1
|
Shah SS, Fuller PJ, Young MJ, Yang J. Update on Low-Renin Hypertension: Current Understanding and Future Direction. Hypertension 2024; 81:2038-2048. [PMID: 39136130 DOI: 10.1161/hypertensionaha.124.23385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Low-renin hypertension is common and affects 1 in 4 people with hypertension. Understanding the different causes and management of low-renin hypertension is becoming increasingly relevant as renin measurements are more widely ordered in clinical practice. Importantly, many people with low-renin hypertension do not fit traditional definitions of known causes, and the approach to management of these people is not unclear. This review provides an overview of our evolving understanding of the causes of low-renin hypertension, the expanding spectrums of pathophysiology, key differentiating characteristics, distinct management strategies, and highlights our knowledge gaps. It is important to distinguish the underlying pathophysiology of an individual with low-renin hypertension to individualize treatment.
Collapse
Affiliation(s)
- Sonali S Shah
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia (S.S.S., P.J.F., M.J.Y., J.Y.)
- Department of Endocrinology, Monash Health, Clayton, Victoria, Australia (S.S.S., P.J.F., J.Y.)
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia (S.S.S., P.J.F., J.Y.)
| | - Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia (S.S.S., P.J.F., M.J.Y., J.Y.)
- Department of Endocrinology, Monash Health, Clayton, Victoria, Australia (S.S.S., P.J.F., J.Y.)
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia (S.S.S., P.J.F., J.Y.)
| | - Morag J Young
- Baker Heart and Diabetes Institute, Prahran, Victoria, Australia (M.J.Y.)
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia (S.S.S., P.J.F., M.J.Y., J.Y.)
- Department of Endocrinology, Monash Health, Clayton, Victoria, Australia (S.S.S., P.J.F., J.Y.)
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia (S.S.S., P.J.F., J.Y.)
| |
Collapse
|
2
|
Shah SS, Libianto R, Gwini SM, Rusell G, Young MJ, Fuller PJ, Yang J. Prevalence and Characteristics of Low-renin Hypertension in a Primary Care Population. J Endocr Soc 2024; 8:bvae113. [PMID: 38957654 PMCID: PMC11215789 DOI: 10.1210/jendso/bvae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 07/04/2024] Open
Abstract
Introduction Low-renin hypertension is an underrecognized subtype of hypertension with specific treatment options. This study aims to identify the prevalence in primary care and to compare patient characteristics to those with normal-renin hypertension and primary aldosteronism (PA). Methods In a cohort study, patients with treatment-naïve hypertension were screened for PA with plasma aldosterone and direct renin concentrations. Patients with an elevated aldosterone-to-renin ratio [≥70 pmol/mU (≥2.5 ng/dL:mU/L)] underwent confirmatory testing. All screened patients were then classified as having (1) normal-renin hypertension, (2) low-renin hypertension (direct renin concentration <10mU/L (plasma renin activity ∼<1 ng/mL/hour) and not meeting the criteria for PA), or (3) confirmed PA. Results Of the 261 patients, 69 (26.4%) had low-renin hypertension, 136 (51.9%) had normal renin hypertension, and 47 (18.0%) had PA. Patients with low-renin hypertension were older and more likely to be female compared to normal-renin hypertension (57.1 ± 12.8 years vs 51.8 ± 14.0 years, P < .05 and 68.1% vs 49.3%, P < .05, respectively) but similar to PA (53.5 ± 11.5 years and 55.3%). However, in an adjusted binomial logistic regression, there was no association between increasing age or sex and low-renin hypertension. The median aldosterone concentration was lower compared to patients with normal-renin hypertension and PA: 279 pmol/L (216-355) vs 320 pmol/L (231-472), P < .05 and 419 pmol/L (360-530), P < .001. Conclusion At least a quarter of treatment-naïve hypertensive patients in primary care had a low direct renin concentration but did not meet the criteria for PA. Patient characteristics were similar, aside from a lower aldosterone concentration compared to patients with normal-renin hypertension and PA. Further research is needed to understand the underlying pathophysiology of low-renin hypertension and the optimal first-line treatment.
Collapse
Affiliation(s)
- Sonali S Shah
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Renata Libianto
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia
| | - Stella May Gwini
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- School of Public Health and Preventive Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Grant Rusell
- Department of General Practice, Monash University, Notting Hill, Victoria 3168, Australia
| | - Morag J Young
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Baker Heart and Diabetes Institute, Prahran, Victoria 3004, Australia
| | - Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
3
|
Araujo-Castro M, Ruiz-Sánchez JG, Parra Ramírez P, Martín Rojas-Marcos P, Aguilera-Saborido A, Gómez Cerezo JF, López Lazareno N, Torregrosa Quesada ME, Gorrin Ramos J, Oriola J, Poch E, Oliveras A, Méndez Monter JV, Gómez Muriel I, Bella-Cueto MR, Mercader Cidoncha E, Runkle I, Hanzu FA. Screening and diagnosis of primary aldosteronism. Consensus document of all the Spanish Societies involved in the management of primary aldosteronism. Endocrine 2024; 85:99-121. [PMID: 38448679 DOI: 10.1007/s12020-024-03751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
Primary aldosteronism (PA) is the most frequent cause of secondary hypertension (HT), and is associated with a higher cardiometabolic risk than essential HT. However, PA remains underdiagnosed, probably due to several difficulties clinicians usually find in performing its diagnosis and subtype classification. The aim of this consensus is to provide practical recommendations focused on the prevalence and the diagnosis of PA and the clinical implications of aldosterone excess, from a multidisciplinary perspective, in a nominal group consensus approach by experts from the Spanish Society of Endocrinology and Nutrition (SEEN), Spanish Society of Cardiology (SEC), Spanish Society of Nephrology (SEN), Spanish Society of Internal Medicine (SEMI), Spanish Radiology Society (SERAM), Spanish Society of Vascular and Interventional Radiology (SERVEI), Spanish Society of Laboratory Medicine (SEQC(ML)), Spanish Society of Anatomic-Pathology, Spanish Association of Surgeons (AEC).
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Endocrinology & Nutrition Department, Hospital Universitario Ramón y Cajal. Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS)., Madrid, Spain.
| | - Jorge Gabriel Ruiz-Sánchez
- Endocrinology & Nutrition Department. Hospital Universitario Fundación Jiménez Díaz, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Paola Parra Ramírez
- Endocrinology & Nutrition Department, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | | | | | | | - Nieves López Lazareno
- Biochemical Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Jorge Gorrin Ramos
- Biochemical department, Laboratori de Referència de Catalunya, Barcelona, Spain
| | - Josep Oriola
- Biochemistry and Molecular Genetics Department, CDB. Hospital Clínic. University of Barcelona, Barcelona, Spain
| | - Esteban Poch
- Nephrology Department. Hospital Clinic, IDIBAPS. University of Barcelona, Barcelona, Spain
| | - Anna Oliveras
- Nephrology Department. Hospital del Mar, Universitat Pompeu Fabra, Barcelona, ES, Spain
| | | | | | - María Rosa Bella-Cueto
- Pathology Department, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA). Universitat Autònoma de Barcelona. Sabadell, Barcelona, Spain
| | - Enrique Mercader Cidoncha
- General Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Fellow European Board of Surgery -Endocrine Surgery, Madrid, Spain
| | - Isabelle Runkle
- Endocrinology and Nutrition Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Felicia A Hanzu
- Endocrinology & Nutrition Department, Hospital Clinic. IDIBAPS. University of Barcelona, Barcelona, Spain.
| |
Collapse
|
4
|
Yu J, Zhu Q, Zhou M, Huang X, Le Y, Ouyang H, Cheng S. Mechanism of Tianma-Gouteng granules lowering blood pressure based on the bile acid-regulated Farnesoid X Receptor-Fibroblast Growth Factor 15- Cholesterol 7α-hydroxylase pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118091. [PMID: 38521427 DOI: 10.1016/j.jep.2024.118091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tianma-Gouteng granules (TGG) is a traditional Chinese medicine (TCM) compound that was first recorded by modern medical practitioner Hu Guangci in "New Meaning of the Treatment of Miscellaneous Diseases in Traditional Chinese Medicine". It is widely used to treat hypertensive vertigo, headache and insomnia. AIM OF STUDY To investigate the antihypertensive effect of TGG and explore its mechanism. MATERIALS AND METHODS Spontaneously hypertensive rats (SHR) were prepared a model of the ascendant hyperactivity of liver yang syndrome (AHLYS), blood pressure and general state of rats were recorded. A series of experiments were performed by enzyme-linked immunosorbent assay (ELISA), ultra high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS), 16S rRNA sequencing, real-time fluorescence quantitative PCR (RT-qPCR), and enzymatic colorimetry. RESULTS TGG can effectively lower blood pressure and improve related symptoms. TGG significantly reduced the levels of IL-1β, IL-6, TNF-α, Renin and AngII. A total of 17 differential metabolites were found in plasma, with the two most potent metabolic pathways being glycerophospholipid metabolism and primary bile acid biosynthesis. After TGG intervention, 7 metabolite levels decreased and 10 metabolite levels increased. TGG significantly increased the relative abundance of Desulfovibio, Lachnoclostridium, Turicibacter, and decreased the relative abundance of Alluobaculum and Monoglobu. TGG also downregulated Farnesoid X Receptor (FXR) and Fibroblast Growth Factor 15 (FGF15) levels in the liver and ileum, upregulated Cholesterol 7α-hydroxylase (CYP7A1) levels, and regulated total bile acid (TBA) levels. CONCLUSION TGG can regulate bile acid metabolism through liver-gut axis, interfere with related intestinal flora and plasma metabolites, decrease blood pressure, and positively influence the pathologic process of SHR with AHLYS. When translating animal microbiota findings to humans, validation studies are essential to confirm reliability and applicability, particularly through empirical human research.
