1
|
Park J, Hagan K, DuBose TB, Maldonado RS, McNabb RP, Dubra A, Izatt JA, Farsiu S. Deep compressed multichannel adaptive optics scanning light ophthalmoscope. SCIENCE ADVANCES 2025; 11:eadr5912. [PMID: 40344063 PMCID: PMC12063668 DOI: 10.1126/sciadv.adr5912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 04/07/2025] [Indexed: 05/11/2025]
Abstract
Adaptive optics scanning light ophthalmoscopy (AOSLO) reveals individual retinal cells and their function, microvasculature, and micropathologies in vivo. As compared to the single-channel offset pinhole and two-channel split-detector nonconfocal AOSLO designs, by providing multidirectional imaging capabilities, a recent generation of multidetector and (multi-)offset aperture AOSLO modalities has been demonstrated to provide critical information about retinal microstructures. However, increasing detection channels requires expensive optical components and/or critically increases imaging time. To address this issue, we present an innovative combination of machine learning and optics as an integrated technology to compressively capture 12 nonconfocal channel AOSLO images simultaneously. Imaging of healthy participants and diseased subjects using the proposed deep compressed multichannel AOSLO showed enhanced visualization of rods, cones, and mural cells with over an order-of-magnitude improvement in imaging speed as compared to conventional offset aperture imaging. To facilitate the adaptation and integration with other in vivo microscopy systems, we made optical design, acquisition, and computational reconstruction codes open source.
Collapse
Affiliation(s)
- Jongwan Park
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kristen Hagan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Ramiro S. Maldonado
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Ryan P. McNabb
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Alfredo Dubra
- Byers Eye Institute, Stanford University, Stanford, CA, USA
| | - Joseph A. Izatt
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Langlo CS, Amin A, Park SS. Optical coherence tomography retinal imaging: narrative review of technological advancements and clinical applications. ANNALS OF TRANSLATIONAL MEDICINE 2025; 13:17. [PMID: 40438521 PMCID: PMC12106120 DOI: 10.21037/atm-24-211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/24/2025] [Indexed: 06/01/2025]
Abstract
Background and Objective Optical coherence tomography (OCT) is a non-invasive imaging tool that can provide rapid cross-sectional images of the retina, cornea, and optic nerve head in live patients. The objective of this review is to provide an overview of the technical advancements and current clinical applications of OCT for managing patients with retinal disorders. Methods Narrative overview synthesizing the findings of literature retrieved from searches of computerized database, authoritative texts and authors' clinical experience and expertise. Key Content and Findings Unlike the first-generation time-domain OCT (TD-OCT) instruments, the newer spectral-domain OCT (SD-OCT) instruments use a broadband light source to increase axial image resolution. In addition, the decreased image acquisition time also increases the transverse image resolution, reduces motion artifacts, and allows serial cross-sectional images of the retina to be obtained rapidly. A three-dimensional (3D) image of the retina, reconstructed using serial two-dimensional (2D) OCT images, can be used to quantitate retinal thickness and volume and perform analysis of retinal topography. Currently, commercial SD-OCT instruments are used routinely in clinical practice to obtain morphologic information used to diagnose and manage patients with various retinal disorders including macular degeneration and diabetic retinopathy. Newer swept-source OCT technology with faster image acquisition, provides wider field imaging of the peripheral retina. SD-OCT instruments can be incorporated into surgical microscopes to allow imaging of the retina during retinal surgery so that morphologic changes in the retina from surgical maneuvers can be observed in real time. More recently, OCT angiography (OCTA) has been developed which allows rapid, non-invasive 3D imaging of retinal and choroidal vascular flow. This is achieved by processing rapid serial SD-OCT images to detect movement of blood cells within vessels. Research has been done to further improve image resolution of SD-OCT to a cellular level by adding adaptive optics (AO) technology. The latest in SD-OCT technology is optoretinography (ORG), a technique to derive functional information from OCT images of the retina. Conclusions Advancement in OCT technology has made it possible to obtain high resolution retinal images that can provide anatomic, physiologic and functional information of the retina in live patients.
Collapse
Affiliation(s)
- Christopher S Langlo
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, USA
| | - Aana Amin
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, USA
| | - Susanna S Park
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
3
|
Ye Z, Chan LLH. Effectiveness of aperiodic retinal stimulation in improving temporal visual cortical response. J Neural Eng 2025; 22:026062. [PMID: 40174610 DOI: 10.1088/1741-2552/adc83c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/02/2025] [Indexed: 04/04/2025]
Abstract
Objective.Visual prostheses can provide partial visual function in patients with retinal degenerative diseases. However, in clinical trials, patients implanted with retinal prostheses have reported perceptual fading, which is thought to be related to response desensitization. Additionally, natural stimuli consist of aperiodic events across a short temporal span, whereas periodic stimulation (fixed inter-pulse intervals (IPIs)) is the standard approach in retinal prosthesis research. In this study, we investigated how aperiodic stimulation of the epiretinal surface affects electrically evoked responses in the primary visual cortex (V1) compared with periodic stimulation.Approach. In vivoexperiments were conducted in healthy and retinal-degenerated rats. Periodic stimulation consisted of constant IPIs, whereas aperiodic stimulation was provided by mixed IPIs. We calculated the spike time tiling coefficient to assess response consistency across trials, the significant response ratio, and the spike rate to analyze response desensitization.Main results.The results showed a significantly lower consistency of cortical responses in retinal degenerated rats than in healthy rats at 5 Hz. The consistency of the response to periodic stimulation decreased considerably as the frequency was increased to 10 Hz and 20 Hz in both groups and was greatly improved by applying aperiodic stimulation. In addition, aperiodic stimulation evoked a significantly higher spike rate in response to continuous stimulation at high frequencies (e.g. 10 and 20 Hz).Significance. By applying electrical stimulation with varying IPIs directly on the epiretinal surface, we observed promising results in terms of enhancing cortical response consistency and reducing desensitization. This finding presents a potential approach to enhance the effectiveness of retinal prostheses.
Collapse
Affiliation(s)
- Zixin Ye
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Leanne Lai Hang Chan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China, People's Republic of China
| |
Collapse
|
4
|
Sun G, Xu A, Yang X, Zhang L, Wang W, Sawut A, Xu W, Wang X, Yi Z, Zheng H, Chen C. UNCOVERING HIDDEN PATTERNS: Macrophage-Like Cell Distribution Across Different Stages of Posterior Vitreous Detachment. Retina 2025; 45:639-648. [PMID: 39652822 DOI: 10.1097/iae.0000000000004358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
PURPOSE To investigate the distribution of macrophage-like cells (MLCs) across different stages of posterior vitreous detachment (PVD). METHODS A total of 168 eyes from 168 subjects were included. MLCs were imaged by acquiring en face OCT images at depths of 5 µ m to 10 µ m on the inner limiting membrane, and using B-scan OCT. Participants were categorized into three groups according to the degree of PVD: Group A for Stage 1a PVD, Group B for Stages 1b and 2 PVD, and Group C for Stages 3 and 4 PVD. Localized vitreoretinal relationships were categorized into vitreoretinal adhesions, Type 1a PVD, where the vitreous and retina are not clearly separated, and Type 1b PVD, where there is clear separation. RESULTS MLC density was sequentially lower in Groups A, B, and C. Multiple linear regression analysis revealed that MLC density was correlated with both the PVD group and age (both P < 0.001). In Group A, MLC density was significantly higher in Type 1a PVD than in the vitreoretinal adhesion area. In Group B, the distribution of MLCs in the vitreoretinal adhesion region was significantly less than in Type 1a PVD and Type 1b PVD. MLCs were more sparsely distributed in Group C. CONCLUSION MLCs exhibit distinct distribution patterns in various stages of PVD.
Collapse
Affiliation(s)
- Gongpeng Sun
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Amin Xu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xueying Yang
- Department of Ophthalmology, Jingzhou Center Hospital, Jingzhou, China ; and
| | - Lu Zhang
- Department of Ophthalmology, The Central Hospital of Wuhan, Wuhan, China
| | - Wenyu Wang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Abdulla Sawut
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weichen Xu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoling Wang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuohuizi Yi
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongmei Zheng
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changzheng Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Leitão Guerra RL, Leitão Guerra CL, Meirelles MGB, Barbosa GCS, Novais EA, Badaró E, Lucatto LFA, Roisman L. Exploring retinal conditions through blue light reflectance imaging. Prog Retin Eye Res 2025; 105:101326. [PMID: 39756669 DOI: 10.1016/j.preteyeres.2024.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Blue light reflectance (BLR) imaging offers a non-invasive, cost-effective method for evaluating retinal structures by analyzing the reflectance and absorption characteristics of the inner retinal layers. By leveraging blue light's interaction with retinal tissues, BLR enhances visualization beyond the retinal nerve fiber layer, improving detection of structures such as the outer plexiform layer and macular pigment. Its diagnostic utility has been demonstrated in distinct retinal conditions, including hyperreflectance in early macular telangiectasia, hyporeflectance in non-perfused areas indicative of ischemia, identification of pseudodrusen patterns (notably the ribbon type), and detection of peripheral retinal tears and degenerative retinoschisis in eyes with reduced retinal pigment epithelial pigmentation. Best practices for image acquisition and interpretation are discussed, emphasizing standardization to minimize variability. Common artifacts and mitigation strategies are also addressed, ensuring image reliability. BLR's clinical utility, limitations, and future research directions are highlighted, particularly its potential in automated image analysis and quantitative assessment. Different BLR acquisition methods, such as fundus photography, confocal scanning laser ophthalmoscopy, and broad line fundus imaging, are evaluated for their respective advantages and limitations. As research advances, BLR's integration into multimodal workflows is expected to improve early detection and precise monitoring of retinal diseases.
