1
|
González-Santos R, Hernández-Sandoval L, Parra-Quijano M. Spatial Analysis of the Ecogeographic Diversity of Wild Creeping Cucumber ( Melothria pendula L.) for In Situ and Ex Situ Conservation in Mexico. PLANTS (BASEL, SWITZERLAND) 2024; 13:2572. [PMID: 39339547 PMCID: PMC11435273 DOI: 10.3390/plants13182572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Melothria pendula L., a wild relative of cucurbit crops, is also used for food and as a medicinal plant in Mexico. The objective of this study was to ecogeographically characterize the known populations of M. pendula in Mexico, determining its adaptive range and possible sites for in situ and ex situ conservation. To achieve this goal, we compiled a dataset of 1270 occurrences of M. pendula from herbarium and botanical databases and individual observations. Adaptive scenarios were generated through the development of an ecogeographic land characterization (ELC) map, preceded by the identification of abiotic variables influencing the species' distribution. Eleven bioclimatic, edaphic, and geophysical variables were found to be important for the species' distribution. The ELC map obtained contained 21 ecogeographic categories, with 14 exhibiting the presence of M. pendula. By analyzing ecogeographic representativeness, 111 sites of high interest were selected for the efficient collection of M. pendula in Mexico. Eight high-priority hotspots for future in situ conservation of M. pendula were also identified based on their high ecogeographic diversity, with only three of these hotspots located within protected natural areas. In this study, ecogeographic approaches show their potential utility in conservation prioritization when genetic data are scarce, a very common condition in crop wild relatives.
Collapse
Affiliation(s)
- Rosalinda González-Santos
- Laboratorio de Botánica, LANIVEG, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N, Juriquilla, Querétaro C.P. 76230, Mexico; (R.G.-S.); (L.H.-S.)
| | - Luis Hernández-Sandoval
- Laboratorio de Botánica, LANIVEG, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N, Juriquilla, Querétaro C.P. 76230, Mexico; (R.G.-S.); (L.H.-S.)
| | - Mauricio Parra-Quijano
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Ciudad Universitaria, Bogotá 14490, Colombia
| |
Collapse
|
2
|
Liu Y, Cai L, Sun W. Transcriptome data analysis provides insights into the conservation of Michelia lacei, a plant species with extremely small populations distributed in Yunnan province, China. BMC PLANT BIOLOGY 2024; 24:200. [PMID: 38500068 PMCID: PMC10949798 DOI: 10.1186/s12870-024-04892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Michelia lacei W.W.Smith (Magnoliaceae), was classified as a Plant Species with Extremely Small Populations (PSESP) by the Yunnan Provincial Government in both action plans of 2012 and 2021. This evergreen tree is known for its high ornamental and scientific value, but it faces significant threats due to its extremely small population size and narrow geographical distribution. The study aims to understand the genetic structure, diversity, and demographic history of this species to inform its conservation strategies. RESULTS The analysis of transcriptome data from 64 individuals across seven populations of M. lacei identified three distinct genetic clusters and generated 104,616 single-nucleotide polymorphisms (SNPs). The KM ex-situ population, originating from Longling County, exhibited unique genetic features, suggesting limited gene flow. The genetic diversity was substantial, with significant differences between populations, particularly between the KM lineage and the OTHER lineage. Demographic history inferred from the data indicated population experienced three significant population declines during glaciations, followed by periods of recovery. We estimated the effective population size (Ne) of the KM and OTHER lineages 1,000 years ago were 85,851 and 416,622, respectively. Gene flow analysis suggested past gene flow between populations, but the KM ex-situ population showed no recent gene flow. A total of 805 outlier SNPs, associated with four environmental factors, suggest potential local adaptation and showcase the species' adaptive potential. Particularly, the BZ displayed 515 adaptive loci, highlighting its strong potential for adaptation within this group. CONCLUSIONS The comprehensive genomic analysis of M. lacei provides valuable insights into its genetic background and highlights the urgent need for conservation efforts. The study underscores the importance of ex-situ conservation methods, such as seed collection and vegetative propagation, to safeguard genetic diversity and promote population restoration. The preservation of populations like MC and BZ is crucial for maintaining the species' genetic diversity. In-situ conservation measures, including the establishment of in-situ conservation sites and community engagement, are essential to enhance protection awareness and ensure the long-term survival of this threatened plant species.
Collapse
Affiliation(s)
- Yang Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Cai
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
3
|
Schmidt C, Hoban S, Jetz W. Conservation macrogenetics: harnessing genetic data to meet conservation commitments. Trends Genet 2023; 39:816-829. [PMID: 37648576 DOI: 10.1016/j.tig.2023.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Genetic biodiversity is rapidly gaining attention in global conservation policy. However, for almost all species, conservation relevant, population-level genetic data are lacking, limiting the extent to which genetic diversity can be used for conservation policy and decision-making. Macrogenetics is an emerging discipline that explores the patterns and processes underlying population genetic composition at broad taxonomic and spatial scales by aggregating and reanalyzing thousands of published genetic datasets. Here we argue that focusing macrogenetic tools on conservation needs, or conservation macrogenetics, will enhance decision-making for conservation practice and fill key data gaps for global policy. Conservation macrogenetics provides an empirical basis for better understanding the complexity and resilience of biological systems and, thus, how anthropogenic drivers and policy decisions affect biodiversity.
Collapse
Affiliation(s)
- Chloé Schmidt
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Sean Hoban
- The Center for Tree Science, The Morton Arboretum, Lisle, IL, USA
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Fitzgerald H, Kiviharju E, Palmé A, Hyvärinen M. Complementary Analysis and Implementation Plan for Conservation of Crop Wild Relatives in Finland. PLANTS (BASEL, SWITZERLAND) 2023; 12:3313. [PMID: 37765477 PMCID: PMC10537885 DOI: 10.3390/plants12183313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Crop wild relatives (CWR) are valuable wild plant species that can be used as genetic resources providing adaptive traits to crop plants and therefore they play an important role in future food security. This paper describes in situ and ex situ conservation planning of CWR species in Finland and includes the following parts: (a) drafting of the national CWR priority list, (b) undertaking the in situ conservation gap analysis and (c) identifying ex situ conservation gaps and multi-species collecting sites for the CWR in Finland. As a result of the study, essential information was acquired, which will enhance future planning of active science-based practical conservation of CWR in Finland. Based on the new data and earlier work, a number of conservation recommendations are presented. This national work has been carried out in connection with the larger Nordic regional CWR co-operation.