Collapse
Affiliation(s)
- Jianjun Yu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qing Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Maofu Zhou
- Jiangxi University of Chinese Medicine, Nanchang, China
| | | | - Yimin Le
- Fuzhou Medical College of Nanchang University, Fuzhou, China
| | - Hui Ouyang
- Jiangxi University of Chinese Medicine, Nanchang, China.
| | - Shaomin Cheng
- Jiangxi University of Chinese Medicine, Nanchang, China.
| |
Collapse
|
5
|
Özdede M. Monogenic Hypertension Linked to the Renin-Angiotensin-Aldosterone System. Anatol J Cardiol 2024; 28:417-428. [PMID: 38872497 PMCID: PMC11426401 DOI: 10.14744/anatoljcardiol.2024.4480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Mendelian forms of renin-angiotensin-aldosterone system (RAAS)-related hypertension, commonly referred to as monogenic hypertension, represent a rare but significant subset of hypertensive disorders characterized by genetic mutations that disrupt the normal physiological mechanisms of blood pressure regulation. This review focuses on elucidating the germline mutations affecting RAAS pathways that lead to distinct forms of heritable hypertension. By understanding the pathophysiological basis of conditions such as Gordon's syndrome, Liddle syndrome, congenital adrenal hyperplasia, and familial hyperaldosteronism types, this review aims to highlight the unique clinical features, diagnostic challenges, and therapeutic implications associated with these disorders. Recognizing specific clinical presentations and family histories indicative of monogenic hypertension is crucial for diagnosis, particularly as it often manifests as early-onset hypertension, abnormalities in potassium and blood pH, and occasionally, abnormal sexual development or related syndromes. Therefore, employing a targeted diagnostic approach through next-generation sequencing is essential to pinpoint the responsible genetic mutations, enabling accurate and individualized treatment plans. The critical importance of certain readily available specific channel blockers, such as thiazides or low-dose corticosteroids, in managing these disorders must be emphasized, as they play a key role in preventing serious complications, including cerebrovascular events. As advancements in genetic and molecular sciences continue to evolve, a deeper comprehension of the mechanisms underlying RAAS-related monogenic hypertension promises to revolutionize the management of this complex disorder, offering hope for more effective and individualized treatment options.
Collapse
Affiliation(s)
- Murat Özdede
- Division of General Internal Medicine, Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Türkiye
- Hacettepe University, Center for Genomics and Rare Diseases, Ankara, Türkiye
| |
Collapse
|
6
|
Lebel A, Ben Shalom E, Mokatern R, Halevy R, Zehavi Y, Magen D. Apparent mineralocorticoid excess in Israel: a case series and literature review. Eur J Endocrinol 2024; 190:347-353. [PMID: 38652803 DOI: 10.1093/ejendo/lvae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AND OBJECTIVE Apparent mineralocorticoid excess (AME) syndrome is an ultra-rare autosomal-recessive tubulopathy, caused by mutations in HSD11B2, leading to excessive activation of the kidney mineralocorticoid receptor, and characterized by early-onset low-renin hypertension, hypokalemia, and risk of chronic kidney disease (CKD). To date, most reports included few patients, and none described patients from Israel. We aimed to describe AME patients from Israel and to review the relevant literature. DESIGN Retrospective cohort study. METHODS Clinical, laboratory, and molecular data from patients' records were collected. RESULTS Five patients presented at early childhood with normal estimated glomerular filtration rate (eGFR), while 2 patients presented during late childhood with CKD. Molecular analysis revealed 2 novel homozygous mutations in HSD11B2. All patients presented with severe hypertension and hypokalemia. While all patients developed nephrocalcinosis, only 1 showed hypercalciuria. All individuals were managed with potassium supplements, mineralocorticoid receptor antagonists, and various antihypertensive medications. One patient survived cardiac arrest secondary to severe hyperkalemia. At last follow-up, those 5 patients who presented early exhibited normal eGFR and near-normal blood pressure, but 2 have hypertension complications. The 2 patients who presented with CKD progressed to end-stage kidney disease (ESKD) necessitating dialysis and kidney transplantation. CONCLUSIONS In this 11-year follow-up report of 2 Israeli families with AME, patients who presented early maintained long-term normal kidney function, while those who presented late progressed to ESKD. Nevertheless, despite early diagnosis and management, AME is commonly associated with serious complications of the disease or its treatment.
Collapse
Affiliation(s)
- Asaf Lebel
- Pediatric Nephrology Unit, HaEmek Medical Center, Afula 1834111, Israel
| | - Efrat Ben Shalom
- Pediatric Nephrology Unit, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9103102, Israel
| | - Rozan Mokatern
- Pediatric Nephrology Unit, HaEmek Medical Center, Afula 1834111, Israel
| | - Raphael Halevy
- Pediatric Nephrology Unit, HaEmek Medical Center, Afula 1834111, Israel
| | - Yoav Zehavi
- Pediatric Department B, HaEmek Medical Center, Afula 1834111, Israel
| | - Daniela Magen
- Technion Faculty of Medicine, Pediatric Nephrology Institute, Ruth Children's Hospital, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
7
|
Tapia-Castillo A, Carvajal CA, Pérez JA, Sandoval A, Allende F, Solari S, Fardella CE. Low Cortisone as a Novel Predictor of the Low-Renin Phenotype. J Endocr Soc 2024; 8:bvae051. [PMID: 38586159 PMCID: PMC10998281 DOI: 10.1210/jendso/bvae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 04/09/2024] Open
Abstract
A large proportion of patients with low-renin hypertension (LRH) correspond to primary aldosteronism (PA). However, some of these subjects have low to normal aldosterone. Since low renin is driven by excessive mineralocorticoids or glucocorticoids acting on mineralocorticoid receptors (MRs), we hypothesize that a low-cortisone condition, associated classically with 11βHSD2 deficiency, is a proxy of chronic MR activation by cortisol, which can also lead to low renin, elevated blood pressure, and renal and vascular alterations. Objective To evaluate low cortisone as a predictor of low renin activity and its association with parameters of kidney and vascular damage. Methods A cross-sectional study was carried out in 206 adult subjects. The subjects were classified according to low plasma renin activity (<1 ng/mL × hours) and low cortisone (<25th percentile). Results Plasma renin activity was associated with aldosterone (r = 0.36; P < .001) and cortisone (r = 0.22; P = .001). A binary logistic regression analysis showed that serum cortisone per ug/dL increase predicted the low-renin phenotype (OR 0.4, 95% CI 0.21-0.78). The receiver operating characteristic curves for cortisone showed an area under the curve of 0.6 to discriminate subjects with low renin activity from controls. The low-cortisone subjects showed higher albuminuria and PAI-1 and lower sodium excretion. The association study also showed that urinary cortisone was correlated with blood pressure and serum potassium (P < .05). Conclusion This is the first study showing that low cortisone is a predictor of a low-renin condition. Low cortisone also predicted surrogate markers of vascular and renal damage. Since the aldosterone to renin ratio is used in the screening of PA, low cortisone values should be considered additionally to avoid false positives in the aldosterone-renin ratio calculation.
Collapse
Affiliation(s)
- Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Santiago 8330033, Chile
| | - Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Santiago 8330033, Chile
| | - Jorge A Pérez
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Santiago 8330033, Chile
| | - Alejandra Sandoval
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Santiago 8330033, Chile
| | - Fidel Allende
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Sandra Solari
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Santiago 8330033, Chile
| |
Collapse
|
8
|
Cholekho S, Liu Y, Tan H. Cushing's syndrome during pregnancy - two case reports. Front Endocrinol (Lausanne) 2024; 15:1326496. [PMID: 38532898 PMCID: PMC10963388 DOI: 10.3389/fendo.2024.1326496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Background Cushing's syndrome (CS) during pregnancy is a rare endocrine disorder characterized by hypercortisolism, which is significantly associated with maternal-fetal complications. Despite its rarity, CS during pregnancy may be related to a high risk of complications for both the mother and fetus.The aim of the present case study is to update the diagnostic approach to CS during pregnancy and the therapeutic strategies for this medical condition to minimize maternal-fetal complications. Methods Here, we present two cases of CS in pregnant women, one of whom had twins. Typical clinical symptoms and signs of hypercortisolism developed at the beginning of pregnancy. The plasma cortisol diurnal rhythm of the pregnant patient was absent. CS was confirmed by cortisol and adrenocorticotropic hormone (ACTH) assessment, as well as imaging examination. We investigated the changes in the hypothalamic-pituitary-adrenal axis during normal pregnancy and the etiology, diagnosis and treatment of CS during pregnancy. Conclusion Due to the associated risks of laparoscopic adrenalectomy,it is uncertain whether this treatment significantly decreases overall maternal mortality. Additional observational research and validation through randomized controlled trials (RCTs) are required. We advise that CS in pregnant women be diagnosed and treated by experienced teams in relevant departments and medical centers.