Collapse
Affiliation(s)
- Ricardo Luz Leitão Guerra
- Department of Ophthalmology Leitão Guerra - Oftalmologia (Salvador, Brazil), Rua Rio de São Pedro, no 256 Graça, CEP 40.150-350, Salvador, (BA), Brazil; Orbit Ophthalmo Learning, Rua Rio de São Pedro, no 256 Graça, CEP 40.150-350, Salvador, (BA), Brazil
| | - Cezar Luz Leitão Guerra
- Department of Ophthalmology Leitão Guerra - Oftalmologia (Salvador, Brazil), Rua Rio de São Pedro, no 256 Graça, CEP 40.150-350, Salvador, (BA), Brazil
| | - Mariana Gouveia Bastos Meirelles
- Department of Ophthalmology Leitão Guerra - Oftalmologia (Salvador, Brazil), Rua Rio de São Pedro, no 256 Graça, CEP 40.150-350, Salvador, (BA), Brazil
| | - Gabriel Castilho Sandoval Barbosa
- Department of Ophthalmology, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, CEP: 01.246-903, São Paulo, (SP), Brazil
| | - Eduardo Amorim Novais
- Orbit Ophthalmo Learning, Rua Rio de São Pedro, no 256 Graça, CEP 40.150-350, Salvador, (BA), Brazil
| | - Emmerson Badaró
- Orbit Ophthalmo Learning, Rua Rio de São Pedro, no 256 Graça, CEP 40.150-350, Salvador, (BA), Brazil
| | - Luiz Filipe Adami Lucatto
- Orbit Ophthalmo Learning, Rua Rio de São Pedro, no 256 Graça, CEP 40.150-350, Salvador, (BA), Brazil
| | - Luiz Roisman
- Orbit Ophthalmo Learning, Rua Rio de São Pedro, no 256 Graça, CEP 40.150-350, Salvador, (BA), Brazil
| |
Collapse
|
6
|
Brunner E, Kunze L, Drexler W, Pollreisz A, Pircher M. Image Quality in Adaptive Optics Optical Coherence Tomography of Diabetic Patients. Diagnostics (Basel) 2025; 15:429. [PMID: 40002580 PMCID: PMC11854792 DOI: 10.3390/diagnostics15040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: An assessment of the retinal image quality in adaptive optics optical coherence tomography (AO-OCT) is challenging. Many factors influence AO-OCT imaging performance, leading to greatly varying imaging results, even in the same subject. The aim of this study is to introduce quantitative means for an assessment of AO-OCT image quality and to compare these with parameters retrieved from the pyramid wavefront sensor of the system. Methods: We used a spectral domain AO-OCT instrument to repetitively image six patients suffering from diabetic retinopathy over a time span of one year. The data evaluation consists of two volume acquisitions with a focus on the photoreceptor layer, each at five different retinal locations per visit; 7-8 visits per patient are included in this data analysis, resulting in a total of ~420 volumes. Results: A large variability in AO-OCT image quality is observed between subjects and between visits of the same subject. On average, the image quality does not depend on the measurement location. The data show a moderate correlation between the axial position of the volume recording and image quality. The correlation between pupil size and AO-OCT image quality is not linear. A weak correlation is found between the signal-to-noise ratio of the wavefront sensor image and the image quality. Conclusions: The introduced AO-OCT image quality metric gives useful insights into the performance of such a system. A longitudinal assessment of this metric, together with wavefront sensor data, is essential to identify factors influencing image quality and, in the next step, to optimize the performance of AO-OCT systems.
Collapse
Affiliation(s)
- Elisabeth Brunner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria; (E.B.); (W.D.)
| | - Laura Kunze
- Department of Ophthalmology and Optometry, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria; (L.K.); (A.P.)
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria; (E.B.); (W.D.)
| | - Andreas Pollreisz
- Department of Ophthalmology and Optometry, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria; (L.K.); (A.P.)
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Wien, Austria; (E.B.); (W.D.)
| |
Collapse
|
7
|
Vasilescu MA, Macovei ML. The Perspective of Using Optical Coherence Tomography in Ophthalmology: Present and Future Applications. Diagnostics (Basel) 2025; 15:402. [PMID: 40002553 PMCID: PMC11854452 DOI: 10.3390/diagnostics15040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Optical coherence tomography (OCT) imaging plays a major role in the field of diagnosing, monitoring, and treating ophthalmological diseases. Since its introduction in the early 1990s, OCT technology has continued to advance both in the direction of acquisition quality and technique. In this manuscript, we concentrate on actual and future applications of OCT in the ophthalmology field, reviewing multiple types of OCT techniques and systems, such as visible-light OCT, adaptative optics OCT, intraoperative OCT, wide-field OCT, and more. All of them allow better monitoring of ocular diseases, earlier and broader diagnosis, and a more suitable treatment. Furthermore, overviewing all these technologies could play a pivotal role in research, leading to an advance in understanding the pathophysiology of targeted diseases. Finally, the aim of the present review was to evaluate the technical advances in OCT and their actual and potential clinical applications.
Collapse
Affiliation(s)
- Mario A. Vasilescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania;
| | - Mioara L. Macovei
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania;
- Ophthalmology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
8
|
Bedggood P, Ding Y, Dierickx D, Dubra A, Metha A. Quantification of optical lensing by cellular structures in the living human eye. BIOMEDICAL OPTICS EXPRESS 2025; 16:473-498. [PMID: 39958845 PMCID: PMC11828430 DOI: 10.1364/boe.547734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 02/18/2025]
Abstract
Cells and other microscopic phase objects can be visualized in the living retina, non-invasively, using non-confocal light detection schemes in adaptive optics scanning light ophthalmoscopes (AOSLOs). There is not yet widespread agreement regarding the origin of image contrast, nor the best way to render multichannel images. Here, we present data to support the interpretation that variations in the intensity of non-confocal images approximate a direct linear mapping of the prismatic deflection of the scanned beam. We advance a simple geometric framework in which local 2D image gradients are used to estimate the spherocylindrical refractive power for each element of the tissue. This framework combines all available information from the non-confocal image channels simultaneously, reducing noise and directional bias. We show that image derivatives can be computed with a scalable, separable gradient operator that minimizes directional errors; this further mitigates noise and directional bias as compared with previous filtering approaches. Strategies to render the output of split-detector gradient operations have been recently described for the visualization of immune cells, blood flow, and photoreceptors; our framework encompasses these methods as rendering astigmatic refractive power. In addition to astigmatic power, we advocate the use of the mean spherical equivalent power, which appears to minimize artifacts even for highly directional micro-structures such as immune cell processes. We highlight examples of positive, negative, and astigmatic power that match expectations according to the known refractive indices and geometries of the relevant structures (for example, a blood vessel filled with plasma acts as a negatively powered cylindrical lens). The examples highlight the benefits of the proposed scheme for the visualization of diverse phase objects including rod and cone inner segments, immune cells near the inner limiting membrane, flowing blood cells, the intravascular cell-free layer, and anatomical details of the vessel wall.
Collapse
Affiliation(s)
- Phillip Bedggood
- Department of Optometry and Vision Sciences, University of Melbourne, 3010, Australia
| | - Yifu Ding
- Department of Optometry and Vision Sciences, University of Melbourne, 3010, Australia
| | - David Dierickx
- Department of Optometry and Vision Sciences, University of Melbourne, 3010, Australia
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA
| | - Andrew Metha
- Department of Optometry and Vision Sciences, University of Melbourne, 3010, Australia
| |
Collapse
|
9
|
Qiu X, Gammon ST, Rasmussen C, Pisaneschi F, Kim CBY, Ver Hoeve J, Millward SW, Barnett EM, Nork TM, Kaufman PL, Piwnica-Worms D. In vivo scanning laser fundus and high-resolution OCT imaging of retinal ganglion cell injury in a non-human primate model with an activatable fluorescent-labeled TAT peptide probe. PLoS One 2024; 19:e0313579. [PMID: 39642160 PMCID: PMC11623487 DOI: 10.1371/journal.pone.0313579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/26/2024] [Indexed: 12/08/2024] Open
Abstract
The optical imaging agent TcapQ488 has enabled imaging of retinal ganglion cell (RGC) injury in vivo in rodents and has potential as an effective diagnostic probe for early detection and intervention monitoring in glaucoma patients. In the present study, we investigated TcapQ488 in non-human primates (NHPs) to identify labeling efficacy and early signals of injured RGC, to determine species-dependent changes in RGC probe uptake and clearance, and to determine dose-limiting toxicities. Doses of 3, 6, and 12 nmol of TcapQ488 were delivered intravitreally to normal healthy NHP eyes and eyes that had undergone hemiretinal endodiathermy axotomy (HEA) in the inferior retina. Post-injection fundus fluorescence imaging using a Spectralis imaging platform (Heidelberg Engineering) documented TcapQ488 activation in RGC cell bodies. Optical coherence tomography (OCT), slit-lamp examinations, intraocular pressure measurements, and visual electrophysiology testing were performed to monitor probe tolerability. For comparison, a negative control, non-cleavable, non-quenched probe (dTcap488, 6 nmol), was delivered intravitreally to a normal healthy eye. In normal healthy eyes, intravitreal injection of 3 nmol of TcapQ488 was well-tolerated, while 12 nmol of TcapQ488 to the healthy eye caused extensive probe activation in the ganglion cell layer (GCL) and eventual retinal nerve fiber layer thinning. In HEA eyes, the HEA procedure followed by intravitreal TcapQ488 (3 nmol) injection resulted in probe activation within cell bodies in the GCL, confined to the HEA-treated inferior retina, indicating cell injury and slow axonal transport in the GCL. However, in contrast to rodents, a vitreal haze that lasted 2-12 weeks obscured rapid high-resolution imaging of the fundus. By contrast, intravitreal TcapQ488 injection prior to the HEA procedure led to minimal probe labeling in the GCL. The results of the dTcap488 control experiments indicated that fast axonal transport carried the probe out of the retina after cell body uptake. No evidence of pan-retinal toxicity or loss of retino-cortical function was detected in any of the three NHPs tested. Overall, these data provide evidence of TcapQ488 activation, without toxicity, in NHP HEA eyes that had been intravitreally injected with 3 nmol of the probe. Compared to rodents, unexpectedly rapid axonal transport in the NHPs reduced the capacity to visualize RGC cell bodies and axons through the backdrop of an intravitreal haze. Nonetheless, although intravitreal clearance rates did not scale to NHPs, HEA-induced reductions in axonal transport enhanced probe visualization in the cell body.
Collapse
Affiliation(s)
- Xudong Qiu
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Carol Rasmussen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Federica Pisaneschi
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Charlene B. Y. Kim
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - James Ver Hoeve
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Steven W. Millward
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Edward M. Barnett
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - T. Michael Nork
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Paul L. Kaufman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
10
|
Wu M, Fletcher EL, Chinnery HR, Downie LE, Mueller SN. Redefining our vision: an updated guide to the ocular immune system. Nat Rev Immunol 2024; 24:896-911. [PMID: 39215057 DOI: 10.1038/s41577-024-01064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Balanced immune responses in the eyes are crucial to preserve vision. The ocular immune system has long been considered distinct, owing to the so-called 'immune privilege' of its component tissues. More recently, intravital imaging and transcriptomic techniques have reshaped scientific understanding of the ocular immune landscape, such as revealing the specialization of immune cell populations in the various tissues of the eye. As knowledge of the phenotypes of corneal and retinal immune cells has evolved, links to both the systemic immune system, and the central and peripheral nervous systems, have been identified. Using intravital imaging, T cells have recently been found to reside in, and actively patrol, the healthy human cornea. Disease-associated retinal microglia with links to retinal degeneration have also been identified. This Review provides an updated guide to the ocular immune system, highlighting current knowledge of the immune cells that are present in steady-state and specific diseased ocular tissues, as well as evidence for their relationship to systemic disease. In addition, we discuss emerging intravital imaging techniques that can be used to visualize immune cell morphology and dynamics in living human eyes and how these could be applied to advance understanding of the human immune system.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Carlton, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
- Lions Eye Institute, Nedlands, Western Australia, Australia.
- Optometry, The University of Western Australia, Crawley, Western Australia, Australia.
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Soltanian-Zadeh S, Kovalick K, Aghayee S, Miller DT, Liu Z, Hammer DX, Farsiu S. Identifying retinal pigment epithelium cells in adaptive optics-optical coherence tomography images with partial annotations and superhuman accuracy. BIOMEDICAL OPTICS EXPRESS 2024; 15:6922-6939. [PMID: 39679394 PMCID: PMC11640571 DOI: 10.1364/boe.538473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024]
Abstract
Retinal pigment epithelium (RPE) cells are essential for normal retinal function. Morphological defects in these cells are associated with a number of retinal neurodegenerative diseases. Owing to the cellular resolution and depth-sectioning capabilities, individual RPE cells can be visualized in vivo with adaptive optics-optical coherence tomography (AO-OCT). Rapid, cost-efficient, and objective quantification of the RPE mosaic's structural properties necessitates the development of an automated cell segmentation algorithm. This paper presents a deep learning-based method with partial annotation training for detecting RPE cells in AO-OCT images with accuracy better than human performance. We have made the code, imaging datasets, and the manual expert labels available online.
