1
|
Saini A, Singh I, Kumar M, Radhakrishnan DM, Agarwal A, Garg D, Elavarasi A, Singh R, Chouhan V, Sandeep, Gupta A, Vishnu VY, Singh MB, Bhatia R, Garg A, Gupta N, Mir RA, Faruq M, Binukumar BK, Srivastava AK, Rajan R. Genetic Landscape of Dystonia in Asian Indians. Mov Disord Clin Pract 2025; 12:594-601. [PMID: 39749944 PMCID: PMC12070184 DOI: 10.1002/mdc3.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/22/2024] [Accepted: 12/07/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Genomic variations associated with dystonia in Asian Indians remain largely unknown. OBJECTIVES To identify genomic alterations associated with dystonia in the Asian Indian population using next generation sequencing approaches. METHODS From September 2018 to December 2023, we enrolled 745 individuals including probands with dystonia and family members, in the Indian Movement Disorder Registry and Biobank. Clinical and demographic data were captured on a REDCap platform. We performed whole exome sequencing (WES) on DNA specimens obtained from 267 individuals with isolated, combined or complex dystonia. Variants were classified according to joint guidelines of American College of Medical Genetics and Genomics (ACMG) and Association of Molecular Pathology (AMP). RESULTS The mean age of the WES cohort was 33.8 ± 16.2 years, and mean age at onset (AAO) of dystonia was 25.6 ± 17.7 years. 62.2% had isolated dystonia, 7.9% combined and 29.2% had complex phenotypes. WES identified pathogenic/ likely pathogenic variants in 54 patients (20.2%) including 14 novel variants in known dystonia genes. Variants in THAP1 were most common followed by PANK2, GLB1, PLA2G6, TOR1A, ANO3, VPS16, SGCE, SPG7, FTL and other genes. Multifocal/generalized distribution of dystonia [OR: 4.1; 95% CI 1.4-12.2, P = 0.011] and family history [OR: 4.3; 95% CI 2.1-8.9, P < 0.001] were associated with positive yield on WES. CONCLUSION THAP1 was the most frequent dystonia associated gene in this cohort. Singleton WES identifiedpotentially pathogenic variants in approximately one out of five patients tested, and contributed to management decisions in 4%.
Collapse
Affiliation(s)
- Arti Saini
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Inder Singh
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Mukesh Kumar
- CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | | | - Ayush Agarwal
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Divyani Garg
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | | | - Rahul Singh
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Vivek Chouhan
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Sandeep
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Anu Gupta
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | | | - Mamta Bhushan Singh
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Rohit Bhatia
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Ajay Garg
- Department of Neuroimaging and Interventional NeuroradiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Neerja Gupta
- Division of Genetics, Department of PaediatricsAll India Institute of Medical SciencesNew DelhiIndia
| | - Riyaz Ahmad Mir
- Department of BiochemistryAll India Institute of Medical SciencesNew DelhiIndia
| | - Mohammed Faruq
- CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | | | | | - Roopa Rajan
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| |
Collapse
|
2
|
Javadzadeh S, Adamson A, Park J, Jo SY, Ding YC, Bakhtiari M, Bansal V, Neuhausen SL, Bafna V. Analysis of targeted and whole genome sequencing of PacBio HiFi reads for a comprehensive genotyping of gene-proximal and phenotype-associated Variable Number Tandem Repeats. PLoS Comput Biol 2025; 21:e1012885. [PMID: 40193344 PMCID: PMC11975116 DOI: 10.1371/journal.pcbi.1012885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/17/2025] [Indexed: 04/09/2025] Open
Abstract
Variable Number Tandem repeats (VNTRs) refer to repeating motifs of size greater than five bp. VNTRs are an important source of genetic variation, and have been associated with multiple Mendelian and complex phenotypes. However, the highly repetitive structures require reads to span the region for accurate genotyping. Pacific Biosciences HiFi sequencing spans large regions and is highly accurate but relatively expensive. Therefore, targeted sequencing approaches coupled with long-read sequencing have been proposed to improve efficiency and throughput. In this paper, we systematically explored the trade-off between targeted and whole genome HiFi sequencing for genotyping VNTRs. We curated a set of 10 , 787 gene-proximal (G-)VNTRs, and 48 phenotype-associated (P-)VNTRs of interest. Illumina reads only spanned 46% of the G-VNTRs and 71% of P-VNTRs, motivating the use of HiFi sequencing. We performed targeted sequencing with hybridization by designing custom probes for 9,999 VNTRs and sequenced 8 samples using HiFi and Illumina sequencing, followed by adVNTR genotyping. We compared these results against HiFi whole genome sequencing (WGS) data from 28 samples in the Human Pangenome Reference Consortium (HPRC). With the targeted approach only 4,091 (41%) G-VNTRs and only 4 (8%) of P-VNTRs were spanned with at least 15 reads. A smaller subset of 3,579 (36%) G-VNTRs had higher median coverage of at least 63 spanning reads. The spanning behavior was consistent across all 8 samples. Among 5,638 VNTRs with low-coverage ( < 15), 67% were located within GC-rich regions ( > 60%). In contrast, the 40X WGS HiFi dataset spanned 98% of all VNTRs and 49 (98%) of P-VNTRs with at least 15 spanning reads, albeit with lower coverage. Spanning reads were sufficient for accurate genotyping in both cases. Our findings demonstrate that targeted sequencing provides consistently high coverage for a small subset of low-GC VNTRs, but WGS is more effective for broad and sufficient sampling of a large number of VNTRs.
Collapse
Affiliation(s)
- Sara Javadzadeh
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Aaron Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Jonghun Park
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Se-Young Jo
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Yuan-Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Mehrdad Bakhtiari
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Vikas Bansal
- School of Medicine, University of California, San Diego La Jolla, California, United States of America
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
3
|
Hiatt L, Weisburd B, Dolzhenko E, Rubinetti V, Avvaru AK, VanNoy GE, Kurtas NE, Rehm HL, Quinlan AR, Dashnow H. STRchive: a dynamic resource detailing population-level and locus-specific insights at tandem repeat disease loci. Genome Med 2025; 17:29. [PMID: 40140942 PMCID: PMC11938676 DOI: 10.1186/s13073-025-01454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Approximately 8% of the human genome consists of repetitive elements called tandem repeats (TRs): short tandem repeats (STRs) of 1-6 bp motifs and variable number tandem repeats (VNTRs) of 7 + bp motifs. TR variants contribute to several dozen monogenic diseases but remain understudied and enigmatic. It remains comparatively challenging to interpret the clinical significance of TR variants, particularly relative to single nucleotide variants. We present STRchive ( http://strchive.org/ ), a dynamic resource consolidating information on TR disease loci from the research literature, up-to-date clinical resources, and large-scale genomic databases, streamlining TR variant interpretation at disease-associated loci.
Collapse
Affiliation(s)
- Laurel Hiatt
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Ben Weisburd
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Vincent Rubinetti
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Akshay K Avvaru
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Grace E VanNoy
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ambry Genetics, Aliso Viejo, CA, USA
| | - Nehir Edibe Kurtas
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Harriet Dashnow
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
4
|
Zhang W, Huang C, Yao H, Yang S, Jiapaer Z, Song J, Wang X. Retrotransposon: an insight into neurological disorders from perspectives of neurodevelopment and aging. Transl Neurodegener 2025; 14:14. [PMID: 40128823 PMCID: PMC11934714 DOI: 10.1186/s40035-025-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/21/2025] [Indexed: 03/26/2025] Open
Abstract
Neurological disorders present considerable challenges in diagnosis and treatment due to their complex and diverse etiology. Retrotransposons are a type of mobile genetic element that are increasingly revealed to play a role in these diseases. This review provides a detailed overview of recent developments in the study of retrotransposons in neurodevelopment, neuroaging, and neurological diseases. Retrotransposons, including long interspersed nuclear elements-1, Alu, SINE-VNTR-Alu, and endogenous retrovirus, play important regulatory roles in the development and aging of the nervous system. They have also been implicated in the pathological processes of several neurological diseases, including Alzheimer's disease, X-linked dystonia-parkinsonism, amyotrophic lateral sclerosis, autism spectrum disorder, and schizophrenia. Retrotransposons provide a new perspective for understanding the molecular mechanisms underlying neurological diseases and provide insights into diagnostic and therapeutic strategies of these diseases.
Collapse
Affiliation(s)
- Wenchuan Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenxuan Huang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyang Yao
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zeyidan Jiapaer
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang, China.
| | - Juan Song
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
An Z, Jiang A, Chen J. Toward understanding the role of genomic repeat elements in neurodegenerative diseases. Neural Regen Res 2025; 20:646-659. [PMID: 38886931 PMCID: PMC11433896 DOI: 10.4103/nrr.nrr-d-23-01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases cause great medical and economic burdens for both patients and society; however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements.
Collapse
Affiliation(s)
- Zhengyu An
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Aidi Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| |
Collapse
|
6
|
Davenport ML, Swanson MS. RNA gain-of-function mechanisms in short tandem repeat diseases. RNA (NEW YORK, N.Y.) 2025; 31:349-358. [PMID: 39725460 PMCID: PMC11874975 DOI: 10.1261/rna.080277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
As adaptors, catalysts, guides, messengers, scaffolds, and structural components, RNAs perform an impressive array of cellular regulatory functions often by recruiting RNA-binding proteins (RBPs) to form ribonucleoprotein complexes (RNPs). While this RNA-RBP interaction network allows precise RNP assembly and the subsequent structural dynamics required for normal functions, RNA motif mutations may trigger the formation of aberrant RNP structures that lead to cell dysfunction and disease. Here, we provide our perspective on one type of RNA motif mutation, RNA gain-of-function mutations associated with the abnormal expansion of short tandem repeats (STRs) that underlie multiple developmental and degenerative diseases. We first discuss our current understanding of normal polymorphic STR functions in RNA processing and localization followed by an assessment of the pathogenic roles of STR expansions in the neuromuscular disease myotonic dystrophy. We also highlight ongoing questions and controversies focused on STR-based insights into the regulation of nuclear RNA processing and export as well as the relevance of the RNA gain-of-function pathomechanism for other STR expansion disorders in both coding and noncoding genes.
Collapse
Affiliation(s)
- Mackenzie L Davenport
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
7
|
Nguyen L, Ajredini R, Guo S, Romano LEL, Tomas RF, Bell LR, Ranum PT, Zu T, Bañez Coronel M, Kelley CP, Redding-Ochoa J, Nizamis E, Melloni A, Connors TR, Gaona A, Thangaraju K, Pletnikova O, Clark HB, Davidson BL, Yachnis AT, Golde TE, Lou X, Wang ET, Renton AE, Goate A, Valdmanis PN, Prokop S, Troncoso JC, Hyman BT, Ranum LPW. CASP8 intronic expansion identified by poly-glycine-arginine pathology increases Alzheimer's disease risk. Proc Natl Acad Sci U S A 2025; 122:e2416885122. [PMID: 39937857 PMCID: PMC11848317 DOI: 10.1073/pnas.2416885122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/06/2024] [Indexed: 02/14/2025] Open
Abstract
Alzheimer's disease (AD) affects more than 10% of the population ≥65 y of age, but the underlying biological risks of most AD cases are unclear. We show anti-poly-glycine-arginine (a-polyGR) positive aggregates frequently accumulate in sporadic AD autopsy brains (45/80 cases). We hypothesize that these aggregates are caused by one or more polyGR-encoding repeat expansion mutations. We developed a CRISPR/deactivated-Cas9 enrichment strategy to identify candidate GR-encoding repeat expansion mutations directly from genomic DNA isolated from a-polyGR(+) AD cases. Using this approach, we isolated an interrupted (GGGAGA)n intronic expansion within a SINE-VNTR-Alu element in CASP8 (CASP8-GGGAGAEXP). Immunostaining using a-polyGR and locus-specific C-terminal antibodies demonstrate that the CASP8-GGGAGAEXP expresses hybrid poly(GR)n(GE)n(RE)n proteins that accumulate in CASP8-GGGAGAEXP(+) AD brains. In cells, expression of CASP8-GGGAGAEXP minigenes leads to increased p-Tau (Ser202/Thr205) levels. Consistent with other types of repeat-associated non-AUG (RAN) proteins, poly(GR)n(GE)n(RE)n protein levels are increased by stress. Additionally, levels of these stress-induced proteins are reduced by metformin. Association studies show specific aggregate promoting interrupted CASP8-GGGAGAEXP sequence variants found in ~3.6% of controls and 7.5% AD cases increase AD risk [CASP8-GGGAGA-AD-R1; OR 2.2, 95% CI (1.5185 to 3.1896), P = 3.1 × 10-5]. Cells transfected with a high-risk CASP8-GGGAGA-AD-R1 variant show increased toxicity and increased levels of poly(GR)n(GE)n(RE)n aggregates. Taken together, these data identify polyGR(+) aggregates as a frequent and unexpected type of brain pathology in AD and CASP8-GGGAGA-AD-R1 alleles as a relatively common AD risk factor. Taken together, these data support a model in which CASP8-GGGAGAEXP alleles combined with stress increase AD risk.