Collapse
Affiliation(s)
| | | | - Huiwen Tan
- Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Fernandes-Rosa FL, Boulkroun S, Fedlaoui B, Hureaux M, Travers-Allard S, Drossart T, Favier J, Zennaro MC. New advances in endocrine hypertension: from genes to biomarkers. Kidney Int 2023; 103:485-500. [PMID: 36646167 DOI: 10.1016/j.kint.2022.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
Hypertension (HT) is a major cardiovascular risk factor that affects 10% to 40% of the general population in an age-dependent manner. Detection of secondary forms of HT is particularly important because it allows the targeted management of the underlying disease. Among hypertensive patients, the prevalence of endocrine HT reaches up to 10%. Adrenal diseases are the most frequent cause of endocrine HT and are associated with excess production of mineralocorticoids (mainly primary aldosteronism), glucocorticoids (Cushing syndrome), and catecholamines (pheochromocytoma). In addition, a few rare diseases directly affecting the action of mineralocorticoids and glucocorticoids in the kidney also lead to endocrine HT. Over the past years, genomic and genetic studies have allowed improving our knowledge on the molecular mechanisms of endocrine HT. Those discoveries have opened new opportunities to transfer knowledge to clinical practice for better diagnosis and specific treatment of affected subjects. In this review, we describe the physiology of adrenal hormone biosynthesis and action, the clinical and biochemical characteristics of different forms of endocrine HT, and their underlying genetic defects. We discuss the impact of these discoveries on diagnosis and management of patients, as well as new perspectives related to the use of new biomarkers for improved patient care.
Collapse
Affiliation(s)
| | | | | | - Marguerite Hureaux
- Université Paris Cité, PARCC, Inserm, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Simon Travers-Allard
- Université Paris Cité, PARCC, Inserm, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
| | - Tom Drossart
- Université Paris Cité, PARCC, Inserm, Paris, France; Université de Paris Cité, PARCC, Inserm, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Judith Favier
- Université Paris Cité, PARCC, Inserm, Paris, France; Université de Paris Cité, PARCC, Inserm, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Maria-Christina Zennaro
- Université Paris Cité, PARCC, Inserm, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.
| |
Collapse
|
10
|
Park SJ, Shin JI. Diagnosis and Treatment of Monogenic Hypertension in Children. Yonsei Med J 2023; 64:77-86. [PMID: 36719014 PMCID: PMC9892546 DOI: 10.3349/ymj.2022.0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/08/2022] [Accepted: 12/26/2022] [Indexed: 01/17/2023] Open
Abstract
Although the majority of individuals with hypertension (HTN) have primary and polygenic HTN, monogenic HTN is a secondary type that is widely thought to play a key role in pediatric HTN, which has the characteristics of early onset, refractory HTN with a positive family history, and electrolyte disorders. Monogenic HTN results from single genetic mutations that contribute to the dysregulation of blood pressure (BP) in the kidneys and adrenal glands. It is pathophysiologically associated with increased sodium reabsorption in the distal tubule, intravascular volume expansion, and HTN, as well as low renin and varying aldosterone levels. Simultaneously increased or decreased potassium levels also provide clues for the diagnosis of monogenic HTN. Discovering the genetic factors that cause an increase in BP has been shown to be related to the choice of and responses to antihypertensive medications. Therefore, early and precise diagnosis with genetic sequencing and effective treatment with accurate antihypertensive agents are critical in the management of monogenic HTN. In addition, understanding the genetic architecture of BP, causative molecular pathways perturbing BP regulation, and pharmacogenomics can help with the selection of precision and personalized medicine, as well as improve morbidity and mortality in adulthood.
Collapse
Affiliation(s)
- Se Jin Park
- Department of Pediatrics, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, Korea
| | - Jae Il Shin
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Pratamawati TM, Alwi I. Summary of Known Genetic and Epigenetic Modification Contributed to Hypertension. Int J Hypertens 2023; 2023:5872362. [PMID: 37201134 PMCID: PMC10188269 DOI: 10.1155/2023/5872362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
Hypertension is a multifactorial disease due to a complex interaction among genetic, epigenetic, and environmental factors. Characterized by raised blood pressure (BP), it is responsible for more than 7 million deaths per annum by acting as a leading preventable risk factor for cardiovascular disease. Reports suggest that genetic factors are estimated to be involved in approximately 30 to 50% of BP variation, and epigenetic marks are known to contribute to the initiation of the disease by influencing gene expression. Consequently, elucidating the genetic and epigenetic mediators associated with hypertension is essential for better discernment of its pathophysiology. By deciphering the unprecedented molecular hypertension basis, it could help to unravel an individual's inclination towards hypertension which eventually could result in an arrangement of potential strategies for prevention and therapy. In the present review, we discuss known genetic and epigenetic drivers that contributed to the hypertension development and summarize the novel variants that have currently been identified. The effect of these molecular alterations on endothelial function was also presented.
Collapse
Affiliation(s)
- Tiar Masykuroh Pratamawati
- Program Doctoral Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Genetics, Faculty of Medicine, Universitas Swadaya Gunung Jati, Cirebon, Indonesia
| | - Idrus Alwi
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| |
Collapse
|
12
|
Tabibzadeh N, Crambert G. Mechanistic insights into the primary and secondary alterations of renal ion and water transport in the distal nephron. J Intern Med 2023; 293:4-22. [PMID: 35909256 PMCID: PMC10087581 DOI: 10.1111/joim.13552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kidneys, by equilibrating the outputs to the inputs, are essential for maintaining the constant volume, pH, and electrolyte composition of the internal milieu. Inability to do so, either because of internal kidney dysfunction (primary alteration) or because of some external factors (secondary alteration), leads to pathologies of varying severity, leading to modification of these parameters and affecting the functions of other organs. Alterations of the functions of the collecting duct (CD), the most distal part of the nephron, have been extensively studied and have led to a better diagnosis, better management of the related diseases, and the development of therapeutic tools. Thus, dysfunctions of principal cell-specific transporters such as ENaC or AQP2 or its receptors (mineralocorticoid or vasopressin receptors) caused by mutations or by compounds present in the environment (lithium, antibiotics, etc.) have been demonstrated in a variety of syndromes (Liddle, pseudohypoaldosteronism type-1, diabetes insipidus, etc.) affecting salt, potassium, and water balance. In parallel, studies on specific transporters (H+ -ATPase, anion exchanger 1) in intercalated cells have revealed the mechanisms of related tubulopathies like distal renal distal tubular acidosis or Sjögren syndrome. In this review, we will recapitulate the mechanisms of most of the primary and secondary alteration of the ion transport system of the CD to provide a better understanding of these diseases and highlight how a targeted perturbation may affect many different pathways due to the strong crosstalk and entanglements between the different actors (transporters, cell types).
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Laboratoire de Physiologie Rénale et TubulopathiesCentre de Recherche des CordeliersINSERMSorbonne UniversitéUniversité Paris CitéParisFrance
- EMR 8228 Unité Métabolisme et Physiologie RénaleCNRSParisFrance
- Assistance Publique Hôpitaux de ParisHôpital BichâtParisFrance
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et TubulopathiesCentre de Recherche des CordeliersINSERMSorbonne UniversitéUniversité Paris CitéParisFrance
- EMR 8228 Unité Métabolisme et Physiologie RénaleCNRSParisFrance
| |
Collapse
|
13
|
Lu YT, Zhang D, Zhang QY, Zhou ZM, Yang KQ, Zhou XL, Peng F. Apparent mineralocorticoid excess: comprehensive overview of molecular genetics. J Transl Med 2022; 20:500. [PMID: 36329487 PMCID: PMC9632093 DOI: 10.1186/s12967-022-03698-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/17/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Apparent mineralocorticoid excess is an autosomal recessive form of monogenic disease characterized by juvenile resistant low-renin hypertension, marked hypokalemic alkalosis, low aldosterone levels, and high ratios of cortisol to cortisone metabolites. It is caused by defects in the HSD11B2 gene, encoding the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which is primarily involved in the peripheral conversion of cortisol to cortisone. To date, over 50 deleterious HSD11B2 mutations have been identified worldwide. Multiple molecular mechanisms function in the lowering of 11β-HSD2 activity, including damaging protein stability, lowered affinity for the substrate and cofactor, and disrupting the dimer interface. Genetic polymorphism, environmental factors as well as epigenetic modifications may also offer an implicit explanation for the molecular pathogenesis of AME. A precise diagnosis depends on genetic testing, which allows for early and specific management to avoid the morbidity and mortality from target organ damage. In this review, we provide insights into the molecular genetics of classic and non-classic apparent mineralocorticoid excess and aim to offer a comprehensive overview of this monogenic disease.
