729 DOI: 10.3390/ijms20061404] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Prion disease has displayed large infection host ranges among several species; however, dogs have not been reported to be infected and are considered prion disease-resistant animals. Case-controlled studies in several species, including humans and cattle, indicated a potent association of prion protein gene (PRNP) polymorphisms in the progression of prion disease. Thus, because of the proximal location and similar structure of the PRNP gene among the prion gene family, the prion-like protein gene (PRND) was noted as a novel candidate gene that contributes to prion disease susceptibility. Several case-controlled studies have confirmed the relationship of the PRND gene with prion disease vulnerability, and strong genetic linkage disequilibrium blocks were identified in prion-susceptible species between the PRNP and PRND genes. However, to date, polymorphisms of the dog PRND gene have not been reported, and the genetic linkage between the PRNP and PRND genes has not been examined thus far. Here, we first investigated dog PRND polymorphisms in 207 dog DNA samples using direct DNA sequencing. A total of four novel single nucleotide polymorphisms (SNPs), including one nonsynonymous SNP (c.149G>A, R50H), were identified in this study. We also found two major haplotypes among the four novel SNPs. In addition, we compared the genotype and allele frequencies of the c.149G>A (R50H) SNP and found significantly different distributions among eight dog breeds. Furthermore, we annotated the c.149G>A (R50H) SNP of the dog PRND gene using in silico tools, PolyPhen-2, PROVEAN, and PANTHER. Finally, we examined linkage disequilibrium between the PRNP and PRND genes in dogs. Interestingly, we did not find a strong genetic linkage between these two genes. To the best of our knowledge, this was the first genetic study of the PRND gene in a prion disease-resistant animal, a dog.
Collapse
Affiliation(s)
- Sae-Young Won
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk 54531, Korea.
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk 54896, Korea.
| | - Yong-Chan Kim
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk 54531, Korea.
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk 54896, Korea.
| | - Kiwon Kim
- Haemalken Animal Hospital, Yangju, Gyeonggi 11492, Korea.
| | - An-Dang Kim
- Cool-Pet Animal Hospital, Anyang, Gyeonggi 14066, Korea.
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk 54531, Korea.
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk 54896, Korea.
| |
Collapse
|
36
|
Mysterud A, Edmunds DR. A review of chronic wasting disease in North America with implications for Europe. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1260-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Kozakiewicz CP, Burridge CP, Funk WC, VandeWoude S, Craft ME, Crooks KR, Ernest HB, Fountain‐Jones NM, Carver S. Pathogens in space: Advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evol Appl 2018; 11:1763-1778. [PMID: 30459828 PMCID: PMC6231466 DOI: 10.1111/eva.12678] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/24/2018] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Landscape genetics has provided many insights into how heterogeneous landscape features drive processes influencing spatial genetic variation in free-living organisms. This rapidly developing field has focused heavily on vertebrates, and expansion of this scope to the study of infectious diseases holds great potential for landscape geneticists and disease ecologists alike. The potential application of landscape genetics to infectious agents has garnered attention at formative stages in the development of landscape genetics, but systematic examination is lacking. We comprehensively review how landscape genetics is being used to better understand pathogen dynamics. We characterize the field and evaluate the types of questions addressed, approaches used and systems studied. We also review the now established landscape genetic methods and their realized and potential applications to disease ecology. Lastly, we identify emerging frontiers in the landscape genetic study of infectious agents, including recent phylogeographic approaches and frameworks for studying complex multihost and host-vector systems. Our review emphasizes the expanding utility of landscape genetic methods available for elucidating key pathogen dynamics (particularly transmission and spread) and also how landscape genetic studies of pathogens can provide insight into host population dynamics. Through this review, we convey how increasing awareness of the complementarity of landscape genetics and disease ecology among practitioners of each field promises to drive important cross-disciplinary advances.