Collapse
Affiliation(s)
- Lien Nguyen
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
- Genetics Institute, University of Florida, Gainesville, FL32610
| | - Ramadan Ajredini
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Shu Guo
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Lisa E. L. Romano
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Rodrigo F. Tomas
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Logan R. Bell
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Paul T. Ranum
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Tao Zu
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Monica Bañez Coronel
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Chase P. Kelley
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Javier Redding-Ochoa
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Evangelos Nizamis
- Division of Medical Genetics School of Medicine, University of Washington, Seattle, WA98195
| | - Alexandra Melloni
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA02114
| | - Theresa R. Connors
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA02114
| | - Angelica Gaona
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA02114
| | - Kiruphagaran Thangaraju
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Olga Pletnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - H. Brent Clark
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN55455
| | - Beverly L. Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Anthony T. Yachnis
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL32610
| | - Todd E. Golde
- Center for Translation Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL32610
- McKnight Brain Institute, University of Florida, Gainesville, FL32610
| | - XiangYang Lou
- Department of Biostatistics, University of Florida, Gainesville, FL32611
| | - Eric T. Wang
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
- Genetics Institute, University of Florida, Gainesville, FL32610
| | - Alan E. Renton
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Alison Goate
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Paul N. Valdmanis
- Division of Medical Genetics School of Medicine, University of Washington, Seattle, WA98195
| | - Stefan Prokop
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL32610
- Center for Translation Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL32610
- McKnight Brain Institute, University of Florida, Gainesville, FL32610
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL32611
| | - Juan C. Troncoso
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Bradley T. Hyman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA02114
| | - Laura P. W. Ranum
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
- Genetics Institute, University of Florida, Gainesville, FL32610
- McKnight Brain Institute, University of Florida, Gainesville, FL32610
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL32611
- Norman Fixel Institute for Neurological Disease, University of Florida, Gainesville, FL32608
| |
Collapse
|
8
|
Doquenia MLM, Dy Closas AMF, Algodon SM, Suarez-Uy R, Ng A, Laabs BH, Westenberger A, Brüggemann N, Rosales RL, Jamora RD, Klein C. Clinicodemographic and Genetic Modifier Correlation in an X-Linked Dystonia-Parkinsonism Cohort from Mindanao. Mov Disord Clin Pract 2024; 11:1604-1608. [PMID: 39400991 DOI: 10.1002/mdc3.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND X-linked dystonia-parkinsonism (XDP), a neurodegenerative movement disorder endemic to the Philippines, is primarily investigated in patients from Panay Island and the Greater Manila area. However, individuals residing in geographically distant regions may exhibit different clinical or genetic characteristics compared to those documented in earlier reports. OBJECTIVE The aim was to investigate the relationship of XDP clinical features in a Mindanao cohort with modifiers of age at onset (AAO) variability and utilization of a previously reported AAO model. METHODS We investigated clinical and genetic features in 27 XDP patients from southern Mindanao. In all patients, we genotyped the 4 polymorphisms linked to AAO. RESULTS The XDP-relevant hexanucleotide repeat number significantly correlated with AAO in the 27 patients and explained about 68% of AAO variability. There is no statistical difference between the predicted and actual AAO. CONCLUSION The AAO model may provide reliable predictions by employing the effect of XDP genetic modifiers of AAO variability.
Collapse
Affiliation(s)
- Maria Leila M Doquenia
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neuroscience and Brain Health, Metropolitan Medical Center, Manila, Philippines
| | - Alfand Marl F Dy Closas
- St. Louis Hospital, Tacurong City, Philippines
- Davao Doctors Hospital, Davao City, Philippines
- Metro Davao Medical and Research Center, Davao City, Philippines
| | | | - Rachel Suarez-Uy
- Dr. Arturo P. Pingoy Medical Center, Koronadal City, Philippines
| | - Arlene Ng
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Björn-Hergen Laabs
- Institute of Medical Biometry and Statistics, University of Lübeck, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Raymond L Rosales
- Department of Neuroscience and Brain Health, Metropolitan Medical Center, Manila, Philippines
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
- Department of Neurology and Psychiatry, Neuroscience Institute, University of Santo Tomas Hospital, Manila, Philippines
| | - Roland Dominic Jamora
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
- Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines, Manila, Philippines
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
9
|
Shah S, Yu S, Zhang C, Ali I, Wang X, Qian Y, Xiao T. Retrotransposon SINEs in age-related diseases: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 101:102539. [PMID: 39395576 DOI: 10.1016/j.arr.2024.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Retrotransposons are self-replicating genomic elements that move from one genomic location to another using a "copy-and-paste" method involving RNA intermediaries. One family of retrotransposon that has garnered considerable attention for its association with age-related diseases and anti-aging interventions is the short interspersed nuclear elements (SINEs). This review summarizes current knowledge on the roles of SINEs in aging processes and therapies. To underscore the significant research on the involvement of SINEs in aging-related diseases, we commence by outlining compelling evidence on the classification and mechanism, highlighting implications in age-related phenomena. The intricate relationship between SINEs and diseases such as neurodegenerative disorders, heart failure, high blood pressure, atherosclerosis, type 2 diabetes mellitus, osteoporosis, visual system dysfunctions, and cancer is explored, emphasizing their roles in various age-related diseases. Recent investigations into the anti-aging potential of SINE-targeted treatments are examined, with particular attention to how SINE antisense RNA mitigate age-related alterations at the cellular and molecular levels, offering insights into potential therapeutic targets for age-related pathologies. This review aims to compile the most recent advances on the multifaceted roles of SINE retrotransposons in age-related diseases and anti-aging interventions, providing valuable insights into underlying mechanisms and therapeutic avenues for promoting healthy aging.
Collapse
Affiliation(s)
- Suleman Shah
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518055, China
| | - Siyi Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chen Zhang
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Ilyas Ali
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518055, China
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang 050017, China
| | - Youhui Qian
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Tian Xiao
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
10
|
Petrozziello T, Motlagh N, Monsanto R, Lei D, Murcar M, Penney E, Bragg D, Fernandez‐Cerado C, Legarda G, Sy M, Muñoz E, Ang M, Diesta C, Zhang C, Tanzi R, Qureshi I, Chen J, Sadri‐Vakili G. Targeting Myeloperoxidase to Reduce Neuroinflammation in X-Linked Dystonia Parkinsonism. CNS Neurosci Ther 2024; 30:e70109. [PMID: 39500625 PMCID: PMC11537767 DOI: 10.1111/cns.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/09/2024] Open
Abstract
AIMS Although the genetic locus of X-linked dystonia parkinsonism (XDP), a neurodegenerative disease endemic in the Philippines, is well-characterized, the exact mechanisms leading to neuronal loss are not yet fully understood. Recently, we demonstrated an increase in myeloperoxidase (MPO) levels in XDP postmortem prefrontal cortex (PFC), suggesting a role for inflammation in XDP pathogenesis. Therefore, we hypothesized that inhibiting MPO could provide a therapeutic strategy for XDP. METHODS MPO activity was measured by using an MPO-activatable fluorescent agent (MAFA) in human postmortem PFC. Reactive oxygen species (ROS) and MPO activity were measured in XDP-derived fibroblasts and SH-SY5Y cells following MPO inhibition. RESULTS MPO activity was significantly increased in XDP PFC. Additionally, treatment of cell lines with postmortem XDP PFC resulted in a significant increase in ROS levels. To determine whether increases in MPO activity caused increases in ROS, MPO content was immunodepleted from XDP PFC, which resulted in a significant decrease in ROS in SH-SY5Y cells. Consistently, the treatment with verdiperstat, a potent and selective MPO inhibitor, significantly decreased ROS in both XDP-derived fibroblasts and XDP PFC-treated SH-SY5Y cells. CONCLUSIONS Collectively, our results suggest that MPO inhibition mitigates oxidative stress and may provide a novel therapeutic strategy for XDP treatment.
Collapse
Affiliation(s)
- Tiziana Petrozziello
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General HospitalBostonMassachusettsUSA
| | - Negin Jalali Motlagh
- Department of Radiology, Institute for Innovation in ImagingMassachusetts General HospitalBostonMassachusettsUSA
- Center for Systems BiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Ranee Zara B. Monsanto
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General HospitalBostonMassachusettsUSA
| | - Dan Lei
- Department of Neurology Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalBostonMassachusettsUSA
| | - Micaela G. Murcar
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Ellen B. Penney
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | | | | | | | - Michelle Sy
- Sunshine Care FoundationRoxas CityCapizPhilippines
| | - Edwin Muñoz
- Department of PathologyCollege of Medicine, University of the PhilippinesManilaPhilippines
| | - Mark C. Ang
- Department of PathologyCollege of Medicine, University of the PhilippinesManilaPhilippines
| | | | - Can Zhang
- Department of Neurology Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalBostonMassachusettsUSA
| | - Rudolph E. Tanzi
- Department of Neurology Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalBostonMassachusettsUSA
| | | | - John W. Chen
- Department of Radiology, Institute for Innovation in ImagingMassachusetts General HospitalBostonMassachusettsUSA
- Center for Systems BiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Ghazaleh Sadri‐Vakili
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
11
|
Nicoletto G, Terreri M, Maurizio I, Ruggiero E, Cernilogar F, Vaine C, Cottini MV, Shcherbakova I, Penney E, Gallina I, Monchaud D, Bragg D, Schotta G, Richter S. G-quadruplexes in an SVA retrotransposon cause aberrant TAF1 gene expression in X-linked dystonia parkinsonism. Nucleic Acids Res 2024; 52:11571-11586. [PMID: 39287133 PMCID: PMC12053379 DOI: 10.1093/nar/gkae797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid structures that form in guanine (G)-rich genomic regions. X-linked dystonia parkinsonism (XDP) is an inherited neurodegenerative disease in which a SINE-VNTR-Alu (SVA) retrotransposon, characterised by amplification of a G-rich repeat, is inserted into the coding sequence of TAF1, a key partner of RNA polymerase II. XDP SVA alters TAF1 expression, but the cause of this outcome in XDP remains unknown. To assess whether G4s form in XDP SVA and affect TAF1 expression, we first characterised bioinformatically predicted XDP SVA G4s in vitro. We next showed that highly stable G4s can form and stop polymerase amplification at the SVA region from patient-derived fibroblasts and neural progenitor cells. Using chromatin immunoprecipitazion (ChIP) with an anti-G4 antibody coupled to sequencing or quantitative PCR, we showed that XDP SVA G4s are folded even when embedded in a chromatin context in patient-derived cells. Using the G4 ligands BRACO-19 and quarfloxin and total RNA-sequencing analysis, we showed that stabilisation of the XDP SVA G4s reduces TAF1 transcripts downstream and around the SVA, and increases upstream transcripts, while destabilisation using the G4 unfolder PhpC increases TAF1 transcripts. Our data indicate that G4 formation in the XDP SVA is a major cause of aberrant TAF1 expression, opening the way for the development of strategies to unfold G4s and potentially target the disease.
Collapse
Affiliation(s)
- Giulia Nicoletto
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Marianna Terreri
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Ilaria Maurizio
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Emanuela Ruggiero
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Filippo M Cernilogar
- Department of Science and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy
- Molecular Biology Division, Biomedical Center, Ludwig Maximilian University of Munich, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Christine A Vaine
- Department of Neurology, Massachusetts General Hospital, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Maria Vittoria Cottini
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Irina Shcherbakova
- Molecular Biology Division, Biomedical Center, Ludwig Maximilian University of Munich, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Ellen B Penney
- Department of Neurology, Massachusetts General Hospital, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Irene Gallina
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - David Monchaud
- Institut de Chimie Moleculaire de l'Université de Bourgogne, ICMUB CNRS UMR6302, 9, Rue Alain Savary, 21078 Dijon, France
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Gunnar Schotta
- Molecular Biology Division, Biomedical Center, Ludwig Maximilian University of Munich, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
- Microbiology and Virology Unit, Padua University Hospital, via Giustiniani 2, 35121 Padua, Italy
| |
Collapse
|
12
|
Abad PJ, Tumulak MAJ, Guerbo R, de Castro-Hamoy L, Bautista NG, Nuique R, Jacalan FI, Talapian GL, Felipe-Dimog EB, Lagarde JB, Plaga SJ, Jover EJ, Morales KD, Canoy GM, Laurino MY. Landscape of genetic counseling in the Philippines. J Genet Couns 2024; 33:934-942. [PMID: 37877196 DOI: 10.1002/jgc4.1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
In this paper, we report on the professional development of genetic counselors in the Philippines as we discuss the status of genetic counseling training and research, along with the roles and scope of practice of genetic counselors. The development of a master's level training program for non-physician genetic counselors in the Philippines initiated in 2011 was in response to the increasing demand for genetic counseling services. There are currently 18 locally trained genetic counselors who are practicing in various fields including newborn screening, pediatrics, cancer, prenatal and preconception, neurology, and research. Despite the success of the genetic counseling training program, various professional challenges hinder maximizing the impact of genetic counselors in the health system. The challenges discussed in this paper include the limited number of genetic counselors, the lack of government positions officially recognizing the 'genetic counselor' title, and the absence of a regulatory framework. These issues require thorough discussion with appropriate government agencies and collaboration with other healthcare professional organizations with the ultimate goal of ensuring quality genetic counseling services nationwide.