Collapse
Affiliation(s)
- Somayyeh Soltanian-Zadeh
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Katherine Kovalick
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Samira Aghayee
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Donald T. Miller
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
12
|
Sinclair SH, Schwartz S. Diabetic retinopathy: New concepts of screening, monitoring, and interventions. Surv Ophthalmol 2024; 69:882-892. [PMID: 38964559 DOI: 10.1016/j.survophthal.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The science of diabetes care has progressed to provide a better understanding of the oxidative and inflammatory lesions and pathophysiology of the neurovascular unit within the retina (and brain) that occur early in diabetes, even prediabetes. Screening for retinal structural abnormalities, has traditionally been performed by fundus examination or color fundus photography; however, these imaging techniques detect the disease only when there are sufficient lesions, predominantly hemorrhagic, that are recognized to occur late in the disease process after significant neuronal apoptosis and atrophy, as well as microvascular occlusion with alterations in vision. Thus, interventions have been primarily oriented toward the later-detected stages, and clinical trials, while demonstrating a slowing of the disease progression, demonstrate minimal visual improvement and modest reduction in the continued loss over prolonged periods. Similarly, vision measurement utilizing charts detects only problems of visual function late, as the process begins most often parafoveally with increasing number and progressive expansion, including into the fovea. While visual acuity has long been used to define endpoints of visual function for such trials, current methods reviewed herein are found to be imprecise. We review improved methods of testing visual function and newer imaging techniques with the recommendation that these must be utilized to discover and evaluate the injury earlier in the disease process, even in the prediabetic state. This would allow earlier therapy with ocular as well as systemic pharmacologic treatments that lower the and neuro-inflammatory processes within eye and brain. This also may include newer, micropulsed laser therapy that, if applied during the earlier cascade, should result in improved and often normalized retinal function without the adverse treatment effects of standard photocoagulation therapy.
Collapse
Affiliation(s)
| | - Stan Schwartz
- University of Pennsylvania Affiliate, Main Line Health System, USA
| |
Collapse
|
13
|
Węgrzyn P, Kulesza W, Wielgo M, Tomczewski S, Galińska A, Bałamut B, Kordecka K, Cetinkaya O, Foik A, Zawadzki RJ, Borycki D, Wojtkowski M, Curatolo A. In vivo volumetric analysis of retinal vascular hemodynamics in mice with spatio-temporal optical coherence tomography. NEUROPHOTONICS 2024; 11:0450031-4500322. [PMID: 39380716 PMCID: PMC11460669 DOI: 10.1117/1.nph.11.4.045003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Significance Microcirculation and neurovascular coupling are important parameters to study in neurological and neuro-ophthalmic conditions. As the retina shares many similarities with the cerebral cortex and is optically accessible, a special focus is directed to assessing the chorioretinal structure, microvasculature, and hemodynamics of mice, a vital animal model for vision and neuroscience research. Aim We aim to introduce an optical imaging tool enabling in vivo volumetric mouse retinal monitoring of vascular hemodynamics with high temporal resolution. Approach We translated the spatio-temporal optical coherence tomography (STOC-T) technique into the field of small animal imaging by designing a new optical system that could compensate for the mouse eye refractive error. We also developed post-processing algorithms, notably for the assessment of (i) localized hemodynamics from the analysis of pulse wave-induced Doppler artifact modulation and (ii) retinal tissue displacement from phase-sensitive measurements. Results We acquired high-quality, in vivo volumetric mouse retina images at a rate of 113 Hz over a lateral field of view of ∼ 500 μ m . We presented high-resolution en face images of the retinal and choroidal structure and microvasculature from various layers, after digital aberration correction. We were able to measure the pulse wave velocity in capillaries of the outer plexiform layer with a mean speed of 0.35 mm/s and identified venous and arterial pulsation frequency and phase delay. We quantified the modulation amplitudes of tissue displacement near major vessels (with peaks of 150 nm), potentially carrying information about the biomechanical properties of the retinal layers involved. Last, we identified the delays between retinal displacements due to the passing of venous and arterial pulse waves. Conclusions The developed STOC-T system provides insights into the hemodynamics of the mouse retina and choroid that could be beneficial in the study of neurovascular coupling and vasculature and flow speed anomalies in neurological and neuro-ophthalmic conditions.
Collapse
Affiliation(s)
- Piotr Węgrzyn
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
- University of Warsaw, Faculty of Physics, Warsaw, Poland
| | - Wiktor Kulesza
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Maciej Wielgo
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Sławomir Tomczewski
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Anna Galińska
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Bartłomiej Bałamut
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Katarzyna Kordecka
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Onur Cetinkaya
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Andrzej Foik
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Robert J. Zawadzki
- University of California Davis, Department of Ophthalmology and Vision Science, Sacramento, California, United States
| | - Dawid Borycki
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Maciej Wojtkowski
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
- Nicolaus Copernicus University, Faculty of Physics, Astronomy and Informatics, Toruń, Poland
| | - Andrea Curatolo
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
- Politecnico di Milano, Department of Physics, Milan, Italy
| |
Collapse
|
14
|
Marte ME, Kurokawa K, Jung H, Liu Y, Bernucci MT, King BJ, Miller DT. Characterizing Presumed Displaced Retinal Ganglion Cells in the Living Human Retina of Healthy and Glaucomatous Eyes. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 39259176 PMCID: PMC11401130 DOI: 10.1167/iovs.65.11.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Purpose The purpose of this study was to investigate the large somas presumed to be displaced retinal ganglion cells (dRGCs) located in the inner nuclear layer (INL) of the living human retina. Whereas dRGCs have previously been studied in mammals and human donor tissue, they have never been investigated in the living human retina. Methods Five young, healthy subjects and three subjects with varying types of glaucoma were imaged at multiple locations in the macula using adaptive optics optical coherence tomography. In the acquired volumes, bright large somas at the INL border with the inner plexiform layer were identified, and the morphometric biomarkers of soma density, en face diameter, and spatial distribution were measured at up to 13 degrees retinal eccentricity. Susceptibility to glaucoma was assessed. Results In the young, healthy individuals, mean density of the bright, large somas was greatest foveally (550 and 543 cells/mm2 at 2 degrees temporal and nasal, respectively) and decreased with increasing retinal eccentricity (38 cells/mm2 at 13 degrees temporal, the farthest we measured). Soma size distribution showed the opposite trend with diameters and size variation increasing with retinal eccentricity, from 12.7 ± 1.8 µm at 2 degrees to 15.7 ± 3.5 µm at 13 degrees temporal, and showed evidence of a bimodal distribution in more peripheral locations. Within and adjacent to the arcuate defects of the subjects with glaucoma, density of the bright large somas was significantly lower than found in the young, healthy individuals. Conclusions Our results suggest that the bright, large somas at the INL border are likely comprised of dRGCs but amacrine cells may contribute too. These somas appear highly susceptible to glaucomatous damage.
Collapse
Affiliation(s)
- Mary E Marte
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Kazuhiro Kurokawa
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - HaeWon Jung
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Yan Liu
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Marcel T Bernucci
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Brett J King
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Donald T Miller
- Indiana University School of Optometry, Bloomington, Indiana, United States
| |
Collapse
|
15
|
Kwon M. Impact of Glaucomatous Ganglion Cell Damage on Central Visual Function. Annu Rev Vis Sci 2024; 10:425-453. [PMID: 39292555 PMCID: PMC11529636 DOI: 10.1146/annurev-vision-110223-123044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Glaucoma, a leading cause of irreversible blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs) and subsequent visual field defects. RGCs, as the final output neurons of the retina, perform key computations underpinning human pattern vision, such as contrast coding. Conventionally, glaucoma has been associated with peripheral vision loss, and thus, relatively little attention has been paid to deficits in central vision. However, recent advancements in retinal imaging techniques have significantly bolstered research into glaucomatous damage of the macula, revealing that it is prevalent even in the early stages of glaucoma. Thus, it is an opportune time to explore how glaucomatous damage undermines the perceptual processes associated with central visual function. This review showcases recent studies addressing central dysfunction in the early and moderate stages of glaucoma. It further emphasizes the need to characterize glaucomatous damage in both central and peripheral vision, as they jointly affect an individual's everyday activities.
Collapse
Affiliation(s)
- MiYoung Kwon
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA;
| |
Collapse
|
16
|
Kreis J, Carroll J. Applications of Adaptive Optics Imaging for Studying Conditions Affecting the Fovea. Annu Rev Vis Sci 2024; 10:239-262. [PMID: 38635871 DOI: 10.1146/annurev-vision-102122-100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The fovea is a highly specialized region of the central retina, defined by an absence of inner retinal layers and the accompanying vasculature, an increased density of cone photoreceptors, a near absence of rod photoreceptors, and unique private-line photoreceptor to midget ganglion cell circuitry. These anatomical specializations support high-acuity vision in humans. While direct study of foveal shape and size is routinely performed using optical coherence tomography, examination of the other anatomical specializations of the fovea has only recently become possible using an array of adaptive optics (AO)-based imaging tools. These devices correct for the eye's monochromatic aberrations and permit cellular-resolution imaging of the living retina. In this article, we review the application of AO-based imaging techniques to conditions affecting the fovea, with an emphasis on how imaging has advanced our understanding of pathophysiology.