Collapse
Affiliation(s)
- Yi-Ting Lu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong-Yu Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ze-Ming Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Fan Peng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Leventoğlu E, Döğer E, Büyükkaragöz B, Nalçacı S, Öner G, Alpman BN, Fidan K, Söylemezoğlu O, Bakkaloğlu SA. Late-onset hypertension in a child with growth retardation: Answers. Pediatr Nephrol 2022; 37:2341-2345. [PMID: 35288793 DOI: 10.1007/s00467-022-05510-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Emre Leventoğlu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | - Esra Döğer
- Department of Pediatric Endocrinology, Gazi University, Ankara, Turkey
| | - Bahar Büyükkaragöz
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Sinem Nalçacı
- Department of Pediatric Endocrinology, Gazi University, Ankara, Turkey
| | - Ganimet Öner
- Department of Pediatric Endocrinology, Gazi University, Ankara, Turkey
| | - Bedriye Nuray Alpman
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Kibriya Fidan
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Oğuz Söylemezoğlu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Sevcan A Bakkaloğlu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
15
|
Khandelwal P, Deinum J. Monogenic forms of low-renin hypertension: clinical and molecular insights. Pediatr Nephrol 2022; 37:1495-1509. [PMID: 34414500 DOI: 10.1007/s00467-021-05246-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022]
Abstract
Monogenic disorders of hypertension are a distinct group of diseases causing dysregulation of the renin-angiotensin-aldosterone system and are characterized by low plasma renin activity. These can chiefly be classified as causing (i) excessive aldosterone synthesis (familial hyperaldosteronism), (ii) dysregulated adrenal steroid metabolism and action (apparent mineralocorticoid excess, congenital adrenal hyperplasia, activating mineralocorticoid receptor mutation, primary glucocorticoid resistance), and (iii) hyperactivity of sodium and chloride transporters in the distal tubule (Liddle syndrome and pseudohypoaldosteronism type 2). The final common pathway is plasma volume expansion and catecholamine/sympathetic excess that causes urinary potassium wasting; hypokalemia and early-onset refractory hypertension are characteristic. However, several single gene defects may show phenotypic heterogeneity, presenting with mild hypertension with normal electrolytes. Evaluation is based on careful attention to family history, physical examination, and measurement of blood levels of potassium, renin, and aldosterone. Genetic sequencing is essential for precise diagnosis and individualized therapy. Early recognition and specific management improves prognosis and prevents long-term sequelae of severe hypertension.
Collapse
Affiliation(s)
- Priyanka Khandelwal
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Gulhan B, Ünsal Y, Baltu D, Çelik Ertaş NB, Özdemir G, Utine E, Ozcan HN, Duzova A, Gönç N. Apparent mineralocorticoid excess: A diagnosis beyond classical causes of severe hypertension in a child. Blood Press Monit 2022; 27:208-211. [PMID: 35044984 DOI: 10.1097/mbp.0000000000000583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A genetic defect of 11 β-hydroxysteroid dehydrogenase causes apparent mineralocorticoid excess syndrome. Since 50 days of life, our patient was hospitalized several times for various reasons including hypokalemia. At the age of 3.3 years, she was diagnosed with severe hypertension (160/120 mmHg). She also had left ventricular hypertrophy and hypertensive retinopathy and referred to our center. Her renal function and electrolytes were normal except for hypokalemia. She was on captopril treatment; nifedipine and propranolol were added. Plasma renin and aldosterone concentrations were 1.13 pg/ml (1-8.2 pg/ml) and 12.2 ng/dl (35-300 ng/dl), respectively. Severe hypertension, hypokalemia, low renin and aldosterone levels pointed to the diagnosis of apparent mineralocorticoid excess syndrome. Strict salt-restricted diet and potassium citrate were ordered. Genetic analysis of the HSD11B2 gene showed c.623G>A (p.Arg208His). Spironolactone was initiated. On follow-up, amiloride was added and her blood pressure was controlled. In patients with severe HSD11B2 mutation, combination therapy of spironolactone with amiloride could be effective in controlling blood pressure.
Collapse
Affiliation(s)
- Bora Gulhan
- Division of Pediatric Nephrology, Department of Pediatrics
| | - Yağmur Ünsal
- Division of Pediatric Endocrinology, Department of Pediatrics
| | - Demet Baltu
- Division of Pediatric Nephrology, Department of Pediatrics
| | | | - Gülşah Özdemir
- Division of Pediatric Nephrology, Department of Pediatrics
| | - Eda Utine
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University School of Medicine and Hacettepe University School of Medicine, Department of Radiology, Ankara, Turkey
| | - H Nursun Ozcan
- Division of Pediatric Nephrology, Department of Pediatrics
| | - Ali Duzova
- Division of Pediatric Nephrology, Department of Pediatrics
| | - Nazli Gönç
- Division of Pediatric Endocrinology, Department of Pediatrics
| |
Collapse
|
17
|
Bamgbola OF. Review of the Pathophysiologic and Clinical Aspects of Hypokalemia in Children and Young Adults: an Update. CURRENT TREATMENT OPTIONS IN PEDIATRICS 2022; 8:96-114. [PMID: 37521171 PMCID: PMC9115742 DOI: 10.1007/s40746-022-00240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
This article examines the regulatory function of the skeletal muscle, renal, and adrenergic systems in potassium homeostasis. The pathophysiologic bases of hypokalemia, systematic approach for an early diagnosis, and therapeutic strategy to avert life-threatening complications are highlighted. By promoting skeletal muscle uptake, intense physical exercise (post), severe trauma, and several toxins produce profound hypokalemia. Hypovolemia due to renal and extra-renal fluid losses and ineffective circulation activate secondary aldosteronism causing urinary potassium wasting. In addition to hypokalemic alkalosis, primary aldosteronism causes low-renin hypertension. Non-aldosterone mineralocorticoid activation leading to low-renin and low-aldosterone hypertension occurs in Liddle's syndrome and apparent mineralocorticoid excess. Although there is enzymatic inhibition of cortisol synthesis in congenital adrenal hyperplasia, precursors of aldosterone produce low-renin hypokalemic hypertension. In addition to the glucocorticoid effect, hypercortisolism activates mineralocorticoid receptors in Cushing's syndrome. Genetic mutations involving furosemide-sensitive Na+-K+-2Cl- co-transporters and thiazide-sensitive Na+-Cl- transporters result in (non-hypertensive) salt-wasting nephropathy. Proximal and distal renal tubular acidosis is associated with hypokalemia. Eating disorders causing hypokalemia include bulimia, laxative abuse, and diuretic misuse. Low urinary potassium (<15 mmol/day) and/or low urinary chloride (<20 mol/L) suggest a gastrointestinal pathology. Co-morbidity of hypokalemia with chronic pulmonary and cardiovascular diseases may increase the fatality rate.
Collapse
Affiliation(s)
- Oluwatoyin Fatai Bamgbola
- Division of Pediatric Nephrology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA
| |
Collapse
|
18
|
Clinical Nomogram to Predict Major Adverse Cardiac Events in Acute Myocardial Infarction Patients within 1 Year of Percutaneous Coronary Intervention. Cardiovasc Ther 2022; 2021:3758320. [PMID: 34987604 PMCID: PMC8687843 DOI: 10.1155/2021/3758320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to summarize the clinical characteristics and risk factors of major adverse cardiovascular events (MACEs) in patients who had had acute myocardial infarction (AMI) within 1 year of percutaneous coronary intervention (PCI). A total of 421 AMI patients who were treated with PCI and experienced MACEs within 1 year of their admission were included in this retrospective study. In addition, patients were matched for age, sex, and presentation with 561 patients after AMI who had not had MACEs. The clinical characteristics and risk factors for MACEs within 1 year in AMI patients were investigated, to develop a nomogram for MACEs based on univariate and multivariate analyses. The C statistic was used to assess the discriminative performance of the nomogram. In addition, calibration curve and decision curve analyses were conducted to validate the calibration performance and utility, respectively, of the nomogram. After univariate and multivariate analyses, a nomogram was constructed based on age (odds ratio (OR): 1.030; 95% confidence interval (CI): 1.014–1.047), diabetes mellitus (OR: 1.667; 95% CI: 1.151–2.415), low-density lipoprotein cholesterol (OR: 1.332; 95% CI: 1.134–1.565), uric acid (OR: 1.003; 95% CI: 1.001–1.005), lipoprotein (a) (OR: 1.003; 95% CI: 1.002–1.003), left ventricular ejection fraction (OR: 0.929; 95% CI: 0.905–0.954), Syntax score (OR: 1.075; 95% CI: 1.053–1.097), and hypersensitive troponin T (OR: 1.002; 95% CI: 1.002–1.003). The C statistic was 0.814. The calibration curve showed good concordance of the nomogram, while decision curve analysis demonstrated satisfactory positive net benefits. We developed a convenient, practical, and effective prediction model for predicting MACEs in AMI patients within 1 year of PCI. To ensure generalizability, this model requires external validation.