Collapse
Affiliation(s)
- Peter James Abad
- The University of Iowa College of Nursing, Iowa City, Iowa, USA
- College of Nursing, University of the Philippines Manila, Manila, Philippines
| | - Ma-Am Joy Tumulak
- Institute of Human Genetics, National Institute of Health, University of the Philippines Manila, Manila, Philippines
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Romer Guerbo
- Newborn Screening Center-Mindanao, Davao City, Philippines
| | - Leniza de Castro-Hamoy
- Institute of Human Genetics, National Institute of Health, University of the Philippines Manila, Manila, Philippines
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Niecy Grace Bautista
- Sunshine Care Foundation for Neurological Care and Research, The Health Centrum Hospital, Roxas City, Philippines
| | - Ramonito Nuique
- Augusto P. Sarmiento Cancer Institute, The Medical City, Pasig, Philippines
| | | | - Gay Luz Talapian
- Department of Obstetrics and Gynecology, St. Luke's Medical Center - Quezon City, Quezon City, Philippines
- Center for Advanced Reproductive Medicine and Infertility, St. Luke's Medical Center- Global City, Taguig City, Philippines
- St. Luke's Medical Center -College of Medicine, William H. Quasha Memorial, Quezon City, Philippines
| | - Eva Belingon Felipe-Dimog
- Nursing Department, Mountain Province State Polytechnic College, Bontoc, Mountain Province, Philippines
| | - John Benedict Lagarde
- Sunshine Care Foundation for Neurological Care and Research, The Health Centrum Hospital, Roxas City, Philippines
| | - Starlene Joy Plaga
- Newborn Screening Center- Visayas, West Visayas State University Medical Center, Iloilo City, Philippines
| | | | - Kristine Dawn Morales
- Philippine General Hospital - University of the Philippines Manila, Manila, Philippines
| | | | - Mercy Y Laurino
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
13
|
Horváth V, Garza R, Jönsson ME, Johansson PA, Adami A, Christoforidou G, Karlsson O, Castilla Vallmanya L, Koutounidou S, Gerdes P, Pandiloski N, Douse CH, Jakobsson J. Mini-heterochromatin domains constrain the cis-regulatory impact of SVA transposons in human brain development and disease. Nat Struct Mol Biol 2024; 31:1543-1556. [PMID: 38834915 PMCID: PMC11479940 DOI: 10.1038/s41594-024-01320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
SVA (SINE (short interspersed nuclear element)-VNTR (variable number of tandem repeats)-Alu) retrotransposons remain active in humans and contribute to individual genetic variation. Polymorphic SVA alleles harbor gene regulatory potential and can cause genetic disease. However, how SVA insertions are controlled and functionally impact human disease is unknown. Here we dissect the epigenetic regulation and influence of SVAs in cellular models of X-linked dystonia parkinsonism (XDP), a neurodegenerative disorder caused by an SVA insertion at the TAF1 locus. We demonstrate that the KRAB zinc finger protein ZNF91 establishes H3K9me3 and DNA methylation over SVAs, including polymorphic alleles, in human neural progenitor cells. The resulting mini-heterochromatin domains attenuate the cis-regulatory impact of SVAs. This is critical for XDP pathology; removal of local heterochromatin severely aggravates the XDP molecular phenotype, resulting in increased TAF1 intron retention and reduced expression. Our results provide unique mechanistic insights into how human polymorphic transposon insertions are recognized and how their regulatory impact is constrained by an innate epigenetic defense system.
Collapse
Affiliation(s)
- Vivien Horváth
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Marie E Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Pia A Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anita Adami
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Georgia Christoforidou
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ofelia Karlsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Laura Castilla Vallmanya
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Symela Koutounidou
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Patricia Gerdes
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ninoslav Pandiloski
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Christopher H Douse
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
14
|
Crombie EM, Cleverley K, Timmers HTM, Fisher EMC. The roles of TAF1 in neuroscience and beyond. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240790. [PMID: 39323550 PMCID: PMC11423858 DOI: 10.1098/rsos.240790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/27/2024]
Abstract
The transcriptional machinery is essential for gene expression and regulation; dysregulation of transcription can result in a range of pathologies, including neurodegeneration, cancer, developmental disorders and cardiovascular disease. A key component of RNA polymerase II-mediated transcription is the basal transcription factor IID, which is formed of the TATA box-binding protein (TBP) and 14 TBP-associated factors (TAFs), the largest of which is the TAF1 protein, encoded on the X chromosome (Xq13.1). TAF1 is dysregulated in X-linked dystonia-parkinsonism and congenital mutations in the gene are causative for neurodevelopmental phenotypes; TAF1 dysfunction is also associated with cardiac anomalies and cancer. However, how TAF1 contributes to pathology is unclear. Here, we highlight the key aspects of the TAF1 gene and protein function that may link transcriptional regulation with disorders of development, growth and adult-onset disorders of motor impairment. We highlight the need to experimentally investigate the full range of TAF1 messenger RNA variants and protein isoforms in human and mouse to aid our understanding of TAF1 biology. Furthermore, the X-linked nature of TAF1-related diseases adds complexity to understanding phenotypes. Overall, we shed light on the aspects of TAF1 biology that may contribute to disease and areas that could be addressed for future research and targeted therapeutics.
Collapse
Affiliation(s)
- Elisa M Crombie
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - H T Marc Timmers
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between the DKFZ, Germany
- Department of Urology, Medical Center-University of Freiburg, Breisacher Straße 66, Freiburg, 79106, Germany
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
15
|
Rosenkrantz JL, Brandorff JE, Raghib S, Kapadia A, Vaine CA, Bragg DC, Farmiloe G, Jacobs FMJ. ZNF91 is an endogenous repressor of the molecular phenotype associated with X-linked dystonia-parkinsonism (XDP). Proc Natl Acad Sci U S A 2024; 121:e2401217121. [PMID: 39102544 PMCID: PMC11331120 DOI: 10.1073/pnas.2401217121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
X-linked dystonia-parkinsonism (XDP) is a severe neurodegenerative disorder resulting from an inherited intronic SINE-Alu-VNTR (SVA) retrotransposon in the TAF1 gene that causes dysregulation of TAF1 transcription. The specific mechanism underlying this dysregulation remains unclear, but it is hypothesized to involve the formation of G-quadruplexes (G4) structures within the XDP-SVA that impede transcription. In this study, we show that ZNF91, a critical repressor of SVA retrotransposons, specifically binds to G4-forming DNA sequences. Further, we found that genetic deletion of ZNF91 exacerbates the molecular phenotype associated with the XDP-SVA insertion in patient cells, while no difference was observed when ZNF91 was deleted from isogenic control cells. Additionally, we observed a significant age-related reduction in ZNF91 expression in whole blood and brain, indicating a progressive loss of repression of the XDP-SVA in XDP. These findings indicate that ZNF91 plays a crucial role in controlling the molecular phenotype associated with XDP. Since ZNF91 binds to G4-forming DNA sequences in SVAs, this suggests that interactions between ZNF91 and G4-forming sequences in the XDP-SVA minimize the severity of the molecular phenotype. Our results showing that ZNF91 expression levels significantly decrease with age provide a potential explanation for the age-related progressive neurodegenerative character of XDP. Collectively, our study provides important insights into the protective role of ZNF91 in XDP pathogenesis and suggests that restoring ZNF91 expression, destabilization of G4s, or targeted repression of the XDP-SVA could be future therapeutic strategies to prevent or treat XDP.
Collapse
Affiliation(s)
- Jimi L. Rosenkrantz
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - J. Elias Brandorff
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Sanaz Raghib
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Ashni Kapadia
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Christine A. Vaine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA02129
| | - D. Cristopher Bragg
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA02129
| | - Grace Farmiloe
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Frank M. J. Jacobs
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
- Faculty of Science, Amsterdam Neuroscience, Complex Trait Genetics, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| |
Collapse
|
16
|
Crombie EM, Korecki AJ, Cleverley K, Adair BA, Cunningham TJ, Lee WC, Lengyell TC, Maduro C, Mo V, Slade LM, Zouhair I, Fisher EMC, Simpson EM. Taf1 knockout is lethal in embryonic male mice and heterozygous females show weight and movement disorders. Dis Model Mech 2024; 17:dmm050741. [PMID: 38804708 PMCID: PMC11261634 DOI: 10.1242/dmm.050741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
The TATA box-binding protein-associated factor 1 (TAF1) is a ubiquitously expressed protein and the largest subunit of the basal transcription factor TFIID, which plays a key role in initiation of RNA polymerase II-dependent transcription. TAF1 missense variants in human males cause X-linked intellectual disability, a neurodevelopmental disorder, and TAF1 is dysregulated in X-linked dystonia-parkinsonism, a neurodegenerative disorder. However, this field has lacked a genetic mouse model of TAF1 disease to explore its mechanism in mammals and treatments. Here, we generated and validated a conditional cre-lox allele and the first ubiquitous Taf1 knockout mouse. We discovered that Taf1 deletion in male mice was embryonically lethal, which may explain why no null variants have been identified in humans. In the brains of Taf1 heterozygous female mice, no differences were found in gross structure, overall expression and protein localisation, suggesting extreme skewed X inactivation towards the non-mutant chromosome. Nevertheless, these female mice exhibited a significant increase in weight, weight with age, and reduced movement, suggesting that a small subset of neurons was negatively impacted by Taf1 loss. Finally, this new mouse model may be a future platform for the development of TAF1 disease therapeutics.
Collapse
Affiliation(s)
- Elisa M. Crombie
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Andrea J. Korecki
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Bethany A. Adair
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z3, Canada
| | | | - Weaverly Colleen Lee
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Tess C. Lengyell
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Cheryl Maduro
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Victor Mo
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Liam M. Slade
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Ines Zouhair
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
17
|
Vegezzi E, Ishiura H, Bragg DC, Pellerin D, Magrinelli F, Currò R, Facchini S, Tucci A, Hardy J, Sharma N, Danzi MC, Zuchner S, Brais B, Reilly MM, Tsuji S, Houlden H, Cortese A. Neurological disorders caused by novel non-coding repeat expansions: clinical features and differential diagnosis. Lancet Neurol 2024; 23:725-739. [PMID: 38876750 DOI: 10.1016/s1474-4422(24)00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 06/16/2024]
Abstract
Nucleotide repeat expansions in the human genome are a well-known cause of neurological disease. In the past decade, advances in DNA sequencing technologies have led to a better understanding of the role of non-coding DNA, that is, the DNA that is not transcribed into proteins. These techniques have also enabled the identification of pathogenic non-coding repeat expansions that cause neurological disorders. Mounting evidence shows that adult patients with familial or sporadic presentations of epilepsy, cognitive dysfunction, myopathy, neuropathy, ataxia, or movement disorders can be carriers of non-coding repeat expansions. The description of the clinical, epidemiological, and molecular features of these recently identified non-coding repeat expansion disorders should guide clinicians in the diagnosis and management of these patients, and help in the genetic counselling for patients and their families.
Collapse
Affiliation(s)
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Pellerin
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Riccardo Currò
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Stefano Facchini
- IRCCS Mondino Foundation, Pavia, Italy; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Arianna Tucci
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; William Harvey Research Institute, Queen Mary University of London, London, UK
| | - John Hardy
- Department of Neurogedengerative Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matt C Danzi
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan Zuchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| |
Collapse
|
18
|
Laß J, Lüth T, Schlüter K, Schaake S, Laabs BH, Much C, Jamora RD, Rosales RL, Saranza G, Diesta CCE, Pearson CE, König IR, Brüggemann N, Klein C, Westenberger A, Trinh J. Stability of Mosaic Divergent Repeat Interruptions in X-Linked Dystonia-Parkinsonism. Mov Disord 2024; 39:1145-1153. [PMID: 38616406 DOI: 10.1002/mds.29809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND X-Linked dystonia-parkinsonism (XDP) is an adult-onset neurodegenerative disorder characterized by rapidly progressive dystonia and parkinsonism. Mosaic Divergent Repeat Interruptions affecting motif Length and Sequence (mDRILS) were recently found within the TAF1 SVA repeat tract and were shown to associate with repeat stability and age at onset in XDP, specifically the AGGG [5'-SINE-VNTR-Alu(AGAGGG)2AGGG(AGAGGG)n] mDRILS. OBJECTIVE This study aimed to investigate the stability of mDRILS frequencies and stability of (AGAGGG)n repeat length during transmission in parent-offspring pairs. METHODS Fifty-six families (n = 130) were investigated for generational transmission of repeat length and mDRILS. The mDRILS stability of 16 individuals was assessed at two sampling points 1 year apart. DNA was sequenced with long-read technologies after long-range polymerase chain reaction amplification of the TAF1 SVA. Repeat number and mDRILS were detected with Noise-Cancelling Repeat Finder (NCRF). RESULTS When comparing the repeat domain, 51 of 65 children had either contractions or expansions of the repeat length. The AGGG frequency remained stable across generations at 0.074 (IQR: 0.069-0.078) (z = -0.526; P = 0.599). However, the median AGGG frequency in children with an expansion (0.072 [IQR: 0.066-0.076]) was lower compared with children with retention or contraction (0.080 [IQR: 0.073-0.083]) (z = -0.007; P = 0.003). In a logistic regression model, the AGGG frequency predicted the outcome of either expansion or retention/contraction when including repeat number and sex as covariates (β = 80.7; z-score = 2.63; P = 0.0085). The AGGG frequency varied slightly over 1 year (0.070 [IQR: 0.063-0.080] to 0.073 [IQR: 0.069-0.078]). CONCLUSIONS Our results show that a higher AGGG frequency may stabilize repeats across generations. This highlights the importance of further investigating mDRILS as a disease-modifying factor with generational differences. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joshua Laß
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Theresa Lüth
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Björn-Hergen Laabs
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Christoph Much
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Roland Dominic Jamora
- Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Raymond L Rosales
- Department of Neurology and Psychiatry, University of Santo Tomas and the CNS-Metropolitan Medical Center, Manila, Philippines Section of Neurology, Manila, Philippines
| | - Gerard Saranza
- Department of Internal Medicine, Chong Hua Hospital, Cebu, Philippines
| | - Cid Czarina E Diesta
- Department of Neurosciences, Movement Disorders Clinic, Makati Medical Center, Makati City, Philippines
| | | | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
19
|
Petrozziello T, Motlagh NJ, Monsanto RZB, Lei D, Murcar MG, Penney EB, Bragg DC, Fernandez-Cerado C, Legarda GP, Sy M, Muñoz E, Ang MC, Diesta CCE, Zhang C, Tanzi RE, Qureshi IA, Chen JW, Sadri-Vakili G. Targeting myeloperoxidase to reduce neuroinflammation in X-linked dystonia parkinsonism. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.25.24309481. [PMID: 38978657 PMCID: PMC11230314 DOI: 10.1101/2024.06.25.24309481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Although the genetic locus of X-linked dystonia parkinsonism (XDP), a neurodegenerative disease endemic in the Philippines, is well-characterized, the exact molecular mechanisms leading to neuronal loss are not yet fully understood. Recently, we demonstrated a significant increase in astrogliosis and microgliosis together with an increase in myeloperoxidase (MPO) levels in XDP post-mortem prefrontal cortex (PFC), suggesting a role for neuroinflammation in XDP pathogenesis. Here, we demonstrated a significant increase in MPO activity in XDP PFC using a novel specific MPO-activatable fluorescent agent (MAFA). Additionally, we demonstrated a significant increase in reactive oxygen species (ROS) in XDP-derived fibroblasts as well as in SH-SY5Y cells treated with post-mortem XDP PFC, further supporting a role for MPO in XDP. To determine whether increases in MPO activity were linked to increases in ROS, MPO content was immuno-depleted from XDP PFC [MPO(-)], which resulted in a significant decrease in ROS in SH-SY5Y cells. Consistently, the treatment with verdiperstat, a potent and selective MPO inhibitor, significantly decreased ROS in both XDP-derived fibroblasts and XDP PFC-treated SH-SY5Y cells. Collectively, our results suggest that MPO inhibition mitigates oxidative stress and may provide a novel therapeutic strategy for XDP treatment. Highlights MPO activity is increased in XDP post-mortem prefrontal cortex.MPO activity is increased in cellular models of XDP.MPO increases reactive oxygen species (ROS) in vitro.Inhibiting MPO mitigates ROS in XDP.The MPO inhibitor, verdiperstat, dampens ROS suggesting a potential therapeutic strategy for XDP.