Collapse
Affiliation(s)
- Joseph Kreis
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; ,
| | - Joseph Carroll
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; ,
| |
Collapse
|
17
|
Rui Y, Zhang M, Lee DM, Snyder VC, Raghuraman R, Gofas-Salas E, Mecê P, Yadav S, Tiruveedhula P, Grieve K, Sahel JA, Errera MH, Rossi EA. Label-Free Imaging of Inflammation at the Level of Single Cells in the Living Human Eye. OPHTHALMOLOGY SCIENCE 2024; 4:100475. [PMID: 38881602 PMCID: PMC11179426 DOI: 10.1016/j.xops.2024.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 06/18/2024]
Abstract
Purpose Putative microglia were recently detected using adaptive optics ophthalmoscopy in healthy eyes. Here we evaluate the use of nonconfocal adaptive optics scanning light ophthalmoscopy (AOSLO) for quantifying the morphology and motility of presumed microglia and other immune cells in eyes with retinal inflammation from uveitis and healthy eyes. Design Observational exploratory study. Participants Twelve participants were imaged, including 8 healthy participants and 4 posterior uveitis patients recruited from the clinic of 1 of the authors (M.H.E.). Methods The Pittsburgh AOSLO imaging system was used with a custom-designed 7-fiber optical fiber bundle for simultaneous confocal and nonconfocal multioffset detection. The inner retina was imaged at several locations at multiple timepoints in healthy participants and uveitis patients to generate time-lapse images. Main Outcome Measures Microglia and macrophages were manually segmented from nonconfocal AOSLO images, and their morphological characteristics quantified (including soma size, diameter, and circularity). Cell soma motion was quantified across time for periods of up to 30 minutes and their speeds were calculated by measuring their displacement over time. Results A spectrum of cell morphologies was detected in healthy eyes from circular amoeboid cells to elongated cells with visible processes, resembling activated and ramified microglia, respectively. Average soma diameter was 16.1 ± 0.9 μm. Cell movement was slow in healthy eyes (0.02 μm/sec on average), but macrophage-like cells moved rapidly in some uveitis patients (up to 3 μm/sec). In an eye with infectious uveitis, many macrophage-like cells were detected; during treatment their quantity and motility decreased as vision improved. Conclusions In vivo adaptive optics ophthalmoscopy offers promise as a potentially powerful tool for detecting and monitoring inflammation and response to treatment at a cellular level in the living eye. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Yuhua Rui
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
- Eye Center of Xiangya Hospital, Central South University Hunan Key Laboratory of Ophthalmology Changsha, Hunan, China
| | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Daniel M.W. Lee
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering Pittsburgh, Pennsylvania
| | - Valerie C. Snyder
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Rashmi Raghuraman
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Elena Gofas-Salas
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | - Pedro Mecê
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, Paris, France
| | - Sanya Yadav
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Marie-Hélène Errera
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Ethan A. Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Miller DA, Grannonico M, Liu M, Savier E, McHaney K, Erisir A, Netland PA, Cang J, Liu X, Zhang HF. Visible-Light Optical Coherence Tomography Fibergraphy of the Tree Shrew Retinal Ganglion Cell Axon Bundles. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2769-2777. [PMID: 38517719 PMCID: PMC11366081 DOI: 10.1109/tmi.2024.3380530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
We seek to develop techniques for high-resolution imaging of the tree shrew retina for visualizing and parameterizing retinal ganglion cell (RGC) axon bundles in vivo. We applied visible-light optical coherence tomography fibergraphy (vis-OCTF) and temporal speckle averaging (TSA) to visualize individual RGC axon bundles in the tree shrew retina. For the first time, we quantified individual RGC bundle width, height, and cross-sectional area and applied vis-OCT angiography (vis-OCTA) to visualize the retinal microvasculature in tree shrews. Throughout the retina, as the distance from the optic nerve head (ONH) increased from 0.5 mm to 2.5 mm, bundle width increased by 30%, height decreased by 67%, and cross-sectional area decreased by 36%. We also showed that axon bundles become vertically elongated as they converge toward the ONH. Ex vivo confocal microscopy of retinal flat-mounts immunostained with Tuj1 confirmed our in vivo vis-OCTF findings.
Collapse
|
19
|
Raghavendra AJ, Damani A, Oechsli S, Magder LS, Liu Z, Hammer DX, Saeedi OJ. Measurement of retinal blood flow precision in the human eye with multimodal adaptive optics imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:4625-4641. [PMID: 39346998 PMCID: PMC11427214 DOI: 10.1364/boe.524944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/08/2024] [Accepted: 06/30/2024] [Indexed: 10/01/2024]
Abstract
Impaired retinal blood flow (RBF) autoregulation plays a key role in the development and progression of several ocular diseases, including glaucoma and diabetic retinopathy. Clinically, reproducible RBF quantitation could significantly improve early diagnosis and disease management. Several non-invasive techniques have been developed but are limited for retinal microvasculature flow measurements due to their low signal-to-noise ratio and poor lateral resolution. In this study, we demonstrate reproducible vessel caliber and retinal blood flow velocity measurements in healthy human volunteers using a high-resolution (spatial and temporal) multimodal adaptive optics system with scanning laser ophthalmoscopy and optical coherence tomography.
Collapse
Affiliation(s)
- Achyut J Raghavendra
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Aashka Damani
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Saige Oechsli
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Laurence S Magder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Daniel X Hammer
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Osamah J Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
20
|
Zhou M, Zhang Y, Karimi Monsefi A, Choi SS, Doble N, Parthasarathy S, Ramnath R. Reducing manual labeling requirements and improved retinal ganglion cell identification in 3D AO-OCT volumes using semi-supervised learning. BIOMEDICAL OPTICS EXPRESS 2024; 15:4540-4556. [PMID: 39346977 PMCID: PMC11427208 DOI: 10.1364/boe.526053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 10/01/2024]
Abstract
Adaptive optics-optical coherence tomography (AO-OCT) allows for the three-dimensional visualization of retinal ganglion cells (RGCs) in the living human eye. Quantitative analyses of RGCs have significant potential for improving the diagnosis and monitoring of diseases such as glaucoma. Recent advances in machine learning (ML) have made possible the automatic identification and analysis of RGCs within the complex three-dimensional retinal volumes obtained with such imaging. However, the current state-of-the-art ML approach relies on fully supervised training, which demands large amounts of training labels. Each volume requires many hours of expert manual annotation. Here, two semi-supervised training schemes are introduced, (i) cross-consistency training and (ii) cross pseudo supervision that utilize unlabeled AO-OCT volumes together with a minimal set of labels, vastly reducing the labeling demands. Moreover, these methods outperformed their fully supervised counterpart and achieved accuracy comparable to that of human experts.
Collapse
Affiliation(s)
- Mengxi Zhou
- The Ohio State University, Department of Computer Science and Engineering, 2015 Neil Ave., Columbus, OH 43210, USA
| | - Yue Zhang
- The Ohio State University, Department of Computer Science and Engineering, 2015 Neil Ave., Columbus, OH 43210, USA
| | - Amin Karimi Monsefi
- The Ohio State University, Department of Computer Science and Engineering, 2015 Neil Ave., Columbus, OH 43210, USA
| | - Stacey S. Choi
- The Ohio State University, College of Optometry, 338 W 10th Ave., Columbus, OH 43210, USA
- The Ohio State University, Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH 43212, USA
| | - Nathan Doble
- The Ohio State University, College of Optometry, 338 W 10th Ave., Columbus, OH 43210, USA
- The Ohio State University, Department of Ophthalmology and Visual Science, Havener Eye Institute, 915 Olentangy River Road, Columbus, OH 43212, USA
| | - Srinivasan Parthasarathy
- The Ohio State University, Department of Computer Science and Engineering, 2015 Neil Ave., Columbus, OH 43210, USA
| | - Rajiv Ramnath
- The Ohio State University, Department of Computer Science and Engineering, 2015 Neil Ave., Columbus, OH 43210, USA
| |
Collapse
|
21
|
Zhang F, Kovalick K, Raghavendra A, Soltanian-Zadeh S, Farsiu S, Hammer DX, Liu Z. In vivo imaging of human retinal ganglion cells using optical coherence tomography without adaptive optics. BIOMEDICAL OPTICS EXPRESS 2024; 15:4675-4688. [PMID: 39346995 PMCID: PMC11427184 DOI: 10.1364/boe.533249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 10/01/2024]
Abstract
Retinal ganglion cells play an important role in human vision, and their degeneration results in glaucoma and other neurodegenerative diseases. Imaging these cells in the living human retina can greatly improve the diagnosis and treatment of glaucoma. However, owing to their translucent soma and tight packing arrangement within the ganglion cell layer (GCL), successful imaging has only been achieved with sophisticated research-grade adaptive optics (AO) systems. For the first time we demonstrate that GCL somas can be resolved and cell morphology can be quantified using non-AO optical coherence tomography (OCT) devices with optimal parameter configuration and post-processing.
Collapse
Affiliation(s)
- Furu Zhang
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Katherine Kovalick
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Achyut Raghavendra
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | | | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
22
|
Fang R, Zhang P, Zhang T, Kim D, Sun E, Kuranov R, Kweon J, Huang A, Zhang HF. Freeform robotic optical coherence tomography beyond the optical field-of-view limit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595073. [PMID: 38826217 PMCID: PMC11142137 DOI: 10.1101/2024.05.21.595073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Imaging complex, non-planar anatomies with optical coherence tomography (OCT) is limited by the optical field of view (FOV) in a single volumetric acquisition. Combining linear mechanical translation with OCT extends the FOV but suffers from inflexibility in imaging non-planar anatomies. We report the freeform robotic OCT to fill this gap. To address challenges in volumetric reconstruction associated with the robotic movement accuracy being two orders of magnitudes worse than OCT imaging resolution, we developed a volumetric registration algorithm based on simultaneous localization and mapping (SLAM) to overcome this limitation. We imaged the entire aqueous humor outflow pathway, whose imaging has the potential to customize glaucoma surgeries but is typically constrained by the FOV, circumferentially in mice as a test. We acquired volumetric OCT data at different robotic poses and reconstructed the entire anterior segment of the eye. The reconstructed volumes showed heterogeneous Schlemm's canal (SC) morphology in the reconstructed anterior segment and revealed a segmental nature in the circumferential distribution of collector channels (CC) with spatial features as small as a few micrometers.
Collapse
|
23
|
Das V, Zhang F, Bower AJ, Li J, Liu T, Aguilera N, Alvisio B, Liu Z, Hammer DX, Tam J. Revealing speckle obscured living human retinal cells with artificial intelligence assisted adaptive optics optical coherence tomography. COMMUNICATIONS MEDICINE 2024; 4:68. [PMID: 38600290 PMCID: PMC11006674 DOI: 10.1038/s43856-024-00483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND In vivo imaging of the human retina using adaptive optics optical coherence tomography (AO-OCT) has transformed medical imaging by enabling visualization of 3D retinal structures at cellular-scale resolution, including the retinal pigment epithelial (RPE) cells, which are essential for maintaining visual function. However, because noise inherent to the imaging process (e.g., speckle) makes it difficult to visualize RPE cells from a single volume acquisition, a large number of 3D volumes are typically averaged to improve contrast, substantially increasing the acquisition duration and reducing the overall imaging throughput. METHODS Here, we introduce parallel discriminator generative adversarial network (P-GAN), an artificial intelligence (AI) method designed to recover speckle-obscured cellular features from a single AO-OCT volume, circumventing the need for acquiring a large number of volumes for averaging. The combination of two parallel discriminators in P-GAN provides additional feedback to the generator to more faithfully recover both local and global cellular structures. Imaging data from 8 eyes of 7 participants were used in this study. RESULTS We show that P-GAN not only improves RPE cell contrast by 3.5-fold, but also improves the end-to-end time required to visualize RPE cells by 99-fold, thereby enabling large-scale imaging of cells in the living human eye. RPE cell spacing measured across a large set of AI recovered images from 3 participants were in agreement with expected normative ranges. CONCLUSIONS The results demonstrate the potential of AI assisted imaging in overcoming a key limitation of RPE imaging and making it more accessible in a routine clinical setting.