Collapse
Affiliation(s)
- Heli Fitzgerald
- Botany Unit, Finnish Museum of Natural History, LUOMUS, University of Helsinki, P.O. Box 7, 00014 Helsinki, Finland
| | - Elina Kiviharju
- Natural Resources Institute Finland, Luke, 31600 Jokioinen, Finland
| | - Anna Palmé
- Nordic Genetic Resource Center, NordGen, 234 56 Alnarp, Sweden
| | - Marko Hyvärinen
- Botany Unit, Finnish Museum of Natural History, LUOMUS, University of Helsinki, P.O. Box 7, 00014 Helsinki, Finland
| |
Collapse
|
5
|
Labokas J, Karpavičienė B. On the Prospects of In Situ Conservation of Medicinal- and Aromatic-Plant Genetic Resources at Ancient-Hillfort Sites: A Case Study from Lithuania. PLANTS (BASEL, SWITZERLAND) 2023; 12:861. [PMID: 36840209 PMCID: PMC9967452 DOI: 10.3390/plants12040861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Twenty-three ancient-hillfort sites were investigated to evaluate the potential for the in situ conservation of medicinal- and aromatic-plant populations. An evaluation of the site's suitability was carried out by employing three major groups of criteria: species-specific, site-specific, and threat assessment. The species-specific criteria included the total species number, target species number, the cover-abundance of the target species estimated by mean Braun-Blanquet score, and, as an additional criterion, the number and cover-abundance of crop wild relatives. The site-specific criteria included site evaluation with respect to climatic region, the area size of a site, the habitat type, and the site's protection status. The threat assessment was focused on anthropogenic activities, such as recreational, agricultural, and others. The total number of vascular plant species inventoried was 264, including 82 species of medicinal and aromatic plants (MAP). There was a strong and highly significant correlation between the total and the MAP species numbers (rs = 0.77, p < 0.001), and the two most species-rich sites, Žuklijai and Pamiškė, contained the highest total and MAP species numbers. The investigated hillfort sites covered the populations of 49 species, or about 33% of the priority species list, with 5 or more populations. The most frequent species, Hypericum perforatum, occurred at 21 sites. The twenty-three hillfort sites represent three of the four climatic regions and six of the ten climatic subregions of Lithuania. Although these hillfort sites are quite small (1.24 ± 0.75 ha on average, without buffer zone), they are scattered across the country and are state-protected as archaeological objects, which makes them suitable for the in situ conservation of MAP genetic resources. In addition, seven hillfort sites (30.4% of the investigated ones) belong to the European network of special areas of conservation of habitats (Natura 2000), thus increasing their international importance. The threat assessment showed that anthropogenic activities (recreational, agricultural, etc.) are among the major factors affecting target-species populations.
Collapse
|
6
|
Molecular ecology meets systematic conservation planning. Trends Ecol Evol 2023; 38:143-155. [PMID: 36210287 DOI: 10.1016/j.tree.2022.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 01/06/2023]
Abstract
Integrative and proactive conservation approaches are critical to the long-term persistence of biodiversity. Molecular data can provide important information on evolutionary processes necessary for conserving multiple levels of biodiversity (genes, populations, species, and ecosystems). However, molecular data are rarely used to guide spatial conservation decision-making. Here, we bridge the fields of molecular ecology (ME) and systematic conservation planning (SCP) (the 'why') to build a foundation for the inclusion of molecular data into spatial conservation planning tools (the 'how'), and provide a practical guide for implementing this integrative approach for both conservation planners and molecular ecologists. The proposed framework enhances interdisciplinary capacity, which is crucial to achieving the ambitious global conservation goals envisioned for the next decade.
Collapse
|
7
|
Pinto MP, Beltrão-Mendes R, Talebi M, de Lima AA. Primates facing climate crisis in a tropical forest hotspot will lose climatic suitable geographical range. Sci Rep 2023; 13:641. [PMID: 36635347 PMCID: PMC9837198 DOI: 10.1038/s41598-022-26756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Global climate changes affect biodiversity and cause species distribution shifts, contractions, and expansions. Climate change and disease are emerging threats to primates, and approximately one-quarter of primates' ranges have temperatures over historical ones. How will climate changes influence Atlantic Forest primate ranges? We used habitat suitability models and measured potential changes in area and distributions shifts. Climate change expected in 2100 may change the distribution area of Atlantic Forest primates. Fourteen species (74%) are predicted to lose more than 50% of their distribution, and nine species (47%) are predicted to lose more than 75% of their distribution. The balance was negative, indicating a potential future loss, and the strength of the reduction in the distribution is related to the severity of climate change (SSP scenarios). Directional shifts were detected to the south. The projected mean centroid latitudinal shift is ~ 51 km to the south for 2100 SSP5-8.5 scenario. The possibility of dispersal will depend on suitable routes and landscape configuration. Greenhouse gas emissions should be urgently reduced. Our results also emphasize that no more forest loss is acceptable in Atlantic Forest, and restoration, canopy bridges, friendly agroecosystems, and monitoring of infrastructure projects are urgent to enable dealing with climate change.
Collapse
Affiliation(s)
- Míriam Plaza Pinto
- Departamento de Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), 59072-970, Natal, RN, Brasil.
- Programa de Pós-Graduação em Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), 59072-970, Natal, RN, Brasil.
| | - Raone Beltrão-Mendes
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Sergipe (UFS), 49100-000, São Cristóvão, SE, Brasil
| | - Maurício Talebi
- Departamento de Ciências Ambientais, Universidade Federal de São Paulo (UNIFESP), 09972-270, Diadema, SP, Brasil
- Programa de Pós-Graduação em Análise Ambiental Integrada, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brasil
| | - Adriana Almeida de Lima
- Programa de Pós-Graduação em Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), 59072-970, Natal, RN, Brasil
| |
Collapse
|
8
|
Paúl MJ, Rosauer D, Tarroso P, Velo‐Antón G, Carvalho SB. Environmental and topographic drivers of amphibian phylogenetic diversity and endemism in the Iberian Peninsula. Ecol Evol 2023; 13:e9666. [PMID: 36620407 PMCID: PMC9817204 DOI: 10.1002/ece3.9666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023] Open
Abstract
Understanding the ecological and evolutionary processes driving biodiversity patterns and allowing their persistence is of utmost importance. Many hypotheses have been proposed to explain spatial diversity patterns, including water-energy availability, habitat heterogeneity, and historical climatic refugia. The main goal of this study is to identify if general spatial drivers of species diversity patterns of phylogenetic diversity (PD) and phylogenetic endemism (PE) at the global scale are also predictive of PD and PE at regional scales, using Iberian amphibians as a case study. Our main hypothesis assumes that topography along with contemporary and historical climate are drivers of phylogenetic diversity and endemism, but that the strength of these predictors may be weaker at the regional scale than it tends to be at the global scale. We mapped spatial patterns of Iberian amphibians' phylogenetic diversity and endemism, using previously published phylogenetic and distribution data. Furthermore, we compiled spatial data on topographic and climatic variables related to the water-energy availability, topography, and historical climatic instability hypotheses. To test our hypotheses, we used Spatial Autoregressive Models and selected the best model to explain diversity patterns based on Akaike Information Criterion. Our results show that, out of the variables tested in our study, water-energy availability and historical climate instability are the most important drivers of amphibian diversity in Iberia. However, as predicted, the strength of these predictors in our case study is weaker than it tends to be at global scales. Thus, additional drivers should also be investigated and we suggest caution when interpreting these predictors as surrogates for different components of diversity.
Collapse
Affiliation(s)
- Maria João Paúl
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
- Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
| | - Dan Rosauer
- Division of Ecology and Evolution, Research School of Biology and Centre for Biodiversity AnalysisThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Pedro Tarroso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
| | - Guillermo Velo‐Antón
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
- Departamento de Ecoloxía e Bioloxía Animal, Grupo de Ecoloxía Animal, Torre Cacti (Lab 97)Universidade de VigoVigoSpain
| | - Sílvia B. Carvalho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
| |
Collapse
|
9
|
Zumwalde BA, Fredlock B, Beckman Bruns E, Duckett D, McCauley RA, Spence ES, Hoban S. Assessing ex situ genetic and ecogeographic conservation in a threatened but widespread oak after range-wide collecting effort. Evol Appl 2022; 15:1002-1017. [PMID: 35782011 PMCID: PMC9234636 DOI: 10.1111/eva.13391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/04/2022] Open
Abstract
Although the genetic diversity and structure of in situ populations has been investigated in thousands of studies, the genetic composition of ex situ plant populations has rarely been studied. A better understanding of how much genetic diversity is conserved ex situ, how it is distributed among locations (e.g., botanic gardens), and what minimum sample sizes are needed is necessary to improve conservation outcomes. Here we address these issues in a threatened desert oak species, Quercus havardii Rydb. We assess the genetic, geographic, and ecological representation of 290 plants from eight ex situ locations, relative to 667 wild individuals from 35 in situ locations. We also leverage a recent dataset of >3000 samples from 11 other threatened plants to directly compare the degree of genetic conservation for species that differ in geographic range size. We found that a majority of Q. havardii genetic diversity is conserved; one of its geographic regions is significantly better conserved than the other; genetic diversity conservation of this widespread species is lower than documented for the 11 rarer taxa; genetic diversity within each garden is strongly correlated to the number of plants and number of source populations; and measures of geographic and ecological conservation (i.e., percent area and percent of ecoregions represented) were typically lower than the direct assessment of genetic diversity (i.e., percent alleles). This information will inform future seed sampling expeditions to ensure that the intraspecific diversity of threatened plants can be effectively conserved.
