1
|
Davydova S, Yu D, Meccariello A. Genetic engineering for SIT application: a fruit fly-focused review. INSECT SCIENCE 2025. [PMID: 40195546 DOI: 10.1111/1744-7917.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
Sterile insect technique (SIT) has become a key component of efficient pest control. Fruit fly pests from the Drosophilidae and Tephritidae families pose a substantial and overwhelmingly increasing threat to the agricultural industry, aggravated by climate change and globalization among other contributors. In this review, we discuss the advances in genetic engineering aimed to improve the SIT-mediated fruit fly pest control. This includes SIT enhancement strategies such as novel genetic sexing strain and female lethality approaches. Self-pervasive X-shredding and X-poisoning sex distorters, alongside gene drive varieties are also reviewed. The self-limiting precision-guided SIT, which aims to tackle female removal and male fertility via CRISPR/Cas9, is additionally introduced. By using examples of existing genetic tools in the fruit fly pests of interest, as well as model species, we illustrate that the population control intensity may be modulated depending on strategy selection.
Collapse
Affiliation(s)
- Serafima Davydova
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Danheng Yu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Angela Meccariello
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Yan Y, Ahmed HMM, Wimmer EA, Schetelig MF. Biotechnology-enhanced genetic controls of the global pest Drosophila suzukii. Trends Biotechnol 2025; 43:826-837. [PMID: 39327106 DOI: 10.1016/j.tibtech.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Spotted wing Drosophila (Drosophila suzukii Matsumura, or SWD), an insect pest of soft-skinned fruits native to East Asia, has rapidly spread worldwide in the past 15 years. Genetic controls such as sterile insect technique (SIT) have been considered for the environmentally friendly and cost-effective management of this pest. In this review, we provide the latest developments for the genetic control strategies of SWD, including sperm-marking strains, CRISPR-based sex-ratio distortion, neoclassical genetic sexing strains, transgenic sexing strains, a sex-sorting incompatible male system, precision-guided SIT, and gene drives based on synthetic Maternal effect dominant embryonic arrest (Medea) or homing CRISPR systems. These strategies could either enhance the efficacy of traditional SIT or serve as standalone methods for the sustainable control of SWD.
Collapse
Affiliation(s)
- Ying Yan
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Gießen, Germany.
| | - Hassan M M Ahmed
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany; Department of Crop Protection, Faculty of Agriculture - University of Khartoum, Postal code 13314 Khartoum North, Sudan
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Marc F Schetelig
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Gießen, Germany
| |
Collapse
|
3
|
Han Y, Champer J. A Comparative Assessment of Self-limiting Genetic Control Strategies for Population Suppression. Mol Biol Evol 2025; 42:msaf048. [PMID: 40036822 PMCID: PMC11934067 DOI: 10.1093/molbev/msaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Genetic control strategies are promising solutions for control of pest populations and invasive species. Methods utilizing repeated releases of males such as sterile insect technique (SIT), release of insects carrying a dominant lethal (RIDL), self-limiting gene drives, and gene disruptors are highly controllable methods, ensuring biosafety. Although models of these strategies have been built, detailed comparisons are lacking, particularly for some of the newer strategies. Here, we conducted a thorough comparative assessment of self-limiting genetic control strategies by individual-based simulation models. Specifically, we find that repeated releases greatly enhance suppression power of weak and self-limiting gene drives, enabling population elimination with even low efficiency and high fitness costs. Moreover, dominant female sterility further strengthens self-limiting systems that can either use gene drive or disruptors that target genes without a mechanism to bias their own inheritance. Some of these strategies are highly persistent, resulting in relatively low release ratios even when released males suffer high fitness costs. To quantitatively evaluate different strategies independent from ecological impact, we proposed constant-population genetic load, which achieves over 95% accuracy in predicting simulation outcomes for most strategies, though it is not as precise in a few frequency-dependent systems. Our results suggest that many new self-limiting strategies are safe, flexible, and more cost-effective than traditional SIT and RIDL, and thus have great potential for population suppression of insects and other pests.
Collapse
Affiliation(s)
- Yue Han
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
- CLS Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jackson Champer
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Yoon H, Price B, Parks R, Jang HS, Hafeez M, Corcoran J, Ahn SJ, Choi MY. Corticotropin-releasing factor-like diuretic hormone 44 and five corresponding GPCRs in Drosophila suzukii: Structural and functional characterization. JOURNAL OF INSECT PHYSIOLOGY 2025; 161:104740. [PMID: 39647602 DOI: 10.1016/j.jinsphys.2024.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Diuretic hormones (DHs) activate corresponding G protein-coupled receptors (GPCRs), mediating the water and ion homeostasis in arthropods. There are two different DHs known to be expressed in insects, calcitonin (CT)-like DH31 and corticotropin-releasing factor (CRF)-like DH44. In this study, we identified and characterized a DH44 and five GPCR variants, DH44-R1 and DH44-R2a/b/c/d, in Drosophila suzukii (spotted-wing drosophila), causing detrimental damage to fresh and soft-skinned fruits. Among the five DH44 receptors, DH44-R1 was the longest GPCR and most strongly responded to DH44, and the other DH44-R2 splicing variants were relatively shorter and over 90 % similar to each other. Some DH44-Rs including DH44-R1 utilized both cAMP and Ca2+ as second messengers. Interestingly, DH44-R1 was dominantly expressed in the brain, whereas DH44-R2 variants were dominant in the digestive organs, particularly the Malpighian tubules (MTs) by their gene expressions. The results suggest that DH44 may have multiple physiological functions, including the regulation of the sleep-wake cycle and diuretic activity. Injection of DH44 stimulated fluid secretion in adults, and the rate of the excretion increased in a dose-dependent manner. Moreover, when the flies were injected with a mixture of DH31 and DH44, a high mortality rate was observed. Here, we demonstrate the gene structures, expressions, characterization of DH44 and five GPCRs, their second messengers, and the effects of DH peptides on the fly. These investigations offer molecular insights into the physiological roles of the DH system and may assist in the fundamental aspects of developing D. suzukii management in the field.
Collapse
Affiliation(s)
- Hojung Yoon
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR 97330, USA
| | - Briana Price
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA
| | - Ryssa Parks
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA
| | - Hyo Sang Jang
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR 97330, USA
| | - Muhammad Hafeez
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR 97330, USA
| | - Jacob Corcoran
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; The Biological Control of Insects Research Unit, 1503 S Providence, Research Park, Columbia, MO 65203, USA
| | - Seung-Joon Ahn
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Man-Yeon Choi
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA.
| |
Collapse
|
5
|
Debrah I, Zhong D, Machani MG, Nattoh G, Ochwedo KO, Morang'a CM, Lee MC, Amoah LE, Githeko AK, Afrane YA, Yan G. Metabolic resistance to pyrethroids with possible involvement of non-coding ribonucleic acids in Anopheles funestus, the major malaria vector in western Kenya. BMC Genomics 2025; 26:64. [PMID: 39849377 PMCID: PMC11755866 DOI: 10.1186/s12864-025-11260-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The resurgence of Anopheles funestus, a dominant vector of human malaria in western Kenya was partly attributed to insecticide resistance. However, evidence on the molecular basis of pyrethroid resistance in western Kenya is limited. Here, we reported metabolic resistance mechanisms and demonstrated that multiple non-coding Ribonucleic Acids (ncRNAs) could play a potential role in An. funestus resistance to pyrethroid in western Kenya. Anopheles funestus mosquitoes were sampled using aspiration methods in Bungoma, Teso, Siaya, Port Victoria and Kombewa in western Kenya. The F1 progenies were exposed to deltamethrin (0.05%), permethrin (0.75%), DDT (4%) and pirimiphos-methyl (0.25%) following WHO test guidelines. A synergist assay using piperonyl butoxide (PBO) (4%) was conducted to determine cytochrome P450s' role in pyrethroid resistance. RNA-seq was conducted on a combined pool of specimens that were resistant and unexposed, and the results were compared with those of the FANG susceptible reference strain. This approach aimed to uncover the molecular mechanisms underlying the observed phenotypic pyrethroid resistance. RESULTS Pyrethroid resistance was observed in all sites with an average mortality rate (MR) of 57.6%. Port Victoria had the highest level of pyrethroid resistance to permethrin (MR = 53%) and deltamethrin (MR = 11%. Teso had the lowest level of resistance to permethrin (MR = 70%) and deltamethrin (MR = 87%). Resistance to DDT was observed only in Kombewa (MR = 89%) and Port Victoria (MR = 85%). A full susceptibility to P-methyl (0.25%) was observed in all sites. PBO synergist assay revealed high susceptibility (> 98%) to pyrethroids in all the sites except for Port Victoria (MR = 96%). Whole transcriptomic analysis showed that most gene families associated with pyrethroid resistance comprised non-coding RNAs (67%), followed by immunity proteins (10%), cytochrome P450s (6%), cuticular proteins (5%), olfactory proteins (4%), glutathione S-transferases (3%), UDP-glycosyltransferases (2%), ATP-binding cassettes (2%) and carboxylesterases (1%). CONCLUSION This study unveils the molecular basis of insecticide resistance in An. funestus in western Kenya, highlighting for the first time the potential role of non-coding RNAs alongside metabolic detoxification in pyrethroid resistance. Targeting non-coding RNAs for intervention development could help in insecticide resistance management.
Collapse
Affiliation(s)
- Isaiah Debrah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.
- Sub-Saharan African International Centre of Excellence for Malaria Research, Tom Mboya University, Homabay, Kenya.
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, USA.
- Sub-Saharan African International Centre of Excellence for Malaria Research, Tom Mboya University, Homabay, Kenya.
| | - Maxwell G Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Godfrey Nattoh
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kevin O Ochwedo
- Sub-Saharan African International Centre of Excellence for Malaria Research, Tom Mboya University, Homabay, Kenya
| | - Collins M Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, USA
- Sub-Saharan African International Centre of Excellence for Malaria Research, Tom Mboya University, Homabay, Kenya
| | - Linda E Amoah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Sub-Saharan African International Centre of Excellence for Malaria Research, Tom Mboya University, Homabay, Kenya
| | - Yaw A Afrane
- Sub-Saharan African International Centre of Excellence for Malaria Research, Tom Mboya University, Homabay, Kenya
- Department of Medical Microbiology, College of Health Sciences, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, USA
- Sub-Saharan African International Centre of Excellence for Malaria Research, Tom Mboya University, Homabay, Kenya
| |
Collapse
|
6
|
Xie D, Ma Y, Ye P, Liu Y, Ding Q, Huang G, Félix MA, Cai Z, Zhao Z. A newborn F-box gene blocks gene flow by selectively degrading phosphoglucomutase in species hybrids. Proc Natl Acad Sci U S A 2024; 121:e2418037121. [PMID: 39514314 PMCID: PMC11573670 DOI: 10.1073/pnas.2418037121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
The establishment of reproductive barriers such as postzygotic hybrid incompatibility (HI) remains the key to speciation. Gene duplication followed by differential functionalization has long been proposed as a major model underlying HI, but little supporting evidence exists. Here, we demonstrate that a newborn F-box gene, Cni-neib-1, of the nematode Caenorhabditis nigoni specifically inactivates an essential phosphoglucomutase encoded by Cbr-shls-1 in its sister species Caenorhabditis briggsae and their hybrids. Zygotic expression of Cni-neib-1 specifically depletes Cbr-SHLS-1, but not Cni-SHLS-1, in approximately 40 min starting from gastrulation, causing embryonic death. Cni-neib-1 is one of thirty-three paralogues emerging from a recent surge in F-box gene duplication events within C. nigoni, all of which are evolving under positive selection. Cni-neib-1 undergoes turnover even among C. nigoni populations. Differential expansion of F-box genes between the two species could reflect their distinctive innate immune responses. Collectively, we demonstrate how recent duplication of genes involved in protein degradation can cause incidental destruction of targets in hybrids that leads to HI, providing an invaluable insight into mechanisms of speciation.