Collapse
Affiliation(s)
- Vineeta Das
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Furu Zhang
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew J Bower
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joanne Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tao Liu
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nancy Aguilera
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bruno Alvisio
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Daniel X Hammer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Johnny Tam
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Muralidharan M, Guo T, Tsai D, Lee JI, Fried S, Dokos S, Morley JW, Lovell NH, Shivdasani MN. Neural activity of retinal ganglion cells under continuous, dynamically-modulated high frequency electrical stimulation. J Neural Eng 2024; 21:015001. [PMID: 38290151 DOI: 10.1088/1741-2552/ad2404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Objective.Current retinal prosthetics are limited in their ability to precisely control firing patterns of functionally distinct retinal ganglion cell (RGC) types. The aim of this study was to characterise RGC responses to continuous, kilohertz-frequency-varying stimulation to assess its utility in controlling RGC activity.Approach.We usedin vitropatch-clamp experiments to assess electrically-evoked ON and OFF RGC responses to frequency-varying pulse train sequences. In each sequence, the stimulation amplitude was kept constant while the stimulation frequency (0.5-10 kHz) was changed every 40 ms, in either a linearly increasing, linearly decreasing or randomised manner. The stimulation amplitude across sequences was increased from 10 to 300µA.Main results.We found that continuous stimulation without rest periods caused complex and irreproducible stimulus-response relationships, primarily due to strong stimulus-induced response adaptation and influence of the preceding stimulus frequency on the response to a subsequent stimulus. In addition, ON and OFF populations showed different sensitivities to continuous, frequency-varying pulse trains, with OFF cells generally exhibiting more dependency on frequency changes within a sequence. Finally, the ability to maintain spiking behaviour to continuous stimulation in RGCs significantly reduced over longer stimulation durations irrespective of the frequency order.Significance.This study represents an important step in advancing and understanding the utility of continuous frequency modulation in controlling functionally distinct RGCs. Our results indicate that continuous, kHz-frequency-varying stimulation sequences provide very limited control of RGC firing patterns due to inter-dependency between adjacent frequencies and generally, different RGC types do not display different frequency preferences under such stimulation conditions. For future stimulation strategies using kHz frequencies, careful consideration must be given to design appropriate pauses in stimulation, stimulation frequency order and the length of continuous stimulation duration.
Collapse
Affiliation(s)
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - David Tsai
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
- School of Electrical Engineering & Telecommunications, UNSW, Sydney, NSW 2052, Australia
| | - Jae-Ik Lee
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Shelley Fried
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - John W Morley
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
- Tyree Institute of Health Engineering (iHealthE), UNSW, Sydney, NSW 2052, Australia
| | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
- Tyree Institute of Health Engineering (iHealthE), UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
25
|
Shimizu S, Honjo M, Liu M, Aihara M. An Autotaxin-Induced Ocular Hypertension Mouse Model Reflecting Physiological Aqueous Biomarker. Invest Ophthalmol Vis Sci 2024; 65:32. [PMID: 38386333 PMCID: PMC10896239 DOI: 10.1167/iovs.65.2.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Purpose Animal models of ocular hypertension (OH) have been developed to understand the pathogenesis of glaucoma and facilitate drug discovery. However, many of these models are fraught with issues, including severe intraocular inflammation and technical challenges. Lysophosphatidic acid (LPA) is implicated in trabecular meshwork fibrosis and increased resistance of aqueous outflow, factors that contribute to high intraocular pressure (IOP) in human open-angle glaucoma. We aimed to elevate IOP by increasing expression of the LPA-producing enzyme autotaxin (ATX) in mouse eyes. Methods Tamoxifen-inducible ATX transgenic mice were developed. Tamoxifen was administered to six- to eight-week-old mice via eye drops to achieve ATX overexpression in the eye. IOP and retinal thickness were measured over time, and retinal flat-mount were evaluated to count retinal ganglion cells (RGCs) loss after three months. Results Persistent elevation of ATX expression in mouse eyes was confirmed through immunohistochemistry and LysoPLD activity measurement. ATX Tg mice exhibited significantly increased IOP for nearly two months following tamoxifen treatment, with no anterior segment changes or inflammation. Immunohistochemical analysis revealed enhanced expression of extracellular matrix near the angle after two weeks and three months of ATX induction. This correlated with reduced outflow facility, indicating that sustained ATX overexpression induces angle fibrosis, elevating IOP. Although inner retinal layer thickness remained stable, peripheral retina showed a notable reduction in RGC cell count. Conclusions These findings confirm the successful creation of an open-angle OH mouse model, in which ATX expression in the eye prompts fibrosis near the angle and maintains elevated IOP over extended periods.
Collapse
Affiliation(s)
- Shota Shimizu
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Senju Laboratory of Ocular Science, Senju Pharmaceutical Co., Ltd., Kobe, Hyogo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Mengxuan Liu
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Kurokawa K, Nemeth M. Multifunctional adaptive optics optical coherence tomography allows cellular scale reflectometry, polarimetry, and angiography in the living human eye. BIOMEDICAL OPTICS EXPRESS 2024; 15:1331-1354. [PMID: 38404344 PMCID: PMC10890865 DOI: 10.1364/boe.505395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
Clinicians are unable to detect glaucoma until substantial loss or dysfunction of retinal ganglion cells occurs. To this end, novel measures are needed. We have developed an optical imaging solution based on adaptive optics optical coherence tomography (AO-OCT) to discern key clinical features of glaucoma and other neurodegenerative diseases at the cellular scale in the living eye. Here, we test the feasibility of measuring AO-OCT-based reflectance, retardance, optic axis orientation, and angiogram at specifically targeted locations in the living human retina and optic nerve head. Multifunctional imaging, combined with focus stacking and global image registration algorithms, allows us to visualize cellular details of retinal nerve fiber bundles, ganglion cell layer somas, glial septa, superior vascular complex capillaries, and connective tissues. These are key histologic features of neurodegenerative diseases, including glaucoma, that are now measurable in vivo with excellent repeatability and reproducibility. Incorporating this noninvasive cellular-scale imaging with objective measurements will significantly enhance existing clinical assessments, which is pivotal in facilitating the early detection of eye disease and understanding the mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Kazuhiro Kurokawa
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Morgan Nemeth
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| |
Collapse
|
27
|
Luo T, Gilbert RN, Sapoznik KA, Walker BR, Burns SA. Automatic montaging of adaptive optics SLO retinal images based on graph theory. BIOMEDICAL OPTICS EXPRESS 2024; 15:1021-1037. [PMID: 38404321 PMCID: PMC10890876 DOI: 10.1364/boe.505013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/27/2024]
Abstract
We present a fully automatic montage pipeline for adaptive optics SLO retinal images. It contains a flexible module to estimate the translation between pairwise images. The user can change modules to accommodate the alignment of the dataset using the most appropriate alignment technique, provided that it estimates the translation between image pairs and provides a quantitative confidence metric for the match between 0 and 1. We use these pairwise comparisons and associated metrics to construct a graph where nodes represent frames and edges represent the overlap relations. We use a small diameter spanning tree to determine the best pairwise alignment for each image based on the entire set of image relations. The final stage of the pipeline is a blending module that uses dynamic programming to improve the smoothness of the transition between frames. Data sets ranging from 26 to 119 images were obtained from individuals aged 24 to 81 years with a mix of visually normal control eyes and eyes with glaucoma or diabetes. The resulting automatically generated montages were qualitatively and quantitatively compared to results from semi-automated alignment. Data sets were specifically chosen to include both high quality and medium quality data. The results obtained from the automatic method are comparable or better than results obtained by an experienced operator performing semi-automated montaging. For the plug-in pairwise alignment module, we tested a technique that utilizes SIFT + RANSAC, Normalized cross-correlation (NCC) and a combination of the two. This pipeline produces consistent results not only on outer retinal layers, but also on inner retinal layers such as a nerve fiber layer or images of the vascular complexes, even when images are not of excellent quality.
Collapse
Affiliation(s)
- Ting Luo
- School of Optometry, Indiana University, 800 E. Atwater Ave, Bloomington, IN 47405, USA
| | - Robert N. Gilbert
- School of Optometry, Indiana University, 800 E. Atwater Ave, Bloomington, IN 47405, USA
| | - Kaitlyn A. Sapoznik
- School of Optometry, Indiana University, 800 E. Atwater Ave, Bloomington, IN 47405, USA
- College of Optometry, University of Houston, 4401 Martin Luther King Blvd, Houston, TX 77204, USA
| | - Brittany R. Walker
- School of Optometry, Indiana University, 800 E. Atwater Ave, Bloomington, IN 47405, USA
| | - Stephen A. Burns
- School of Optometry, Indiana University, 800 E. Atwater Ave, Bloomington, IN 47405, USA
| |
Collapse
|
28
|
Etebar F, Harkin DG, White AR, Dando SJ. Non-invasive in vivo imaging of brain and retinal microglia in neurodegenerative diseases. Front Cell Neurosci 2024; 18:1355557. [PMID: 38348116 PMCID: PMC10859418 DOI: 10.3389/fncel.2024.1355557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Microglia play crucial roles in immune responses and contribute to fundamental biological processes within the central nervous system (CNS). In neurodegenerative diseases, microglia undergo functional changes and can have both protective and pathogenic roles. Microglia in the retina, as an extension of the CNS, have also been shown to be affected in many neurological diseases. While our understanding of how microglia contribute to pathological conditions is incomplete, non-invasive in vivo imaging of brain and retinal microglia in living subjects could provide valuable insights into their role in the neurodegenerative diseases and open new avenues for diagnostic biomarkers. This mini-review provides an overview of the current brain and retinal imaging tools for studying microglia in vivo. We focus on microglia targets, the advantages and limitations of in vivo microglia imaging approaches, and applications for evaluating the pathogenesis of neurological conditions, such as Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Fazeleh Etebar
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Damien G. Harkin
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Anthony R. White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Samantha J. Dando
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
29
|
Zhang P, Vafaeva O, Dolf C, Ma Y, Wang G, Cho J, Chan HHL, Marsh-Armstrong N, Zawadzki RJ. Evaluating the performance of OCT in assessing static and potential dynamic properties of the retinal ganglion cells and nerve fiber bundles in the living mouse eye. BIOMEDICAL OPTICS EXPRESS 2023; 14:6422-6441. [PMID: 38420317 PMCID: PMC10898556 DOI: 10.1364/boe.504637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 03/02/2024]
Abstract
Glaucoma is a group of eye diseases characterized by the thinning of the retinal nerve fiber layer (RNFL), which is primarily caused by the progressive death of retinal ganglion cells (RGCs). Precise monitoring of these changes at a cellular resolution in living eyes is significant for glaucoma research. In this study, we aimed to assess the effectiveness of temporal speckle averaging optical coherence tomography (TSA-OCT) and dynamic OCT (dOCT) in examining the static and potential dynamic properties of RGCs and RNFL in living mouse eyes. We evaluated parameters such as RNFL thickness and possible dynamics, as well as compared the ganglion cell layer (GCL) soma density obtained from in vivo OCT, fluorescence scanning laser ophthalmoscopy (SLO), and ex vivo histology.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, University of California Davis, Davis, CA 95616, USA
| | - Olga Vafaeva
- Department of Ophthalmology & Vision Science, University of California Davis Eye Center, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
| | - Christian Dolf
- Department of Ophthalmology & Vision Science, University of California Davis Eye Center, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
| | - Yanhong Ma
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Guozhen Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Jessicca Cho
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, University of California Davis, Davis, CA 95616, USA
| | - Henry Ho-Lung Chan
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
| | - Nicholas Marsh-Armstrong
- Department of Ophthalmology & Vision Science, University of California Davis Eye Center, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
| | - Robert J Zawadzki
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, University of California Davis, Davis, CA 95616, USA
- Center for Human Ocular Imaging Research (CHOIR), Dept. of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
| |
Collapse
|
30
|
Schmetterer L, Scholl H, Garhöfer G, Janeschitz-Kriegl L, Corvi F, Sadda SR, Medeiros FA. Endpoints for clinical trials in ophthalmology. Prog Retin Eye Res 2023; 97:101160. [PMID: 36599784 DOI: 10.1016/j.preteyeres.2022.101160] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
With the identification of novel targets, the number of interventional clinical trials in ophthalmology has increased. Visual acuity has for a long time been considered the gold standard endpoint for clinical trials, but in the recent years it became evident that other endpoints are required for many indications including geographic atrophy and inherited retinal disease. In glaucoma the currently available drugs were approved based on their IOP lowering capacity. Some recent findings do, however, indicate that at the same level of IOP reduction, not all drugs have the same effect on visual field progression. For neuroprotection trials in glaucoma, novel surrogate endpoints are required, which may either include functional or structural parameters or a combination of both. A number of potential surrogate endpoints for ophthalmology clinical trials have been identified, but their validation is complicated and requires solid scientific evidence. In this article we summarize candidates for clinical endpoints in ophthalmology with a focus on retinal disease and glaucoma. Functional and structural biomarkers, as well as quality of life measures are discussed, and their potential to serve as endpoints in pivotal trials is critically evaluated.