Collapse
Affiliation(s)
- Bethany A. Zumwalde
- Center for Tree ScienceThe Morton ArboretumLisleIllinoisUSA
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| | | | | | - Drew Duckett
- Center for Tree ScienceThe Morton ArboretumLisleIllinoisUSA
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | | | | | - Sean Hoban
- Center for Tree ScienceThe Morton ArboretumLisleIllinoisUSA
- The Field MuseumChicagoIllinoisUSA
| |
Collapse
|
10
|
Andrello M, D'Aloia C, Dalongeville A, Escalante MA, Guerrero J, Perrier C, Torres-Florez JP, Xuereb A, Manel S. Evolving spatial conservation prioritization with intraspecific genetic data. Trends Ecol Evol 2022; 37:553-564. [PMID: 35450706 DOI: 10.1016/j.tree.2022.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
Abstract
Spatial conservation prioritization (SCP) is a planning framework used to identify new conservation areas on the basis of the spatial distribution of species, ecosystems, and their services to human societies. The ongoing accumulation of intraspecific genetic data on a variety of species offers a way to gain knowledge of intraspecific genetic diversity and to estimate several population characteristics useful in conservation, such as dispersal and population size. Here, we review how intraspecific genetic data have been integrated into SCP and highlight their potential for identifying conservation area networks that represent intraspecific genetic diversity comprehensively and that ensure the long-term persistence of biodiversity in the face of global change.
Collapse
Affiliation(s)
- Marco Andrello
- Institute for the study of Anthropic impacts and Sustainability in the marine environment, National Research Council, CNR-IAS, Rome, Italy.
| | - Cassidy D'Aloia
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | - Marco A Escalante
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - Jimena Guerrero
- Sociedad Científica de Investigación Transdisciplinaria y Especialización (SCITE), Calimaya, México
| | - Charles Perrier
- CBGP, INRAe, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Juan Pablo Torres-Florez
- Instituto Chico Mendes de Conservação da Biodiversidade, Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos, Santos, Brazil
| | - Amanda Xuereb
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Stéphanie Manel
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| |
Collapse
|
11
|
Ramirez-Villegas J, Khoury CK, Achicanoy HA, Diaz MV, Mendez AC, Sosa CC, Kehel Z, Guarino L, Abberton M, Aunario J, Awar BA, Alarcon JC, Amri A, Anglin NL, Azevedo V, Aziz K, Capilit GL, Chavez O, Chebotarov D, Costich DE, Debouck DG, Ellis D, Falalou H, Fiu A, Ghanem ME, Giovannini P, Goungoulou AJ, Gueye B, Hobyb AIE, Jamnadass R, Jones CS, Kpeki B, Lee JS, McNally KL, Muchugi A, Ndjiondjop MN, Oyatomi O, Payne TS, Ramachandran S, Rossel G, Roux N, Ruas M, Sansaloni C, Sardos J, Setiyono TD, Tchamba M, van den Houwe I, Velazquez JA, Venuprasad R, Wenzl P, Yazbek M, Zavala C. State of ex situ conservation of landrace groups of 25 major crops. NATURE PLANTS 2022; 8:491-499. [PMID: 35534721 PMCID: PMC9122826 DOI: 10.1038/s41477-022-01144-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation.
Collapse
Affiliation(s)
- Julian Ramirez-Villegas
- International Center for Tropical Agriculture (CIAT), Cali, Colombia.
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Cali, Colombia.
- Wageningen University & Research (WUR), Plant Production Systems Group, Wageningen, The Netherlands.
| | - Colin K Khoury
- International Center for Tropical Agriculture (CIAT), Cali, Colombia.
- San Diego Botanic Garden, Encinitas, CA, USA.
| | | | | | - Andres C Mendez
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Chrystian C Sosa
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Pontificia Universidad Javeriana Cali, Cali, Colombia
- Universidad del Quindío, Armenia, Colombia
| | - Zakaria Kehel
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | | | - Michael Abberton
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Jorrel Aunario
- International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Bashir Al Awar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | | | - Ahmed Amri
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Noelle L Anglin
- International Potato Center (CIP), Lima, Peru
- United States Department of Agriculture (USDA), Agricultural Research Service, Aberdeen, ID, USA
| | - Vania Azevedo
- International Potato Center (CIP), Lima, Peru
- International Crops Research Institute for the Semi-arid Tropics (ICRISAT), Hyderabad, India
| | - Khadija Aziz
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Grace Lee Capilit
- International Rice Research Institute (IRRI), Los Baños, Philippines
| | | | - Dmytro Chebotarov
- International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Denise E Costich
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México
| | - Daniel G Debouck
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - David Ellis
- International Potato Center (CIP), Lima, Peru
| | - Hamidou Falalou
- International Crops Research Institute for the Semi-arid Tropics (ICRISAT), Niamey, Niger
| | - Albert Fiu
- Centre for Pacific Crops and Trees (CePaCT), Narere, Fiji
| | | | | | | | - Badara Gueye
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Amal Ibn El Hobyb
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | | | - Chris S Jones
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | | | - Jae-Sung Lee
- International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Kenneth L McNally
- International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Alice Muchugi
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | | | - Olaniyi Oyatomi
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Thomas S Payne
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México
| | - Senthil Ramachandran
- International Crops Research Institute for the Semi-arid Tropics (ICRISAT), Hyderabad, India
| | | | | | - Max Ruas
- Bioversity International, Montpellier, France
| | - Carolina Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México
| | | | - Tri Deri Setiyono
- International Rice Research Institute (IRRI), Los Baños, Philippines
- Louisiana State University, Baton Rouge, LA, USA
| | - Marimagne Tchamba
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | | | | | | - Peter Wenzl
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Mariana Yazbek
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Cristian Zavala
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México
| |
Collapse
|
12
|
Hoban S, Archer FI, Bertola LD, Bragg JG, Breed MF, Bruford MW, Coleman MA, Ekblom R, Funk WC, Grueber CE, Hand BK, Jaffé R, Jensen E, Johnson JS, Kershaw F, Liggins L, MacDonald AJ, Mergeay J, Miller JM, Muller-Karger F, O'Brien D, Paz-Vinas I, Potter KM, Razgour O, Vernesi C, Hunter ME. Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition. Biol Rev Camb Philos Soc 2022; 97:1511-1538. [PMID: 35415952 PMCID: PMC9545166 DOI: 10.1111/brv.12852] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
Abstract
Biodiversity underlies ecosystem resilience, ecosystem function, sustainable economies, and human well‐being. Understanding how biodiversity sustains ecosystems under anthropogenic stressors and global environmental change will require new ways of deriving and applying biodiversity data. A major challenge is that biodiversity data and knowledge are scattered, biased, collected with numerous methods, and stored in inconsistent ways. The Group on Earth Observations Biodiversity Observation Network (GEO BON) has developed the Essential Biodiversity Variables (EBVs) as fundamental metrics to help aggregate, harmonize, and interpret biodiversity observation data from diverse sources. Mapping and analyzing EBVs can help to evaluate how aspects of biodiversity are distributed geographically and how they change over time. EBVs are also intended to serve as inputs and validation to forecast the status and trends of biodiversity, and to support policy and decision making. Here, we assess the feasibility of implementing Genetic Composition EBVs (Genetic EBVs), which are metrics of within‐species genetic variation. We review and bring together numerous areas of the field of genetics and evaluate how each contributes to global and regional genetic biodiversity monitoring with