Collapse
|
19
|
Sagmeister MS, Harper L, Hardy RS. Cortisol excess in chronic kidney disease - A review of changes and impact on mortality. Front Endocrinol (Lausanne) 2022; 13:1075809. [PMID: 36733794 PMCID: PMC9886668 DOI: 10.3389/fendo.2022.1075809] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Chronic kidney disease (CKD) describes the long-term condition of impaired kidney function from any cause. CKD is common and associated with a wide array of complications including higher mortality, cardiovascular disease, hypertension, insulin resistance, dyslipidemia, sarcopenia, osteoporosis, aberrant immune function, cognitive impairment, mood disturbances and poor sleep quality. Glucocorticoids are endogenous pleiotropic steroid hormones and their excess produces a pattern of morbidity that possesses considerable overlap with CKD. Circulating levels of cortisol, the major active glucocorticoid in humans, are determined by a complex interplay between several processes. The hypothalamic-pituitary-adrenal axis (HPA) regulates cortisol synthesis and release, 11β-hydroxysteroid dehydrogenase enzymes mediate metabolic interconversion between active and inactive forms, and clearance from the circulation depends on irreversible metabolic inactivation in the liver followed by urinary excretion. Chronic stress, inflammatory states and other aspects of CKD can disturb these processes, enhancing cortisol secretion via the HPA axis and inducing tissue-resident amplification of glucocorticoid signals. Progressive renal impairment can further impact on cortisol metabolism and urinary clearance of cortisol metabolites. Consequently, significant interest exists to precisely understand the dysregulation of cortisol in CKD and its significance for adverse clinical outcomes. In this review, we summarize the latest literature on alterations in endogenous glucocorticoid regulation in adults with CKD and evaluate the available evidence on cortisol as a mechanistic driver of excess mortality and morbidity. The emerging picture is one of subclinical hypercortisolism with blunted diurnal decline of cortisol levels, impaired negative feedback regulation and reduced cortisol clearance. An association between cortisol and adjusted all-cause mortality has been reported in observational studies for patients with end-stage renal failure, but further research is required to assess links between cortisol and clinical outcomes in CKD. We propose recommendations for future research, including therapeutic strategies that aim to reduce complications of CKD by correcting or reversing dysregulation of cortisol.
Collapse
Affiliation(s)
- Michael S. Sagmeister
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Renal Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- *Correspondence: Michael S. Sagmeister,
| | - Lorraine Harper
- Renal Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute for Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Rowan S. Hardy
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Research into Inflammatory Arthritis Centre Versus Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Science, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
20
|
Knockout of the hsd11b2 Gene Extends the Cortisol Stress Response in Both Zebrafish Larvae and Adults. Int J Mol Sci 2021; 22:ijms222212525. [PMID: 34830405 PMCID: PMC8619348 DOI: 10.3390/ijms222212525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022] Open
Abstract
The Hsd11b2 enzyme converts cortisol into its inactive form, cortisone and regulates cortisol levels, in particular in response to stress. Taking advantage of CRISPR/Cas9 technology, we generated a hsd11b2 zebrafish mutant line to evaluate the involvement of this gene in stress response regulation. The absence of a functional Hsd11b2 affects survival of zebrafish, although homozygous hsd11b2−/− mutants can reach adulthood. Reproductive capability of hsd11b2−/− homozygous adult males is almost completely abrogated, while that of females is reduced. Interestingly, basal cortisol levels and glucocorticoid-dependent transcriptional activities are not affected by the mutation. In agreement with basal cortisol results, we also demonstrated that basal response to light (LMR-L/D) or mechanical (VSRA) stimuli is not significantly different in wild-type (hsd11b2+/+) compared to mutant larvae. However, after exposure to an acute stressor, the cortisol temporal patterns of synthesis and release are prolonged in both 5 days post fertilization larvae and one-year-old adult hsd11b2−/− zebrafish compared to wild-type siblings, showing at the same time, at 5 dpf, a higher magnitude in the stress response at 10 min post stress. All in all, this new zebrafish model represents a good tool for studying response to different stressors and to identify mechanisms that are induced by cortisol during stress response.
Collapse
|
21
|
Novel metabolomic profile of subjects with non-classic apparent mineralocorticoid excess. Sci Rep 2021; 11:17156. [PMID: 34433879 PMCID: PMC8387493 DOI: 10.1038/s41598-021-96628-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/06/2021] [Indexed: 01/22/2023] Open
Abstract
Nonclassic apparent mineralocorticoid excess (NC-AME) is proposed as a novel clinical condition with a mild phenotypic spectrum that ranges from normotension to severe hypertension. This condition is mainly characterized by a high serum cortisol to cortisone ratio (F/E) and concomitant low cortisone (E), however further metabolic changes in NC-AME have not been studied. A cross-sectional study was performed in a primary-care cohort of 396 Chilean subjects, which were classified in two groups: NC-AME (n = 28) and healthy controls (n = 27). A discovery study based in untargeted metabolomics assay in serum samples from both groups was performed by UPLC-Q-TOF/MS. Global metabolomic variations were assayed by principal component analysis and further compared by orthogonal partial least-squares discriminant analysis (OPLS-DA). NC-AME subjects exhibited higher values of blood pressure, fractional excretion of potassium, and lower plasma renin activity and urinary sodium to potassium ratio. Metabolomic analyses showed 36 differentially regulated metabolites between NC-AME and control subjects. A ROC curve analyses identified eight metabolites with high discriminatory capacity between NC-AME and control subjects. Moreover, gamma-l-glutamyl-l-methionine sulfoxide and 5-sulfoxymethylfurfural, exhibited significant association with cortisone, which are potential biomarkers of NC-AME, however further assays should elucidate its biological role in setup and progression of this phenotype.
Collapse
|
22
|
Hosoe J, Kawashima-Sonoyama Y, Miya F, Kadowaki H, Suzuki K, Kato T, Matsuzawa F, Aikawa SI, Okada Y, Tsunoda T, Hanaki K, Kanzaki S, Shojima N, Yamauchi T, Kadowaki T. Genotype-Structure-Phenotype Correlations of Disease-Associated IGF1R Variants and Similarities to Those of INSR Variants. Diabetes 2021; 70:1874-1884. [PMID: 34074726 DOI: 10.2337/db20-1145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022]
Abstract
We previously reported genotype-phenotype correlations in 12 missense variants causing severe insulin resistance, located in the second and third fibronectin type III (FnIII) domains of the insulin receptor (INSR), containing the α-β cleavage and part of insulin-binding sites. This study aimed to identify genotype-phenotype correlations in FnIII domain variants of IGF1R, a structurally related homolog of INSR, which may be associated with growth retardation, using the recently reported crystal structures of IGF1R. A structural bioinformatics analysis of five previously reported disease-associated heterozygous missense variants and a likely benign variant in the FnIII domains of IGF1R predicted that the disease-associated variants would severely impair the hydrophobic core formation and stability of the FnIII domains or affect the α-β cleavage site, while the likely benign variant would not affect the folding of the domains. A functional analysis of these variants in CHO cells showed impaired receptor processing and autophosphorylation in cells expressing the disease-associated variants but not in those expressing the wild-type form or the likely benign variant. These results demonstrated genotype-phenotype correlations in the FnIII domain variants of IGF1R, which are presumably consistent with those of INSR and would help in the early diagnosis of patients with disease-associated IGF1R variants.
Collapse
Affiliation(s)
- Jun Hosoe
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Kawashima-Sonoyama
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- CREST, Japan Science and Technology Agency, Tokyo
| | | | - Ken Suzuki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Kato
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- CREST, Japan Science and Technology Agency, Tokyo
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Keiichi Hanaki
- School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Susumu Kanzaki
- Asahigawaso Rehabilitation and Medical Center, Okayama, Japan
| | - Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| |
Collapse
|
23
|
Beck KR, Odermatt A. Antifungal therapy with azoles and the syndrome of acquired mineralocorticoid excess. Mol Cell Endocrinol 2021; 524:111168. [PMID: 33484741 DOI: 10.1016/j.mce.2021.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
The syndromes of mineralocorticoid excess describe a heterogeneous group of clinical manifestations leading to endocrine hypertension, typically either through direct activation of mineralocorticoid receptors or indirectly by impaired pre-receptor enzymatic regulation or through disturbed renal sodium homeostasis. The phenotypes of these disorders can be caused by inherited gene variants and somatic mutations or may be acquired upon exposures to exogenous substances. Regarding the latter, the symptoms of an acquired mineralocorticoid excess have been reported during treatment with azole antifungal drugs. The current review describes the occurrence of mineralocorticoid excess particularly during the therapy with posaconazole and itraconazole, addresses the underlying mechanisms as well as inter- and intra-individual differences, and proposes a therapeutic drug monitoring strategy for these two azole antifungals. Moreover, other therapeutically used azole antifungals and ongoing efforts to avoid adverse mineralocorticoid effects of azole compounds are shortly discussed.