Collapse
Affiliation(s)
- Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yiqing Liu
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Gefei Huang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
- Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris75005, France
| | - Zongwei Cai
- Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| |
Collapse
|
7
|
Zhao Y, Li L, Wei L, Wang Y, Han Z. Advancements and Future Prospects of CRISPR-Cas-Based Population Replacement Strategies in Insect Pest Management. INSECTS 2024; 15:653. [PMID: 39336621 PMCID: PMC11432399 DOI: 10.3390/insects15090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Population replacement refers to the process by which a wild-type population of insect pests is replaced by a population possessing modified traits or abilities. Effective population replacement necessitates a gene drive system capable of spreading desired genes within natural populations, operating under principles akin to super-Mendelian inheritance. Consequently, releasing a small number of genetically edited insects could potentially achieve population control objectives. Currently, several gene drive approaches are under exploration, including the newly adapted CRISPR-Cas genome editing system. Multiple studies are investigating methods to engineer pests that are incapable of causing crop damage or transmitting vector-borne diseases, with several notable successful examples documented. This review summarizes the recent advancements of the CRISPR-Cas system in the realm of population replacement and provides insights into research methodologies, testing protocols, and implementation strategies for gene drive techniques. The review also discusses emerging trends and prospects for establishing genetic tools in pest management.
Collapse
Affiliation(s)
- Yu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Longfeng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Liangzi Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yifan Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhilin Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Oberhofer G, Johnson ML, Ivy T, Antoshechkin I, Hay BA. Cleave and Rescue gamete killers create conditions for gene drive in plants. NATURE PLANTS 2024; 10:936-953. [PMID: 38886522 DOI: 10.1038/s41477-024-01701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024]
Abstract
Gene drive elements promote the spread of linked traits and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene and a recoded version of the essential gene resistant to cleavage. ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. Here we demonstrate the essential features of the ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61. Resistant alleles, which can slow or prevent drive, were not observed. Modelling shows plant ClvRs are robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications are discussed.
Collapse
Affiliation(s)
- Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michelle L Johnson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tobin Ivy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
9
|
Liu Y, Jiao B, Champer J, Qian W. Overriding Mendelian inheritance in Arabidopsis with a CRISPR toxin-antidote gene drive that impairs pollen germination. NATURE PLANTS 2024; 10:910-922. [PMID: 38886523 DOI: 10.1038/s41477-024-01692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/09/2024] [Indexed: 06/20/2024]
Abstract
Synthetic gene drives, inspired by natural selfish genetic elements and transmitted to progeny at super-Mendelian (>50%) frequencies, present transformative potential for disseminating traits that benefit humans throughout wild populations, even facing potential fitness costs. Here we constructed a gene drive system in plants called CRISPR-Assisted Inheritance utilizing NPG1 (CAIN), which uses a toxin-antidote mechanism in the male germline to override Mendelian inheritance. Specifically, a guide RNA-Cas9 cassette targets the essential No Pollen Germination 1 (NPG1) gene, serving as the toxin to block pollen germination. A recoded, CRISPR-resistant copy of NPG1 serves as the antidote, providing rescue only in pollen cells that carry the drive. To limit potential consequences of inadvertent release, we used self-pollinating Arabidopsis thaliana as a model. The drive demonstrated a robust 88-99% transmission rate over two successive generations, producing minimal resistance alleles that are unlikely to inhibit drive spread. Our study provides a strong basis for rapid genetic modification or suppression of outcrossing plant populations.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bingke Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Ma S, Ni X, Chen S, Qiao X, Xu X, Chen W, Champer J, Huang J. A small-molecule approach to restore female sterility phenotype targeted by a homing suppression gene drive in the fruit pest Drosophila suzukii. PLoS Genet 2024; 20:e1011226. [PMID: 38578788 PMCID: PMC11023630 DOI: 10.1371/journal.pgen.1011226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/17/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024] Open
Abstract
CRISPR-based gene drives offer promising prospects for controlling disease-transmitting vectors and agricultural pests. A significant challenge for successful suppression-type drive is the rapid evolution of resistance alleles. One approach to mitigate the development of resistance involves targeting functionally constrained regions using multiple gRNAs. In this study, we constructed a 3-gRNA homing gene drive system targeting the recessive female fertility gene Tyrosine decarboxylase 2 (Tdc2) in Drosophila suzukii, a notorious fruit pest. Our investigation revealed only a low level of homing in the germline, but feeding octopamine restored the egg-laying defects in Tdc2 mutant females, allowing easier line maintenance than for other suppression drive targets. We tested the effectiveness of a similar system in Drosophila melanogaster and constructed additional split drive systems by introducing promoter-Cas9 transgenes to improve homing efficiency. Our findings show that genetic polymorphisms in wild populations may limit the spread of gene drive alleles, and the position effect profoundly influences Cas9 activity. Furthermore, this study highlights the potential of conditionally rescuing the female infertility caused by the gene drive, offering a valuable tool for the industrial-scale production of gene drive transgenic insects.
Collapse
Affiliation(s)
- Suhan Ma
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xuyang Ni
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shimin Chen
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | - Xuejiao Xu
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Weizhe Chen
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
- PTN program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Jia Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Yadav AK, Asokan R, Yamamoto A, Patil AA, Scott MJ. Expansion of the genetic toolbox for manipulation of the global crop pest Drosophila suzukii: Isolation and assessment of eye colour mutant strains. INSECT MOLECULAR BIOLOGY 2024; 33:91-100. [PMID: 37819050 DOI: 10.1111/imb.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), commonly called spotted wing Drosophila, is an important agricultural pest recognised worldwide. D. suzukii is a pest of soft-skinned fruits as females can lay eggs in ripening fruit before harvest. While strains for genetic biocontrol of D. suzukii have been made, the development of transgenic D. suzukii strains and their further screening remain a challenge partly due to the lack of phenotypically trackable genetic-markers, such as those widely used with the model genetic organism D. melanogaster. Here, we have used CRISPR/Cas9 to introduce heritable mutations in the eye colour genes white, cinnabar and sepia, which are located on the X, second and third chromosomes, respectively. Strains were obtained, which were homozygous for a single mutation. Genotyping of the established strains showed insertion and/or deletions (indels) at the targeted sites. A strain homozygous for mutations in cinnabar and sepia showed a pale-yellow eye colour at eclosion but darkened to a sepia colour after a week. The fecundity and fertility of some of the cinnabar and sepia strains were comparable with the wild type. Although white mutant males were previously reported to be sterile, we found that sterility is not fully penetrant and we have been able to maintain white-eyed strains for over a year. The cinnabar, sepia and white mutant strains developed in this study should facilitate future genetic studies in D. suzukii and the development of strains for genetic control of this pest.
Collapse
Affiliation(s)
- Amarish K Yadav
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Ramasamy Asokan
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - Akihiko Yamamoto
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Anandrao A Patil
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
12
|
Debrah I, Zhong D, Machani MG, Nattoh G, Ochwedo KO, Morang'a CM, Lee MC, Amoah LE, Githeko AK, Afrane YA, Yan G. Non-Coding RNAs Potentially Involved in Pyrethroid Resistance of Anopheles funestus Population in Western Kenya. RESEARCH SQUARE 2024:rs.3.rs-3979432. [PMID: 38464038 PMCID: PMC10925441 DOI: 10.21203/rs.3.rs-3979432/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Backgrounds The resurgence of Anopheles funestus, a dominant vector of human malaria in western Kenya was partly attributed to insecticide resistance. However, evidence on the molecular basis of pyrethroid resistance in western Kenya is limited. Noncoding RNAs (ncRNAs) form a vast class of RNAs that do not code for proteins and are ubiquitous in the insect genome. Here, we demonstrated that multiple ncRNAs could play a potential role in An. funestusresistance to pyrethroid in western Kenya. Materials and Methods Anopheles funestus mosquitoes were sampled by aspiration methods in Bungoma, Teso, Siaya, Port Victoria and Kombewa in western Kenya. The F1 progenies were exposed to deltamethrin (0.05%), permethrin (0.75%), DDT (4%) and pirimiphos-methyl (0.25%) following WHO test guidelines. A synergist assay using piperonyl butoxide (PBO) (4%) was conducted to determine cytochrome P450s' role in pyrethroid resistance. RNA-seq was conducted on a combined pool of specimens that were resistant and unexposed, and the results were compared with those of the FANG susceptible strain. This approach aimed to uncover the molecular mechanisms underlying pyrethroid resistance. Results Pyrethroid resistance was observed in all the sites with an average mortality rate of 57.6%. Port Victoria had the highest level of resistance to permethrin (MR=53%) and deltamethrin (MR=11%) pyrethroids. Teso had the lowest level of resistance to permethrin (MR=70%) and deltamethrin (MR=87%). Resistance to DDT was observed only in Kombewa (MR=89%) and Port Victoria (MR=85%). A full susceptibility to P-methyl (0.25%) was observed in all the sites. PBO synergist assay revealed high susceptibility (>98%) to the pyrethroids in all the sites except for Port Victoria (MR=96%, n=100). Whole transcriptomic analysis showed that most of the gene families associated with pyrethroid resistance comprised non-coding RNAs (67%), followed by imipenemase (10%), cytochrome P450s (6%), cuticular proteins (5%), olfactory proteins (4%), glutathione S-transferases (3%), UDP-glycosyltransferases (2%), ATP-binding cassettes (2%) and carboxylesterases(1%). Conclusions This study unveils the molecular basis of insecticide resistance in An. funestus in western Kenya, highlighting for the first time the potential role of non-coding RNAs in pyrethroid resistance. Targeting non-coding RNAs for intervention development could help in insecticide resistance management.
Collapse
Affiliation(s)
| | | | | | | | - Kevin O Ochwedo
- Sub-Saharan African International Centre of Excellence for Malaria Research, Tom Mboya University
| | | | | | | | | | - Yaw A Afrane
- University of Ghana Medical School, University of Ghana
| | | |
Collapse
|
13
|
Oberhofer G, Johnson ML, Ivy T, Antoshechkin I, Hay BA. Cleave and Rescue gamete killers create conditions for gene drive in plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.13.562303. [PMID: 37873352 PMCID: PMC10592828 DOI: 10.1101/2023.10.13.562303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Gene drive elements promote the spread of linked traits, even when their presence confers a fitness cost to carriers, and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs (the Cleaver/Toxin) that disrupts endogenous versions of an essential gene, and a recoded version of the essential gene resistant to cleavage (the Rescue/Antidote). ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. We demonstrate the essential features of ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61, whose expression is required in male and female gametes for their survival. Resistant (uncleavable but functional) alleles, which can slow or prevent drive, were not observed. Modeling shows plant ClvRs are likely to be robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications in plant breeding, weed control, and conservation are discussed.