respect to theory, sampling logistics, metadata, archiving, data aggregation, modeling, and technological advances. We propose four Genetic EBVs: (i) Genetic Diversity; (ii) Genetic Differentiation; (iii) Inbreeding; and (iv) Effective Population Size (Ne). We rank Genetic EBVs according to their relevance, sensitivity to change, generalizability, scalability, feasibility and data availability. We outline the workflow for generating genetic data underlying the Genetic EBVs, and review advances and needs in archiving genetic composition data and metadata. We discuss how Genetic EBVs can be operationalized by visualizing EBVs in space and time across species and by forecasting Genetic EBVs beyond current observations using various modeling approaches. Our review then explores challenges of aggregation, standardization, and costs of operationalizing the Genetic EBVs, as well as future directions and opportunities to maximize their uptake globally in research and policy. The collection, annotation, and availability of genetic data has made major advances in the past decade, each of which contributes to the practical and standardized framework for large‐scale genetic observation reporting. Rapid advances in DNA sequencing technology present new opportunities, but also challenges for operationalizing Genetic EBVs for biodiversity monitoring regionally and globally. With these advances, genetic composition monitoring is starting to be integrated into global conservation policy, which can help support the foundation of all biodiversity and species' long‐term persistence in the face of environmental change. We conclude with a summary of concrete steps for researchers and policy makers for advancing operationalization of Genetic EBVs. The technical and analytical foundations of Genetic EBVs are well developed, and conservation practitioners should anticipate their increasing application as efforts emerge to scale up genetic biodiversity monitoring regionally and globally.
Collapse
Affiliation(s)
- Sean Hoban
- Center for Tree Science, The Morton Arboretum, 4100 Illinois Rt 53, Lisle, IL, 60532, USA
| | - Frederick I Archer
- Southwest Fisheries Science Center, NOAA/NMFS, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
| | - Laura D Bertola
- City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Jason G Bragg
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Mrs Macquaries Rd, Sydney, NSW, 2000, Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, University Drive, Bedford Park, SA, 5042, Australia
| | - Michael W Bruford
- School of Biosciences, Cardiff University, Cathays Park, Cardiff, CF10 3AX, Wales, UK
| | - Melinda A Coleman
- Department of Primary Industries, New South Wales Fisheries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW, 2450, Australia
| | - Robert Ekblom
- Wildlife Analysis Unit, Swedish Environmental Protection Agency, Blekholmsterrassen 36, Stockholm, SE-106 48, Sweden
| | - W Chris Funk
- Department of Biology, Graduate Degree in Ecology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO, 80523-1878, USA
| | - Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Carslaw Building, Sydney, NSW, 2006, Australia
| | - Brian K Hand
- Flathead Lake Biological Station, 32125 Bio Station Ln, Polson, MT, 59860, USA
| | - Rodolfo Jaffé
- Exponent, 15375 SE 30th Place, Suite 250, Bellevue, WA, 98007, USA
| | - Evelyn Jensen
- School of Natural and Environmental Sciences, Newcastle University, Agriculture Building, Newcastle Upon Tyne, NE1 7RU, UK
| | - Jeremy S Johnson
- Department of Environmental Studies, Prescott College, 220 Grove Avenue, Prescott, AZ, 86303, USA
| | - Francine Kershaw
- Natural Resources Defense Council, 40 West 20th Street, New York, NY, 10011, USA
| | - Libby Liggins
- School of Natural Sciences, Massey University, Ōtehā Rohe campus, Gate 4 Albany Highway, Auckland, Aotearoa, 0745, New Zealand
| | - Anna J MacDonald
- Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Joachim Mergeay
- Research Institute for Nature and Forest, Gaverstraat 4, 9500, Geraardsbergen, Belgium.,Aquatic Ecology, Evolution and Conservation, KULeuven, Charles Deberiotstraat 32, box 2439, 3000, Leuven, Belgium
| | - Joshua M Miller
- Department of Biological Sciences, MacEwan University, 10700 104 Avenue, Edmonton, AB, T5J 4S2, Canada
| | - Frank Muller-Karger
- College of Marine Science, University of South Florida, 140 7th Avenue South, Saint Petersburg, Florida, 33701, USA
| | - David O'Brien
- NatureScot, Great Glen House, Leachkin Road, Inverness, IV3 8NW, UK
| | - Ivan Paz-Vinas
- Laboratoire Evolution et Diversité Biologique, Université de Toulouse, CNRS, IRD, UPS, UMR-5174 EDB, 118 route de Narbonne, Toulouse, 31062, France
| | - Kevin M Potter
- Department of Forestry and Environmental Resources, North Carolina State University, 3041 Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Orly Razgour
- Biosciences, University of Exeter, Streatham Campus, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre- Fondazione Edmund Mach, Via E. Mach, 1, San Michele all'Adige, 38010, (TN), Italy
| | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, USA
| |
Collapse
|
13
|
Marques AJD, Hanson JO, Camacho-Sanchez M, Martínez-Solano I, Moritz C, Tarroso P, Velo-Antón G, Veríssimo A, Carvalho SB. Range-wide genomic scans and tests for selection identify non-neutral spatial patterns of genetic variation in a non-model amphibian species (Pelobates cultripes). CONSERV GENET 2022. [DOI: 10.1007/s10592-021-01425-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Qu Y, Zheng Y, Gong P, Shi J, Li L, Wang S, Luo C, Zhang H, Xu L. Estimation of wetland biodiversity based on the hydrological patterns and connectivity and its potential application in change detection and monitoring: A case study of the Sanjiang Plain, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150291. [PMID: 34818819 DOI: 10.1016/j.scitotenv.2021.150291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
A high biodiversity conservation value of a specific area generally indicates biodiversity priorities, making biodiversity conservation planning more reasonable. However, the spatial prioritization of biodiversity cannot easily indicate temporal changes because the data of many species are difficult to obtain in even a single period, let alone repeated surveys. Here, we show that the easily available wetland hydrological pattern and connectivity (HCP) variables are effective surrogates for the monitoring of biodiversity conservation value. We used the Systematic Conservation Planning (SCP) method to evaluate the historical biodiversity conservation value (BCV), represented by Irreplaceability Index, by integrating the predicted spatial distribution of biodiversity features in 1995. We then calculated the wetland HPC indexes in randomly setup samples within a certain radius and analysed the correlation between the BCV and HPC indexes with a regression method. Finally, we further simulated the numerical and spatial changes of the BCV in different periods to illustrate its variation regularity. We found that the BCV considerably decreased in the study area. In conclusion, we confirmed that the wetland HPC indexes are significantly correlated with and can simulate the BCV indicator. We further identified the spatial locations of these degraded areas and proposed conservation and restoration scenarios for the study area. This study verified the impacts of HPC changes on wetland biodiversity caused by human-induced land use change; it also provides a reference for long-term assessment of wetland biodiversity change. SIGNIFICANCE STATEMENT: Among other abilities, effective biodiversity conservation should have the abilities to both prioritize the conservation value and detect its spatial changes. However, the assessment of biodiversity conservation value needs sufficient and high-quality species occurrence data and multi-period comparison. Here, we find that the relatively well accessible wetland hydrological pattern and connectivity indexes are effective surrogates for the change detection of wetland biodiversity conservation value. This means that wetland biodiversity conservation planners can monitor the biodiversity conservation situations without resource-consuming investigations to obtain species' occurrence data and repeated prioritization of the conservation value.