Collapse
Affiliation(s)
| | | | - W. Chris Funk
- Department of BiologyGraduate Degree Program in EcologyColorado State UniversityFort CollinsColorado
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColorado
| | - Meggan E. Craft
- Department of Veterinary Population MedicineUniversity of MinnesotaSt. PaulMinnesota
| | - Kevin R. Crooks
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColorado
| | - Holly B. Ernest
- Wildlife Genomics and Disease Ecology LaboratoryDepartment of Veterinary SciencesUniversity of WyomingLaramieWyoming
| | | | - Scott Carver
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
38
|
Wood ME, Griebel P, Huizenga ML, Lockwood S, Hansen C, Potter A, Cashman N, Mapletoft JW, Napper S. Accelerated onset of chronic wasting disease in elk (Cervus canadensis) vaccinated with a PrP Sc-specific vaccine and housed in a prion contaminated environment. Vaccine 2018; 36:7737-7743. [PMID: 30414779 DOI: 10.1016/j.vaccine.2018.10.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/07/2018] [Accepted: 10/14/2018] [Indexed: 10/27/2022]
Abstract
Chronic wasting disease (CWD) is a fatal prion disease affecting multiple cervid species. Effective management tools for this disease, particularly in free-ranging populations, are currently limited. We evaluated a novel CWD vaccine in elk (Cervus canadensis) naturally exposed to CWD through a prion-contaminated environment. The vaccine targets a YYR disease-specific epitope to induce antibody responses specific to the misfolded (PrPSc) conformation. Female elk calves (n = 41) were captured from western Wyoming and transported to the Thorne-Williams Wildlife Research Center where CWD has been documented since 1979. Elk were held in contaminated pens for 14 to 20 days before being alternately assigned to either a vaccine (n = 21) or control group (n = 20). Vaccinated animals initially received two vaccinations approximately 42 days apart and annual vaccinations thereafter. Vaccination induced elevated YYR-specific antibody titers in all animals. Elk were genotyped for the prion protein gene at codon 132, monitored for clinical signs of CWD through daily observation, for disease status through periodic biopsy of rrectoanal mucosa-associated lympoid tissue (RAMALT), and monitored for YYR-specific serum antibody titres. Mean survival of vaccinated elk with the 132MM genotype (n = 15) was significantly shorter (800 days) than unvaccinated elk (n = 13) of the same genotype (1062 days; p = 0.003). Mean days until positive RAMALT biopsy for 132MM vaccinated elk (6 7 8) were significantly shorter than unvaccinated 132MM elk (990; p = 0.012). There was, however, no significant difference in survival between vaccinated (n = 4) and control (n = 5) elk with the 132ML genotype (p = 0.35) or in timing of positive RAMALT biopsies of 132ML elk (p = 0.66). There was no strong (p = 0.17) correlation between YYR-specific antibody titers and survival time. Determining the mechanism by which this vaccine accelerates onset of CWD will be important to direct further CWD vaccine research.
Collapse
Affiliation(s)
- Mary E Wood
- Wyoming Game and Fish Department, 1212 South Adams St, Laramie, WY, USA; Wyoming Game and Fish Department, Thorne-Williams Wildlife Research Center, 2362 HWY 34 Wheatland, WY, USA.
| | - Philip Griebel
- Vaccine and Infectious Disease Organization-International Vaccine Research Center, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada; School of Public Health, University of Saskatchewan, 104 Clinic Place, S7N 2Z4 Saskatoon, Saskatchewan, Canada
| | - Matthew L Huizenga
- Wyoming Game and Fish Department, Thorne-Williams Wildlife Research Center, 2362 HWY 34 Wheatland, WY, USA
| | - Samuel Lockwood
- Wyoming Game and Fish Department, Thorne-Williams Wildlife Research Center, 2362 HWY 34 Wheatland, WY, USA
| | - Cole Hansen
- Wyoming Game and Fish Department, Thorne-Williams Wildlife Research Center, 2362 HWY 34 Wheatland, WY, USA
| | - Andrew Potter
- Vaccine and Infectious Disease Organization-International Vaccine Research Center, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Neil Cashman
- Department of Neurology, University of British Columbia, S192 - 2211 Wesbrook Mall, V6T 2B5 Vancouver, BC, Canada
| | - John W Mapletoft
- Pan-Provincial Vaccine Enterprise Inc. University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization-International Vaccine Research Center, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada; Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, S7N 5E5 Saskatoon, Saskatchewan, Canada
| |
Collapse
|
39
|