Collapse
|
20
|
Parisi F, Corniani G, Bonato P, Balkwill D, Acuna P, Go C, Sharma N, Stephen CD. Motor assessment of X-linked dystonia parkinsonism via machine-learning-based analysis of wearable sensor data. Sci Rep 2024; 14:13229. [PMID: 38853162 PMCID: PMC11162996 DOI: 10.1038/s41598-024-63946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/03/2024] [Indexed: 06/11/2024] Open
Abstract
X-linked dystonia parkinsonism (XDP) is a neurogenetic combined movement disorder involving both parkinsonism and dystonia. Complex, overlapping phenotypes result in difficulties in clinical rating scale assessment. We performed wearable sensor-based analyses in XDP participants to quantitatively characterize disease phenomenology as a potential clinical trial endpoint. Wearable sensor data was collected from 10 symptomatic XDP patients and 3 healthy controls during a standardized examination. Disease severity was assessed with the Unified Parkinson's Disease Rating Scale Part 3 (MDS-UPDRS) and Burke-Fahn-Marsden dystonia scale (BFM). We collected sensor data during the performance of specific MDS-UPDRS/BFM upper- and lower-limb motor tasks, and derived data features suitable to estimate clinical scores using machine learning (ML). XDP patients were at varying stages of disease and clinical severity. ML-based algorithms estimated MDS-UPDRS scores (parkinsonism) and dystonia-specific data features with a high degree of accuracy. Gait spatio-temporal parameters had high discriminatory power in differentiating XDP patients with different MDS-UPDRS scores from controls, XDP freezing of gait, and dystonic/non-dystonic gait. These analyses suggest the feasibility of using wearable sensor data for deriving reliable clinical score estimates associated with both parkinsonian and dystonic features in a complex, combined movement disorder and the utility of motion sensors in quantifying clinical examination.
Collapse
Affiliation(s)
- Federico Parisi
- Department of Physical Medicine and Rehabilitation, Motion Analysis Laboratory, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, MA, 300 1st Avenue 02129, USA
| | - Giulia Corniani
- Department of Physical Medicine and Rehabilitation, Motion Analysis Laboratory, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, MA, 300 1st Avenue 02129, USA
| | - Paolo Bonato
- Department of Physical Medicine and Rehabilitation, Motion Analysis Laboratory, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, MA, 300 1st Avenue 02129, USA.
| | - David Balkwill
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Patrick Acuna
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 100 Cambridge Street, Suite 2000, Boston, MA, 02114, USA
| | - Criscely Go
- Department of Behavioral Medicine, Jose Reyes Memorial Medical Center, Manila, Philippines
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 100 Cambridge Street, Suite 2000, Boston, MA, 02114, USA
| | - Christopher D Stephen
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 100 Cambridge Street, Suite 2000, Boston, MA, 02114, USA.
| |
Collapse
|
21
|
Kojima S. Investigating mobile element variations by statistical genetics. Hum Genome Var 2024; 11:23. [PMID: 38816353 PMCID: PMC11140006 DOI: 10.1038/s41439-024-00280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants.
Collapse
Affiliation(s)
- Shohei Kojima
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| |
Collapse
|
22
|
Fröhlich A, Pfaff AL, Middlehurst B, Hughes LS, Bubb VJ, Quinn JP, Koks S. Deciphering the role of a SINE-VNTR-Alu retrotransposon polymorphism as a biomarker of Parkinson's disease progression. Sci Rep 2024; 14:10932. [PMID: 38740892 DOI: 10.1038/s41598-024-61753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
SINE-VNTR-Alu (SVA) retrotransposons are transposable elements which represent a source of genetic variation. We previously demonstrated that the presence/absence of a human-specific SVA, termed SVA_67, correlated with the progression of Parkinson's disease (PD). In the present study, we demonstrate that SVA_67 acts as expression quantitative trait loci, thereby exhibiting a strong regulatory effect across the genome using whole genome and transcriptomic data from the Parkinson's progression markers initiative cohort. We further show that SVA_67 is polymorphic for its variable number tandem repeat domain which correlates with both regulatory properties in a luciferase reporter gene assay in vitro and differential expression of multiple genes in vivo. Additionally, this variation's utility as a biomarker is reflected in a correlation with a number of PD progression markers. These experiments highlight the plethora of transcriptomic and phenotypic changes associated with SVA_67 polymorphism which should be considered when investigating the missing heritability of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexander Fröhlich
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Ben Middlehurst
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lauren S Hughes
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia.
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.
| |
Collapse
|
23
|
Aryal S, Chen S, Burbach KF, Yang Y, Capano LS, Kim WK, Bragg DC, Yoo A. SAK3 confers neuroprotection in the neurodegeneration model of X-linked Dystonia-Parkinsonism. RESEARCH SQUARE 2024:rs.3.rs-4068432. [PMID: 38746402 PMCID: PMC11092809 DOI: 10.21203/rs.3.rs-4068432/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background X-linked Dystonia-Parkinsonism(XDP) is an adult-onset neurodegenerative disorder that results in the loss of striatal medium spiny neurons (MSNs). XDP is associated with disease-specific mutations in and around the TAF1 gene. This study highlights the utility of directly reprogrammed MSNs from fibroblasts of affected XDP individuals as a platform that captures cellular and epigenetic phenotypes associated with XDP-related neurodegeneration. In addition, the current study demonstrates the neuroprotective effect of SAK3 currently tested in other neurodegenerative diseases. Methods XDP fibroblasts from three independent patients as well as age- and sex-matched control fibroblasts were used to generate MSNs by direct neuronal reprogramming using miRNA-9/9*-124 and thetranscription factors CTIP2 , DLX1 -P2A- DLX2 , and MYT1L . Neuronal death, DNA damage, and mitochondrial health assays were carried out to assess the neurodegenerative state of directly reprogrammed MSNs from XDP patients (XDP-MSNs). RNA sequencing and ATAC sequencing were performed to infer changes in the transcriptomic and chromatin landscapesof XDP-MSNs compared to those of control MSNs (Ctrl-MSNs). Results Our results show that XDP patient fibroblasts can be successfully reprogrammed into MSNs and XDP-MSNs display several degenerative phenotypes, including neuronal death, DNA damage, and mitochondrial dysfunction, compared to Ctrl-MSNs reprogrammed from age- and sex-matched control individuals' fibroblasts. In addition, XDP-MSNs showed increased vulnerability to TNFα -toxicity compared to Ctrl-MSNs. To dissect the altered cellular state in XDP-MSNs, we conducted transcriptomic and chromatin accessibility analyses using RNA- and ATAC-seq. Our results indicate that pathways related to neuronal function, calcium signaling, and genes related to other neurodegenerative diseases are commonly altered in XDP-MSNs from multiple patients. Interestingly, we found that SAK3, a T-type calcium channel activator, that may have therapeutic values in other neurodegenerative disorders, protected XDP-MSNs from neuronal death. Notably, we found that SAK3-mediated alleviation of neurodegeneration in XDP-MSNs was accompanied by gene expression changes toward Ctrl-MSNs.
Collapse
|
24
|
Alonto AHD, Jamora RDG. A scoping review on the diagnosis and treatment of X-linked dystonia-parkinsonism. Parkinsonism Relat Disord 2024; 119:105949. [PMID: 38072720 DOI: 10.1016/j.parkreldis.2023.105949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 01/21/2024]
Abstract
INTRODUCTION X-linked dystonia-parkinsonism (XDP) is a progressive neurodegenerative disorder that has been studied well in recent years. OBJECTIVES This scoping review aimed to describe the current state of knowledge about the diagnosis and treatment of XDP, to provide clinicians with a concise and up-to-date overview. METHODS We conducted a scoping review of pertinent literature on the diagnosis and treatment of XDP using Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines. RESULTS There were 24 articles on diagnostic methods and 20 articles on therapeutic interventions for XDP, with 7 review articles describing both. The detection of the SVA retrotransposon insertion within the TAF1 gene is confirmatory for XDP. Oral medications are marginally effective. Chemodenervation with botulinum toxin is an effective treatment. Pallidal deep brain stimulation (DBS) has been shown to provide significant improvement in the dystonia and quality of life of patients with XDP for a longer time. A less invasive surgical option is the transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS), which has shown promising effects with the limited number of case reports available. CONCLUSION XDP is a geneti disorder characterized by striatal symptoms and pathology on neuroimaging. No effective oral medications are available for the management of XDP. The use of botulinum toxin is limited by its cost and duration of effects. As of now, pallidal DBS is deemed to be the best option. Another promising option is the tcMRgFUS but still has limited studies on its safety and efficacy in XDP.
Collapse
Affiliation(s)
- Anisah Hayaminnah D Alonto
- Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.
| | - Roland Dominic G Jamora
- Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines; Institute for Neurosciences, St. Luke's Medical Center, Quezon City & Global City, Philippines.
| |
Collapse
|
25
|
Hall A, Middlehurst B, Cadogan MAM, Reed X, Billingsley KJ, Bubb VJ, Quinn JP. A SINE-VNTR-Alu at the LRIG2 locus is associated with proximal and distal gene expression in CRISPR and population models. Sci Rep 2024; 14:792. [PMID: 38191889 PMCID: PMC10774264 DOI: 10.1038/s41598-023-50307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
SINE-VNTR-Alu (SVA) retrotransposons represent mobile regulatory elements that have the potential to influence the surrounding genome when they insert into a locus. Evolutionarily recent mobilisation has resulted in loci in the human genome where a given retrotransposon might be observed to be present or absent, termed a retrotransposon insertion polymorphism (RIP). We previously observed that an SVA RIP ~ 2 kb upstream of LRIG2 on chromosome 1, the 'LRIG2 SVA', was associated with differences in local gene expression and methylation, and that the two were correlated. Here, we have used CRISPR-mediated deletion of the LRIG2 SVA in a cell line model to validate that presence of the retrotransposon is directly affecting local expression and provide evidence that is suggestive of a modest role for the SVA in modulating nearby methylation. Additionally, in leveraging an available Hi-C dataset we observed that the LRIG2 SVA was also involved in long-range chromatin interactions with a cluster of genes ~ 300 kb away, and that expression of these genes was to varying degrees associated with dosage of the SVA in both CRISPR cell line and population models. Altogether, these data support a regulatory role for SVAs in the modulation of gene expression, with the latter potentially involving chromatin looping, consistent with the model that RIPs may contribute to interpersonal differences in transcriptional networks.