Collapse
Affiliation(s)
- Georg Oberhofer
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Michelle L. Johnson
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Tobin Ivy
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Igor Antoshechkin
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Bruce A. Hay
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| |
Collapse
|
14
|
Kumam Y, Trick HN, Vara Prasad P, Jugulam M. Transformative Approaches for Sustainable Weed Management: The Power of Gene Drive and CRISPR-Cas9. Genes (Basel) 2023; 14:2176. [PMID: 38136999 PMCID: PMC10742955 DOI: 10.3390/genes14122176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Weeds can negatively impact crop yields and the ecosystem's health. While many weed management strategies have been developed and deployed, there is a greater need for the development of sustainable methods for employing integrated weed management. Gene drive systems can be used as one of the approaches to suppress the aggressive growth and reproductive behavior of weeds, although their efficacy is yet to be tested. Their popularity in insect pest management has increased, however, with the advent of CRISPR-Cas9 technology, which provides specificity and precision in editing the target gene. This review focuses on the different types of gene drive systems, including the use of CRISPR-Cas9-based systems and their success stories in pest management, while also exploring their possible applications in weed species. Factors that govern the success of a gene drive system in weeds, including the mode of reproduction, the availability of weed genome databases, and well-established transformation protocols are also discussed. Importantly, the risks associated with the release of weed populations with gene drive-bearing alleles into wild populations are also examined, along with the importance of addressing ecological consequences and ethical concerns.
Collapse
Affiliation(s)
- Yaiphabi Kumam
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (Y.K.); (P.V.V.P.)
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA;
| | - P.V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (Y.K.); (P.V.V.P.)
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (Y.K.); (P.V.V.P.)
| |
Collapse
|
15
|
Raban R, Marshall JM, Hay BA, Akbari OS. Manipulating the Destiny of Wild Populations Using CRISPR. Annu Rev Genet 2023; 57:361-390. [PMID: 37722684 PMCID: PMC11064769 DOI: 10.1146/annurev-genet-031623-105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the charge. This review focuses on the current state of CRISPR technologies for genetic biocontrol of pests and highlights the progress and ongoing challenges of using these approaches.
Collapse
Affiliation(s)
- Robyn Raban
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - John M Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
16
|
Yoon HJ, Price BE, Parks RK, Ahn SJ, Choi MY. Diuretic hormone 31 activates two G protein-coupled receptors with differential second messengers for diuresis in Drosophila suzukii. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 162:104025. [PMID: 37813200 DOI: 10.1016/j.ibmb.2023.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Diuretic hormones (DHs) bind to G protein-coupled receptors (GPCRs), regulating water and ion balance to maintain homeostasis in animals. Two distinct DHs are known in insects: calcitonin (CT)-like DH31 and corticotropin-releasing factor (CRF)-like DH44. In this study, we identified and characterized DH31 and two DH31 GPCR variants, DH31-Ra and DH31-Rb, from spotted-wing drosophila, Drosophila suzukii, a globally prevalent vinegar fly causing severe damage to small fruits. Both GPCRs are active, but DH31-Ra is the dominant receptor based on gene expression analyses and DH31 peptide binding affinities. A notable difference between the two variants lies in 1) the GPCR structures of their C-termini and 2) the utilization of second messengers, and the amino acid sequences of the two variants are identical. DH31-Ra contains 12 additional amino acids, providing different intracellular C-terminal configurations. DH31-Ra utilizes both cAMP and Ca2+ as second messengers, whereas DH31-Rb utilizes only cAMP; this is the first time reported for an insect CT-like DH31 peptide. DH31 stimulated fluid secretion in D. suzukii adults, and secretion increased in a dose-dependent manner. However, when the fly was injected with a mixture of DH31 and CAPA, an anti-diuretic hormone, fluid secretion was suppressed. Here, we discuss the structures of the DH31 receptors and the differential signaling pathways, including second messengers, involved in fly diuresis. These findings provide fundamental insights into the characterization of D. suzukii DH31 and DH31-Rs, and facilitate the identification of potential biological targets for D. suzukii management.
Collapse
Affiliation(s)
- Ho Jung Yoon
- USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA
| | - Briana E Price
- USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA
| | - Ryssa K Parks
- USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Man-Yeon Choi
- USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA.
| |
Collapse
|
17
|
Wolf S, Collatz J, Enkerli J, Widmer F, Romeis J. Assessing potential hybridization between a hypothetical gene drive-modified Drosophila suzukii and nontarget Drosophila species. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:1921-1932. [PMID: 36693350 DOI: 10.1111/risa.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Genetically engineered gene drives (geGD) are potentially powerful tools for suppressing or even eradicating populations of pest insects. Before living geGD insects can be released into the environment, they must pass an environmental risk assessment to ensure that their release will not cause unacceptable harm to non-targeted entities of the environment. A key research question concerns the likelihood that nontarget species will acquire the functional GD elements; such acquisition could lead to reduced abundance or loss of those species and to a disruption of the ecosystem services they provide. The main route for gene flow is through hybridization between the geGD insect strain and closely related species that co-occur in the area of release and its expected dispersal. Using the invasive spotted-wing drosophila, Drosophila suzukii, as a case study, we provide a generally applicable strategy on how a combination of interspecific hybridization experiments, behavioral observations, and molecular genetic analyses can be used to assess the potential for hybridization.
Collapse
Affiliation(s)
- Sarah Wolf
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
- Institute for Plant Sciences, University of Bern, Bern, Switzerland
| | - Jana Collatz
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| | - Jürg Enkerli
- Molecular Ecology, Agroscope, Zürich, Switzerland
| | | | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| |
Collapse
|
18
|
Combs MA, Golnar AJ, Overcash JM, Lloyd AL, Hayes KR, O'Brochta DA, Pepin KM. Leveraging eco-evolutionary models for gene drive risk assessment. Trends Genet 2023:S0168-9525(23)00090-2. [PMID: 37198063 DOI: 10.1016/j.tig.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
Engineered gene drives create potential for both widespread benefits and irreversible harms to ecosystems. CRISPR-based systems of allelic conversion have rapidly accelerated gene drive research across diverse taxa, putting field trials and their necessary risk assessments on the horizon. Dynamic process-based models provide flexible quantitative platforms to predict gene drive outcomes in the context of system-specific ecological and evolutionary features. Here, we synthesize gene drive dynamic modeling studies to highlight research trends, knowledge gaps, and emergent principles, organized around their genetic, demographic, spatial, environmental, and implementation features. We identify the phenomena that most significantly influence model predictions, discuss limitations of biological complexity and uncertainty, and provide insights to promote responsible development and model-assisted risk assessment of gene drives.
Collapse
Affiliation(s)
- Matthew A Combs
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, 80521, USA.
| | - Andrew J Golnar
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, 80521, USA
| | - Justin M Overcash
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Biotechnology Regulatory Services, 20737, USA
| | - Alun L Lloyd
- North Carolina State University, Biomathematics Graduate Program and Department of Mathematics, Raleigh, NC, 27695, USA
| | - Keith R Hayes
- The Commonwealth Scientific and Industrial Research Organisation, Data 61, Hobart, TAS, 7004, Australia
| | - David A O'Brochta
- Foundation for the National Institutes of Health, North Bethesda, MD, 20852, USA
| | - Kim M Pepin
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, 80521, USA
| |
Collapse
|
19
|
Zhang F, Neik TX, Thomas WJW, Batley J. CRISPR-Based Genome Editing Tools: An Accelerator in Crop Breeding for a Changing Future. Int J Mol Sci 2023; 24:8623. [PMID: 37239967 PMCID: PMC10218198 DOI: 10.3390/ijms24108623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Genome editing is an important strategy to maintain global food security and achieve sustainable agricultural development. Among all genome editing tools, CRISPR-Cas is currently the most prevalent and offers the most promise. In this review, we summarize the development of CRISPR-Cas systems, outline their classification and distinctive features, delineate their natural mechanisms in plant genome editing and exemplify the applications in plant research. Both classical and recently discovered CRISPR-Cas systems are included, detailing the class, type, structures and functions of each. We conclude by highlighting the challenges that come with CRISPR-Cas and offer suggestions on how to tackle them. We believe the gene editing toolbox will be greatly enriched, providing new avenues for a more efficient and precise breeding of climate-resilient crops.
Collapse
Affiliation(s)
- Fangning Zhang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ting Xiang Neik
- School of Biosciences, University of Nottingham Malaysia, Semenyih 43500, Malaysia
| | - William J. W. Thomas
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
20
|
Frieß JL, Lalyer CR, Giese B, Simon S, Otto M. Review of gene drive modelling and implications for risk assessment of gene drive organisms. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Raban R, Gendron WAC, Akbari OS. A perspective on the expansion of the genetic technologies to support the control of neglected vector-borne diseases and conservation. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.999273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Genetic-based technologies are emerging as promising tools to support vector population control. Vectors of human malaria and dengue have been the main focus of these development efforts, but in recent years these technologies have become more flexible and adaptable and may therefore have more wide-ranging applications. Culex quinquefasciatus, for example, is the primary vector of avian malaria in Hawaii and other tropical islands. Avian malaria has led to the extinction of numerous native bird species and many native bird species continue to be threatened as climate change is expanding the range of this mosquito. Genetic-based technologies would be ideal to support avian malaria control as they would offer alternatives to interventions that are difficult to implement in natural areas, such as larval source reduction, and limit the need for chemical insecticides, which can harm beneficial species in these natural areas. This mosquito is also an important vector of human diseases, such as West Nile and Saint Louis encephalitis viruses, so genetic-based control efforts for this species could also have a direct impact on human health. This commentary will discuss the current state of development and future needs for genetic-based technologies in lesser studied, but important disease vectors, such as C. quinquefasciatus, and make comparisons to technologies available in more studied vectors. While most current genetic control focuses on human disease, we will address the impact that these technologies could have on both disease and conservation focused vector control efforts and what is needed to prepare these technologies for evaluation in the field. The versatility of genetic-based technologies may result in the development of many important tools to control a variety of vectors that impact human, animal, and ecosystem health.