Collapse
Affiliation(s)
- Katharina R Beck
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
24
|
De Santis D, Castagna A, Danese E, Udali S, Martinelli N, Morandini F, Veneri M, Bertolone L, Olivieri O, Friso S, Pizzolo F. Detection of Urinary Exosomal HSD11B2 mRNA Expression: A Useful Novel Tool for the Diagnostic Approach of Dysfunctional 11β-HSD2-Related Hypertension. Front Endocrinol (Lausanne) 2021; 12:681974. [PMID: 34497581 PMCID: PMC8419411 DOI: 10.3389/fendo.2021.681974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Apparent mineralocorticoid excess (AME) is an autosomal recessive disorder caused by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) enzyme deficiency, traditionally assessed by measuring either the urinary cortisol metabolites ratio (tetrahydrocortisol+allotetrahydrocortisol/tetrahydrocortisone, THF+5αTHF/THE) or the urinary cortisol/cortisone (F/E) ratio. Exosomal mRNA is an emerging diagnostic tool due to its stability in body fluids and its biological regulatory function. It is unknown whether urinary exosomal HSD11B2 mRNA is related to steroid ratio or the HSD11B2 662 C>G genotype (corresponding to a 221 A>G substitution) in patients with AME and essential hypertension (EH). AIM OF THE STUDY To detect and quantify HSD11B2 mRNA from urinary exosomes in samples from family members affected by AME and EH, and to evaluate the relationship between exosomal HSD11B2 mRNA, steroid ratio, 662C>G genotype, and hypertension. METHODS In this observational case-control study, urinary steroid ratios and biochemical parameters were measured. Urinary exosomes were extracted from urine and exosomal HSD11B2 mRNA was quantified by Droplet Digital PCR (ddPCR). B2M (β-2 microglobulin) gene was selected as the reference housekeeping gene. RESULTS Among family members affected by AME, exosomal urinary HSD11B2 mRNA expression was strictly related to genotypes. The two homozygous mutant probands showed the highest HSD11B2 mRNA levels (median 169, range 118-220 copies/µl) that progressively decreased in 221 AG heterozygous with hypertension (108, range 92-124 copies/µl), 221 AG heterozygous normotensives (23.35, range 8-38.7 copies/µl), and wild-type 221 AA subjects (5.5, range 4.5-14 copies/µl). Heterozygous hypertensive subjects had more HSD11B2 mRNA than heterozygous normotensive subjects. The F/E urinary ratio correlated with HSD11B2 mRNA copy number (p < 0.05); HSD11B2 mRNA strongly decreased while THF+5αTHF/THE increased in the two probands after therapy. In the AME family, HSD11B2 copy number correlated with both F/E and THF+5αTHF/THE ratios, whereas in EH patients, a high F/E ratio reflected a reduced HSD11B2 mRNA expression. CONCLUSIONS HSD11B2 mRNA is detectable and quantifiable in urinary exosomes; its expression varies according to the 662 C>G genotype with the highest levels in homozygous mutant subjects. The HSD11B2 mRNA overexpression in AME could be due to a compensatory mechanism of the enzyme impairment. Exosomal mRNA is a useful tool to investigate HSD11B2 dysregulation in hypertension.
Collapse
Affiliation(s)
- Domenica De Santis
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Annalisa Castagna
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Elisa Danese
- Section of Clinical Biochemistry, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Silvia Udali
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Nicola Martinelli
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Morandini
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Mariangela Veneri
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Lorenzo Bertolone
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Oliviero Olivieri
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Simonetta Friso
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Pizzolo
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- *Correspondence: Francesca Pizzolo,
| |
Collapse
|
25
|
Inderbinen SG, Zogg M, Kley M, Smieško M, Odermatt A. Species-specific differences in the inhibition of 11β-hydroxysteroid dehydrogenase 2 by itraconazole and posaconazole. Toxicol Appl Pharmacol 2020; 412:115387. [PMID: 33387577 DOI: 10.1016/j.taap.2020.115387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022]
Abstract
11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) converts active 11β-hydroxyglucocorticoids to their inactive 11-keto forms, thereby preventing inappropriate mineralocorticoid receptor activation by glucocorticoids. Disruption of 11β-HSD2 activity by genetic defects or inhibitors causes the syndrome of apparent mineralocorticoid excess (AME), characterized by hypokalemia, hypernatremia and hypertension. Recently, the azole antifungals itraconazole and posaconazole were identified to potently inhibit human 11β-HSD2, and several case studies described patients with acquired AME. To begin to understand why this adverse drug effect was missed during preclinical investigations, the inhibitory potential of itraconazole, its main metabolite hydroxyitraconazole (OHI) and posaconazole against 11β-HSD2 from human and three commonly used experimental animals was assessed. Whilst human 11β-HSD2 was potently inhibited by all three compounds (IC50 values in the nanomolar range), the rat enzyme was moderately inhibited (1.5- to 6-fold higher IC50 values compared to human), and mouse and zebrafish 11β-HSD2 were very weakly inhibited (IC50 values above 7 μM). Sequence alignment and application of newly generated homology models for human and mouse 11β-HSD2 revealed significant differences in the C-terminal region and the substrate binding pocket. Exchange of the C-terminus and substitution of residues Leu170,Ile172 in mouse 11β-HSD2 by the corresponding residues His170,Glu172 of the human enzyme resulted in a gain of sensitivity to itraconazole and posaconazole, resembling human 11β-HSD2. The results provide an explanation for the observed species-specific 11β-HSD2 inhibition by the studied azole antifungals. The obtained structure-activity relationship information should facilitate future assessments of 11β-HSD2 inhibitors and aid choosing adequate animal models for efficacy and safety studies.
Collapse
Affiliation(s)
- Silvia G Inderbinen
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| | - Michael Zogg
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| | - Manuel Kley
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| | - Martin Smieško
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, Basel 4056, Switzerland
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland.
| |
Collapse
|
26
|
Fan P, Lu YT, Yang KQ, Zhang D, Liu XY, Tian T, Luo F, Wang LP, Ma WJ, Liu YX, Zhang HM, Song L, Cai J, Lou Y, Zhou XL. Apparent mineralocorticoid excess caused by novel compound heterozygous mutations in HSD11B2 and characterized by early-onset hypertension and hypokalemia. Endocrine 2020; 70:607-615. [PMID: 32816205 PMCID: PMC7674368 DOI: 10.1007/s12020-020-02460-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
PURPOSE Apparent mineralocorticoid excess (AME) is an ultrarare autosomal recessive disorder resulting from deficiency of 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) caused by mutations in HSD11B2. The purpose of this study was to identify novel compound heterozygous HSD11B2 mutations in a Chinese pedigree with AME and conduct a systematic review evaluating the AME clinical features associated with HSD11B2 mutations. METHODS Next-generation sequencing was performed in the proband, and Sanger sequencing was used to identify candidate variants in family members, 100 hypertensives, and 100 healthy controls. A predicted structure of 11βHSD2 was constructed by in silico modeling. A systematic review was used to identify cases of HSD11B2-related AME. Data for genotyping and clinical characterizations and complications were extracted. RESULTS Next-generation sequencing showed novel compound heterozygous mutations (c.343_348del and c.1099_1101del) in the proband with early-onset hypertension and hypokalemia. Sanger sequencing verified the monoallelic form of the same mutations in five other relatives but not in 100 hypertensives or 100 healthy subjects. In silico structural modeling showed that compound mutations may simultaneously perturb the substrate and coenzyme binding pocket. A systematic review of 101 AME patients with 54 HSD11B2 mutations revealed early-onset hypertension, hypokalemia and homozygous mutations as common features. The homozygous HSD11B2 mutations correlated with low birth weight (r = 0.285, P = 0.02). CONCLUSIONS We report novel compound heterozygous HSD11B2 mutations in a Chinese teenager with early-onset hypertension, and enriched genotypic and phenotypic spectrums in AME. Genetic testing helps early diagnosis and treatment for AME patients, which may avoid target organ damage.
Collapse
Affiliation(s)
- Peng Fan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Ting Lu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zhang
- Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Ying Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Tian
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Luo
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin-Ping Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Jun Ma
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Xin Liu
- Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Min Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Cai
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Lou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
27
|
Bertulli C, Hureaux M, De Mutiis C, Pasini A, Bockenhauer D, Vargas-Poussou R, La Scola C. A Rare Cause of Chronic Hypokalemia with Metabolic Alkalosis: Case Report and Differential Diagnosis. CHILDREN-BASEL 2020; 7:children7110212. [PMID: 33167351 PMCID: PMC7694404 DOI: 10.3390/children7110212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
Hypokalemia and metabolic alkalosis can be present in different rare diseases, and the differential diagnosis of these forms is challenging. Apparent mineralcorticoid (AME) excess syndrome is one of these conditions. Characterized by increased blood pressure due to excessive sodium retention and plasma volume, it is caused by a mutation in the HSD11B2 gene encoding the oxydoreductase enzyme 11β-hydroxysteroide dehydrogenase type 2. We report the case of a child presenting with failure to thrive associated with early detection of hypokalemia, metabolic alkalosis, nephrocalcinosis and hypertension in which AME syndrome was detected. A novel mutation in the HSD11B2 gene was identified in this patient. In clinical pictures characterized by metabolic alkalosis and hypokalemia, the evaluation of renin, aldosterone and blood pressure is crucial for accurate diagnosis. AME syndrome is a rare disorder that can be an insidious but lethal disease, if untreated. With clinical signs appearing during the first days of life. Early diagnosis is imperative in order to enable prompt and adequate treatment to improve the outcome of these patients.