Collapse
Affiliation(s)
- Ashley Hall
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Ben Middlehurst
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Max A M Cadogan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Xylena Reed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kimberley J Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK.
| |
Collapse
|
26
|
Tshilenge KT, Bons J, Aguirre CG, Geronimo-Olvera C, Shah S, Rose J, Gerencser AA, Mak SK, Ehrlich ME, Bragg DC, Schilling B, Ellerby LM. Proteomic analysis of X-linked dystonia parkinsonism disease striatal neurons reveals altered RNA metabolism and splicing. Neurobiol Dis 2024; 190:106367. [PMID: 38042508 PMCID: PMC11103251 DOI: 10.1016/j.nbd.2023.106367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
X-linked dystonia-parkinsonism (XDP) is a rare neurodegenerative disease endemic to the Philippines. The genetic cause for XDP is an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within intron 32 of TATA-binding protein associated factor 1 (TAF1) that causes an alteration of TAF1 splicing, partial intron retention, and decreased transcription. Although TAF1 is expressed in all organs, medium spiny neurons (MSNs) within the striatum are one of the cell types most affected in XDP. To define how mutations in the TAF1 gene lead to MSN vulnerability, we carried out a proteomic analysis of human XDP patient-derived neural stem cells (NSCs) and MSNs derived from induced pluripotent stem cells. NSCs and MSNs were grown in parallel and subjected to quantitative proteomic analysis in data-independent acquisition mode on the Orbitrap Eclipse Tribrid mass spectrometer. Subsequent functional enrichment analysis demonstrated that neurodegenerative disease-related pathways, such as Huntington's disease, spinocerebellar ataxia, cellular senescence, mitochondrial function and RNA binding metabolism, were highly represented. We used weighted coexpression network analysis (WGCNA) of the NSC and MSN proteomic data set to uncover disease-driving network modules. Three of the modules significantly correlated with XDP genotype when compared to the non-affected control and were enriched for DNA helicase and nuclear chromatin assembly, mitochondrial disassembly, RNA location and mRNA processing. Consistent with aberrant mRNA processing, we found splicing and intron retention of TAF1 intron 32 in XDP MSN. We also identified TAF1 as one of the top enriched transcription factors, along with YY1, ATF2, USF1 and MYC. Notably, YY1 has been implicated in genetic forms of dystonia. Overall, our proteomic data set constitutes a valuable resource to understand mechanisms relevant to TAF1 dysregulation and to identify new therapeutic targets for XDP.
Collapse
Affiliation(s)
| | - Joanna Bons
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Carlos Galicia Aguirre
- The Buck Institute for Research on Aging, Novato, California 94945, USA; University of Southern California, Leonard Davis School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90893, USA
| | | | - Samah Shah
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Jacob Rose
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Akos A Gerencser
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Sally K Mak
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA, USA
| | - Birgit Schilling
- The Buck Institute for Research on Aging, Novato, California 94945, USA; University of Southern California, Leonard Davis School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90893, USA.
| | - Lisa M Ellerby
- The Buck Institute for Research on Aging, Novato, California 94945, USA; University of Southern California, Leonard Davis School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90893, USA.
| |
Collapse
|
27
|
Rajagopal S, Donaldson J, Flower M, Hensman Moss DJ, Tabrizi SJ. Genetic modifiers of repeat expansion disorders. Emerg Top Life Sci 2023; 7:325-337. [PMID: 37861103 PMCID: PMC10754329 DOI: 10.1042/etls20230015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Repeat expansion disorders (REDs) are monogenic diseases caused by a sequence of repetitive DNA expanding above a pathogenic threshold. A common feature of the REDs is a strong genotype-phenotype correlation in which a major determinant of age at onset (AAO) and disease progression is the length of the inherited repeat tract. Over a disease-gene carrier's life, the length of the repeat can expand in somatic cells, through the process of somatic expansion which is hypothesised to drive disease progression. Despite being monogenic, individual REDs are phenotypically variable, and exploring what genetic modifying factors drive this phenotypic variability has illuminated key pathogenic mechanisms that are common to this group of diseases. Disease phenotypes are affected by the cognate gene in which the expansion is found, the location of the repeat sequence in coding or non-coding regions and by the presence of repeat sequence interruptions. Human genetic data, mouse models and in vitro models have implicated the disease-modifying effect of DNA repair pathways via the mechanisms of somatic mutation of the repeat tract. As such, developing an understanding of these pathways in the context of expanded repeats could lead to future disease-modifying therapies for REDs.
Collapse
Affiliation(s)
- Sangeerthana Rajagopal
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| | - Jasmine Donaldson
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| | - Michael Flower
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| | - Davina J Hensman Moss
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
- St George's University of London, London SW17 0RE, U.K
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| |
Collapse
|
28
|
Chu C, Lin EW, Tran A, Jin H, Ho NI, Veit A, Cortes-Ciriano I, Burns KH, Ting DT, Park PJ. The landscape of human SVA retrotransposons. Nucleic Acids Res 2023; 51:11453-11465. [PMID: 37823611 PMCID: PMC10681720 DOI: 10.1093/nar/gkad821] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
SINE-VNTR-Alu (SVA) retrotransposons are evolutionarily young and still-active transposable elements (TEs) in the human genome. Several pathogenic SVA insertions have been identified that directly mutate host genes to cause neurodegenerative and other types of diseases. However, due to their sequence heterogeneity and complex structures as well as limitations in sequencing techniques and analysis, SVA insertions have been less well studied compared to other mobile element insertions. Here, we identified polymorphic SVA insertions from 3646 whole-genome sequencing (WGS) samples of >150 diverse populations and constructed a polymorphic SVA insertion reference catalog. Using 20 long-read samples, we also assembled reference and polymorphic SVA sequences and characterized the internal hexamer/variable-number-tandem-repeat (VNTR) expansions as well as differing SVA activity for SVA subfamilies and human populations. In addition, we developed a module to annotate both reference and polymorphic SVA copies. By characterizing the landscape of both reference and polymorphic SVA retrotransposons, our study enables more accurate genotyping of these elements and facilitate the discovery of pathogenic SVA insertions.
Collapse
Affiliation(s)
- Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Eric W Lin
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Medicine, Massachusetts General Hospital Harvard Medical School, Boston, MA 02114, USA
| | - Antuan Tran
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Hu Jin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Natalie I Ho
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Medicine, Massachusetts General Hospital Harvard Medical School, Boston, MA 02114, USA
| | - Alexander Veit
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Isidro Cortes-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Medicine, Massachusetts General Hospital Harvard Medical School, Boston, MA 02114, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Niethammer M, Tang CC, Jamora RDG, Vo A, Nguyen N, Ma Y, Peng S, Waugh JL, Westenberger A, Eidelberg D. A Network Imaging Biomarker of X-Linked Dystonia-Parkinsonism. Ann Neurol 2023; 94:684-695. [PMID: 37376770 DOI: 10.1002/ana.26732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE The purpose of this study was to characterize a metabolic brain network associated with X-linked dystonia-parkinsonism (XDP). METHODS Thirty right-handed Filipino men with XDP (age = 44.4 ± 8.5 years) and 30 XDP-causing mutation negative healthy men from the same population (age = 37.4 ± 10.5 years) underwent [18 F]-fluorodeoxyglucose positron emission tomography. Scans were analyzed using spatial covariance mapping to identify a significant XDP-related metabolic pattern (XDPRP). Patients were rated clinically at the time of imaging according to the XDP-Movement Disorder Society of the Philippines (MDSP) scale. RESULTS We identified a significant XDPRP topography from 15 randomly selected subjects with XDP and 15 control subjects. This pattern was characterized by bilateral metabolic reductions in caudate/putamen, frontal operculum, and cingulate cortex, with relative increases in the bilateral somatosensory cortex and cerebellar vermis. Age-corrected expression of XDPRP was significantly elevated (p < 0.0001) in XDP compared to controls in the derivation set and in the remaining 15 patients (testing set). We validated the XDPRP topography by identifying a similar pattern in the original testing set (r = 0.90, p < 0.0001; voxel-wise correlation between both patterns). Significant correlations between XDPRP expression and clinical ratings for parkinsonism-but not dystonia-were observed in both XDP groups. Further network analysis revealed abnormalities of information transfer through the XDPRP space, with loss of normal connectivity and gain of abnormal functional connections linking network nodes with outside brain regions. INTERPRETATION XDP is associated with a characteristic metabolic network associated with abnormal functional connectivity among the basal ganglia, thalamus, motor regions, and cerebellum. Clinical signs may relate to faulty information transfer through the network to outside brain regions. ANN NEUROL 2023;94:684-695.
Collapse
Affiliation(s)
- Martin Niethammer
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, New York
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Chris C Tang
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Roland Dominic G Jamora
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
- Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - An Vo
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, New York
- Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Yilong Ma
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, New York
- Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Shichun Peng
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Jeff L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, Texas
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, New York
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
- Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| |
Collapse
|
30
|
Menšíková K, Steele JC, Rosales R, Colosimo C, Spencer P, Lannuzel A, Ugawa Y, Sasaki R, Giménez-Roldán S, Matej R, Tuckova L, Hrabos D, Kolarikova K, Vodicka R, Vrtel R, Strnad M, Hlustik P, Otruba P, Prochazka M, Bares M, Boluda S, Buee L, Ransmayr G, Kaňovský P. Endemic parkinsonism: clusters, biology and clinical features. Nat Rev Neurol 2023; 19:599-616. [PMID: 37684518 DOI: 10.1038/s41582-023-00866-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
The term 'endemic parkinsonism' refers to diseases that manifest with a dominant parkinsonian syndrome, which can be typical or atypical, and are present only in a particular geographically defined location or population. Ten phenotypes of endemic parkinsonism are currently known: three in the Western Pacific region; two in the Asian-Oceanic region; one in the Caribbean islands of Guadeloupe and Martinique; and four in Europe. Some of these disease entities seem to be disappearing over time and therefore are probably triggered by unique environmental factors. By contrast, other types persist because they are exclusively genetically determined. Given the geographical clustering and potential overlap in biological and clinical features of these exceptionally interesting diseases, this Review provides a historical reference text and offers current perspectives on each of the 10 phenotypes of endemic parkinsonism. Knowledge obtained from the study of these disease entities supports the hypothesis that both genetic and environmental factors contribute to the development of neurodegenerative diseases, not only in endemic parkinsonism but also in general. At the same time, this understanding suggests useful directions for further research in this area.
Collapse
Affiliation(s)
- Katerina Menšíková
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- University Hospital, Olomouc, Czech Republic
| | | | - Raymond Rosales
- Research Center for Health Sciences, Faculty of Medicine and Surgery, University of Santo Tomás, Manila, The Philippines
- St Luke's Institute of Neuroscience, Metro, Manila, The Philippines
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | - Peter Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Annie Lannuzel
- Départment de Neurologie, Centre Hospitalier Universitaire de la Guadeloupe, Pointe-á-Pitre, France
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | - Ryogen Sasaki
- Department of Neurology, Kuwana City Medical Center, Kuwana, Japan
| | | | - Radoslav Matej
- Department of Pathology, 3rd Medical Faculty, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, 3rd Medical Faculty, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Lucie Tuckova
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Dominik Hrabos
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kristyna Kolarikova
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Genetics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Radek Vodicka
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Genetics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Radek Vrtel
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Genetics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- University Hospital, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Hlustik
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- University Hospital, Olomouc, Czech Republic
| | - Pavel Otruba
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- University Hospital, Olomouc, Czech Republic
| | - Martin Prochazka
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Genetics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Martin Bares
- First Department of Neurology, Masaryk University Medical School, Brno, Czech Republic
- St Anne University Hospital, Brno, Czech Republic
| | - Susana Boluda
- Département de Neuropathologie, Hôpital La Pitié - Salpêtrière, Paris, France
| | - Luc Buee
- Lille Neuroscience & Cognition Research Centre, INSERM U1172, Lille, France
| | - Gerhard Ransmayr
- Department of Neurology, Faculty of Medicine, Johannes Kepler University, Linz, Austria
| | - Petr Kaňovský
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
- University Hospital, Olomouc, Czech Republic.
| |
Collapse
|
31
|
Mertin R, Diesta C, Brüggemann N, Rosales RL, Hanssen H, Westenberger A, Steinhardt J, Heldmann M, Manalo HTS, Oropilla JQ, Klein C, Helmchen C, Sprenger A. Oculomotor abnormalities indicate early executive dysfunction in prodromal X-linked dystonia-parkinsonism (XDP). J Neurol 2023; 270:4262-4275. [PMID: 37191726 PMCID: PMC10421788 DOI: 10.1007/s00415-023-11761-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND X-Linked dystonia-parkinsonism (XDP) is a movement disorder characterized by the presence of both dystonia and parkinsonism with one or the other more prominent in the initial stages and later on manifesting with more parkinsonian features towards the latter part of the disease. XDP patients show oculomotor abnormalities indicating prefrontal and striatal impairment. This study investigated oculomotor behavior in non-manifesting mutation carriers (NMC). We hypothesized that oculomotor disorders occur before the appearance of dystonic or parkinsonian signs. This could help to functionally identify brain regions already affected in the prodromal stage of the disease. METHODS Twenty XDP patients, 13 NMC, and 28 healthy controls (HC) performed different oculomotor tasks typically affected in patients with parkinsonian signs. RESULTS The error rate for two types of volitional saccades, i.e., anti-saccades and memory-guided saccades, was increased not only in XDP patients but also in NMC compared to HC. However, the increase in error rates of both saccade types were highly correlated in XDP patients only. Hypometria of reflexive saccades was only found in XDP patients. Initial acceleration and maintenance velocity of smooth pursuit eye movements were only impaired in XDP patients. CONCLUSIONS Despite being asymptomatic, NMC already showed some oculomotor deficits reflecting fronto-striatal impairments, typically found in XDP patients. However, NMC did not show saccade hypometria and impaired smooth pursuit as seen in advanced Parkinson's disease and XDP, suggesting oculomotor state rather than trait signs in these mutation carriers. Neurodegeneration may commence in the striatum and prefrontal cortex, specifically the dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Renana Mertin
- Department of Neurology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Cid Diesta
- Makati Medical Center, Makati City, Philippines
- Asian Hospital and Medical Center, Manila, Philippines
| | - Norbert Brüggemann
- Department of Neurology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Raymond L Rosales
- Department of Neurology and Psychiatry, University of Santo Thomas, Manila, Philippines
| | - Henrike Hanssen
- Department of Neurology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Julia Steinhardt
- Department of Neurology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University Lübeck, Lübeck, Germany
| | | | - Jean Q Oropilla
- Makati Medical Center, Makati City, Philippines
- Asian Hospital and Medical Center, Manila, Philippines
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christoph Helmchen
- Department of Neurology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Andreas Sprenger
- Department of Neurology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
- Institute of Psychology II, University Lübeck, Lübeck, Germany.