Cotterill GG, Cross PC, Middleton AD, Rogerson JD, Scurlock BM, du Toit JT. Hidden cost of disease in a free-ranging ungulate: brucellosis reduces mid-winter pregnancy in elk. Ecol Evol 2018; 8:10733-10742. [PMID: 30519402 PMCID: PMC6262735 DOI: 10.1002/ece3.4521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/06/2018] [Accepted: 08/19/2018] [Indexed: 11/08/2022] Open
Abstract
Demonstrating disease impacts on the vital rates of free-ranging mammalian hosts typically requires intensive, long-term study. Evidence for chronic pathogens affecting reproduction but not survival is rare, but has the potential for wide-ranging effects. Accurately quantifying disease-associated reductions in fecundity is important for advancing theory, generating accurate predictive models, and achieving effective management. We investigated the impacts of brucellosis (Brucella abortus) on elk (Cervus canadensis) productivity using serological data from over 6,000 captures since 1990 in the Greater Yellowstone Ecosystem, USA. Over 1,000 of these records included known age and pregnancy status. Using Bayesian multilevel models, we estimated the age-specific pregnancy probabilities of exposed and naïve elk. We then used repeat-capture data to investigate the full effects of the disease on life history. Brucellosis exposure reduced pregnancy rates of elk captured in mid- and late-winter. In an average year, we found 60% of exposed 2-year-old elk were pregnant compared to 91% of their naïve counterparts (a 31 percentage point reduction, 89% HPDI = 20%-42%), whereas exposed 3- to 9-year-olds were 7 percentage points less likely to be pregnant than naïve elk of their same age (89% HPDI = 2%-11%). We found these reduced rates of pregnancy to be independent from disease-induced abortions, which afflict a portion of exposed elk. We estimate that the combination of reduced pregnancy by mid-winter and the abortions following mid-winter reduces the reproductive output of exposed female elk by 24%, which affects population dynamics to a similar extent as severe winters or droughts. Exposing hidden reproductive costs of disease is essential to avoid conflating them with the effects of climate and predation. Such reproductive costs cause complex population dynamics, and the magnitude of the effect we found should drive a strong selection gradient if there is heritable resistance.
Collapse
Affiliation(s)
| | - Paul C. Cross
- U.S. Geological SurveyNorthern Rocky Mountain Science CenterBozemanMontana
| | - Arthur D. Middleton
- Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyCalifornia
| | | | | | | |
Collapse
|
40
|
Kim YC, Jeong BH. The first report of polymorphisms and genetic characteristics of the prion protein gene (PRNP) in horses. Prion 2018; 12:245-252. [PMID: 30165784 DOI: 10.1080/19336896.2018.1513316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prion diseases have a wide host range, but prion-infected cases have never been reported in horses. Genetic polymorphisms that can directly impact the structural stability of horse prion protein have not been investigated thus far. In addition, we noticed that previous studies focusing on horse-specific amino acids and secondary structure predictions of prion protein were performed for limited parts of the protein. In this study, we found genetic polymorphisms in the horse prion protein gene (PRNP) in 201 Thoroughbred horses. The identified polymorphism was assessed to determine whether this polymorphism impedes stability of protein using PolyPhen-2, PROVEAN and PANTHER. In addition, we evaluated horse-specific amino acids in horse and mouse prion proteins using same methods. We found only one single nucleotide polymorphism (SNP) in the horse prion protein, and three annotation tools predicted that the SNP is benign. In addition, horse-specific amino acids showed different effects on horse and mouse prion proteins, respectively. Abbreviations: PRNP: prion protein gene; SNP: single nucleotide polymorphism; CJD: Creutzfeldt-Jakob disease; CWD: chronic wasting disease; TME: transmissible mink encephalopathy; FSE: feline spongiform encephalopathy; MD: molecular dynamics; ER: endoplasmic reticulum; GPI: glycosylphosphatidylinositol; NMR: nuclear magnetic resonance; ORF: open reading frame; GWAS: genome-wide association study; NAPA: non-adaptive prion amplification; HMM: hidden Markov model; NCBI: National Center for Biotechnology Information.
Collapse
Affiliation(s)
- Yong-Chan Kim
- a Korea Zoonosis Research Institute , Chonbuk National University , Iksan , Republic of Korea.,b Department of Bioactive Material Sciences , Chonbuk National University , Jeonju , Republic of Korea
| | - Byung-Hoon Jeong
- a Korea Zoonosis Research Institute , Chonbuk National University , Iksan , Republic of Korea.,b Department of Bioactive Material Sciences , Chonbuk National University , Jeonju , Republic of Korea
| |
Collapse
|