Collapse
Affiliation(s)
- Leopold Schmetterer
- Singapore Eye Research Institute, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| | - Hendrik Scholl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Lucas Janeschitz-Kriegl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Federico Corvi
- Eye Clinic, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Italy
| | - SriniVas R Sadda
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Felipe A Medeiros
- Vision, Imaging and Performance Laboratory, Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| |
Collapse
|
31
|
Hammer DX, Kovalick K, Liu Z, Chen C, Saeedi OJ, Harrison DM. Cellular-Level Visualization of Retinal Pathology in Multiple Sclerosis With Adaptive Optics. Invest Ophthalmol Vis Sci 2023; 64:21. [PMID: 37971733 PMCID: PMC10664728 DOI: 10.1167/iovs.64.14.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
Purpose To apply adaptive optics-optical coherence tomography (AO-OCT) to quantify multiple sclerosis (MS)-induced changes in axonal bundles in the macular nerve fiber layer, ganglion cell somas, and macrophage-like cells at the vitreomacular interface. Methods We used AO-OCT imaging in a pilot study of MS participants (n = 10), including those without and with a history of optic neuritis (ON, n = 4), and healthy volunteers (HV, n = 9) to reveal pathologic changes to inner retinal cells and structures affected by MS. Results We found that nerve fiber layer axonal bundles had 38% lower volume in MS participants (1.5 × 10-3 mm3) compared to HVs (2.4 × 10-3 mm3; P < 0.001). Retinal ganglion cell (RGC) density was 51% lower in MS participants (12.3 cells/mm2 × 1000) compared to HVs (25.0 cells/mm2 × 1000; P < 0.001). Spatial differences across the macula were observed in RGC density. RGC diameter was 15% higher in MS participants (11.7 µm) compared to HVs (10.1 µm; P < 0.001). A nonsignificant trend of higher density of macrophage-like cells in MS eyes was also observed. For all AO-OCT measures, outcomes were worse for MS participants with a history of ON compared to MS participants without a history of ON. AO-OCT measures were associated with key visual and physical disabilities in the MS cohort. Conclusions Our findings demonstrate the utility of AO-OCT for highly sensitive and specific detection of neurodegenerative changes in MS. Moreover, the results shed light on the mechanisms that underpin specific neuronal pathology that occurs when MS attacks the retina. The new findings support the further development of AO-based biomarkers for MS.
Collapse
Affiliation(s)
- Daniel X. Hammer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Katherine Kovalick
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Zhuolin Liu
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Osamah J. Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Daniel M. Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Neurology, Baltimore VA Medical Center, Baltimore, Maryland, United States
| |
Collapse
|
32
|
Montesano G, Redmond T, Mulholland PJ, Garway-Heath DF, Ometto G, Romano D, Antonacci F, Tanga L, Carnevale C, Rossetti LM, Crabb DP, Oddone F. Spatial Summation in the Glaucomatous Macula: A Link With Retinal Ganglion Cell Damage. Invest Ophthalmol Vis Sci 2023; 64:36. [PMID: 38010697 PMCID: PMC10683773 DOI: 10.1167/iovs.64.14.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/03/2023] [Indexed: 11/29/2023] Open
Abstract
Purpose The purpose of this study was to test whether functional loss in the glaucomatous macula is characterized by an enlargement of Ricco's area (RA) through the application of a computational model linking retinal ganglion cell (RGC) damage to perimetric sensitivity. Methods One eye from each of 29 visually healthy subjects <40 years old, 30 patients with glaucoma, and 20 age-similar controls was tested with a 10-2 grid with stimuli of 5 different area sizes. Structural estimates of point-wise RGC density were obtained from optical coherence tomography (OCT) scans. Structural and functional data from the young healthy cohort were used to estimate the parameters of a computational spatial summation model to generate a template. The template was fitted with a Bayesian hierarchical model to estimate the latent RGC density in patients with glaucoma and age-matched controls. We tested two alternative hypotheses: fitting the data by translating the template horizontally (H1: change in RA) or vertically (H2: loss of sensitivity without a change in RA). Root mean squared error (RMSE) of the model fits to perimetric sensitivity were compared. Ninety-five percent confidence intervals were bootstrapped. The dynamic range of the functional and structural RGC density estimates was denoted by their 1st and 99th percentiles. Results The RMSE was 2.09 (95% CI = 1.92-2.26) under H1 and 2.49 (95% CI = 2.24-2.72) under H2 (P < 0.001). The average dynamic range for the structural RGC density estimates was only 11% that of the functional estimates. Conclusions Macular sensitivity loss in glaucoma is better described by a model in which RA changes with RGC loss. Structural measurements have limited dynamic range.
Collapse
Affiliation(s)
- Giovanni Montesano
- City, University of London, Optometry and Visual Sciences, London, United Kingdom
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Tony Redmond
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Pádraig J. Mulholland
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Centre for Optometry and Vision Science, Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom
| | - David F. Garway-Heath
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Giovanni Ometto
- City, University of London, Optometry and Visual Sciences, London, United Kingdom
| | - Dario Romano
- ASST Santi Paolo e Carlo, Eye Clinic – University of Milan, Milan, Italy
| | - Federica Antonacci
- ASST Santi Paolo e Carlo, Eye Clinic – University of Milan, Milan, Italy
| | | | | | - Luca M. Rossetti
- ASST Santi Paolo e Carlo, Eye Clinic – University of Milan, Milan, Italy
| | - David P. Crabb
- City, University of London, Optometry and Visual Sciences, London, United Kingdom
| | | |
Collapse
|
33
|
Kar D, Kim YJ, Packer O, Clark ME, Cao D, Owsley C, Dacey DM, Curcio CA. Volume electron microscopy reveals human retinal mitochondria that align with reflective bands in optical coherence tomography [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:5512-5527. [PMID: 37854576 PMCID: PMC10581790 DOI: 10.1364/boe.501228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 10/20/2023]
Abstract
Mitochondria are candidate reflectivity signal sources in optical coherence tomography (OCT) retinal imaging. Here, we use deep-learning-assisted volume electron microscopy of human retina and in vivo imaging to map mitochondria networks in the outer plexiform layer (OPL), where photoreceptors synapse with second-order interneurons. We observed alternating layers of high and low mitochondrial abundance in the anatomical OPL and adjacent inner nuclear layer (INL). Subcellular resolution OCT imaging of human eyes revealed multiple reflective bands that matched the corresponding INL and combined OPL sublayers. Data linking specific mitochondria to defined bands in OCT may help improve clinical diagnosis and the evaluation of mitochondria-targeting therapies.
Collapse
Affiliation(s)
- Deepayan Kar
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Orin Packer
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongfeng Cao
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dennis M. Dacey
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
34
|
Puyo L, Pfäffle C, Spahr H, Franke J, Bublitz D, Hillmann D, Hüttmann G. Diffuse-illumination holographic optical coherence tomography. OPTICS EXPRESS 2023; 31:33500-33517. [PMID: 37859131 DOI: 10.1364/oe.498654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Holographic optical coherence tomography (OCT) is a powerful imaging technique, but its ability to reveal low-reflectivity features is limited. In this study, we performed holographic OCT by incoherently averaging volumes with changing diffuse illumination of numerical aperture (NA) equal to the detection NA. While the reduction of speckle from singly scattered light is only modest, we discovered that speckle from multiply scattered light can be arbitrarily reduced, resulting in substantial improvements in image quality. This technique also offers the advantage of suppressing noises arising from spatial coherence, and can be implemented with a partially spatially incoherent light source for further mitigation of multiple scattering. Finally, we show that although holographic reconstruction capabilities are increasingly lost with decreasing spatial coherence, they can be retained over an axial range sufficient to standard OCT applications.
Collapse
|
35
|
Soucy JR, Aguzzi EA, Cho J, Gilhooley MJ, Keuthan C, Luo Z, Monavarfeshani A, Saleem MA, Wang XW, Wohlschlegel J, Baranov P, Di Polo A, Fortune B, Gokoffski KK, Goldberg JL, Guido W, Kolodkin AL, Mason CA, Ou Y, Reh TA, Ross AG, Samuels BC, Welsbie D, Zack DJ, Johnson TV. Retinal ganglion cell repopulation for vision restoration in optic neuropathy: a roadmap from the RReSTORe Consortium. Mol Neurodegener 2023; 18:64. [PMID: 37735444 PMCID: PMC10514988 DOI: 10.1186/s13024-023-00655-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system's limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium's efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Erika A Aguzzi
- The Institute of Ophthalmology, University College London, London, England, UK
| | - Julie Cho
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael James Gilhooley
- The Institute of Ophthalmology, University College London, London, England, UK
- Moorfields Eye Hospital, London, England, UK
| | - Casey Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Aboozar Monavarfeshani
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Meher A Saleem
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, USA
| | - Xue-Wei Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Petr Baranov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Kimberly K Gokoffski
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Alex L Kolodkin
- The Solomon H Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carol A Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Ahmara G Ross
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, Callahan Eye Hospital, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Derek Welsbie
- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California, San Diego, CA, USA
| | - Donald J Zack
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas V Johnson
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular & Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA.
| |
Collapse
|
36
|
Tong J, Khou V, Trinh M, Alonso‐Caneiro D, Zangerl B, Kalloniatis M. Derivation of human retinal cell densities using high-density, spatially localized optical coherence tomography data from the human retina. J Comp Neurol 2023; 531:1108-1125. [PMID: 37073514 PMCID: PMC10953454 DOI: 10.1002/cne.25483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/20/2023]
Abstract
This study sought to identify demographic variations in retinal thickness measurements from optical coherence tomography (OCT), to enable the calculation of cell density parameters across the neural layers of the healthy human macula. From macular OCTs (n = 247), ganglion cell (GCL), inner nuclear (INL), and inner segment-outer segment (ISOS) layer measurements were extracted using a customized high-density grid. Variations with age, sex, ethnicity, and refractive error were assessed with multiple linear regression analyses, with age-related distributions further assessed using hierarchical cluster analysis and regression models. Models were tested on a naïve healthy cohort (n = 40) with Mann-Whitney tests to determine generalizability. Quantitative cell density data were calculated from histological data from previous human studies. Eccentricity-dependent variations in OCT retinal thickness closely resemble topographic cell density maps from human histological studies. Age was consistently identified as significantly impacting retinal thickness (p = .0006, .0007, and .003 for GCL, INL and ISOS), with gender affecting ISOS only (p < .0001). Regression models demonstrated that age-related changes in the GCL and INL begin in the 30th decade and were linear for the ISOS. Model testing revealed significant differences in INL and ISOS thickness (p = .0008 and .0001; however, differences fell within the OCT's axial resolution. Qualitative comparisons show close alignment between OCT and histological cell densities when using unique, high-resolution OCT data, and correction for demographics-related variability. Overall, this study describes a process to calculate in vivo cell density from OCT for all neural layers of the human retina, providing a framework for basic science and clinical investigations.