Collapse
Affiliation(s)
- Yi Qu
- National and Local Joint Laboratory of Wetland and Ecological Conservation, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Yaomin Zheng
- School of International Economics and Management, Beijing Technology and Business University, Beijing 100048, China; Institute for Culture and Tourism Development, Beijing Technology and Business University, Beijing 100048, China.
| | - Peng Gong
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China; Ministry of Education Ecological Field Station for East Asian Migratory Birds, Beijing 100084, China; Institute for National Parks, Tsinghua University, Beijing 100084, China
| | - Jinlian Shi
- School of International Economics and Management, Beijing Technology and Business University, Beijing 100048, China; Institute for Culture and Tourism Development, Beijing Technology and Business University, Beijing 100048, China
| | - Liping Li
- National Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
| | - Shudong Wang
- National Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunyu Luo
- National and Local Joint Laboratory of Wetland and Ecological Conservation, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Hongqiang Zhang
- National and Local Joint Laboratory of Wetland and Ecological Conservation, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Lei Xu
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Xuereb A, D'Aloia CC, Andrello M, Bernatchez L, Fortin MJ. Incorporating putatively neutral and adaptive genomic data into marine conservation planning. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:909-920. [PMID: 32785955 DOI: 10.1111/cobi.13609] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/17/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
The availability of genomic data for an increasing number of species makes it possible to incorporate evolutionary processes into conservation plans. Recent studies show how genetic data can inform spatial conservation prioritization (SCP), but they focus on metrics of diversity and distinctness derived primarily from neutral genetic data sets. Identifying adaptive genetic markers can provide important information regarding the capacity for populations to adapt to environmental change. Yet, the effect of including metrics based on adaptive genomic data into SCP in comparison to more widely used neutral genetic metrics has not been explored. We used existing genomic data on a commercially exploited species, the giant California sea cucumber (Parastichopus californicus), to perform SCP for the coastal region of British Columbia (BC), Canada. Using a RAD-seq data set for 717 P. californicus individuals across 24 sampling locations, we identified putatively adaptive (i.e., candidate) single nucleotide polymorphisms (SNPs) based on genotype-environment associations with seafloor temperature. We calculated various metrics for both neutral and candidate SNPs and compared SCP outcomes with independent metrics and combinations of metrics. Priority areas varied depending on whether neutral or candidate SNPs were used and on the specific metric used. For example, targeting sites with a high frequency of warm-temperature-associated alleles to support persistence under future warming prioritized areas in the southern coastal region. In contrast, targeting sites with high expected heterozygosity at candidate loci to support persistence under future environmental uncertainty prioritized areas in the north. When combining metrics, all scenarios generated intermediate solutions, protecting sites that span latitudinal and thermal gradients. Our results demonstrate that distinguishing between neutral and adaptive markers can affect conservation solutions and emphasize the importance of defining objectives when choosing among various genomic metrics for SCP.
Collapse
Affiliation(s)
- Amanda Xuereb
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Cassidy C D'Aloia
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB, E2L 4L5, Canada
| | - Marco Andrello
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes, Université Laval, 1030 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Marie-Josée Fortin
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
16
|
Marinoni L, Parra Quijano M, Zabala JM, Pensiero JF, Iriondo JM. Spatiotemporal seed transfer zones as an efficient restoration strategy in response to climate change. Ecosphere 2021. [DOI: 10.1002/ecs2.3462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- L. Marinoni
- Programa de Documentación, Conservación y Valoración de la Flora Nativa (PRODOCOVA) Facultad de Ciencias Agrarias Universidad Nacional del Litoral Kreder 2805 Esperanza Santa Fe3080Argentina
- Consejo de Nacional de Investigaciones Científicas y Técnicas Ciudad Autónoma de Buenos Aires Argentina
| | - M. Parra Quijano
- Departamento de Agronomía Universidad Nacional de Colombia sede Bogotá Ciudad Universitaria Bogota D.C. Colombia
| | - J. M. Zabala
- Programa de Documentación, Conservación y Valoración de la Flora Nativa (PRODOCOVA) Facultad de Ciencias Agrarias Universidad Nacional del Litoral Kreder 2805 Esperanza Santa Fe3080Argentina
- Consejo de Nacional de Investigaciones Científicas y Técnicas Ciudad Autónoma de Buenos Aires Argentina
| | - J. F. Pensiero
- Programa de Documentación, Conservación y Valoración de la Flora Nativa (PRODOCOVA) Facultad de Ciencias Agrarias Universidad Nacional del Litoral Kreder 2805 Esperanza Santa Fe3080Argentina
- Consejo de Nacional de Investigaciones Científicas y Técnicas Ciudad Autónoma de Buenos Aires Argentina
| | - J. M. Iriondo
- Área de Biodiversidad y Conservación ESCET Universidad Rey Juan Carlos Mostoles, Madrid Spain
| |
Collapse
|
17
|
N Di Santo L, Hamilton JA. Using environmental and geographic data to optimize ex situ collections and preserve evolutionary potential. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:733-744. [PMID: 32519757 DOI: 10.1111/cobi.13568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 05/26/2023]
Abstract
Maintenance of biodiversity through seed banks and botanical gardens, where the wealth of species' genetic variation may be preserved ex situ, is a major goal of conservation. However, challenges can persist in optimizing ex situ collections if trade-offs exist among cost, effort, and conserving species evolutionary potential, particularly when genetic data are not available. We evaluated the genetic consequences of population preservation informed by geographic (isolation by distance [IBD]) and environmental (isolation by environment [IBE]) distance for ex situ collections for which population provenance is available. We used 19 genetic and genomic data sets from 15 plant species to assess the proportion of population genetic differentiation explained by geographic and environmental factors and to simulate ex situ collections prioritizing source populations based on pairwise geographic distance, environmental distance, or both. Specifically, we tested the impact prioritizing sampling based on these distances may have on the capture of neutral, functional, or putatively adaptive genetic diversity and differentiation. Individually, IBD and IBE explained limited population genetic differences across all 3 genetic marker classes (IBD, 10-16%; IBE, 1-5.5%). Together, they explained a substantial proportion of population genetic differences for functional (45%) and adaptive (71%) variation. Simulated ex situ collections revealed that inclusion of IBD, IBE, or both increased allelic diversity and genetic differentiation captured among populations, particularly for loci that may be important for adaptation. Thus, prioritizing population collections based on environmental and geographic distance data can optimize genetic variation captured ex situ. For the vast majority of plant species for which there is no genetic information, these data are invaluable to conservation because they can guide preservation of genetic variation needed to maintain evolutionary potential within collections.