| |
Collapse
|
32
|
Fröhlich A, Pfaff AL, Bubb VJ, Quinn JP, Koks S. Reference LINE-1 insertion polymorphisms correlate with Parkinson's disease progression and differential transcript expression in the PPMI cohort. Sci Rep 2023; 13:13857. [PMID: 37620405 PMCID: PMC10449770 DOI: 10.1038/s41598-023-41052-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Long interspersed nuclear element-1 (LINE-1/L1) retrotransposons make up 17% of the human genome. They represent one class of transposable elements with the capacity to both mobilize autonomously and in trans via the mobilization of other elements, primarily Alu and SVA elements. Reference LINE-1 elements are, by definition, found in the reference genome, however, due to the polymorphic nature of these elements, variation for presence or absence is present within the population. We used a combination of clinical and transcriptomic data from the Parkinson's Progression Markers Initiative (PPMI) and applied matrix expression quantitative trait loci analysis and linear mixed-effects models involving 114 clinical, biochemical and imaging data from the PPMI cohort to elucidate the role of reference LINE-1 insertion polymorphism on both gene expression genome-wide and progression of Parkinson's disease (PD). We demonstrate that most LINE-1 insertion polymorphisms are capable of regulating gene expression, preferentially in trans, including previously identified PD risk loci. In addition, we show that 70 LINE-1 elements were associated with longitudinal changes of at least one PD progression marker, including ipsilateral count density ratio and UPDRS scores which are indicators of degeneration and severity. In conclusion, this study highlights the effect of the polymorphic nature of LINE-1 retrotransposons on gene regulation and progression of PD which underlines the importance of analyzing transposable elements within complex diseases.
Collapse
Affiliation(s)
- Alexander Fröhlich
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia.
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.
| |
Collapse
|
33
|
Acuna P, Supnet-Wells ML, Spencer NA, de Guzman JK, Russo M, Hunt A, Stephen C, Go C, Carr S, Ganza NG, Lagarde JB, Begalan S, Multhaupt-Buell T, Aldykiewicz G, Paul L, Ozelius L, Bragg DC, Perry B, Green JR, Miller JW, Sharma N. Establishing a natural history of X-linked dystonia parkinsonism. Brain Commun 2023; 5:fcad106. [PMID: 37265597 PMCID: PMC10231801 DOI: 10.1093/braincomms/fcad106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 08/10/2024] Open
Abstract
X-linked dystonia parkinsonism is a neurodegenerative movement disorder that affects men whose mothers originate from the island of Panay, Philippines. Current evidence indicates that the most likely cause is an expansion in the TAF1 gene that may be amenable to treatment. To prepare for clinical trials of therapeutic candidates for X-linked dystonia parkinsonism, we focused on the identification of quantitative phenotypic measures that are most strongly associated with disease progression. Our main objective is to establish a comprehensive, quantitative assessment of movement dysfunction and bulbar motor impairments that are sensitive and specific to disease progression in persons with X-linked dystonia parkinsonism. These measures will set the stage for future treatment trials. We enrolled patients with X-linked dystonia parkinsonism and performed a comprehensive oromotor, speech and neurological assessment. Measurements included patient-reported questionnaires regarding daily living activities and both neurologist-rated movement scales and objective quantitative measures of bulbar function and nutritional status. Patients were followed for 18 months from the date of enrollment and evaluated every 6 months during that period. We analysed a total of 87 men: 29 were gene-positive and had symptoms at enrollment, seven were gene-positive and had no symptoms at enrollment and 51 were gene-negative. We identified measures that displayed a significant change over the study. We used principal variables analysis to identify a minimal battery of 21 measures that explains 67.3% of the variance over the course of the study. These measures included patient-reported, clinician-rated and objective quantitative outcomes that may serve as endpoints in future clinical trials.
Collapse
Affiliation(s)
- Patrick Acuna
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Sunshine Care Foundation, The Health Centrum, Roxas City, Capiz 5800Philippines
| | - Melanie Leigh Supnet-Wells
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Neil A Spencer
- Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
| | - Jan Kristoper de Guzman
- Department of Neurology, Jose Reyes Memorial Medical Center, Manila, Metro Manila, 1012Philippines
- Sunshine Care Foundation, The Health Centrum, Roxas City, Capiz 5800Philippines
| | - Massimiliano Russo
- Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ann Hunt
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Christopher Stephen
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Criscely Go
- Department of Neurology, Jose Reyes Memorial Medical Center, Manila, Metro Manila, 1012Philippines
| | - Samuel Carr
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Niecy Grace Ganza
- Sunshine Care Foundation, The Health Centrum, Roxas City, Capiz 5800Philippines
| | | | - Shin Begalan
- Sunshine Care Foundation, The Health Centrum, Roxas City, Capiz 5800Philippines
| | - Trisha Multhaupt-Buell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Gabrielle Aldykiewicz
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Lisa Paul
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Laurie Ozelius
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bridget Perry
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Charlestown, MA 02129, USA
| | - Jordan R Green
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Charlestown, MA 02129, USA
| | - Jeffrey W Miller
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
34
|
Richter TA, Aiken AA, Puracchio MJ, Maganga-Bakita I, Hunter RG. Maternal Immune Activation and Enriched Environments Impact B2 SINE Expression in Stress Sensitive Brain Regions of Rodent Offspring. Genes (Basel) 2023; 14:858. [PMID: 37107616 PMCID: PMC10137338 DOI: 10.3390/genes14040858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Early life stress (ELS) can have wide-spread neurodevelopmental effects with support accumulating for the idea that genomic mechanisms may induce lasting physiological and behavioral changes following stress exposure. Previous work found that a sub-family of transposable elements, SINEs, are repressed epigenetically after acute stress. This gives support to the concept that the mammalian genome may be regulating retrotransposon RNA expression allowing for adaptation in response to environmental challenges, such as maternal immune activation (MIA). Transposon (TE) RNAs are now thought to work at the epigenetic level and to have an adaptive response to environmental stressors. Abnormal expression of TEs has been linked to neuropsychiatric disorders like schizophrenia, which is also linked to maternal immune activation. Environmental enrichment (EE), a clinically utilized intervention, is understood to protect the brain, enhance cognitive performance, and attenuate responses to stress. This study examines the effects of MIA on offspring B2 SINE expression and further, the impact that EE, experienced throughout gestation and early life, may have in conjunction with MIA during development. Utilizing RT-PCR to quantify the expression of B2 SINE RNA in the juvenile brain of MIA exposed rat offspring, we found dysregulation of B2 SINE expression associated with MIA in the prefrontal cortex. For offspring experiencing EE, the prefrontal cortex exhibited an attenuation of the MIA response observed in standard housed animals. Here, the adaptive nature of B2 is observed and thought to be aiding in the animal's adaptation to stress. The present changes indicate a wide-spread stress-response system adaptation that impacts not only changes at the genomic level but potentially observable behavioral impacts throughout the lifespan, with possible translational relevance to psychotic disorders.
Collapse
Affiliation(s)
- Troy A. Richter
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Ariel A. Aiken
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Madeline J. Puracchio
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02125, USA
| | - Ismael Maganga-Bakita
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Richard G. Hunter
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
35
|
Laabs BH, Westenberger A, König IR. Identification of representative trees in random forests based on a new tree-based distance measure. ADV DATA ANAL CLASSI 2023. [DOI: 10.1007/s11634-023-00537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
AbstractIn life sciences, random forests are often used to train predictive models. However, gaining any explanatory insight into the mechanics leading to a specific outcome is rather complex, which impedes the implementation of random forests into clinical practice. By simplifying a complex ensemble of decision trees to a single most representative tree, it is assumed to be possible to observe common tree structures, the importance of specific features and variable interactions. Thus, representative trees could also help to understand interactions between genetic variants. Intuitively, representative trees are those with the minimal distance to all other trees, which requires a proper definition of the distance between two trees. Thus, we developed a new tree-based distance measure, which incorporates more of the underlying tree structure than other metrics. We compared our new method with the existing metrics in an extensive simulation study and applied it to predict the age at onset based on a set of genetic risk factors in a clinical data set. In our simulation study we were able to show the advantages of our weighted splitting variable approach. Our real data application revealed that representative trees are not only able to replicate the results from a recent genome-wide association study, but also can give additional explanations of the genetic mechanisms. Finally, we implemented all compared distance measures in R and made them publicly available in the R package timbR (https://github.com/imbs-hl/timbR).
Collapse
|
36
|
Gao R, Luo J, Ding H, Zhai H. INSnet: a method for detecting insertions based on deep learning network. BMC Bioinformatics 2023; 24:80. [PMID: 36879189 PMCID: PMC9990265 DOI: 10.1186/s12859-023-05216-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Many studies have shown that structural variations (SVs) strongly impact human disease. As a common type of SV, insertions are usually associated with genetic diseases. Therefore, accurately detecting insertions is of great significance. Although many methods for detecting insertions have been proposed, these methods often generate some errors and miss some variants. Hence, accurately detecting insertions remains a challenging task. RESULTS In this paper, we propose a method named INSnet to detect insertions using a deep learning network. First, INSnet divides the reference genome into continuous sub-regions and takes five features for each locus through alignments between long reads and the reference genome. Next, INSnet uses a depthwise separable convolutional network. The convolution operation extracts informative features through spatial information and channel information. INSnet uses two attention mechanisms, the convolutional block attention module (CBAM) and efficient channel attention (ECA) to extract key alignment features in each sub-region. In order to capture the relationship between adjacent subregions, INSnet uses a gated recurrent unit (GRU) network to further extract more important SV signatures. After predicting whether a sub-region contains an insertion through the previous steps, INSnet determines the precise site and length of the insertion. The source code is available from GitHub at https://github.com/eioyuou/INSnet . CONCLUSION Experimental results show that INSnet can achieve better performance than other methods in terms of F1 score on real datasets.
Collapse
Affiliation(s)
- Runtian Gao
- School of Software, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Junwei Luo
- School of Software, Henan Polytechnic University, Jiaozuo, 454003, China.
| | - Hongyu Ding
- School of Software, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Haixia Zhai
- School of Software, Henan Polytechnic University, Jiaozuo, 454003, China
| |
Collapse
|
37
|
Wang H, Wang LS, Schellenberg G, Lee WP. The role of structural variations in Alzheimer's disease and other neurodegenerative diseases. Front Aging Neurosci 2023; 14:1073905. [PMID: 36846102 PMCID: PMC9944073 DOI: 10.3389/fnagi.2022.1073905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/31/2022] [Indexed: 02/10/2023] Open
Abstract
Dozens of single nucleotide polymorphisms (SNPs) related to Alzheimer's disease (AD) have been discovered by large scale genome-wide association studies (GWASs). However, only a small portion of the genetic component of AD can be explained by SNPs observed from GWAS. Structural variation (SV) can be a major contributor to the missing heritability of AD; while SV in AD remains largely unexplored as the accurate detection of SVs from the widely used array-based and short-read technology are still far from perfect. Here, we briefly summarized the strengths and weaknesses of available SV detection methods. We reviewed the current landscape of SV analysis in AD and SVs that have been found associated with AD. Particularly, the importance of currently less explored SVs, including insertions, inversions, short tandem repeats, and transposable elements in neurodegenerative diseases were highlighted.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gerard Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
38
|
X-linked dystonia parkinsonism: epidemiology, genetics, clinical features, diagnosis, and treatment. Acta Neurol Belg 2023; 123:45-55. [PMID: 36418540 DOI: 10.1007/s13760-022-02144-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
X-linked dystonia parkinsonism (XDP) is a rare X-linked recessive degenerative movement disorder that only affects Filipino descent, predominantly males. Its underlying cause is associated with the genetic alterations in the TAF1/DYT3 multiple transcription system. SINE-VNTR-Alu (SVA) retrotransposon insertion was suggested to be the responsible genetic mutation. Clinically, it initially presents as focal dystonia and generalizes within years. Parkinsonism arises years later and coexists with dystonia. Nonmotor symptoms like cognitive impairment and mood disorders are also common among XDP patients. XDP diagnosis relies on clinical history and physical examination. On imaging, abnormalities of the striatum, such as atrophy, are widely seen and can explain the clinical presentations with a three-model pathway of the striatum. Treatments aim for symptomatic relief of dystonia and parkinsonism and to prevent complications. Oral medications, chemo-denervation, and surgery are used in XDP patients. This review summarizes the currently important information regarding XDP, providing a synoptic overview and understanding of XDP for future studies.