Collapse
|
22
|
Melesse Vergara M, Labbé J, Tannous J. Reflection on the Challenges, Accomplishments, and New Frontiers of Gene Drives. BIODESIGN RESEARCH 2022; 2022:9853416. [PMID: 37850135 PMCID: PMC10521683 DOI: 10.34133/2022/9853416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/19/2022] [Indexed: 10/19/2023] Open
Abstract
Ongoing pest and disease outbreaks pose a serious threat to human, crop, and animal lives, emphasizing the need for constant genetic discoveries that could serve as mitigation strategies. Gene drives are genetic engineering approaches discovered decades ago that may allow quick, super-Mendelian dissemination of genetic modifications in wild populations, offering hopes for medicine, agriculture, and ecology in combating diseases. Following its first discovery, several naturally occurring selfish genetic elements were identified and several gene drive mechanisms that could attain relatively high threshold population replacement have been proposed. This review provides a comprehensive overview of the recent advances in gene drive research with a particular emphasis on CRISPR-Cas gene drives, the technology that has revolutionized the process of genome engineering. Herein, we discuss the benefits and caveats of this technology and place it within the context of natural gene drives discovered to date and various synthetic drives engineered. Later, we elaborate on the strategies for designing synthetic drive systems to address resistance issues and prevent them from altering the entire wild populations. Lastly, we highlight the major applications of synthetic CRISPR-based gene drives in different living organisms, including plants, animals, and microorganisms.
Collapse
Affiliation(s)
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Invaio Sciences, Cambridge, MA 02138USA
| | - Joanna Tannous
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
23
|
Filipović I, Rašić G, Hereward J, Gharuka M, Devine GJ, Furlong MJ, Etebari K. A high-quality de novo genome assembly based on nanopore sequencing of a wild-caught coconut rhinoceros beetle (Oryctes rhinoceros). BMC Genomics 2022; 23:426. [PMID: 35672676 PMCID: PMC9172067 DOI: 10.1186/s12864-022-08628-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An optimal starting point for relating genome function to organismal biology is a high-quality nuclear genome assembly, and long-read sequencing is revolutionizing the production of this genomic resource in insects. Despite this, nuclear genome assemblies have been under-represented for agricultural insect pests, particularly from the order Coleoptera. Here we present a de novo genome assembly and structural annotation for the coconut rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae), based on Oxford Nanopore Technologies (ONT) long-read data generated from a wild-caught female, as well as the assembly process that also led to the recovery of the complete circular genome assemblies of the beetle's mitochondrial genome and that of the biocontrol agent, Oryctes rhinoceros nudivirus (OrNV). As an invasive pest of palm trees, O. rhinoceros is undergoing an expansion in its range across the Pacific Islands, requiring new approaches to management that may include strategies facilitated by genome assembly and annotation. RESULTS High-quality DNA isolated from an adult female was used to create four ONT libraries that were sequenced using four MinION flow cells, producing a total of 27.2 Gb of high-quality long-read sequences. We employed an iterative assembly process and polishing with one lane of high-accuracy Illumina reads, obtaining a final size of the assembly of 377.36 Mb that had high contiguity (fragment N50 length = 12 Mb) and accuracy, as evidenced by the exceptionally high completeness of the benchmarked set of conserved single-copy orthologous genes (BUSCO completeness = 99.1%). These quality metrics place our assembly ahead of the published Coleopteran genomes, including that of an insect model, the red flour beetle (Tribolium castaneum). The structural annotation of the nuclear genome assembly contained a highly-accurate set of 16,371 protein-coding genes, with only 2.8% missing BUSCOs, and the expected number of non-coding RNAs. The number and structure of paralogous genes in a gene family like Sigma GST is lower than in another scarab beetle (Onthophagus taurus), but higher than in the red flour beetle (Tribolium castaneum), which suggests expansion of this GST class in Scarabaeidae. The quality of our gene models was also confirmed with the correct placement of O. rhinoceros among other members of the rhinoceros beetles (subfamily Dynastinae) in a phylogeny based on the sequences of 95 protein-coding genes in 373 beetle species from all major lineages of Coleoptera. Finally, we provide a list of 30 candidate dsRNA targets whose orthologs have been experimentally validated as highly effective targets for RNAi-based control of several beetles. CONCLUSIONS The genomic resources produced in this study form a foundation for further functional genetic research and management programs that may inform the control and surveillance of O. rhinoceros populations, and we demonstrate the efficacy of de novo genome assembly using long-read ONT data from a single field-caught insect.
Collapse
Affiliation(s)
- Igor Filipović
- School of Biological Sciences, The University of Queensland, St. Lucia, Australia.
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Gordana Rašić
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - James Hereward
- School of Biological Sciences, The University of Queensland, St. Lucia, Australia
| | - Maria Gharuka
- Research Division, Ministry of Agriculture and Livestock, Honiara, Solomon Islands
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michael J Furlong
- School of Biological Sciences, The University of Queensland, St. Lucia, Australia
| | - Kayvan Etebari
- School of Biological Sciences, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
24
|
Kokotovich AE, Barnhill-Dilling SK, Elsensohn JE, Li R, Delborne JA, Burrack H. Stakeholder engagement to inform the risk assessment and governance of gene drive technology to manage spotted-wing drosophila. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114480. [PMID: 35085964 DOI: 10.1016/j.jenvman.2022.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Emerging biotechnologies, such as gene drive technology, are increasingly being proposed to manage a variety of pests and invasive species. As one method of genetic biocontrol, gene drive technology is currently being developed to manage the invasive agricultural pest spotted-wing drosophila (Drosophila suzukii, SWD). While there have been calls for stakeholder engagement on gene drive technology, there has been a lack of empirical work, especially concerning stakeholder engagement to inform risk assessment. To help address this gap and inform future risk assessments and governance decisions for SWD gene drive technology, we conducted a survey of 184 SWD stakeholders to explore how they define and prioritize potential benefits and potential adverse effects from proposed SWD gene drive technology. We found that stakeholders considered the most important potential benefits of SWD gene drive technology to be: 1) Decrease in the quantity or toxicity of pesticides used, and 2) Decrease in SWD populations. Stakeholders were most concerned about the potential adverse effects of: 1) Decrease in beneficial insects, 2) Increase in non-SWD secondary pest infestations, and 3) Decrease in grower profits. Notably, we found that even stakeholders who expressed support for the use of SWD gene drive technology expressed concerns about potential adverse effects from the technology, emphasizing the need to move past simplistic, dichotomous views of what it means to support or oppose a technology. These findings suggest that instead of focusing on the binary question of whether stakeholders support or oppose SWD gene drive technology, it is more important to identify and assess the factors that are consequential to stakeholder decision making - including, for example, exploring whether and under what conditions key potential adverse effects and potential benefits would result from the use of SWD gene drive technology.
Collapse
Affiliation(s)
- Adam E Kokotovich
- Department of Forestry and Environmental Resources, Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, USA.
| | - S Kathleen Barnhill-Dilling
- Department of Forestry and Environmental Resources, Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, USA
| | - Johanna E Elsensohn
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Richard Li
- Department of Agricultural and Resource Economics, North Carolina State University, Raleigh, NC, USA
| | - Jason A Delborne
- Department of Forestry and Environmental Resources, Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, USA
| | - Hannah Burrack
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
25
|
Babu A, Rodriguez-Saona C, Sial AA. Comparative Adult Mortality and Relative Attractiveness of Spotted-Wing Drosophila (Diptera: Drosophilidae) to Novel Attract-and-Kill (ACTTRA SWD) Formulations Mixed With Different Insecticides. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.846169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since its first appearance in California in 2008 and subsequent spread across the continental United States, the spotted-wing drosophila, Drosophila suzukii Matsumura, has become an economically damaging pest of multiple stone and soft-skinned fruits in the United States. The adjuvant ACTTRA SWD, when mixed with a suitable insecticide, constitutes an innovative attract-and-kill tactic that can be applied as a sprayable bait to manage D. suzukii. As an adjuvant, growers can mix ACTTRA SWD with any insecticide recommended for D. suzukii management in a specific crop; however, to achieve this, the efficacy of this adjuvant incorporated with various insecticides needs testing. This research aims to test the suitability of nine insecticides added to two ACTTRA SWD formulations (named OR1 and TD) to maintain the formulation’s attractiveness to D. suzukii adults and in resulting mortality. We conducted a series of two-choice bioassays to test the relative attraction of D. suzukii to ACTTRA SWD formulations prepared with and without a specific insecticide. Additionally, we tested the efficacy of ACTTRA SWD formulations mixed with insecticides in managing D. suzukii by using no-choice efficacy bioassays. Adding Mustang Maxx (zeta-cypermethrin) to ACTTRA SWD OR1 significantly improved D. suzukii adult attraction to the formulation, while Azera (azadirachtin + pyrethrins) significantly reduced attraction to both ACTTRA SWD formulations. Among the insecticides tested, we identified Danitol (fenpropathrin), Exirel (cyantraniliprole), Malathion (malathion), Mustang Maxx, and Entrust (spinosad) as suitable insecticide additives for both ACTTRA SWD formulations. The results from this study will assist growers in selecting proper insecticide components when preparing attract-and-kill formulations of the new adjuvant ACTTRA SWD.
Collapse
|
26
|
Wang GH, Du J, Chu CY, Madhav M, Hughes GL, Champer J. Symbionts and gene drive: two strategies to combat vector-borne disease. Trends Genet 2022; 38:708-723. [PMID: 35314082 DOI: 10.1016/j.tig.2022.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/26/2023]
Abstract
Mosquitoes bring global health problems by transmitting parasites and viruses such as malaria and dengue. Unfortunately, current insecticide-based control strategies are only moderately effective because of high cost and resistance. Thus, scalable, sustainable, and cost-effective strategies are needed for mosquito-borne disease control. Symbiont-based and genome engineering-based approaches provide new tools that show promise for meeting these criteria, enabling modification or suppression approaches. Symbiotic bacteria like Wolbachia are maternally inherited and manipulate mosquito host reproduction to enhance their vertical transmission. Genome engineering-based gene drive methods, in which mosquitoes are genetically altered to spread drive alleles throughout wild populations, are also proving to be a potentially powerful approach in the laboratory. Here, we review the latest developments in both symbionts and gene drive-based methods. We describe some notable similarities, as well as distinctions and obstacles, relating to these promising technologies.
Collapse
Affiliation(s)
- Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Du
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chen Yi Chu
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Mukund Madhav
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
27
|
Mateos Fernández R, Petek M, Gerasymenko I, Juteršek M, Baebler Š, Kallam K, Moreno Giménez E, Gondolf J, Nordmann A, Gruden K, Orzaez D, Patron NJ. Insect pest management in the age of synthetic biology. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:25-36. [PMID: 34416790 PMCID: PMC8710903 DOI: 10.1111/pbi.13685] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 05/10/2023]
Abstract
Arthropod crop pests are responsible for 20% of global annual crop losses, a figure predicted to increase in a changing climate where the ranges of numerous species are projected to expand. At the same time, many insect species are beneficial, acting as pollinators and predators of pest species. For thousands of years, humans have used increasingly sophisticated chemical formulations to control insect pests but, as the scale of agriculture expanded to meet the needs of the global population, concerns about the negative impacts of agricultural practices on biodiversity have grown. While biological solutions, such as biological control agents and pheromones, have previously had relatively minor roles in pest management, biotechnology has opened the door to numerous new approaches for controlling insect pests. In this review, we look at how advances in synthetic biology and biotechnology are providing new options for pest control. We discuss emerging technologies for engineering resistant crops and insect populations and examine advances in biomanufacturing that are enabling the production of new products for pest control.