Collapse
Affiliation(s)
- Lionel N Di Santo
- Department of Biological Sciences, North Dakota State University, Fargo, ND, U.S.A
| | - Jill A Hamilton
- Department of Biological Sciences, North Dakota State University, Fargo, ND, U.S.A
| |
Collapse
|
18
|
Hanson JO, Veríssimo A, Velo‐Antón G, Marques A, Camacho‐Sanchez M, Martínez‐Solano Í, Gonçalves H, Sequeira F, Possingham HP, Carvalho SB. Evaluating surrogates of genetic diversity for conservation planning. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:634-642. [PMID: 32761662 PMCID: PMC8048567 DOI: 10.1111/cobi.13602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 05/13/2023]
Abstract
Protected-area systems should conserve intraspecific genetic diversity. Because genetic data require resources to obtain, several approaches have been proposed for generating plans for protected-area systems (prioritizations) when genetic data are not available. Yet such surrogate-based approaches remain poorly tested. We evaluated the effectiveness of potential surrogate-based approaches based on microsatellite genetic data collected across the Iberian Peninsula for 7 amphibian and 3 reptilian species. Long-term environmental suitability did not effectively represent sites containing high genetic diversity (allelic richness). Prioritizations based on long-term environmental suitability had similar performance to random prioritizations. Geographic distances and resistance distances based on contemporary environmental suitability were not always effective surrogates for identification of combinations of sites that contain individuals with different genetic compositions. Our results demonstrate that population genetic data based on commonly used neutral markers can inform prioritizations, and we could not find an adequate substitute. Conservation planners need to weigh the potential benefits of genetic data against their acquisition costs.
Collapse
Affiliation(s)
- Jeffrey O. Hanson
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
| | - Ana Veríssimo
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
| | - Guillermo Velo‐Antón
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
| | - Adam Marques
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
| | - Miguel Camacho‐Sanchez
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
| | - Íñigo Martínez‐Solano
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
- Museo Nacional de Ciencias Naturales‐CSICCalle de José Gutiérrez Abascal2Madrid28006Spain
| | - Helena Gonçalves
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
- Museu de História Natural e da CiênciaUniversidade do PortoPraça Gomes TeixeiraPorto4099‐002Portugal
| | - Fernando Sequeira
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
| | - Hugh P. Possingham
- The Nature ConservancyMinneapolisMN55415U.S.A.
- Centre for Biodiversity and Conservation Science, School of Biological SciencesThe University of QueenslandBrisbaneQLD 4072Australia
| | - Silvia B. Carvalho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
| |
Collapse
|
19
|
Do We Need to Identify Adaptive Genetic Variation When Prioritizing Populations for Conservation? CONSERV GENET 2021. [DOI: 10.1007/s10592-020-01327-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Bublyk O, Parnikoza I, Kunakh V. Assessing the Levels of Polymorphism and Differentiation in Iris pumila L. Populations Using Three Types of PCR Markers. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Khoury CK, Carver D, Greene SL, Williams KA, Achicanoy HA, Schori M, León B, Wiersema JH, Frances A. Crop wild relatives of the United States require urgent conservation action. Proc Natl Acad Sci U S A 2020; 117:33351-33357. [PMID: 33318205 PMCID: PMC7776777 DOI: 10.1073/pnas.2007029117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The contributions of crop wild relatives (CWR) to food security depend on their conservation and accessibility for use. The United States contains a diverse native flora of CWR, including those of important cereal, fruit, nut, oil, pulse, root and tuber, and vegetable crops, which may be threatened in their natural habitats and underrepresented in plant conservation repositories. To determine conservation priorities for these plants, we developed a national inventory, compiled occurrence information, modeled potential distributions, and conducted threat assessments and conservation gap analyses for 600 native taxa. We found that 7.1% of the taxa may be critically endangered in their natural habitats, 50% may be endangered, and 28% may be vulnerable. We categorized 58.8% of the taxa as of urgent priority for further action, 37% as high priority, and 4.2% as medium priority. Major ex situ conservation gaps were identified for 93.3% of the wild relatives (categorized as urgent or high priority), with 83 taxa absent from conservation repositories, while 93.1% of the plants were equivalently prioritized for further habitat protection. Various taxonomic richness hotspots across the US represent focal regions for further conservation action. Related needs include facilitating greater access to and characterization of these cultural-genetic-natural resources and raising public awareness of their existence, value, and plight.
Collapse
Affiliation(s)
- Colin K Khoury
- National Laboratory for Genetic Resources Preservation, US Department of Agriculture, Agricultural Research Service, Fort Collins, CO 80521;
- International Center for Tropical Agriculture, 763537 Cali, Colombia
- Department of Biology, Saint Louis University, St. Louis, MO 63103
| | - Daniel Carver
- National Laboratory for Genetic Resources Preservation, US Department of Agriculture, Agricultural Research Service, Fort Collins, CO 80521
- Geospatial Centroid, Colorado State University, Fort Collins, CO 80523-1019
| | - Stephanie L Greene
- National Laboratory for Genetic Resources Preservation, US Department of Agriculture, Agricultural Research Service, Fort Collins, CO 80521
| | - Karen A Williams
- National Germplasm Resources Laboratory, US Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705-2350
| | | | - Melanie Schori
- National Germplasm Resources Laboratory, US Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705-2350
| | - Blanca León
- Museo de Historia Natural Universidad Nacional Mayor de San Marcos, Lima 14, Peru
- Department of Geography and the Environment, The University of Texas at Austin, Austin, TX 78712
| | - John H Wiersema
- Smithsonian National Museum of Natural History, Washington, DC 20560
| | | |
Collapse
|
22
|
Nielsen ES, Henriques R, Beger M, Toonen RJ, von der Heyden S. Multi-model seascape genomics identifies distinct environmental drivers of selection among sympatric marine species. BMC Evol Biol 2020; 20:121. [PMID: 32938400 PMCID: PMC7493327 DOI: 10.1186/s12862-020-01679-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As global change and anthropogenic pressures continue to increase, conservation and management increasingly needs to consider species' potential to adapt to novel environmental conditions. Therefore, it is imperative to characterise the main selective forces acting on ecosystems, and how these may influence the evolutionary potential of populations and species. Using a multi-model seascape genomics approach, we compare putative environmental drivers of selection in three sympatric southern African marine invertebrates with contrasting ecology and life histories: Cape urchin (Parechinus angulosus), Common shore crab (Cyclograpsus punctatus), and Granular limpet (Scutellastra granularis). RESULTS Using pooled (Pool-seq), restriction-site associated DNA sequencing (RAD-seq), and seven outlier detection methods, we characterise genomic variation between populations along a strong biogeographical gradient. Of the three species, only S. granularis showed significant isolation-by-distance, and isolation-by-environment driven by sea surface temperatures (SST). In contrast, sea surface salinity (SSS) and range in air temperature correlated more strongly with genomic variation in C. punctatus and P. angulosus. Differences were also found in genomic structuring between the three species, with outlier loci contributing to two clusters in the East and West Coasts for S. granularis and P. angulosus, but not for C. punctatus. CONCLUSION The findings illustrate distinct evolutionary potential across species, suggesting that species-specific habitat requirements and responses to environmental stresses may be better predictors of evolutionary patterns than the strong environmental gradients within the region. We also found large discrepancies between outlier detection methodologies, and thus offer a novel multi-model approach to identifying the principal environmental selection forces acting on species. Overall, this work highlights how adding a comparative approach to seascape genomics (both with multiple models and species) can elucidate the intricate evolutionary responses of ecosystems to global change.