Collapse
|
39
|
Song SA, Go CL, Acuna PB, De Guzman JKP, Sharma N, Song PC. Progressive Decline in Voice and Voice-Related Quality of Life in X-Linked Dystonia Parkinsonism. J Voice 2023; 37:134-138. [PMID: 33334627 PMCID: PMC10222671 DOI: 10.1016/j.jvoice.2020.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To characterize the evolution of swallowing and voice in patients with X-linked dystonia parkinsonism (XDP). STUDY DESIGN Retrospective case series. METHODS Retrospective review of 59 patients with XDP from January 2016 to January 2018. All patients underwent complete examinations and quality of life (QOL) surveys (Swallowing Quality of Life questionnaire [SWAL-QOL], Voice-Related Quality of Life [V-RQOL], and Voice Handicap Index [VHI]), and functional endoscopic examination of swallowing. We excluded patients with incomplete records or patients lost to follow-up. Univariate analysis was used to compare 2016 to 2018 Penetration-Aspiration Scale (PAS), SWAL-QOL, V-RQOL, and VHI scores. RESULTS Ten patients met the inclusion criteria. Nine patients had oromandibular dystonia. Voice-related measures significantly worsened with an increase in mean VHI from 81 to 109.9 (P = 0.026) and decrease in mean V-RQOL from 58 to 28 (P = 0.013). Vocal strain also significantly worsened 0.4 to 1.4 (P = 0.001). Mean PAS scores increased from 4.2 to 5.1 (P = 0.068) and mean SWAL-QOL decreased from 50.4 to 43.5 (P = 0.157). In the SWAL-QOL, the mean Eating Duration score worsened from 0.9 to 0.4 (P = 0.052) and Mental Health score declined from 10.1 to 6.1 (P = 0.077). CONCLUSIONS Both vocal strain and voice-related QOL measures considerably worsened over the 2-year interval in our limited group of XDP patients with no significant change in PAS scores or swallowing QOL. The findings demonstrated that the pace of disease affecting voice symptoms was different from swallowing symptoms in our study group and that changes in communication ability may be a more sensitive marker for disease progression than swallowing dysfunction.
Collapse
Affiliation(s)
- Sungjin A Song
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts; Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts.
| | - Criscely L Go
- Department of Neurology, Jose Reyes Memorial Medical Center, Manila, Philippines; The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Patrick B Acuna
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jan Kristopher Palentinos De Guzman
- Department of Neurology, Jose Reyes Memorial Medical Center, Manila, Philippines; The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Phillip C Song
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts; Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Savage AL, Iacoangeli A, Schumann GG, Rubio-Roldan A, Garcia-Perez JL, Al Khleifat A, Koks S, Bubb VJ, Al-Chalabi A, Quinn JP. Characterisation of retrotransposon insertion polymorphisms in whole genome sequencing data from individuals with amyotrophic lateral sclerosis. Gene 2022; 843:146799. [PMID: 35963498 DOI: 10.1016/j.gene.2022.146799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022]
Abstract
The genetics of an individual is a crucial factor in understanding the risk of developing the neurodegenerative disease amyotrophic lateral sclerosis (ALS). There is still a large proportion of the heritability of ALS, particularly in sporadic cases, to be understood. Among others, active transposable elements drive inter-individual variability, and in humans long interspersed element 1 (LINE1, L1), Alu and SINE-VNTR-Alu (SVA) retrotransposons are a source of polymorphic insertions in the population. We undertook a pilot study to characterise the landscape of non-reference retrotransposon insertion polymorphisms (non-ref RIPs) in 15 control and 15 ALS individuals' whole genomes from Project MinE, an international project to identify potential genetic causes of ALS. The combination of two bioinformatics tools (mobile element locator tool (MELT) and TEBreak) identified on average 1250 Alu, 232 L1 and 77 SVA non-ref RIPs per genome across the 30 analysed. Further PCR validation of individual polymorphic retrotransposon insertions showed a similar level of accuracy for MELT and TEBreak. Our preliminary study did not identify a specific RIP or a significant difference in the total number of non-ref RIPs in ALS compared to control genomes. The use of multiple bioinformatic tools improved the accuracy of non-ref RIP detection and our study highlights the potential importance of studying these elements further in ALS.
Collapse
Affiliation(s)
- Abigail L Savage
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 9RT, UK; Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen 63225, Germany
| | - Alejandro Rubio-Roldan
- Department of Genomic Medicine and Department of Oncology, GENYO, Centre for Genomics & Oncology, PTS Granada, 18007, Spain
| | - Jose L Garcia-Perez
- Department of Genomic Medicine and Department of Oncology, GENYO, Centre for Genomics & Oncology, PTS Granada, 18007, Spain; MRC-HGU Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ahmad Al Khleifat
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 9RT, UK
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, Western Australia 6009, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 9RT, UK; Department of Neurology, King's College Hospital, London SE5 9RS, UK
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
41
|
Reyes CJ, Asano K, Todd PK, Klein C, Rakovic A. Repeat-Associated Non-AUG Translation of AGAGGG Repeats that Cause X-Linked Dystonia-Parkinsonism. Mov Disord 2022; 37:2284-2289. [PMID: 35971992 DOI: 10.1002/mds.29183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disorder caused by the intronic insertion of a SINE-VNTR-Alu (SVA) retrotransposon carrying an (AGAGGG)n repeat expansion in the TAF1 gene. The molecular mechanisms by which this mutation causes neurodegeneration remain elusive. OBJECTIVES We investigated whether (AGAGGG)n repeats undergo repeat-associated non-AUG (RAN) translation, a pathogenic mechanism common among repeat expansion diseases. METHODS XDP-specific RAN translation reporter plasmids were generated, transfected in HEK293 cells, and putative dipeptide repeat proteins (DPRs) were detected by Western blotting. Immunocytochemistry was performed in COS-7 cells to determine the subcellular localization of one DPR. RESULTS We detected putative DPRs from two reading frames, supporting the translation of poly-(Glu-Gly) and poly-(Arg-Glu) species. XDP RAN translation initiates within the (AGAGGG)n sequence and poly-(Glu-Gly) DPRs formed nuclear inclusions in transfected cells. CONCLUSIONS In summary, our work provides the first in-vitro proof of principle that the XDP-linked (AGAGGG)n repeat expansions can undergo RAN translation. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas, USA
- Laboratory of Translational Control Study, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging, Hiroshima University, Hiroshima, Japan
| | - Peter K Todd
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Veterans Affairs Medical Center, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
42
|
Kurosaki T, Ashizawa T. The genetic and molecular features of the intronic pentanucleotide repeat expansion in spinocerebellar ataxia type 10. Front Genet 2022; 13:936869. [PMID: 36199580 PMCID: PMC9528567 DOI: 10.3389/fgene.2022.936869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is characterized by progressive cerebellar neurodegeneration and, in many patients, epilepsy. This disease mainly occurs in individuals with Indigenous American or East Asian ancestry, with strong evidence supporting a founder effect. The mutation causing SCA10 is a large expansion in an ATTCT pentanucleotide repeat in intron 9 of the ATXN10 gene. The ATTCT repeat is highly unstable, expanding to 280-4,500 repeats in affected patients compared with the 9-32 repeats in normal individuals, one of the largest repeat expansions causing neurological disorders identified to date. However, the underlying molecular basis of how this huge repeat expansion evolves and contributes to the SCA10 phenotype remains largely unknown. Recent progress in next-generation DNA sequencing technologies has established that the SCA10 repeat sequence has a highly heterogeneous structure. Here we summarize what is known about the structure and origin of SCA10 repeats, discuss the potential contribution of variant repeats to the SCA10 disease phenotype, and explore how this information can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Center for RNA Biology, University of Rochester, Rochester, NY, United States
| | - Tetsuo Ashizawa
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute and Weil Cornell Medical College at Houston Methodist Houston, TX, United States
| |
Collapse
|
43
|
Kõks S, Pfaff AL, Singleton LM, Bubb VJ, Quinn JP. Non-reference genome transposable elements (TEs) have a significant impact on the progression of the Parkinson's disease. Exp Biol Med (Maywood) 2022; 247:1680-1690. [PMID: 36000172 PMCID: PMC9597212 DOI: 10.1177/15353702221117147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The pathophysiology of Parkinson's disease (PD) is a complex process of the interaction between genetic and environmental factors. Studies on the genetic component of PD have predominantly focused on single nucleotide polymorphisms (SNPs) using a cross-sectional case-control design in large genome-wide association studies. This approach while giving insight into a significant portion of the genetics of PD does not fully account for all the genetic components resulting in missing heritability. In this study, we approached this problem by focusing on the non-reference genome transposable elements (TEs) and their impact on the progression of PD using a longitudinal study design within the Parkinson's progression markers initiative (PPMI) cohort. We analyzed 2886 Alu repeats, 360 LINE1 and 128 SINE-VNTR-Alus (SVAs) that were called from the whole-genome sequence data which are not within the reference genome. The presence or absence of these non-reference TE variants is known as a retrotransposon insertion polymorphism, and measuring this polymorphism describes the impact of TEs on the traits. The variations for the presence or absence of the non-reference TE elements were modeled to align with the changes in the 114 outcome measures during the five-year follow-up period of the PPMI cohort. Linear mixed-effects models were used, and many TEs were found to have a highly significant effect on the longitudinal changes in the clinically important PD outcomes such as UPDRS subscale II, UPDRS total scores, and modified Schwab and England ADL scale. In addition, the progression of several imaging and functional measures, including the Caudate/Putamen ratio and levodopa equivalent daily dose (LEDD) were also significantly affected by the TEs. In conclusion, this study identified the overwhelming effect of the non-reference TEs on the progression of PD and is a good example of the impact the variations in the "junk DNA" have on complex diseases.
Collapse
Affiliation(s)
- Sulev Kõks
- Perron Institute for Neurological and
Translational Science, Perth, WA 6009, Australia,Centre for Molecular Medicine and
Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia,Sulev Kõks.
| | - Abigail L Pfaff
- Perron Institute for Neurological and
Translational Science, Perth, WA 6009, Australia,Centre for Molecular Medicine and
Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Lewis M Singleton
- Perron Institute for Neurological and
Translational Science, Perth, WA 6009, Australia
| | - Vivien J Bubb
- Department of Pharmacology and
Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of
Liverpool, Liverpool L69 3BX, UK
| | - John P Quinn
- Department of Pharmacology and
Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of
Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
44
|
Algodon SM, Fischer T, Rosales R, Jamora RD, Diesta CC, Saranza G, Brüggemann N, Klein C, Westenberger A. Low Frequency of p.S510G in PIAS1 Challenges its Relevance for Modifying Repeat Expansion Disorders. Mov Disord 2022; 37:2168-2169. [PMID: 35984100 DOI: 10.1002/mds.29191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 01/10/2023] Open
Affiliation(s)
| | - Tanja Fischer
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Raymond Rosales
- The Research Center for Health Sciences - Faculty of Medicine & Surgery and the Hospital Neuroscience Institute, University of Santo Tomas, Manila, Philippines
| | - Roland Dominic Jamora
- Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Cid Czarina Diesta
- Department of Neurosciences, Movement Disorders Clinic, Makati Medical Center, Makati, Philippines
| | - Gerard Saranza
- Section of Neurology, Department of Internal Medicine, Chong Hua Hospital, Cebu, Philippines
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
45
|
D'Ignazio L, Jacomini RS, Qamar B, Benjamin KJM, Arora R, Sawada T, Evans TA, Diffenderfer KE, Pankonin AR, Hendriks WT, Hyde TM, Kleinman JE, Weinberger DR, Bragg DC, Paquola ACM, Erwin JA. Variation in TAF1 expression in female carrier induced pluripotent stem cells and human brain ontogeny has implications for adult neostriatum vulnerability in X-linked Dystonia Parkinsonism. eNeuro 2022; 9:ENEURO.0129-22.2022. [PMID: 35868859 PMCID: PMC9428949 DOI: 10.1523/eneuro.0129-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/14/2022] [Accepted: 07/03/2022] [Indexed: 11/21/2022] Open
Abstract
X-linked Dystonia-Parkinsonism (XDP) is an inherited, X-linked, adult-onset movement disorder characterized by degeneration in the neostriatum. No therapeutics alter disease progression. The mechanisms underlying regional differences in degeneration and adult onset are unknown. Developing therapeutics requires a deeper understanding of how XDP-relevant features vary in health and disease. XDP is possibly due, in part, to a partial loss of TAF1 function. A disease-specific SINE-VNTR-Alu (SVA) retrotransposon insertion occurs within intron 32 of TAF1, a subunit of TFIID involved in transcription initiation. While all XDP males are usually clinically affected, females are heterozygous carriers generally not manifesting the full syndrome. As a resource for disease modeling, we characterized eight iPSC lines from three XDP female carrier individuals for X chromosome inactivation status and identified clonal lines that express either the wild-type X or XDP haplotype. Furthermore, we characterized XDP-relevant transcript expression in neurotypical humans, and found that SVA-F expression decreases after 30 years of age in the brain and that TAF1 is decreased in most female samples. Uniquely in the caudate nucleus, TAF1 expression is not sexually dimorphic and decreased after adolescence. These findings indicate that regional-, age- and sex-specific mechanisms regulate TAF1, highlighting the importance of disease-relevant models and postmortem tissue. We propose that the decreased TAF1 expression in the adult caudate may synergize with the XDP-specific partial loss of TAF1 function in patients, thereby passing a minimum threshold of TAF1 function, and triggering degeneration in the neostriatum.Significance StatementXDP is an inherited, X-linked, adult-onset movement disorder characterized by degeneration in the neostriatum. No therapeutics alter disease progression. Developing therapeutics requires a deeper understanding of how XDP-relevant features vary in health and disease. XDP is possibly due to a partial loss of TAF1 function. While all XDP males are usually affected, females are heterozygous carriers generally not manifesting the full syndrome. As a resource for disease modeling, we characterized eight stem cell lines from XDP female carrier individuals. Furthermore, we found that, uniquely in the caudate nucleus, TAF1 expression decreases after adolescence in healthy humans. We hypothesize that the decrease of TAF1 after adolescence in human caudate, in general, may underlie the vulnerability of the adult neostriatum in XDP.