Collapse
Affiliation(s)
- Janelle Tong
- Centre for Eye HealthUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
- School of Optometry and Vision ScienceUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
| | - Vincent Khou
- Centre for Eye HealthUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
- School of Optometry and Vision ScienceUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
| | - Matt Trinh
- Centre for Eye HealthUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
- School of Optometry and Vision ScienceUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
| | - David Alonso‐Caneiro
- School of Optometry and Vision ScienceCentre for Vision and Eye ResearchContact Lens and Visual Optics LaboratoryQueensland University of TechnologyQueenslandBrisbaneAustralia
- School of Science, Technology and EngineeringUniversity of Sunshine CoastQueenslandSippy DownsAustralia
| | - Barbara Zangerl
- School of Optometry and Vision ScienceUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
- Coronary Care UnitRoyal Prince Alfred HospitalNew South WalesSydneyAustralia
| | - Michael Kalloniatis
- Centre for Eye HealthUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
- School of Optometry and Vision ScienceUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
- Department of OptometrySchool of MedicineDeakin UniversityVictoriaWaurn PondsAustralia
| |
Collapse
|
37
|
Abstract
The human retina is amenable to direct, noninvasive visualization using a wide array of imaging modalities. In the ∼140 years since the publication of the first image of the living human retina, there has been a continued evolution of retinal imaging technology. Advances in image acquisition and processing speed now allow real-time visualization of retinal structure, which has revolutionized the diagnosis and management of eye disease. Enormous advances have come in image resolution, with adaptive optics (AO)-based systems capable of imaging the retina with single-cell resolution. In addition, newer functional imaging techniques provide the ability to assess function with exquisite spatial and temporal resolution. These imaging advances have had an especially profound impact on the field of inherited retinal disease research. Here we will review some of the advances and applications of AO retinal imaging in patients with inherited retinal disease.
Collapse
Affiliation(s)
- Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, California 94143-4081, USA
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
38
|
Wu KY, Mina M, Sahyoun JY, Kalevar A, Tran SD. Retinal Prostheses: Engineering and Clinical Perspectives for Vision Restoration. SENSORS (BASEL, SWITZERLAND) 2023; 23:5782. [PMID: 37447632 PMCID: PMC10347280 DOI: 10.3390/s23135782] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
A retinal prosthesis, also known as a bionic eye, is a device that can be implanted to partially restore vision in patients with retinal diseases that have resulted in the loss of photoreceptors (e.g., age-related macular degeneration and retinitis pigmentosa). Recently, there have been major breakthroughs in retinal prosthesis technology, with the creation of numerous types of implants, including epiretinal, subretinal, and suprachoroidal sensors. These devices can stimulate the remaining cells in the retina with electric signals to create a visual sensation. A literature review of the pre-clinical and clinical studies published between 2017 and 2023 is conducted. This narrative review delves into the retinal anatomy, physiology, pathology, and principles underlying electronic retinal prostheses. Engineering aspects are explored, including electrode-retina alignment, electrode size and material, charge density, resolution limits, spatial selectivity, and bidirectional closed-loop systems. This article also discusses clinical aspects, focusing on safety, adverse events, visual function, outcomes, and the importance of rehabilitation programs. Moreover, there is ongoing debate over whether implantable retinal devices still offer a promising approach for the treatment of retinal diseases, considering the recent emergence of cell-based and gene-based therapies as well as optogenetics. This review compares retinal prostheses with these alternative therapies, providing a balanced perspective on their advantages and limitations. The recent advancements in retinal prosthesis technology are also outlined, emphasizing progress in engineering and the outlook of retinal prostheses. While acknowledging the challenges and complexities of the technology, this article highlights the significant potential of retinal prostheses for vision restoration in individuals with retinal diseases and calls for continued research and development to refine and enhance their performance, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Mina Mina
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jean-Yves Sahyoun
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
39
|
Bleau M, van Acker C, Martiniello N, Nemargut JP, Ptito M. Cognitive map formation in the blind is enhanced by three-dimensional tactile information. Sci Rep 2023; 13:9736. [PMID: 37322150 PMCID: PMC10272191 DOI: 10.1038/s41598-023-36578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
For blind individuals, tactile maps are useful tools to form cognitive maps through touch. However, they still experience challenges in cognitive map formation and independent navigation. Three-dimensional (3D) tactile information is thus increasingly being considered to convey enriched spatial information, but it remains unclear if it can facilitate cognitive map formation compared to traditional two-dimensional (2D) tactile information. Consequently, the present study investigated the impact of the type of sensory input (tactile 2D vs. tactile 3D vs. a visual control condition) on cognitive map formation. To do so, early blind (EB, n = 13), late blind (LB, n = 12), and sighted control (SC, n = 14) participants were tasked to learn the layouts of mazes produced with different sensory information (tactile 2D vs. tactile 3D vs. visual control) and to infer routes from memory. Results show that EB manifested stronger cognitive map formation with 3D mazes, LB performed equally well with 2D and 3D tactile mazes, and SC manifested equivalent cognitive map formation with visual and 3D tactile mazes but were negatively impacted by 2D tactile mazes. 3D tactile maps therefore have the potential to improve spatial learning for EB and newly blind individuals through a reduction of cognitive overload. Installation of 3D tactile maps in public spaces should be considered to promote universal accessibility and reduce blind individuals' wayfinding deficits related to the inaccessibility of spatial information through non-visual means.
Collapse
Affiliation(s)
- Maxime Bleau
- School of Optometry, University of Montreal, Montreal, QC, Canada
| | - Camille van Acker
- School of Optometry, University of Montreal, Montreal, QC, Canada
- Institut Royal Pour Sourds et Aveugles, Brussels, Belgium
| | | | | | - Maurice Ptito
- School of Optometry, University of Montreal, Montreal, QC, Canada.
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
40
|
Murakami T, Ishihara K, Terada N, Nishikawa K, Kawai K, Tsujikawa A. Pathological Neurovascular Unit Mapping onto Multimodal Imaging in Diabetic Macular Edema. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050896. [PMID: 37241128 DOI: 10.3390/medicina59050896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
Diabetic retinopathy is a form of diabetic microangiopathy, and vascular hyperpermeability in the macula leads to retinal thickening and concomitant reduction of visual acuity in diabetic macular edema (DME). In this review, we discuss multimodal fundus imaging, comparing the pathogenesis and interventions. Clinicians diagnose DME using two major criteria, clinically significant macular edema by fundus examination and center-involving diabetic macular edema using optical coherence tomography (OCT), to determine the appropriate treatment. In addition to fundus photography, fluorescein angiography (FA) is a classical modality to evaluate morphological and functional changes in retinal capillaries, e.g., microaneurysms, capillary nonperfusion, and fluorescein leakage. Recently, optical coherence tomography angiography (OCTA) has allowed us to evaluate the three-dimensional structure of the retinal vasculature and newly demonstrated that lamellar capillary nonperfusion in the deep layer is associated with retinal edema. The clinical application of OCT has accelerated our understanding of various neuronal damages in DME. Retinal thickness measured by OCT enables us to quantitatively assess therapeutic effects. Sectional OCT images depict the deformation of neural tissues, e.g., cystoid macular edema, serous retinal detachment, and sponge-like retinal swelling. The disorganization of retinal inner layers (DRIL) and foveal photoreceptor damage, biomarkers of neurodegeneration, are associated with visual impairment. Fundus autofluorescence derives from the retinal pigment epithelium (RPE) and its qualitative and quantitative changes suggest that the RPE damage contributes to the neuronal changes in DME. These clinical findings on multimodal imaging help to elucidate the pathology in the neurovascular units and lead to the next generation of clinical and translational research in DME.
Collapse
Affiliation(s)
- Tomoaki Murakami
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kenji Ishihara
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Noriko Terada
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Keiichi Nishikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kentaro Kawai
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
41
|
Sabesan R, Grieve K, Hammer DX, Ji N, Marcos S. Introduction to the Feature Issue on Adaptive Optics for Biomedical Applications. BIOMEDICAL OPTICS EXPRESS 2023; 14:1772-1776. [PMID: 37078031 PMCID: PMC10110319 DOI: 10.1364/boe.488044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 05/03/2023]
Abstract
The guest editors introduce a feature issue commemorating the 25th anniversary of adaptive optics in biomedical research.
Collapse
Affiliation(s)
- Ramkumar Sabesan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, and CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Na Ji
- Department of Physics, Department of Molecular & Cellular Biology, University of California, Berkeley, CA 94720, USA
| | - Susana Marcos
- Visual Optics and Biophotonics Laboratory, Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Calle Serrano 121, Madrid, 28006, Spain
- Center for Visual Sciences; The Institute of Optics and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
42
|
Lee B, Jeong S, Lee J, Kim TS, Braaf B, Vakoc BJ, Oh WY. Wide-Field Three-Dimensional Depth-Invariant Cellular-Resolution Imaging of the Human Retina. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2203357. [PMID: 36642824 PMCID: PMC10023497 DOI: 10.1002/smll.202203357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Three-dimensional (3D) cellular-resolution imaging of the living human retina over a large field of view will bring a great impact in clinical ophthalmology, potentially finding new biomarkers for early diagnosis and improving the pathophysiological understanding of ocular diseases. While hardware-based and computational adaptive optics (AO) optical coherence tomography (OCT) have been developed to achieve cellular-resolution retinal imaging, these approaches support limited 3D imaging fields, and their high cost and intrinsic hardware complexity limit their practical utility. Here, this work demonstrates 3D depth-invariant cellular-resolution imaging of the living human retina over a 3 × 3 mm field of view using the first intrinsically phase-stable multi-MHz retinal swept-source OCT and novel computational defocus and aberration correction methods. Single-acquisition imaging of photoreceptor cells, retinal nerve fiber layer, and retinal capillaries is presented across unprecedented imaging fields. By providing wide-field 3D cellular-resolution imaging in the human retina using a standard point-scan architecture routinely used in the clinic, this platform proposes a strategy for expanded utilization of high-resolution retinal imaging in both research and clinical settings.
Collapse
Affiliation(s)
- ByungKun Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sunhong Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Joosung Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae Shik Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Boy Braaf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Benjamin J. Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
43
|
Ahsanuddin S, Rios HA, Glassberg JR, Chui TY, Sebag J, Rosen RB. 3-D OCT imaging of hyalocytes in partial posterior vitreous detachment and vaso-occlusive retinal disease. Am J Ophthalmol Case Rep 2023; 30:101836. [PMID: 37124154 PMCID: PMC10139967 DOI: 10.1016/j.ajoc.2023.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/10/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
Purpose To describe the spatial distribution and morphologic characteristics of macrophage-like cells called hyalocytes in the posterior vitreous cortex of a patient with unilateral partial posterior vitreous detachment (PVD) using coronal plane en face optical coherence tomography (OCT). Observations A 54-year-old male with sickle cell disease (HbSC genotype) presented with a partial PVD in one eye. Rendered volumes of a slab extending from 600 μm to 3 μm anterior to the inner limiting membrane (ILM) revealed hyperreflective foci in the detached posterior vitreous cortex suspended anterior to the macula, likely representing hyalocytes. In the fellow eye without PVD, hyperreflective foci were located 3 μm anterior to the ILM. The morphology of the cells in the eye with PVD varied between a ramified state with multiple elongated processes and a more activated state characterized by a plump cell body with fewer retracted processes. In the same anatomical location, the hyperreflective foci were 10-fold more numerous in the patient with vaso-occlusive disease than in an unaffected, age-matched control. Conclusions and Importance Direct, non-invasive, and label-free techniques of imaging cells at the vitreoretinal interface and within the vitreous body is an emerging field. The findings from this case report suggest that coronal plane en face OCT can be used to provide a detailed and quantitative characterization of cells at the human vitreo-retinal interface in vivo. Importantly, this case report demonstrates that 3D-OCT renderings can enhance visualization of these cells in relation to the ILM, which may provide clues concerning the identity and contribution of these cells to the pathogenesis of vitreo-retinal diseases.