Collapse
Affiliation(s)
- Erica S Nielsen
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Romina Henriques
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.,Technical University of Denmark, National Institute of Aquatic Resources, Section for Marine Living Resources, Velsøvej 39, 8600, Silkeborg, Denmark
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
23
|
Hanson JO, Marques A, Veríssimo A, Camacho‐Sanchez M, Velo‐Antón G, Martínez‐Solano Í, Carvalho SB. Conservation planning for adaptive and neutral evolutionary processes. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeffrey O. Hanson
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Vairão Portugal
| | - Adam Marques
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Vairão Portugal
| | - Ana Veríssimo
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Vairão Portugal
| | - Miguel Camacho‐Sanchez
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Vairão Portugal
| | - Guillermo Velo‐Antón
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Vairão Portugal
| | - Íñigo Martínez‐Solano
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Vairão Portugal
- Museo Nacional de Ciencias Naturales‐MNCN‐CSIC Madrid Spain
| | - Silvia B. Carvalho
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Vairão Portugal
| |
Collapse
|
24
|
Blanchet S, Prunier JG, Paz‐Vinas I, Saint‐Pé K, Rey O, Raffard A, Mathieu‐Bégné E, Loot G, Fourtune L, Dubut V. A river runs through it: The causes, consequences, and management of intraspecific diversity in river networks. Evol Appl 2020; 13:1195-1213. [PMID: 32684955 PMCID: PMC7359825 DOI: 10.1111/eva.12941] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023] Open
Abstract
Rivers are fascinating ecosystems in which the eco-evolutionary dynamics of organisms are constrained by particular features, and biologists have developed a wealth of knowledge about freshwater biodiversity patterns. Over the last 10 years, our group used a holistic approach to contribute to this knowledge by focusing on the causes and consequences of intraspecific diversity in rivers. We conducted empirical works on temperate permanent rivers from southern France, and we broadened the scope of our findings using experiments, meta-analyses, and simulations. We demonstrated that intraspecific (genetic) diversity follows a spatial pattern (downstream increase in diversity) that is repeatable across taxa (from plants to vertebrates) and river systems. This pattern can result from interactive processes that we teased apart using appropriate simulation approaches. We further experimentally showed that intraspecific diversity matters for the functioning of river ecosystems. It indeed affects not only community dynamics, but also key ecosystem functions such as litter degradation. This means that losing intraspecific diversity in rivers can yield major ecological effects. Our work on the impact of multiple human stressors on intraspecific diversity revealed that-in the studied river systems-stocking of domestic (fish) strains strongly and consistently alters natural spatial patterns of diversity. It also highlighted the need for specific analytical tools to tease apart spurious from actual relationships in the wild. Finally, we developed original conservation strategies at the basin scale based on the systematic conservation planning framework that appeared pertinent for preserving intraspecific diversity in rivers. We identified several important research avenues that should further facilitate our understanding of patterns of local adaptation in rivers, the identification of processes sustaining intraspecific biodiversity-ecosystem function relationships, and the setting of reliable conservation plans.
Collapse
Affiliation(s)
- Simon Blanchet
- Centre National pour la Recherche ScientifiqueStation d'Écologie Théorique et Expérimentale du CNRS à MoulisUniversité Toulouse III Paul SabatierUMR‐5321MoulisFrance
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
| | - Jérôme G. Prunier
- Centre National pour la Recherche ScientifiqueStation d'Écologie Théorique et Expérimentale du CNRS à MoulisUniversité Toulouse III Paul SabatierUMR‐5321MoulisFrance
| | - Ivan Paz‐Vinas
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
- Laboratoire Ecologie Fonctionnelle et EnvironnementUniversité de ToulouseUPSCNRSINPUMR‐5245 ECOLABToulouseFrance
| | - Keoni Saint‐Pé
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
| | - Olivier Rey
- IHPEUniv. MontpellierCNRSIfremerUniv. Perpignan Via DomitiaPerpignanFrance
| | - Allan Raffard
- Centre National pour la Recherche ScientifiqueStation d'Écologie Théorique et Expérimentale du CNRS à MoulisUniversité Toulouse III Paul SabatierUMR‐5321MoulisFrance
| | - Eglantine Mathieu‐Bégné
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
- IHPEUniv. MontpellierCNRSIfremerUniv. Perpignan Via DomitiaPerpignanFrance
| | - Géraldine Loot
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
| | - Lisa Fourtune
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
- PEIRENEEA 7500Université de LimogesLimogesFrance
| | - Vincent Dubut
- Aix Marseille UniversitéCNRSIRDAvignon UniversitéIMBEMarseilleFrance
| |
Collapse
|
25
|
Abstract
Environmental change is rapidly accelerating, and many species will need to adapt to survive1. Ensuring that protected areas cover populations across a broad range of environmental conditions could safeguard the processes that lead to such adaptations1-3. However, international conservation policies have largely neglected these considerations when setting targets for the expansion of protected areas4. Here we show that-of 19,937 vertebrate species globally5-8-the representation of environmental conditions across their habitats in protected areas (hereafter, niche representation) is inadequate for 4,836 (93.1%) amphibian, 8,653 (89.5%) bird and 4,608 (90.9%) terrestrial mammal species. Expanding existing protected areas to cover these gaps would encompass 33.8% of the total land surface-exceeding the current target of 17% that has been adopted by governments. Priority locations for expanding the system of protected areas to improve niche representation occur in global biodiversity hotspots9, including Colombia, Papua New Guinea, South Africa and southwest China, as well as across most of the major land masses of the Earth. Conversely, we also show that planning for the expansion of protected areas without explicitly considering environmental conditions would marginally reduce the land area required to 30.7%, but that this would lead to inadequate niche representation for 7,798 (39.1%) species. As the governments of the world prepare to renegotiate global conservation targets, policymakers have the opportunity to help to maintain the adaptive potential of species by considering niche representation within protected areas1,2.
Collapse
|
26
|
Phair NL, Toonen RJ, Knapp I, von der Heyden S. Shared genomic outliers across two divergent population clusters of a highly threatened seagrass. PeerJ 2019; 7:e6806. [PMID: 31106053 PMCID: PMC6497040 DOI: 10.7717/peerj.6806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
The seagrass, Zostera capensis, occurs across a broad stretch of coastline and wide environmental gradients in estuaries and sheltered bays in southern and eastern Africa. Throughout its distribution, habitats are highly threatened and poorly protected, increasing the urgency of assessing the genomic variability of this keystone species. A pooled genomic approach was employed to obtain SNP data and examine neutral genomic variation and to identify potential outlier loci to assess differentiation across 12 populations across the ∼9,600 km distribution of Z. capensis. Results indicate high clonality and low genomic diversity within meadows, which combined with poor protection throughout its range, increases the vulnerability of this seagrass to further declines or local extinction. Shared variation at outlier loci potentially indicates local adaptation to temperature and precipitation gradients, with Isolation-by-Environment significantly contributing towards shaping spatial variation in Z. capensis. Our results indicate the presence of two population clusters, broadly corresponding to populations on the west and east coasts, with the two lineages shaped only by frequency differences of outlier loci. Notably, ensemble modelling of suitable seagrass habitat provides evidence that the clusters are linked to historical climate refugia around the Last Glacial Maxi-mum. Our work suggests a complex evolutionary history of Z. capensis in southern and eastern Africa that will require more effective protection in order to safeguard this important ecosystem engineer into the future.