Collapse
Affiliation(s)
| | - Marko Petek
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Iryna Gerasymenko
- Plant Biotechnology and Metabolic EngineeringTechnische Universität DarmstadtDarmstadtGermany
| | - Mojca Juteršek
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
- Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
| | - Špela Baebler
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | | | | | - Janine Gondolf
- Institut für PhilosophieTechnische Universität DarmstadtDarmstadtGermany
| | - Alfred Nordmann
- Institut für PhilosophieTechnische Universität DarmstadtDarmstadtGermany
| | - Kristina Gruden
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Diego Orzaez
- Institute for Plant Molecular and Cell Biology (IBMCP)UPV‐CSICValenciaSpain
| | | |
Collapse
|
28
|
Abstract
Gene drives are selfish genetic elements that are transmitted to progeny at super-Mendelian (>50%) frequencies. Recently developed CRISPR-Cas9-based gene-drive systems are highly efficient in laboratory settings, offering the potential to reduce the prevalence of vector-borne diseases, crop pests and non-native invasive species. However, concerns have been raised regarding the potential unintended impacts of gene-drive systems. This Review summarizes the phenomenal progress in this field, focusing on optimal design features for full-drive elements (drives with linked Cas9 and guide RNA components) that either suppress target mosquito populations or modify them to prevent pathogen transmission, allelic drives for updating genetic elements, mitigating strategies including trans-complementing split-drives and genetic neutralizing elements, and the adaptation of drive technology to other organisms. These scientific advances, combined with ethical and social considerations, will facilitate the transparent and responsible advancement of these technologies towards field implementation.
Collapse
Affiliation(s)
- Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
29
|
Abstract
Gene drives are an emerging technology with tremendous potential to impact public health, agriculture, and conservation. While gene drives can be described simply as selfish genetic elements (natural or engineered) that are inherited at non-Mendelian rates, upon closer inspection, engineered gene drive technology is a complex class of biotechnology that uses a diverse number of genetic features to bias rates of inheritance. As a complex technology, gene drives can be difficult to comprehend, not only for the public and stakeholders, but also to risk assessors, risk managers, and decisionmakers not familiar with gene drive literature. To address this difficulty, we describe a gene drive classification system based on 5 functional characteristics. These characteristics include a gene drive's objective, mechanism, release threshold, range, and persistence. The aggregate of the gene drive's characteristics can be described as the gene drive's architecture. Establishing a classification system to define different gene drive technologies should make them more comprehensible to the public and provide a framework to guide regulatory evaluation and decisionmaking.
Collapse
Affiliation(s)
- Justin Overcash
- Justin Overcash, PhD, is an Animal and Plant Health Inspection Service (APHIS) Science Fellow, Biotechnology Regulatory Services, Riverdale, MD
| | - Andrew Golnar
- Andrew Golnar, PhD, is an APHIS Science Fellow, Wildlife Services, Fort Collins, CO
| |
Collapse
|
30
|
Lalyer CR, Sigsgaard L, Giese B. Ecological vulnerability analysis for suppression of Drosophila suzukii by gene drives. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Li F, Yamamoto A, Belikoff EJ, Berger A, Griffith EH, Scott MJ. A conditional female lethal system for genetic suppression of the global fruit crop pest Drosophila suzukii. PEST MANAGEMENT SCIENCE 2021; 77:4915-4922. [PMID: 34169646 DOI: 10.1002/ps.6530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Drosophila suzukii (Matsumura, 1931, Diptera: Drosophilidae) is a global pest of soft-skinned fruits such as blueberries, cherries and raspberries. Also known as spotted-wing drosophila, D. suzukii is native to Asia but is now widely distributed in the Americas and Europe, and presents a serious challenge for growers. Genetic control strategies offer an environmentally friendly approach for the control of D. suzukii. RESULTS In this study, we developed transgenic strains of D. suzukii that carry dominant conditional female lethal transgenes. When raised in the absence of tetracycline, female D. suzukii die. We show that repeated releases of an excess of transgenic males can suppress D. suzukii populations in laboratory cage trials. CONCLUSION Our data suggest that the transgenic strain could provide an effective approach for control of this invasive pest of soft-skinned fruits.
Collapse
Affiliation(s)
- Fang Li
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Akihiko Yamamoto
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Esther J Belikoff
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Amy Berger
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Emily H Griffith
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
32
|
Kandul NP, Belikoff EJ, Liu J, Buchman A, Li F, Yamamoto A, Yang T, Shriner I, Scott MJ, Akbari OS. Genetically Encoded CRISPR Components Yield Efficient Gene Editing in the Invasive Pest Drosophila suzukii. CRISPR J 2021; 4:739-751. [PMID: 34661429 DOI: 10.1089/crispr.2021.0032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Originally from Asia, Drosophila suzukii Matsumura is a global pest of economically important soft-skinned fruits. Also commonly known as spotted wing drosophila, it is largely controlled through repeated applications of broad-spectrum insecticides by which resistance has been observed in the field. There is a pressing need for a better understanding of D. suzukii biology and for developing alternative environmentally friendly methods of control. The RNA-guided Cas9 nuclease has revolutionized functional genomics and is an integral component of several recently developed genetic strategies for population control of insects. Here, we describe genetically modified strains that encode three different terminators and four different promoters to express Cas9 robustly in both the soma and/or germline of D. suzukii. The Cas9 strains were rigorously evaluated through genetic crossing to transgenic strains that encode single-guide RNAs targeting the conserved X-linked yellow body and white eye genes. We find that several Cas9/gRNA strains display remarkably high editing capacity. Going forward, these tools will be instrumental for evaluating gene function in D. suzukii and may even provide tools useful for the development of new genetic strategies for control of this invasive species.
Collapse
Affiliation(s)
- Nikolay P Kandul
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA; and North Carolina State University, Raleigh, North Carolina, USA
| | - Esther J Belikoff
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Junru Liu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA; and North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Buchman
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA; and North Carolina State University, Raleigh, North Carolina, USA
| | - Fang Li
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Akihiko Yamamoto
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Ting Yang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA; and North Carolina State University, Raleigh, North Carolina, USA
| | - Isaiah Shriner
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA; and North Carolina State University, Raleigh, North Carolina, USA
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA; and North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
33
|
Tait G, Mermer S, Stockton D, Lee J, Avosani S, Abrieux A, Anfora G, Beers E, Biondi A, Burrack H, Cha D, Chiu JC, Choi MY, Cloonan K, Crava CM, Daane KM, Dalton DT, Diepenbrock L, Fanning P, Ganjisaffar F, Gómez MI, Gut L, Grassi A, Hamby K, Hoelmer KA, Ioriatti C, Isaacs R, Klick J, Kraft L, Loeb G, Rossi-Stacconi MV, Nieri R, Pfab F, Puppato S, Rendon D, Renkema J, Rodriguez-Saona C, Rogers M, Sassù F, Schöneberg T, Scott MJ, Seagraves M, Sial A, Van Timmeren S, Wallingford A, Wang X, Yeh DA, Zalom FG, Walton VM. Drosophila suzukii (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1950-1974. [PMID: 34516634 DOI: 10.1093/jee/toab158] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 05/17/2023]
Abstract
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) also known as spotted-wing drosophila (SWD), is a pest native to Southeast Asia. In the last few decades, the pest has expanded its range to affect all major European and American fruit production regions. SWD is a highly adaptive insect that is able to disperse, survive, and flourish under a range of environmental conditions. Infestation by SWD generates both direct and indirect economic impacts through yield losses, shorter shelf life of infested fruit, and increased production costs. Fresh markets, frozen berries, and fruit export programs have been impacted by the pest due to zero tolerance for fruit infestation. As SWD control programs rely heavily on insecticides, exceedance of maximum residue levels (MRLs) has also resulted in crop rejections. The economic impact of SWD has been particularly severe for organic operations, mainly due to the limited availability of effective insecticides. Integrated pest management (IPM) of SWD could significantly reduce chemical inputs but would require substantial changes to horticultural management practices. This review evaluates the most promising methods studied as part of an IPM strategy against SWD across the world. For each of the considered techniques, the effectiveness, impact, sustainability, and stage of development are discussed.
Collapse
Affiliation(s)
- Gabriella Tait
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Serhan Mermer
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Dara Stockton
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Jana Lee
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | - Sabina Avosani
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Antoine Abrieux
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Gianfranco Anfora
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Trentino, Italy
| | - Elizabeth Beers
- Tree Fruit Research & Extension Center, Washington State University, Wenatchee, WA, USA
| | - Antonio Biondi
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Hannah Burrack
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Dong Cha
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Man-Yeon Choi
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | | | - Cristina M Crava
- Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
| | - Kent M Daane
- Kearney Agricultural Research and Education Center, Parlier, CA, USA
- Department of Environmental Science, Policy & Management, University of California Berkeley, Berkeley, CA, USA
| | - Daniel T Dalton
- Faculty of Engineering & IT, Carinthia University of Applied Sciences, 9524, Villach, Austria
| | - Lauren Diepenbrock
- Citrus Research and Education Center, Entomology and Nematology Department, University of Florida, Lake Alfred, FL, USA
| | - Phillip Fanning
- USDA Economic Research Service, Market Trade and Economics Division, Kansas City, MO, USA
| | - Fatemeh Ganjisaffar
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Miguel I Gómez
- Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY, USA
| | - Larry Gut
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Alberto Grassi
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Kelly Hamby
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Kim A Hoelmer
- USDA-ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - Claudio Ioriatti
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | | | - Laura Kraft
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Gregory Loeb
- Department of Entomology, Cornell AgriTech, Geneva, NY, USA
| | | | - Rachele Nieri
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Ferdinand Pfab
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Simone Puppato
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Dalila Rendon
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Justin Renkema
- London Research and Development Centre - Vineland Campus, Agriculture and Agri-Food Canada, Vineland, ON, Canada
| | | | - Mary Rogers
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA
| | - Fabiana Sassù
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | | | - Ashfaq Sial
- Department of Entomology, University of Georgia, Athens, GA, USA
| | | | - Anna Wallingford
- Department of Agriculture Nutrition and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Xingeng Wang
- USDA-ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - D Adeline Yeh
- USDA Economic Research Service, Market Trade and Economics Division, Kansas City, MO, USA
| | - Frank G Zalom
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Vaughn M Walton
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
34
|
Lewald KM, Abrieux A, Wilson DA, Lee Y, Conner WR, Andreazza F, Beers EH, Burrack HJ, Daane KM, Diepenbrock L, Drummond FA, Fanning PD, Gaffney MT, Hesler SP, Ioriatti C, Isaacs R, Little BA, Loeb GM, Miller B, Nava DE, Rendon D, Sial AA, da Silva CSB, Stockton DG, Van Timmeren S, Wallingford A, Walton VM, Wang X, Zhao B, Zalom FG, Chiu JC. Population genomics of Drosophila suzukii reveal longitudinal population structure and signals of migrations in and out of the continental United States. G3-GENES GENOMES GENETICS 2021; 11:6380432. [PMID: 34599814 PMCID: PMC8664444 DOI: 10.1093/g3journal/jkab343] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/10/2021] [Indexed: 11/14/2022]
Abstract
Drosophila suzukii, or spotted-wing drosophila, is now an established pest in many parts of the world, causing significant damage to numerous fruit crop industries. Native to East Asia, D. suzukii infestations started in the United States a decade ago, occupying a wide range of climates. To better understand invasion ecology of this pest, knowledge of past migration events, population structure, and genetic diversity is needed. In this study, we sequenced whole genomes of 237 individual flies collected across the continental United States, as well as several sites in Europe, Brazil, and Asia, to identify and analyze hundreds of thousands of genetic markers. We observed strong population structure between Western and Eastern US populations, but no evidence of any population structure between different latitudes within the continental United States, suggesting that there are no broad-scale adaptations occurring in response to differences in winter climates. We detect admixture from Hawaii to the Western United States and from the Eastern United States to Europe, in agreement with previously identified introduction routes inferred from microsatellite analysis. We also detect potential signals of admixture from the Western United States back to Asia, which could have important implications for shipping and quarantine policies for exported agriculture. We anticipate this large genomic dataset will spur future research into the genomic adaptations underlying D. suzukii pest activity and development of novel control methods for this agricultural pest.