Collapse
|
44
|
Ma G, Son T, Adejumo T, Yao X. Rotational Distortion and Compensation in Optical Coherence Tomography with Anisotropic Pixel Resolution. Bioengineering (Basel) 2023; 10:313. [PMID: 36978706 PMCID: PMC10045376 DOI: 10.3390/bioengineering10030313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Accurate image registration is essential for eye movement compensation in optical coherence tomography (OCT) and OCT angiography (OCTA). The spatial resolution of an OCT instrument is typically anisotropic, i.e., has different resolutions in the lateral and axial dimensions. When OCT images have anisotropic pixel resolution, residual distortion (RD) and false translation (FT) are always observed after image registration for rotational movement. In this study, RD and FT were quantitively analyzed over different degrees of rotational movement and various lateral and axial pixel resolution ratio (RL/RA) values. The RD and FT provide the evaluation criteria for image registration. The theoretical analysis confirmed that the RD and FT increase significantly with the rotation degree and RL/RA. An image resizing assisting registration (RAR) strategy was proposed for accurate image registration. The performance of direct registration (DR) and RAR for retinal OCT and OCTA images were quantitatively compared. Experimental results confirmed that unnormalized RL/RA causes RD and FT; RAR can effectively improve the performance of OCT and OCTA image registration and distortion compensation.
Collapse
Affiliation(s)
- Guangying Ma
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Taeyoon Son
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Tobiloba Adejumo
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
45
|
Williams DR, Burns SA, Miller DT, Roorda A. Evolution of adaptive optics retinal imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:1307-1338. [PMID: 36950228 PMCID: PMC10026580 DOI: 10.1364/boe.485371] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 05/02/2023]
Abstract
This review describes the progress that has been achieved since adaptive optics (AO) was incorporated into the ophthalmoscope a quarter of a century ago, transforming our ability to image the retina at a cellular spatial scale inside the living eye. The review starts with a comprehensive tabulation of AO papers in the field and then describes the technological advances that have occurred, notably through combining AO with other imaging modalities including confocal, fluorescence, phase contrast, and optical coherence tomography. These advances have made possible many scientific discoveries from the first maps of the topography of the trichromatic cone mosaic to exquisitely sensitive measures of optical and structural changes in photoreceptors in response to light. The future evolution of this technology is poised to offer an increasing array of tools to measure and monitor in vivo retinal structure and function with improved resolution and control.
Collapse
Affiliation(s)
- David R. Williams
- The Institute of Optics and the Center for
Visual Science, University of Rochester,
Rochester NY, USA
| | - Stephen A. Burns
- School of Optometry, Indiana
University at Bloomington, Bloomington IN, USA
| | - Donald T. Miller
- School of Optometry, Indiana
University at Bloomington, Bloomington IN, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and
Vision Science, University of California at Berkeley, Berkeley CA, USA
| |
Collapse
|
46
|
Soltanian-Zadeh S, Liu Z, Liu Y, Lassoued A, Cukras CA, Miller DT, Hammer DX, Farsiu S. Deep learning-enabled volumetric cone photoreceptor segmentation in adaptive optics optical coherence tomography images of normal and diseased eyes. BIOMEDICAL OPTICS EXPRESS 2023; 14:815-833. [PMID: 36874491 PMCID: PMC9979662 DOI: 10.1364/boe.478693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/11/2023]
Abstract
Objective quantification of photoreceptor cell morphology, such as cell diameter and outer segment length, is crucial for early, accurate, and sensitive diagnosis and prognosis of retinal neurodegenerative diseases. Adaptive optics optical coherence tomography (AO-OCT) provides three-dimensional (3-D) visualization of photoreceptor cells in the living human eye. The current gold standard for extracting cell morphology from AO-OCT images involves the tedious process of 2-D manual marking. To automate this process and extend to 3-D analysis of the volumetric data, we propose a comprehensive deep learning framework to segment individual cone cells in AO-OCT scans. Our automated method achieved human-level performance in assessing cone photoreceptors of healthy and diseased participants captured with three different AO-OCT systems representing two different types of point scanning OCT: spectral domain and swept source.
Collapse
Affiliation(s)
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yan Liu
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Ayoub Lassoued
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Catherine A. Cukras
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donald T. Miller
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
47
|
Zhang P, Wahl DJ, Mocci J, Miller EB, Bonora S, Sarunic MV, Zawadzki RJ. Adaptive optics scanning laser ophthalmoscopy and optical coherence tomography (AO-SLO-OCT) system for in vivo mouse retina imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:299-314. [PMID: 36698677 PMCID: PMC9841993 DOI: 10.1364/boe.473447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 05/02/2023]
Abstract
Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are imaging technologies invented in the 1980s that have revolutionized the field of in vivo retinal diagnostics and are now commonly used in ophthalmology clinics as well as in vision science research. Adaptive optics (AO) technology enables high-fidelity correction of ocular aberrations, resulting in improved resolution and sensitivity for both SLO and OCT systems. The potential of gathering multi-modal cellular-resolution information in a single instrument is of great interest to the ophthalmic imaging community. Although similar instruments have been developed for imaging the human retina, developing such a system for mice will benefit basic science research and should help with further dissemination of AO technology. Here, we present our work integrating OCT into an existing mouse retinal AO-SLO system, resulting in a multi-modal AO-enhanced imaging system of the living mouse eye. The new system allows either independent or simultaneous data acquisition of AO-SLO and AO-OCT, depending on the requirements of specific scientific experiments. The system allows a data acquisition speed of 200 kHz A-scans/pixel rate for OCT and SLO, respectively. It offers ∼6 µm axial resolution for AO-OCT and a ∼1 µm lateral resolution for AO-SLO-OCT imaging.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
| | - Jacopo Mocci
- Dynamic Optics srl, Piazza Zanellato 5, 35131, Padova, Italy
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, CA 95616, USA
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | - Marinko V. Sarunic
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
- Medical Physics and Biomedical Engineering, University College London, United Kingdom
- Institute of Ophthalmology, University College London, United Kingdom
| | - Robert J. Zawadzki
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
- UC Davis Eye Center, Dept. of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street, Suite 2400, Sacramento, California 95817, USA
| |
Collapse
|
48
|
Morgan JIW, Chui TYP, Grieve K. Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:387-428. [PMID: 36698659 PMCID: PMC9841996 DOI: 10.1364/boe.472274] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 05/02/2023]
Abstract
Twenty-five years ago, adaptive optics (AO) was combined with fundus photography, thereby initiating a new era in the field of ophthalmic imaging. Since that time, clinical applications of AO ophthalmoscopy to investigate visual system structure and function in both health and disease abound. To date, AO ophthalmoscopy has enabled visualization of most cell types in the retina, offered insight into retinal and systemic disease pathogenesis, and been integrated into clinical trials. This article reviews clinical applications of AO ophthalmoscopy and addresses remaining challenges for AO ophthalmoscopy to become fully integrated into standard ophthalmic care.
Collapse
Affiliation(s)
- Jessica I. W. Morgan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Contributed equally
| | - Toco Y. P. Chui
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
- Contributed equally
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, and CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
- Contributed equally
| |
Collapse
|
49
|
Contribution of parasol-magnocellular pathway ganglion cells to foveal retina in macaque monkey. Vision Res 2023; 202:108154. [PMID: 36436365 DOI: 10.1016/j.visres.2022.108154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022]
Abstract
Parasol-magnocellular pathway ganglion cells form an important output stream of the primate retina and make a major contribution to visual motion detection. They are known to comprise ON and OFF type response polarities but the relative numbers of ON and OFF parasol cells, and the overall contribution of parasol cells to high-acuity foveal vision are not well understood. Here we use antibodies against carbonic anhydrase 8 (CA8) and intracellular injections of the liphilic dye DiI to show that CA8 selectively labels OFF parasol cells in macaque retina. By combined labeling with CA8 antibodies and a previously-described marker for parasol cells (GABAA receptor antibodies), we show that ON and OFF parasol cells each comprise ∼ 6% of all ganglion cells in central retina (each peak density ∼ 3000 cells/mm2 at 5 deg.), and each population comprises ∼ 10% of all ganglion cells in peripheral temporal retina. Thus, the spatial density of parasol cells in central retina is greater than reported by previous anatomical studies, and the central-peripheral gradient in parasol cell density is shallower than previously reported. The data nevertheless predict decline in spatial acuity with visual field eccentricity for both midget-parvocellular pathway and parasol-magnocellular pathway mediated visual functions. The spatial resolving power of the OFF parasol array (peak ∼ 7 cpd) falls short of macaque behavioral grating acuity by at least a factor of three throughout the retina.
Collapse
|
50
|
In vivo chromatic and spatial tuning of foveolar retinal ganglion cells in Macaca fascicularis. PLoS One 2022; 17:e0278261. [PMID: 36445926 PMCID: PMC9707781 DOI: 10.1371/journal.pone.0278261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/13/2022] [Indexed: 11/30/2022] Open
Abstract
The primate fovea is specialized for high acuity chromatic vision, with the highest density of cone photoreceptors and a disproportionately large representation in visual cortex. The unique visual properties conferred by the fovea are conveyed to the brain by retinal ganglion cells, the somas of which lie at the margin of the foveal pit. Microelectrode recordings of these centermost retinal ganglion cells have been challenging due to the fragility of the fovea in the excised retina. Here we overcome this challenge by combining high resolution fluorescence adaptive optics ophthalmoscopy with calcium imaging to optically record functional responses of foveal retinal ganglion cells in the living eye. We use this approach to study the chromatic responses and spatial transfer functions of retinal ganglion cells using spatially uniform fields modulated in different directions in color space and monochromatic drifting gratings. We recorded from over 350 cells across three Macaca fascicularis primates over a time period of weeks to months. We find that the majority of the L vs. M cone opponent cells serving the most central foveolar cones have spatial transfer functions that peak at high spatial frequencies (20-40 c/deg), reflecting strong surround inhibition that sacrifices sensitivity at low spatial frequencies but preserves the transmission of fine detail in the retinal image. In addition, we fit to the drifting grating data a detailed model of how ganglion cell responses draw on the cone mosaic to derive receptive field properties of L vs. M cone opponent cells at the very center of the foveola. The fits are consistent with the hypothesis that foveal midget ganglion cells are specialized to preserve information at the resolution of the cone mosaic. By characterizing the functional properties of retinal ganglion cells in vivo through adaptive optics, we characterize the response characteristics of these cells in situ.
Collapse
|