Collapse
Affiliation(s)
- Nikki Leanne Phair
- Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | - Robert John Toonen
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawai’i, United States of America
| | - Ingrid Knapp
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawai’i, United States of America
| | - Sophie von der Heyden
- Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
27
|
Paz-Vinas I, Loot G, Hermoso V, Veyssière C, Poulet N, Grenouillet G, Blanchet S. Systematic conservation planning for intraspecific genetic diversity. Proc Biol Sci 2019; 285:rspb.2017.2746. [PMID: 29695444 DOI: 10.1098/rspb.2017.2746] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/04/2018] [Indexed: 11/12/2022] Open
Abstract
Intraspecific diversity informs the demographic and evolutionary histories of populations, and should be a main conservation target. Although approaches exist for identifying relevant biological conservation units, attempts to identify priority conservation areas for intraspecific diversity are scarce, especially within a multi-specific framework. We used neutral molecular data on six European freshwater fish species (Squalius cephalus, Phoxinus phoxinus, Barbatula barbatula, Gobio occitaniae, Leuciscus burdigalensis and Parachondrostoma toxostoma) sampled at the riverscape scale (i.e. the Garonne-Dordogne river basin, France) to determine hot- and coldspots of genetic diversity, and to identify priority conservation areas using a systematic conservation planning approach. We demonstrate that systematic conservation planning is efficient for identifying priority areas representing a predefined part of the total genetic diversity of a whole landscape. With the exception of private allelic richness (PA), classical genetic diversity indices (allelic richness, genetic uniqueness) were poor predictors for identifying priority areas. Moreover, we identified weak surrogacies among conservation solutions found for each species, implying that conservation solutions are highly species-specific. Nonetheless, we showed that priority areas identified using intraspecific genetic data from multiple species provide more effective conservation solutions than areas identified for single species or on the basis of traditional taxonomic criteria.
Collapse
Affiliation(s)
- Ivan Paz-Vinas
- CNRS, UPS, IRD; UMR-5174 EDB, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 4, France .,Aix-Marseille Université, CNRS, IRD, Avignon Université; UMR-7263 IMBE, 3 place Victor Hugo, 13331 Marseille cedex 3, France.,CNRS, ENTPE; UMR-5023 LEHNA, Université de Lyon, 6 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Géraldine Loot
- CNRS, UPS, IRD; UMR-5174 EDB, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 4, France.,Institut Universitaire de France, Paris, France
| | - Virgilio Hermoso
- Centre Tecnologic Forestal de Catalunya, Crta. Sant Llorenc de Monunys, Km 2, 25280 Solsona, Lleida, Spain
| | - Charlotte Veyssière
- CNRS, UPS, IRD; UMR-5174 EDB, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 4, France
| | - Nicolas Poulet
- French Biodiversity Agency, pôle écohydraulique, Allée du professeur Camille Soula, 31400 Toulouse, France
| | - Gaël Grenouillet
- CNRS, UPS, IRD; UMR-5174 EDB, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 4, France.,Institut Universitaire de France, Paris, France
| | - Simon Blanchet
- CNRS, UPS, IRD; UMR-5174 EDB, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex 4, France.,CNRS, Station d'Écologie Théorique et Expérimentale, UMR-5321, 09200 Moulis, France
| |
Collapse
|
28
|
Hanson JO, Fuller RA, Rhodes JR. Conventional methods for enhancing connectivity in conservation planning do not always maintain gene flow. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeffrey O. Hanson
- School of Biological SciencesThe University of Queensland Brisbane Queensland Australia
| | - Richard A. Fuller
- School of Biological SciencesThe University of Queensland Brisbane Queensland Australia
| | - Jonathan R. Rhodes
- School of Earth and Environmental SciencesThe University of Queensland Brisbane Queensland Australia
| |
Collapse
|
29
|
Shryock DF, DeFalco LA, Esque TC. Spatial decision-support tools to guide restoration and seed-sourcing in the Desert Southwest. Ecosphere 2018. [DOI: 10.1002/ecs2.2453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Daniel F. Shryock
- U.S. Geological Survey; Western Ecological Research Center; 160 North Stephanie Street Henderson Nevada 89074 USA
| | - Lesley A. DeFalco
- U.S. Geological Survey; Western Ecological Research Center; 160 North Stephanie Street Henderson Nevada 89074 USA
| | - Todd C. Esque
- U.S. Geological Survey; Western Ecological Research Center; 160 North Stephanie Street Henderson Nevada 89074 USA
| |
Collapse
|
30
|
Reeves PA, Richards CM. Biases induced by using geography and environment to guide ex situ conservation. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1098-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Improving conservation policy with genomics: a guide to integrating adaptive potential into U.S. Endangered Species Act decisions for conservation practitioners and geneticists. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1096-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Dalongeville A, Benestan L, Mouillot D, Lobreaux S, Manel S. Combining six genome scan methods to detect candidate genes to salinity in the Mediterranean striped red mullet (Mullus surmuletus). BMC Genomics 2018; 19:217. [PMID: 29580201 PMCID: PMC5870821 DOI: 10.1186/s12864-018-4579-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/02/2018] [Indexed: 12/24/2022] Open
Abstract
Background Adaptive genomics may help predicting how a species will respond to future environmental changes. Genomic signatures of local adaptation in marine organisms are often driven by environmental selective agents impacting the physiology of organisms. With one of the highest salinity level, the Mediterranean Sea provides an excellent model to investigate adaptive genomic divergence underlying salinity adaptation. In the present study, we combined six genome scan methods to detect potential genomic signal of selection in the striped red mullet (Mullus surmuletus) populations distributed across a wide salinity gradient. We then blasted these outlier sequences on published fish genomic resources in order to identify relevant potential candidate genes for salinity adaptation in this species. Results Altogether, the six genome scan methods found 173 outliers out of 1153 SNPs. Using a blast approach, we discovered four candidate SNPs belonging to three genes potentially implicated in adaptation of M. surmuletus to salinity. The allele frequency at one of these SNPs significantly increases with salinity independently from the effect of longitude. The gene associated to this SNP, SOCS2, encodes for an inhibitor of cytokine and has previously been shown to be expressed under osmotic pressure in other marine organisms. Additionally, our results showed that genome scan methods not correcting for spatial structure can still be an efficient strategy to detect potential footprints of selection, when the spatial and environmental variation are confounded, and then, correcting for spatial structure in a second step represents a conservative method. Conclusion The present outcomes bring evidences of potential genomic footprint of selection, which suggest an adaptive response of M. surmuletus to salinity conditions in the Mediterranean Sea. Additional genomic data such as sequencing of a full-genome and transcriptome analyses of gene expression would provide new insights regarding the possibility that some striped red mullet populations are locally adapted to their saline environment. Electronic supplementary material The online version of this article (10.1186/s12864-018-4579-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicia Dalongeville
- CEFE UMR 5175, EPHE, PSL Research University, CNRS, UM, SupAgro, IRD, INRA, 34293, Montpellier, France. .,MARBEC UMR 9190, CNRS - IRD - Université Montpellier - Ifremer, 34095, Montpellier, France.
| | - Laura Benestan
- Departement de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - David Mouillot
- MARBEC UMR 9190, CNRS - IRD - Université Montpellier - Ifremer, 34095, Montpellier, France
| | - Stephane Lobreaux
- Laboratoire d'Ecologie Alpine, UMR-CNRS 5553, Université Joseph Fourier, BP53 38041, Grenoble, France
| | - Stéphanie Manel
- CEFE UMR 5175, EPHE, PSL Research University, CNRS, UM, SupAgro, IRD, INRA, 34293, Montpellier, France
| |
Collapse
|
33
|
Quest for adequate biodiversity surrogates in a time of urgency. Proc Natl Acad Sci U S A 2017; 114:12638-12640. [PMID: 29142007 DOI: 10.1073/pnas.1717722114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|