Collapse
Affiliation(s)
- Kyle M Lewald
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Antoine Abrieux
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Derek A Wilson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, University of Florida Institute of Food and Agricultural Sciences, Vero Beach, FL 32603, USA
| | - William R Conner
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Felipe Andreazza
- Laboratory of Entomology, Embrapa Clima Temperado, BR 392 Km 78, Caixa Postal 403, Pelotas, RS 96010-971, Brazil
| | - Elizabeth H Beers
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 99164, USA
| | - Hannah J Burrack
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27601, USA
| | - Kent M Daane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Lauren Diepenbrock
- UF IFAS Citrus Research and Education Center, University of Florida, Lake Alfred, FL 32603, USA
| | - Francis A Drummond
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Philip D Fanning
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Michael T Gaffney
- Horticultural Development Department, Teagasc, Ashtown, Dublin 15, Ireland
| | - Stephen P Hesler
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA
| | - Claudio Ioriatti
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010 San Michele all'Adige (TN), Italy
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Brian A Little
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Gregory M Loeb
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA
| | - Betsey Miller
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Dori E Nava
- Laboratory of Entomology, Embrapa Clima Temperado, BR 392 Km 78, Caixa Postal 403, Pelotas, RS 96010-971, Brazil
| | - Dalila Rendon
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Ashfaq A Sial
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | | | - Dara G Stockton
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA.,USDA-ARS, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA
| | - Steven Van Timmeren
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Anna Wallingford
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA.,Department of Agriculture, Nutrition & Food Systems, University of New Hampshire, Durham, NH 03824, USA
| | - Vaughn M Walton
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Xingeng Wang
- USDA Agricultural Research Service, Beneficial Insects Introduction Research Unit, Newark, DE 19713, USA
| | - Bo Zhao
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27601, USA
| | - Frank G Zalom
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
35
|
Legros M, Marshall JM, Macfadyen S, Hayes KR, Sheppard A, Barrett LG. Gene drive strategies of pest control in agricultural systems: Challenges and opportunities. Evol Appl 2021; 14:2162-2178. [PMID: 34603490 PMCID: PMC8477592 DOI: 10.1111/eva.13285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022] Open
Abstract
Recent advances in gene-editing technologies have opened new avenues for genetic pest control strategies, in particular around the use of gene drives to suppress or modify pest populations. Significant uncertainty, however, surrounds the applicability of these strategies to novel target species, their efficacy in natural populations and their eventual safety and acceptability as control methods. In this article, we identify issues associated with the potential use of gene drives in agricultural systems, to control pests and diseases that impose a significant cost to agriculture around the world. We first review the need for innovative approaches and provide an overview of the most relevant biological and ecological traits of agricultural pests that could impact the outcome of gene drive approaches. We then describe the specific challenges associated with using gene drives in agricultural systems, as well as the opportunities that these environments may offer, focusing in particular on the advantages of high-threshold gene drives. Overall, we aim to provide a comprehensive view of the potential opportunities and the remaining uncertainties around the use of gene drives in agricultural systems.
Collapse
Affiliation(s)
- Mathieu Legros
- CSIRO Agriculture and FoodCanberraACTAustralia
- CSIRO Synthetic Biology Future Science PlatformCanberraACTAustralia
| | - John M. Marshall
- Divisions of Biostatistics and Epidemiology – School of Public HealthUniversity of CaliforniaBerkeleyCAUSA
| | | | | | | | - Luke G. Barrett
- CSIRO Agriculture and FoodCanberraACTAustralia
- CSIRO Synthetic Biology Future Science PlatformCanberraACTAustralia
| |
Collapse
|
36
|
Verma P, Reeves RG, Gokhale CS. A common gene drive language eases regulatory process and eco-evolutionary extensions. BMC Ecol Evol 2021; 21:156. [PMID: 34372763 PMCID: PMC8351217 DOI: 10.1186/s12862-021-01881-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/12/2021] [Indexed: 02/08/2023] Open
Abstract
Background Synthetic gene drive technologies aim to spread transgenic constructs into wild populations even when they impose organismal fitness disadvantages. The extraordinary diversity of plausible drive mechanisms and the range of selective parameters they may encounter makes it very difficult to convey their relative predicted properties, particularly where multiple approaches are combined. The sheer number of published manuscripts in this field, experimental and theoretical, the numerous techniques resulting in an explosion in the gene drive vocabulary hinder the regulators’ point of view. We address this concern by defining a simplified parameter based language of synthetic drives. Results Employing the classical population dynamics approach, we show that different drive construct (replacement) mechanisms can be condensed and evaluated on an equal footing even where they incorporate multiple replacement drives approaches. Using a common language, it is then possible to compare various model properties, a task desired by regulators and policymakers. The generalization allows us to extend the study of the invasion dynamics of replacement drives analytically and, in a spatial setting, the resilience of the released drive constructs. The derived framework is available as a standalone tool. Conclusion Besides comparing available drive constructs, our tool is also useful for educational purpose. Users can also explore the evolutionary dynamics of future hypothetical combination drive scenarios. Thus, our results appraise the properties and robustness of drives and provide an intuitive and objective way for risk assessment, informing policies, and enhancing public engagement with proposed and future gene drive approaches.
Collapse
Affiliation(s)
- Prateek Verma
- Research Group for Theoretical Models of Eco-evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | - R Guy Reeves
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Chaitanya S Gokhale
- Research Group for Theoretical Models of Eco-evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
37
|
Elsensohn JE, Schal C, Burrack HJ. Plasticity in Oviposition Site Selection Behavior in Drosophila suzukii (Diptera: Drosophilidae) in Relation to Adult Density and Host Distribution and Quality. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1517-1522. [PMID: 34114635 DOI: 10.1093/jee/toab108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Flexibility in oviposition site selection under temporally shifting environmental conditions is an important trait that allows many polyphagous insects to flourish. Population density has been shown to affect egg-laying and offspring fitness throughout the animal kingdom. The effects of population density in insects have been suggested to be mutualistic at low densities, whereas intraspecific competition is exhibited at high densities. Here, we explore the effects of adult crowding and spatial resource variation on oviposition rate in the invasive pest Drosophila suzukii (Matsumura). In a series of laboratory experiments, we varied the density of adult males and females while holding oviposition substrate availability constant and measured per female oviposition rate using high and low-quality substrates. We found that oviposition behavior was affected more by substrate than adult density, though both variables had significant effects. When we varied the spatial arrangement of whole raspberries, we observed differences in oviposition rate and egg distribution between the grouped and solitary female treatments. Our results suggest that social interactions encourage oviposition, especially when exposed to unfamiliar or unnatural substrates. These results highlight the compensating effect of increased oviposition rate per female as adult populations decline. They will help researchers and crop managers better understand in-field population dynamics throughout the season as population densities change.
Collapse
Affiliation(s)
- Johanna E Elsensohn
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Hannah J Burrack
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
38
|
Devos Y, Mumford JD, Bonsall MB, Camargo AM, Firbank LG, Glandorf DCM, Nogué F, Paraskevopoulos K, Wimmer EA. Potential use of gene drive modified insects against disease vectors, agricultural pests and invasive species poses new challenges for risk assessment. Crit Rev Biotechnol 2021; 42:254-270. [PMID: 34167401 DOI: 10.1080/07388551.2021.1933891] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Potential future application of engineered gene drives (GDs), which bias their own inheritance and can spread genetic modifications in wild target populations, has sparked both enthusiasm and concern. Engineered GDs in insects could potentially be used to address long-standing challenges in control of disease vectors, agricultural pests and invasive species, or help to rescue endangered species, and thus provide important public benefits. However, there are concerns that the deliberate environmental release of GD modified insects may pose different or new harms to animal and human health and the wider environment, and raise novel challenges for risk assessment. Risk assessors, risk managers, developers, potential applicants and other stakeholders at many levels are currently discussing whether there is a need to develop new or additional risk assessment guidance for the environmental release of GD modified organisms, including insects. Developing new or additional guidance that is useful and practical is a challenge, especially at an international level, as risk assessors, risk managers and many other stakeholders have different, often contrasting, opinions and perspectives toward the environmental release of GD modified organisms, and on the adequacy of current risk assessment frameworks for such organisms. Here, we offer recommendations to overcome some of the challenges associated with the potential future development of new or additional risk assessment guidance for GD modified insects and provide considerations on areas where further risk assessment guidance may be required.