Collapse
Affiliation(s)
- Cristina Bertulli
- Nephrology and Dialysis Unit, Department of Pediatrics, Azienda Ospedaliero Universitaria Sant’Orsola-Malpighi, 40138 Bologna, Italy; (C.B.); (C.D.M.); (A.P.)
| | - Marguerite Hureaux
- Assistance Publique Hôpitaux de Paris, Department of Genetics, Hôpital Européen Georges-Pompidou, 75015 Paris, France; (M.H.); (R.V.-P.)
| | - Chiara De Mutiis
- Nephrology and Dialysis Unit, Department of Pediatrics, Azienda Ospedaliero Universitaria Sant’Orsola-Malpighi, 40138 Bologna, Italy; (C.B.); (C.D.M.); (A.P.)
| | - Andrea Pasini
- Nephrology and Dialysis Unit, Department of Pediatrics, Azienda Ospedaliero Universitaria Sant’Orsola-Malpighi, 40138 Bologna, Italy; (C.B.); (C.D.M.); (A.P.)
| | - Detlef Bockenhauer
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK;
- Department of Renal Medicine, University College London, London WC1E 6BT, UK
| | - Rosa Vargas-Poussou
- Assistance Publique Hôpitaux de Paris, Department of Genetics, Hôpital Européen Georges-Pompidou, 75015 Paris, France; (M.H.); (R.V.-P.)
| | - Claudio La Scola
- Nephrology and Dialysis Unit, Department of Pediatrics, Azienda Ospedaliero Universitaria Sant’Orsola-Malpighi, 40138 Bologna, Italy; (C.B.); (C.D.M.); (A.P.)
- Correspondence:
| |
Collapse
|
28
|
Carvajal CA, Tapia-Castillo A, Vecchiola A, Baudrand R, Fardella CE. Classic and Nonclassic Apparent Mineralocorticoid Excess Syndrome. J Clin Endocrinol Metab 2020; 105:5691192. [PMID: 31909799 DOI: 10.1210/clinem/dgz315] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/28/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT Arterial hypertension (AHT) is one of the most frequent pathologies in the general population. Subtypes of essential hypertension characterized by low renin levels allowed the identification of 2 different clinical entities: aldosterone-mediated mineralocorticoid receptor (MR) activation and cortisol-mediated MR activation. EVIDENCE ACQUISITION This review is based upon a search of Pubmed and Google Scholar databases, up to August 2019, for all publications relating to endocrine hypertension, apparent mineralocorticoid excess (AME) and cortisol (F) to cortisone (E) metabolism. EVIDENCE SYNTHESIS The spectrum of cortisol-mediated MR activation includes the classic AME syndrome to milder (nonclassic) forms of AME, the latter with a much higher prevalence (7.1%) than classic AME but different phenotype and genotype. Nonclassic AME (NC-AME) is mainly related to partial 11βHSD2 deficiency associated with genetic variations and epigenetic modifications (first hit) and potential additive actions of endogenous or exogenous inhibitors (ie, glycyrrhetinic acid-like factors [GALFS]) and other factors (ie, age, high sodium intake) (second hit). Subjects with NC-AME are characterized by a high F/E ratio, low E levels, normal to elevated blood pressure, low plasma renin and increased urinary potassium excretion. NC-AME condition should benefit from low-sodium and potassium diet recommendations and monotherapy with MR antagonists. CONCLUSION NC-AME has a higher prevalence and a milder phenotypical spectrum than AME. NC-AME etiology is associated to a first hit (gene and epigene level) and an additive second hit. NC-AME subjects are candidates to be treated with MR antagonists aimed to improve blood pressure, end-organ damage, and modulate the renin levels.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrea Vecchiola
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Rene Baudrand
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
29
|
Kucuk N, Yavas Abalı Z, Abalı S, Canpolat N, Yesil G, Turan S, Bereket A, Guran T. A rare cause of hypertension in childhood: Answers. Pediatr Nephrol 2020; 35:79-82. [PMID: 31541304 DOI: 10.1007/s00467-019-04329-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Nuran Kucuk
- Pediatric Nephrology Unit, Kartal Dr Lütfi Kırdar Education and Research Hospital, Istanbul, Turkey
| | - Zehra Yavas Abalı
- Department of Pediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Fevzi Çakmak Mahallesi, Muhsin Yazıcıoğlu Caddesi, No: 10 34899 Pendik, Istanbul, Turkey
| | - Saygın Abalı
- Department of Pediatric Endocrinology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Nur Canpolat
- Cerrahpasa Faculty of Medicine, Department of Pediatric Nephrology,, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gozde Yesil
- Department of Medical Genetics, Bezmialem Vakıf University School of Medicine, Istanbul, Turkey
| | - Serap Turan
- Department of Pediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Fevzi Çakmak Mahallesi, Muhsin Yazıcıoğlu Caddesi, No: 10 34899 Pendik, Istanbul, Turkey
| | - Abdullah Bereket
- Department of Pediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Fevzi Çakmak Mahallesi, Muhsin Yazıcıoğlu Caddesi, No: 10 34899 Pendik, Istanbul, Turkey
| | - Tulay Guran
- Department of Pediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Fevzi Çakmak Mahallesi, Muhsin Yazıcıoğlu Caddesi, No: 10 34899 Pendik, Istanbul, Turkey.
| |
Collapse
|
30
|
Vitellius G, Delemer B, Caron P, Chabre O, Bouligand J, Pussard E, Trabado S, Lombes M. Impaired 11β-Hydroxysteroid Dehydrogenase Type 2 in Glucocorticoid-Resistant Patients. J Clin Endocrinol Metab 2019; 104:5205-5216. [PMID: 31225872 DOI: 10.1210/jc.2019-00800] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/17/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT Six patients carrying heterozygous loss-of-function mutations of glucocorticoid (GC) receptor (GR) presented with hypercortisolism, associated with low kalemia, low plasma renin, and aldosterone levels, with or without hypertension, suggesting a pseudohypermineralocorticism whose mechanisms remain unclear. We hypothesize that an impaired activity of the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2; encoded by the HSD11B2 gene), catalyzing cortisol (F) inactivation, may account for an inappropriate activation of a renal mineralocorticoid signaling pathway in these GC-resistant patients. OBJECTIVE We aim at studying the GR-mediated regulation of HSD11B2. DESIGN The HSD11B2 promoter was subcloned and luciferase reporter assays evaluated GR-dependent HSD11B2 regulation, and 11β-HSD2 expression/activity was studied in human breast cancer MCF7 cells, endogenously expressing this enzyme. RESULTS Transfection assays revealed that GR transactivated the long (2.1-kbp) HSD11B2 promoter construct, whereas a defective 501H GR mutant was unable to stimulate luciferase activity. GR-mediated transactivation of the HSD11B2 gene was inhibited by the GR antagonist RU486. A threefold increase in HSD11B2 mRNA levels was observed after dexamethasone (DXM) treatment of MCF7 cells, inhibited by RU486 or by actinomycin, supporting a GR-dependent transcription. Chromatin immunoprecipitation further demonstrated a DXM-dependent GR recruitment onto the HSD11B2 promoter. 11β-HSD2 activity, evaluated by the cortisone/F ratio, quantified by liquid chromatography/tandem mass spectrometry, was 10-fold higher in the supernatant of DXM-treated cells than controls, consistent with a GR-dependent stimulation of 11β-HSD2 catalytic activity. CONCLUSION Collectively, we demonstrate that 11β-HSD2 expression and activity are transcriptionally regulated by GR. In the context of GR haploinsufficiency, these findings provide evidence that defective GR signaling may account for apparent mineralocorticoid excess in GC-resistant patients.