Collapse
Affiliation(s)
- Laura D'Ignazio
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ricardo S Jacomini
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bareera Qamar
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Kynon J M Benjamin
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ria Arora
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Biology, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tomoyo Sawada
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Taylor A Evans
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Aimee R Pankonin
- Stem Cell Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - William T Hendriks
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University Baltimore, MD 21205, USA
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Apua C M Paquola
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer A Erwin
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
46
|
de la Morena-Barrio B, Stephens J, de la Morena-Barrio ME, Stefanucci L, Padilla J, Miñano A, Gleadall N, García JL, López-Fernández MF, Morange PE, Puurunen M, Undas A, Vidal F, Raymond FL, Vicente V, Ouwehand WH, Corral J, Sanchis-Juan A, NIHR BioResource . Long-Read Sequencing Identifies the First Retrotransposon Insertion and Resolves Structural Variants Causing Antithrombin Deficiency. Thromb Haemost 2022; 122:1369-1378. [PMID: 35764313 PMCID: PMC9393088 DOI: 10.1055/s-0042-1749345] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The identification of inherited antithrombin deficiency (ATD) is critical to prevent potentially life-threatening thrombotic events. Causal variants in SERPINC1 are identified for up to 70% of cases, the majority being single-nucleotide variants and indels. The detection and characterization of structural variants (SVs) in ATD remain challenging due to the high number of repetitive elements in SERPINC1. Here, we performed long-read whole-genome sequencing on 10 familial and 9 singleton cases with type I ATD proven by functional and antigen assays, who were selected from a cohort of 340 patients with this rare disorder because genetic analyses were either negative, ambiguous, or not fully characterized. We developed an analysis workflow to identify disease-associated SVs. This approach resolved, independently of its size or type, all eight SVs detected by multiple ligation-dependent probe amplification, and identified for the first time a complex rearrangement previously misclassified as a deletion. Remarkably, we identified the mechanism explaining ATD in 2 out of 11 cases with previous unknown defect: the insertion of a novel 2.4 kb SINE-VNTR-Alu retroelement, which was characterized by de novo assembly and verified by specific polymerase chain reaction amplification and sequencing in the probands and affected relatives. The nucleotide-level resolution achieved for all SVs allowed breakpoint analysis, which revealed repetitive elements and microhomologies supporting a common replication-based mechanism for all the SVs. Our study underscores the utility of long-read sequencing technology as a complementary method to identify, characterize, and unveil the molecular mechanism of disease-causing SVs involved in ATD, and enlarges the catalogue of genetic disorders caused by retrotransposon insertions.
Collapse
Affiliation(s)
- Belén de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidad de Murcia, Murcia, Spain
| | - Jonathan Stephens
- Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge, United Kingdom,NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - María Eugenia de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidad de Murcia, Murcia, Spain
| | - Luca Stefanucci
- Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge, United Kingdom,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge, United Kingdom,BHF Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - José Padilla
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidad de Murcia, Murcia, Spain
| | - Antonia Miñano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidad de Murcia, Murcia, Spain
| | - Nicholas Gleadall
- Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge, United Kingdom,NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Juan Luis García
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | | | - Pierre-Emmanuel Morange
- Laboratory of Haematology, La Timone Hospital, Marseille, France,C2VN, INRAE, INSERM, Aix-Marseille Université, Marseille, France
| | - Marja Puurunen
- The Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, Massachusetts, United States
| | - Anetta Undas
- Department of Experimental Cardiac Surgery, Anesthesiology and Cardiology, Institute of Cardiology, Jagiellonian University Medical College and John Paul II Hospital, Kraków, Poland
| | - Francisco Vidal
- Banc de Sang i Teixits, Barcelona, Spain,Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Frances Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom,Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Vicente Vicente
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidad de Murcia, Murcia, Spain
| | - Willem H. Ouwehand
- Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge, United Kingdom,NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidad de Murcia, Murcia, Spain,Javier Corral University of Murcia, Centro Regional de HemodonaciónCalle Ronda de Garay s/n, Murcia 30003Spain
| | - Alba Sanchis-Juan
- Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge, United Kingdom,NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom,Address for correspondence Alba Sanchis-Juan University of Cambridge, Department of Haematology, NHS Blood and Transplant CentreCambridge, CB2 0PTUnited Kingdom
| | | |
Collapse
|
47
|
Seibler P, Rakovic A. Patient-derived cells - an irreplaceable tool for research of reduced penetrance in movement disorders. MED GENET-BERLIN 2022; 34:125-130. [PMID: 38835901 PMCID: PMC11006347 DOI: 10.1515/medgen-2022-2133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Movement disorders comprise a clinically, pathologically, and genetically heterogeneous group of diseases associated with the phenomenon of reduced penetrance. Penetrance refers to the likelihood that a clinical condition will occur when a particular genotype is present. Elucidating the cause of reduced penetrance may contribute to more personalized medicine by identifying genetic factors that may prevent individuals from developing disease. Therefore, patient material becomes an irreplaceable resource in this approach. It is needed to identify genetic modifiers of the disease in the first place and to subsequently elucidate underlying mechanisms in endogenous human cell models that provide the entire genetic background.
Collapse
Affiliation(s)
- Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
48
|
Pozojevic J, von Holt BH, Westenberger A. Factors influencing reduced penetrance and variable expressivity in X-linked dystonia-parkinsonism. MED GENET-BERLIN 2022; 34:97-102. [PMID: 38835911 PMCID: PMC11007627 DOI: 10.1515/medgen-2022-2135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
X-linked dystonia-parkinsonism (XDP) is a neurodegenerative movement disorder that primarily affects adult Filipino men. It is caused by a founder retrotransposon insertion in TAF1 that contains a hexanucleotide repeat, the number of which differs among the patients and correlates with the age at disease onset (AAO) and other clinical parameters. A recent work has identified additional genetic modifiers of age-associated penetrance in XDP, bringing to light the DNA mismatch repair genes MSH3 and PMS2. Despite X-linked recessive inheritance, a minor subset of patients are female, manifesting the disease via various mechanisms such as homozygosity, imbalanced X-chromosome inactivation, or aneuploidy. Here, we summarize and discuss clinical and genetic aspects of XDP, with a focus on variable disease expressivity as a consequence of subtle genetic differences within a seemingly homogenous population of patients.
Collapse
Affiliation(s)
- Jelena Pozojevic
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, BMF, Building 67; Ratzeburger Allee 160, 23538 Lübeck, Germany
- Institute of Human Genetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Björn-Hergen von Holt
- Institute of Medical Biometry and Statistics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, BMF, Building 67; Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
49
|
Steinhardt J, Hanssen H, Heldmann M, Sprenger A, Laabs B, Domingo A, Reyes CJ, Prasuhn J, Brand M, Rosales R, Münte TF, Klein C, Westenberger A, Oropilla JQ, Diesta C, Brüggemann N. Prodromal X‐Linked Dystonia‐Parkinsonism is Characterized by a Subclinical Motor Phenotype. Mov Disord 2022; 37:1474-1482. [DOI: 10.1002/mds.29033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Henrike Hanssen
- Department of Neurology University of Lübeck Lübeck Germany
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | | | | | - Björn‐Hergen Laabs
- Institute of Medical Biometry and Statistics University of Lübeck University Hospital Schleswig‐Holstein Lübeck Germany
| | | | - Charles Jourdan Reyes
- Institute of Neurogenetics University of Lübeck Lübeck Germany
- Massachusetts General Hospital Boston Massachusetts USA
| | - Jannik Prasuhn
- Department of Neurology University of Lübeck Lübeck Germany
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | - Max Brand
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | - Raymond Rosales
- Department of Neurology and Psychiatry University of Santo Thomas Manila Philippines
| | | | - Christine Klein
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | | | - Jean Q. Oropilla
- Makati Medical Center Makati Philippines
- Asian Hospital and Medical Center Manila Philippines
| | - Cid Diesta
- Makati Medical Center Makati Philippines
- Asian Hospital and Medical Center Manila Philippines
| | - Norbert Brüggemann
- Department of Neurology University of Lübeck Lübeck Germany
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| |
Collapse
|
50
|
Trinh J, Lüth T, Schaake S, Laabs BH, Schlüter K, Laβ J, Pozojevic J, Tse R, König I, Jamora RD, Rosales RL, Brüggemann N, Saranza G, Diesta CCE, Kaiser FJ, Depienne C, Pearson CE, Westenberger A, Klein C. Mosaic divergent repeat interruptions in XDP influence repeat stability and disease onset. Brain 2022; 146:1075-1082. [PMID: 35481544 PMCID: PMC9976955 DOI: 10.1093/brain/awac160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 11/14/2022] Open
Abstract
While many genetic causes of movement disorders have been identified, modifiers of disease expression are largely unknown. X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease caused by a SINE-VNTR-Alu(AGAGGG)n retrotransposon insertion in TAF1, with a polymorphic (AGAGGG)n repeat. Repeat length and variants in MSH3 and PMS2 explain ∼65% of the variance in age at onset (AAO) in XDP. However, additional genetic modifiers are conceivably at play in XDP, such as repeat interruptions. Long-read nanopore sequencing of PCR amplicons from XDP patients (n = 202) was performed to assess potential repeat interruption and instability. Repeat-primed PCR and Cas9-mediated targeted enrichment confirmed the presence of identified divergent repeat motifs. In addition to the canonical pure SINE-VNTR-Alu-5'-(AGAGGG)n, we observed a mosaic of divergent repeat motifs that polarized at the beginning of the tract, where the divergent repeat interruptions varied in motif length by having one, two, or three nucleotides fewer than the hexameric motif, distinct from interruptions in other disease-associated repeats, which match the lengths of the canonical motifs. All divergent configurations occurred mosaically and in two investigated brain regions (basal ganglia, cerebellum) and in blood-derived DNA from the same patient. The most common divergent interruption was AGG [5'-SINE-VNTR-Alu(AGAGGG)2AGG(AGAGGG)n], similar to the pure tract, followed by AGGG [5'-SINE-VNTR-Alu(AGAGGG)2AGGG(AGAGGG)n], at median frequencies of 0.425 (IQR: 0.42-0.43) and 0.128 (IQR: 0.12-0.13), respectively. The mosaic AGG motif was not associated with repeat number (estimate = -3.8342, P = 0.869). The mosaic pure tract frequency was associated with repeat number (estimate = 45.32, P = 0.0441) but not AAO (estimate = -41.486, P = 0.378). Importantly, the mosaic frequency of the AGGG negatively correlated with repeat number after adjusting for age at sampling (estimate = -161.09, P = 3.44 × 10-5). When including the XDP-relevant MSH3/PMS2 modifier single nucleotide polymorphisms into the model, the mosaic AGGG frequency was associated with AAO (estimate = 155.1063, P = 0.047); however, the association dissipated after including the repeat number (estimate = -92.46430, P = 0.079). We reveal novel mosaic divergent repeat interruptions affecting both motif length and sequence (DRILS) of the canonical motif polarized within the SINE-VNTR-Alu(AGAGGG)n repeat. Our study illustrates: (i) the importance of somatic mosaic genotypes; (ii) the biological plausibility of multiple modifiers (both germline and somatic) that can have additive effects on repeat instability; and (iii) that these variations may remain undetected without assessment of single molecules.
Collapse
Affiliation(s)
- Joanne Trinh
- Correspondence to: Joanne Trinh, PhD University of Lübeck, Ratzeburger Allee 160 23538 Lübeck, Germany E-mail:
| | - Theresa Lüth
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Björn-Hergen Laabs
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Kathleen Schlüter
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Joshua Laβ
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Jelena Pozojevic
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Ronnie Tse
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Inke König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Roland Dominic Jamora
- Department of Neurosciences, College of Medicine—Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Raymond L Rosales
- Department of Neurology and Psychiatry, University of Santo Tomas and the CNS-Metropolitan Medical Center, Manila, Philippines
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany,Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Gerard Saranza
- Section of Neurology, Department of Internal Medicine, Chong Hua Hospital, Cebu, Philippines
| | - Cid Czarina E Diesta
- Department of Neurosciences, Movement Disorders Clinic, Makati Medical Center, Makati City, Philippines
| | - Frank J Kaiser
- Institute for Human Genetics at the University Hospital Essen, Essen, Germany,Center for Rare Diseases (Essenser Zentrum für Seltene Erkrankungen—EZSE) at the University Hospital Essen, Essen, Germany
| | - Christel Depienne
- Institute for Human Genetics at the University Hospital Essen, Essen, Germany
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Canada,University of Toronto, Program of Molecular Genetics, Toronto, Canada
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|