Collapse
Affiliation(s)
- Yann Devos
- GMO Unit, European Food Safety Authority (EFSA), Parma, Italy
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, Ascot, UK
| | | | - Ana M Camargo
- GMO Unit, European Food Safety Authority (EFSA), Parma, Italy
| | | | - Debora C M Glandorf
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | | | - Ernst A Wimmer
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, GZMB, Georg August University, Göttingen, Germany
| |
Collapse
|
39
|
Wu SL, Bennett JB, Sánchez C. HM, Dolgert AJ, León TM, Marshall JM. MGDrivE 2: A simulation framework for gene drive systems incorporating seasonality and epidemiological dynamics. PLoS Comput Biol 2021; 17:e1009030. [PMID: 34019537 PMCID: PMC8186770 DOI: 10.1371/journal.pcbi.1009030] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/08/2021] [Accepted: 05/02/2021] [Indexed: 12/30/2022] Open
Abstract
Interest in gene drive technology has continued to grow as promising new drive systems have been developed in the lab and discussions are moving towards implementing field trials. The prospect of field trials requires models that incorporate a significant degree of ecological detail, including parameters that change over time in response to environmental data such as temperature and rainfall, leading to seasonal patterns in mosquito population density. Epidemiological outcomes are also of growing importance, as: i) the suitability of a gene drive construct for release will depend on its expected impact on disease transmission, and ii) initial field trials are expected to have a measured entomological outcome and a modeled epidemiological outcome. We present MGDrivE 2 (Mosquito Gene Drive Explorer 2): a significant development from the MGDrivE 1 simulation framework that investigates the population dynamics of a variety of gene drive architectures and their spread through spatially-explicit mosquito populations. Key strengths and fundamental improvements of the MGDrivE 2 framework are: i) the ability of parameters to vary with time and induce seasonal population dynamics, ii) an epidemiological module accommodating reciprocal pathogen transmission between humans and mosquitoes, and iii) an implementation framework based on stochastic Petri nets that enables efficient model formulation and flexible implementation. Example MGDrivE 2 simulations are presented to demonstrate the application of the framework to a CRISPR-based split gene drive system intended to drive a disease-refractory gene into a population in a confinable and reversible manner, incorporating time-varying temperature and rainfall data. The simulations also evaluate impact on human disease incidence and prevalence. Further documentation and use examples are provided in vignettes at the project’s CRAN repository. MGDrivE 2 is freely available as an open-source R package on CRAN (https://CRAN.R-project.org/package=MGDrivE2). We intend the package to provide a flexible tool capable of modeling gene drive constructs as they move closer to field application and to infer their expected impact on disease transmission. Malaria, dengue and other mosquito-borne diseases continue to pose a major global health burden through much of the world. Currently available tools, such as insecticides and antimalarial drugs, are not expected to be sufficient to eliminate these diseases from highly-endemic areas, hence there is interest in novel strategies including genetics-based approaches. In recent years, the advent of CRISPR-based gene-editing has greatly expanded the range of genetic control tools available, and MGDrivE 1 (Mosquito Gene Drive Explorer 1) was proposed to simulate the dynamics of these systems through spatially-structured mosquito populations. As the technology has advanced and potential field trials are being discussed, models are now needed that incorporate additional details, such as life history parameters that respond to daily and seasonal environmental fluctuations, and transmission of pathogens between mosquito and vertebrate hosts. Here, we present MGDrivE 2, a gene drive simulation framework that significantly improves upon MGDrivE 1 by addressing these modeling needs. MGDrivE 2 has also been reformulated as a stochastic Petri net, enabling model specification to be decoupled from simulation, making it easier to adapt the model for application to other insect and mammalian species.
Collapse
Affiliation(s)
- Sean L. Wu
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
- * E-mail: (SLW); (JMM)
| | - Jared B. Bennett
- Biophysics Graduate Group, Division of Biological Sciences, College of Letters and Science, University of California, Berkeley, California, United States of America
| | - Héctor M. Sánchez C.
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| | - Andrew J. Dolgert
- Institute for Health Metrics and Evaluation, Seattle, Washington, United States of America
| | - Tomás M. León
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
- Innovative Genomics Institute, University of California, Berkeley, California, United States of America
- * E-mail: (SLW); (JMM)
| |
Collapse
|
40
|
Terradas G, Buchman AB, Bennett JB, Shriner I, Marshall JM, Akbari OS, Bier E. Inherently confinable split-drive systems in Drosophila. Nat Commun 2021; 12:1480. [PMID: 33674604 PMCID: PMC7935863 DOI: 10.1038/s41467-021-21771-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
CRISPR-based gene-drive systems, which copy themselves via gene conversion mediated by the homology-directed repair (HDR) pathway, have the potential to revolutionize vector control. However, mutant alleles generated by the competing non-homologous end-joining (NHEJ) pathway, resistant to Cas9 cleavage, can interrupt the spread of gene-drive elements. We hypothesized that drives targeting genes essential for viability or reproduction also carrying recoded sequences that restore endogenous gene functionality should benefit from dominantly-acting maternal clearance of NHEJ alleles combined with recessive Mendelian culling processes. Here, we test split gene-drive (sGD) systems in Drosophila melanogaster that are inserted into essential genes required for viability (rab5, rab11, prosalpha2) or fertility (spo11). In single generation crosses, sGDs copy with variable efficiencies and display sex-biased transmission. In multigenerational cage trials, sGDs follow distinct drive trajectories reflecting their differential tendencies to induce target chromosome damage and/or lethal/sterile mosaic Cas9-dependent phenotypes, leading to inherently confinable drive outcomes. NHEJ alleles and Cas9 remnants after a gene drive introduction are scientific and public concerns. Here, the authors use split drives with recoded rescue elements to target essential genes and minimize the appearance of NHEJ alleles while also leaving no trace of Cas9.
Collapse
Affiliation(s)
- Gerard Terradas
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA
| | - Anna B Buchman
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Jared B Bennett
- Biophysics Graduate Group, Division of Biological Sciences, College of Letters and Science, University of California, Berkeley, CA, USA
| | - Isaiah Shriner
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - John M Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, USA.,Innovative Genomics Institute, Berkeley, CA, USA
| | - Omar S Akbari
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA. .,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
41
|
Greenbaum G, Feldman MW, Rosenberg NA, Kim J. Designing gene drives to limit spillover to non-target populations. PLoS Genet 2021; 17:e1009278. [PMID: 33630838 PMCID: PMC7943199 DOI: 10.1371/journal.pgen.1009278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/09/2021] [Accepted: 11/14/2020] [Indexed: 12/12/2022] Open
Abstract
The prospect of utilizing CRISPR-based gene-drive technology for controlling populations has generated much excitement. However, the potential for spillovers of gene-drive alleles from the target population to non-target populations has raised concerns. Here, using mathematical models, we investigate the possibility of limiting spillovers to non-target populations by designing differential-targeting gene drives, in which the expected equilibrium gene-drive allele frequencies are high in the target population but low in the non-target population. We find that achieving differential targeting is possible with certain configurations of gene-drive parameters, but, in most cases, only under relatively low migration rates between populations. Under high migration, differential targeting is possible only in a narrow region of the parameter space. Because fixation of the gene drive in the non-target population could severely disrupt ecosystems, we outline possible ways to avoid this outcome. We apply our model to two potential applications of gene drives—field trials for malaria-vector gene drives and control of invasive species on islands. We discuss theoretical predictions of key requirements for differential targeting and their practical implications. CRISPR-based gene drive is an emerging genetic engineering technology that enables engineered genetic variants, which are usually designed to be harmful to the organism carrying them, to be spread rapidly in populations. Although this technology is promising for controlling disease vectors and invasive species, there is a considerable risk that a gene drive could unintentionally spillover from the target population, where it was deployed, to non-target populations. We develop mathematical models of gene-drive dynamics that incorporate migration between target and non-target populations to investigate the possibility of effectively applying a gene drive in the target population while limiting its spillover to non-target populations (‘differential targeting’). We observe that the feasibility of differential targeting depends on the gene-drive design specification, as well as on the migration rates between the populations. Even when differential targeting is possible, as migration increases, the possibility for differential targeting disappears. We find that differential targeting can be effective for low migration rates, and that it is sensitive to the design of the gene drive under high migration rates. We suggest that differential targeting could be used, in combination with other mitigation measures, as an additional safeguard to limit gene drive spillovers.
Collapse
Affiliation(s)
- Gili Greenbaum
- Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| | - Marcus W. Feldman
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Noah A. Rosenberg
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Jaehee Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
42
|
Hay BA, Oberhofer G, Guo M. Engineering the Composition and Fate of Wild Populations with Gene Drive. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:407-434. [PMID: 33035437 DOI: 10.1146/annurev-ento-020117-043154] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insects play important roles as predators, prey, pollinators, recyclers, hosts, parasitoids, and sources of economically important products. They can also destroy crops; wound animals; and serve as vectors for plant, animal, and human diseases. Gene drive-a process by which genes, gene complexes, or chromosomes encoding specific traits are made to spread through wild populations, even if these traits result in a fitness cost to carriers-provides new opportunities for altering populations to benefit humanity and the environment in ways that are species specific and sustainable. Gene drive can be used to alter the genetic composition of an existing population, referred to as population modification or replacement, or to bring about population suppression or elimination. We describe technologies under consideration, progress that has been made, and remaining technological hurdles, particularly with respect to evolutionary stability and our ability to control the spread and ultimate fate of genes introduced into populations.
Collapse
Affiliation(s)
- Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA; ,
- St. John's College, University of Cambridge, Cambridge CB2 1TP, United Kingdom
| | - Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA; ,
| | - Ming Guo
- Departments of Neurology and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA;
| |
Collapse
|
43
|
Leftwich PT, Spurgin LG, Harvey-Samuel T, Thomas CJE, Paladino LC, Edgington MP, Alphey L. Genetic pest management and the background genetics of release strains. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190805. [PMID: 33357053 DOI: 10.1098/rstb.2019.0805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genetic pest management (GPM) methods involve releasing modified versions of a pest species to mate with wild pests in the target area. Proposed for a wide range of applications in public health, agriculture and conservation, most progress has been made with pest insects. Offspring of the released modified insects and wild pests carry the modification-which might be transgenes, artificially introduced Wolbachia or genetic damage from radiation, for example-but they also carry a complete haploid genome from their laboratory-reared parent, as well as one from their wild parent. Unless these F1 hybrids are completely unable to reproduce, further mating will lead to introgression of DNA sequences from the release strain into the wild population. We discuss issues around strain selection and the potential consequences of such introgression. We conclude that such introgression is probably harmless in almost all circumstances, and could, in theory, provide specific additional benefits to the release programme. We outline population monitoring approaches that could be used, going forward, to determine how background genetics may affect GPM. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | | | | | | | | | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright GU24 0NF, UK
| |
Collapse
|
44
|
Ahmed HMM, Heese F, Wimmer EA. Improvement on the genetic engineering of an invasive agricultural pest insect, the cherry vinegar fly, Drosophila suzukii. BMC Genet 2020; 21:139. [PMID: 33339511 PMCID: PMC7747376 DOI: 10.1186/s12863-020-00940-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background The invasive fly Drosophila suzukii has become an established fruit pest in Europe, the USA, and South America with no effective and safe pest management. Genetic engineering enables the development of transgene-based novel genetic control strategies against insect pests and disease vectors. This, however, requires the establishment of reliable germline transformation techniques. Previous studies have shown that D. suzukii is amenable to transgenesis using the transposon-based vectors piggyBac and Minos, site-specific recombination (lox/Cre), and CRISPR/Cas9 genome editing. Results We experienced differences in the usability of piggyBac-based germline transformation in different strains of D. suzukii: we obtained no transgenic lines in a US strain, a single rare transgenic line in an Italian strain, but observed a reliable transformation rate of 2.5 to 11% in a strain from the French Alps. This difference in efficiency was confirmed by comparative examination of these three strains. In addition, we used an attP landing site line to successfully established φC31-integrase-mediated plasmid integration at a rate of 10% and generated landing site lines with two attP sequences to effectively perform φC31-Recombinase Mediated Cassette Exchange (φC31-RMCE) with 11% efficiency. Moreover, we isolated and used the endogenous regulatory regions of Ds nanos to express φC31 integrase maternally to generate self-docking lines for φC31-RMCE. Besides, we isolated the promoter/enhancer of Ds serendipity α to drive the heterologous tetracycline-controlled transactivator (tTA) during early embryonic development and generated a testes-specific tTA driver line using the endogenous beta-2-tubulin (β2t) promoter/enhancer. Conclusion Our results provide evidence that the D. suzukii strain AM derived from the French Alps is more suitable for piggyBac germline transformation than other strains. We demonstrated the feasibility of using φC31-RMCE in the cherry vinegar fly and generated a set of lines that can be used for highly efficient integration of larger constructs. The φC31-based integration will facilitate modification and stabilization of previously generated transgenic lines that carry at least one attP site in the transgene construction. An early embryo-specific and a spermatogenesis-specific driver line were generated for future use of the binary expression system tet-off to engineer tissue- and stage-specific effector gene expression for genetic pest control strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-020-00940-5.
Collapse
Affiliation(s)
- Hassan M M Ahmed
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077, Göttingen, Germany.,Department of Crop Protection, Faculty of Agriculture-University of Khartoum, P.O. Box 32, 13314, Khartoum North, Khartoum, Sudan
| | - Fabienne Heese
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
45
|
Edgington MP, Harvey-Samuel T, Alphey L. Split drive killer-rescue provides a novel threshold-dependent gene drive. Sci Rep 2020; 10:20520. [PMID: 33239631 PMCID: PMC7689494 DOI: 10.1038/s41598-020-77544-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
A wide range of gene drive mechanisms have been proposed that are predicted to increase in frequency within a population even when they are deleterious to individuals carrying them. This also allows associated desirable genetic material ("cargo genes") to increase in frequency. Gene drives have garnered much attention for their potential use against a range of globally important problems including vector borne disease, crop pests and invasive species. Here we propose a novel gene drive mechanism that could be engineered using a combination of toxin-antidote and CRISPR components, each of which are already being developed for other purposes. Population genetics mathematical models are developed here to demonstrate the threshold-dependent nature of the proposed system and its robustness to imperfect homing, incomplete penetrance of toxins and transgene fitness costs, each of which are of practical significance given that real-world components inevitably have such imperfections. We show that although end-joining repair mechanisms may cause the system to break down, under certain conditions, it should persist over time scales relevant for genetic control programs. The potential of such a system to provide localised population suppression via sex ratio distortion or female-specific lethality is also explored. Additionally, we investigate the effect on introduction thresholds of adding an extra CRISPR base element, showing that this may either increase or decrease dependent on parameter context.
Collapse
Affiliation(s)
| | - Tim Harvey-Samuel
- The Pirbright Institute, Ash Road, Woking, Surrey, Pirbright, GU24 0NF, UK
| | - Luke Alphey
- The Pirbright Institute, Ash Road, Woking, Surrey, Pirbright, GU24 0NF, UK
| |
Collapse
|
46
|
EFSA Panel on Genetically Modified Organisms (GMO), Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Bonsall MB, Mumford J, Wimmer EA, Devos Y, Paraskevopoulos K, Firbank LG. Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives. EFSA J 2020; 18:e06297. [PMID: 33209154 PMCID: PMC7658669 DOI: 10.2903/j.efsa.2020.6297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in molecular and synthetic biology are enabling the engineering of gene drives in insects for disease vector/pest control. Engineered gene drives (that bias their own inheritance) can be designed either to suppress interbreeding target populations or modify them with a new genotype. Depending on the engineered gene drive system, theoretically, a genetic modification of interest could spread through target populations and persist indefinitely, or be restricted in its spread or persistence. While research on engineered gene drives and their applications in insects is advancing at a fast pace, it will take several years for technological developments to move to practical applications for deliberate release into the environment. Some gene drive modified insects (GDMIs) have been tested experimentally in the laboratory, but none has been assessed in small-scale confined field trials or in open release trials as yet. There is concern that the deliberate release of GDMIs in the environment may have possible irreversible and unintended consequences. As a proactive measure, the European Food Safety Authority (EFSA) has been requested by the European Commission to review whether its previously published guidelines for the risk assessment of genetically modified animals (EFSA, 2012 and 2013), including insects (GMIs), are adequate and sufficient for GDMIs, primarily disease vectors, agricultural pests and invasive species, for deliberate release into the environment. Under this mandate, EFSA was not requested to develop risk assessment guidelines for GDMIs. In this Scientific Opinion, the Panel on Genetically Modified Organisms (GMO) concludes that EFSA's guidelines are adequate, but insufficient for the molecular characterisation (MC), environmental risk assessment (ERA) and post-market environmental monitoring (PMEM) of GDMIs. While the MC,ERA and PMEM of GDMIs can build on the existing risk assessment framework for GMIs that do not contain engineered gene drives, there are specific areas where further guidance is needed for GDMIs.
Collapse
|
47
|
Gardiner DM, Rusu A, Barrett L, Hunter GC, Kazan K. Can natural gene drives be part of future fungal pathogen control strategies in plants? THE NEW PHYTOLOGIST 2020; 228:1431-1439. [PMID: 32593207 DOI: 10.1111/nph.16779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Globally, fungal pathogens cause enormous crop losses and current control practices are not always effective, economical or environmentally sustainable. Tools enabling genetic management of wild pathogen populations could potentially solve many problems associated with plant diseases. A natural gene drive from a heterologous species can be used in the globally important cereal pathogen Fusarium graminearum to remove pathogenic traits from contained populations of the fungus. The gene drive element became fixed in a freely crossing population in only three generations. Repeat-induced point mutation (RIP), a natural genome defence mechanism in fungi that causes C to T mutations during meiosis in highly similar sequences, may be useful to recall the gene drive following release, should a failsafe mechanism be required. We propose that gene drive technology is a potential tool to control plant pathogens once its efficacy is demonstrated under natural settings.
Collapse
Affiliation(s)
- Donald M Gardiner
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - Anca Rusu
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - Luke Barrett
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clunies Ross Street, Acton, ACT, 2601, Australia
| | - Gavin C Hunter
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clunies Ross Street, Acton, ACT, 2601, Australia
| | - Kemal Kazan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| |
Collapse
|
48
|
Dhole S, Lloyd AL, Gould F. Gene Drive Dynamics in Natural Populations: The Importance of Density Dependence, Space, and Sex. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020; 51:505-531. [PMID: 34366722 PMCID: PMC8340601 DOI: 10.1146/annurev-ecolsys-031120-101013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The spread of synthetic gene drives is often discussed in the context of panmictic populations connected by gene flow and described with simple deterministic models. Under such assumptions, an entire species could be altered by releasing a single individual carrying an invasive gene drive, such as a standard homing drive. While this remains a theoretical possibility, gene drive spread in natural populations is more complex and merits a more realistic assessment. The fate of any gene drive released in a population would be inextricably linked to the population's ecology. Given the uncertainty often involved in ecological assessment of natural populations, understanding the sensitivity of gene drive spread to important ecological factors is critical. Here we review how different forms of density dependence, spatial heterogeneity, and mating behaviors can impact the spread of self-sustaining gene drives. We highlight specific aspects of gene drive dynamics and the target populations that need further research.
Collapse
Affiliation(s)
- Sumit Dhole
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Alun L Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8213, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, North Carolina 27695-7565, USA
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, North Carolina 27695-7565, USA
| |
Collapse
|
49
|
Rocha EM, Katak RDM, Campos de Oliveira J, Araujo MDS, Carlos BC, Galizi R, Tripet F, Marinotti O, Souza-Neto JA. Vector-Focused Approaches to Curb Malaria Transmission in the Brazilian Amazon: An Overview of Current and Future Challenges and Strategies. Trop Med Infect Dis 2020; 5:E161. [PMID: 33092228 PMCID: PMC7709627 DOI: 10.3390/tropicalmed5040161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/05/2023] Open
Abstract
In Brazil, malaria transmission is mostly confined to the Amazon, where substantial progress has been made towards disease control in the past decade. Vector control has been historically considered a fundamental part of the main malaria control programs implemented in Brazil. However, the conventional vector-control tools have been insufficient to control or eliminate local vector populations due to the complexity of the Amazonian rainforest environment and ecological features of malaria vector species in the Amazon, especially Anopheles darlingi. Malaria elimination in Brazil and worldwide eradication will require a combination of conventional and new approaches that takes into account the regional specificities of vector populations and malaria transmission dynamics. Here we present an overview on both conventional and novel promising vector-focused tools to curb malaria transmission in the Brazilian Amazon. If well designed and employed, vector-based approaches may improve the implementation of malaria-control programs, particularly in remote or difficult-to-access areas and in regions where existing interventions have been unable to eliminate disease transmission. However, much effort still has to be put into research expanding the knowledge of neotropical malaria vectors to set the steppingstones for the optimization of conventional and development of innovative vector-control tools.
Collapse
Affiliation(s)
- Elerson Matos Rocha
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Ricardo de Melo Katak
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Juan Campos de Oliveira
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Maisa da Silva Araujo
- Laboratory of Medical Entomology, Oswaldo Cruz Foundation, FIOCRUZ RONDONIA, Porto Velho, RO 76812-245, Brazil;
| | - Bianca Cechetto Carlos
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil;
- Central Multiuser Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| | - Roberto Galizi
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5GB, UK; (R.G.); (F.T.)
| | - Frederic Tripet
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5GB, UK; (R.G.); (F.T.)
| | | | - Jayme A. Souza-Neto
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil;
- Central Multiuser Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| |
Collapse
|
50
|
Price TAR, Windbichler N, Unckless RL, Sutter A, Runge JN, Ross PA, Pomiankowski A, Nuckolls NL, Montchamp-Moreau C, Mideo N, Martin OY, Manser A, Legros M, Larracuente AM, Holman L, Godwin J, Gemmell N, Courret C, Buchman A, Barrett LG, Lindholm AK. Resistance to natural and synthetic gene drive systems. J Evol Biol 2020; 33:1345-1360. [PMID: 32969551 PMCID: PMC7796552 DOI: 10.1111/jeb.13693] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Scientists are rapidly developing synthetic gene drive elements intended for release into natural populations. These are intended to control or eradicate disease vectors and pests, or to spread useful traits through wild populations for disease control or conservation purposes. However, a crucial problem for gene drives is the evolution of resistance against them, preventing their spread. Understanding the mechanisms by which populations might evolve resistance is essential for engineering effective gene drive systems. This review summarizes our current knowledge of drive resistance in both natural and synthetic gene drives. We explore how insights from naturally occurring and synthetic drive systems can be integrated to improve the design of gene drives, better predict the outcome of releases and understand genomic conflict in general.
Collapse
Affiliation(s)
- Tom A. R. Price
- Department of Ecology, Evolution and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | - Andreas Sutter
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jan-Niklas Runge
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Perran A. Ross
- Bio21 and the School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Pomiankowski
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Catherine Montchamp-Moreau
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Saclay, Gif sur Yvette 91190, France
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
| | - Oliver Y. Martin
- Department of Biology (D-BIOL) & Institute of Integrative Biology (IBZ), ETH Zurich, Universitätsstrasse 16, CH 8092 Zurich, Switzerland
| | - Andri Manser
- Department of Ecology, Evolution and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Matthieu Legros
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | | | - Luke Holman
- School of Biosciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Neil Gemmell
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - Cécile Courret
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Saclay, Gif sur Yvette 91190, France
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Anna Buchman
- University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- Verily Life Sciences, 269 E Grand Ave, South San Francisco, CA 94080
| | - Luke G. Barrett
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Anna K. Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|