Collapse
Affiliation(s)
- Géraldine Vitellius
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche_S U1185, Faculty of Medicine at Université Paris-Sud, University Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Brigitte Delemer
- Service d'Endocrinologie-Diabète-Nutrition, Hôpital Robert Debré, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Philippe Caron
- Service d'Endocrinologie, Pôle Cardio-Vasculaire et Métabolique, Centre Hospitalier Universitaire de Larrey, Toulouse, France
| | - Olivier Chabre
- Endocrinologie, Pavillon des Écrins, Centre Hospitalier Universitaire de Grenoble, La Tronche, Grenoble, France
| | - Jérôme Bouligand
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche_S U1185, Faculty of Medicine at Université Paris-Sud, University Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire de Bicêtre, France
| | - Eric Pussard
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche_S U1185, Faculty of Medicine at Université Paris-Sud, University Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire de Bicêtre, France
| | - Séverine Trabado
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche_S U1185, Faculty of Medicine at Université Paris-Sud, University Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire de Bicêtre, France
| | - Marc Lombes
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche_S U1185, Faculty of Medicine at Université Paris-Sud, University Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| |
Collapse
|
31
|
Najafi M, Kordi-Tamandani DM, Behjati F, Sadeghi-Bojd S, Bakey Z, Karimiani EG, Schüle I, Azarfar A, Schmidts M. Mimicry and well known genetic friends: molecular diagnosis in an Iranian cohort of suspected Bartter syndrome and proposition of an algorithm for clinical differential diagnosis. Orphanet J Rare Dis 2019; 14:41. [PMID: 30760291 PMCID: PMC6375149 DOI: 10.1186/s13023-018-0981-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Bartter Syndrome is a rare, genetically heterogeneous, mainly autosomal recessively inherited condition characterized by hypochloremic hypokalemic metabolic alkalosis. Mutations in several genes encoding for ion channels localizing to the renal tubules including SLC12A1, KCNJ1, BSND, CLCNKA, CLCNKB, MAGED2 and CASR have been identified as underlying molecular cause. No genetically defined cases have been described in the Iranian population to date. Like for other rare genetic disorders, implementation of Next Generation Sequencing (NGS) technologies has greatly facilitated genetic diagnostics and counseling over the last years. In this study, we describe the clinical, biochemical and genetic characteristics of patients from 15 Iranian families with a clinical diagnosis of Bartter Syndrome. RESULTS Age range of patients included in this study was 3 months to 6 years and all patients showed hypokalemic metabolic alkalosis. 3 patients additionally displayed hypercalciuria, with evidence of nephrocalcinosis in one case. Screening by Whole Exome Sequencing (WES) and long range PCR revealed that 12/17 patients (70%) had a deletion of the entire CLCNKB gene that was previously identified as the most common cause of Bartter Syndrome in other populations. 4/17 individuals (approximately 25% of cases) were found to suffer in fact from pseudo-Bartter syndrome resulting from congenital chloride diarrhea due to a novel homozygous mutation in the SLC26A3 gene, Pendred syndrome due to a known homozygous mutation in SLC26A4, Cystic Fibrosis (CF) due to a novel mutation in CFTR and apparent mineralocorticoid excess syndrome due to a novel homozygous loss of function mutation in HSD11B2 gene. 1 case (5%) remained unsolved. CONCLUSIONS Our findings demonstrate deletion of CLCNKB is the most common cause of Bartter syndrome in Iranian patients and we show that age of onset of clinical symptoms as well as clinical features amongst those patients are variable. Further, using WES we were able to prove that nearly 1/4 patients in fact suffered from Pseudo-Bartter Syndrome, reversing the initial clinical diagnosis with important impact on the subsequent treatment and clinical follow up pathway. Finally, we propose an algorithm for clinical differential diagnosis of Bartter Syndrome.
Collapse
Affiliation(s)
- Maryam Najafi
- Genome Research Division, Human Genetics department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525KL Nijmegen, The Netherlands
- Departement of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | | | - Farkhondeh Behjati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Simin Sadeghi-Bojd
- Children and Adolescents Health Research Center, resistant tuberculosis institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zeineb Bakey
- Genome Research Division, Human Genetics department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525KL Nijmegen, The Netherlands
- Center for Pediatrics and Adolescent Medicine, Freiburg University Hospital, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79112 Freiburg, Germany
| | - Ehsan Ghayoor Karimiani
- Razavi Cancer Research, Razavi Hospital, Imam Reza International University, Mashhad, Iran
- Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Isabel Schüle
- Center for Pediatrics and Adolescent Medicine, Freiburg University Hospital, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79112 Freiburg, Germany
| | - Anoush Azarfar
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Miriam Schmidts
- Genome Research Division, Human Genetics department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525KL Nijmegen, The Netherlands
- Center for Pediatrics and Adolescent Medicine, Freiburg University Hospital, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79112 Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, 79112 Freiburg, Germany
| |
Collapse
|
32
|
Markel AL. Genetics and pathophysiology of low-renin arterial hypertension. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj18.443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The review is devoted to the consideration of genetic determination and pathophysiology of one of the forms of hypertensive disease known as low-renin hypertension. At frst glance, the development of low-renin hypertension is “unnatural”, as renin, as a key enzyme of the renin-angiotensin system, which plays an important role in the development of hypertensive disease, is suppressed in low-renin hypertension. At the same time, the most important drugs actual in the treatment of hypertensive disease belong to the renin-angiotensin system blockers. This contradiction was resolved by a study of genetic and pathophysiological mechanisms of hypertension in some groups of patients with characteristic symptoms bringing these people together. Genetic studies of some recent decades using both family analysis and modern molecular genetic technologies have revealed the main mechanisms underlying low-renin hypertension, which can be classifed as certain syndromes with well-defned genetic and clinical features. These syndromes include cases of sporadically occurring somatic mutations in the cells of the adrenal cortex, which begin to produce aldosterone in increased amounts. Also, several oligogenic forms of low-renin hypertension were studied, some of which are associated with the hyperproduction of aldosterone, but in the others the development of low-renin hypertension was associated with mutations of genes involved in regulation of the functioning of the kidney ion channels. The discovery of some types of arterial hypertension with known mechanisms of their development is of paramount importance for medicine, as it allows for targeted efective therapy and in some cases for achieving a complete cure. However, the main contingent of patients with low-renin hypertension belongs to cases with unexplained etiology, as their development is associated with polygenic systems and with a signifcant influence of numerous environmental factors. The study of genetic and physiological mechanisms of various forms of low-renin arterial hypertension provides a good example of how penetration into the intimate mechanisms of the blood pressure regulation in each personal case makes it possible to identify some specifc syndromes and establish its fnal causes. It seems that progress in understanding the causes and mechanisms of essential hypertension lies along this way.
Collapse
Affiliation(s)
- A. L. Markel
- Institute of Cytology and Genetics, SB RAS; Russia Novosibirsk State University
| |
Collapse
|
33
|
Abstract
Aldosterone was characterized as the major mineralocorticoid hormone 65 years ago, and since then its physiologic role in epidural electrolyte homeostasis the province of nephrologists. In epithelia it acts via the mineralocorticoid receptor (MR) to retain Na+ and excrete K+; MRs, however, are widely expressed in organs not known to be aldosterone target tissues. MRs are not merely "aldosterone receptors," as they have equivalently high affinity for the physiologic glucocorticoids, and for progesterone. In epithelia (plus in the blood vessel wall and in the nucleus tractus solitarius of the brain) MRs are "protected" by coexpression of the enzyme 11β-hydroxysteroid dehydrogenase. This enzyme converts cortisol-which circulates at much higher concentrations than aldosterone-to receptor-inactive cortisone, thus allowing aldosterone selectively to activate "protected" MR. In tissues which do not express 11β-hydroxysteroid dehydrogenase, the default MR ligand is cortisol, which circulates at ≥100-fold higher plasma free concentrations than aldosterone. In such tissues there is as yet scant evidence for the physiologic role of cortisol-occupied MR: over the past decade, however, it has become clear that in damaged tissues cortisol can act as an MR-agonist, mimicking the effects seen with aldosterone under experimental conditions, in vitro and in vivo. Many pathophysiologic roles have been attributed to aldosterone: on the current evidence there are none outside its long established epithelial actions, those on the blood vessel wall and on the nucleus tractus solitarius.
Collapse
Affiliation(s)
- John W Funder
- Hudson Institute and Monash University, Monash Health, Clayton, VIC, Australia.
| |
Collapse
|
34
|
Sanchez-Niño MD, Ortiz A. Unravelling drug-induced hypertension: molecular mechanisms of aldosterone-independent mineralocorticoid receptor activation by posaconazole. Clin Kidney J 2018; 11:688-690. [PMID: 30289131 PMCID: PMC6165746 DOI: 10.1093/ckj/sfy087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 01/19/2023] Open
Abstract
Drug-induced hypertension offers the opportunity to further understand pathways involved in the regulation of blood pressure. Posaconazole is an antifungal agent known to induce hypertension and hypokalaemia. In recent months, a flurry of reports has unravelled the metabolic processes involved. In this issue of CKJ, Barton K, Davis TK, Marshall B et al. Posaconazole-induced hypertension and hypokalemia due to inhibition of the 11β-hydroxylase enzyme. Clin Kidney J 2018; 11: 691-693 present convincing evidence of 11β-hydroxylase inhibition resulting in a biochemical syndrome resembling genetic congenital adrenal hyperplasia and characterized by high 11-deoxycorticosterone and 11-deoxycortisol levels as well as androgen levels. This adds to prior evidence supporting inhibition of 11β-hydroxysteroid dehydrogenase 2, the enzyme that inactivates cortisol in aldosterone-sensitive tissues such as the kidneys, yielding a syndrome resembling genetic apparent mineralocorticoid excess or licorice toxicity, characterized by a high cortisol/cortisone ratio.
Collapse
Affiliation(s)
- Maria Dolores Sanchez-Niño
- IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid; Fundacion Renal Iñigo Alvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid; Fundacion Renal Iñigo Alvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| |
Collapse
|
35
|
Monticone S, Losano I, Tetti M, Buffolo F, Veglio F, Mulatero P. Diagnostic approach to low-renin hypertension. Clin Endocrinol (Oxf) 2018; 89:385-396. [PMID: 29758100 DOI: 10.1111/cen.13741] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/25/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
Renin-angiotensin-aldosterone system (RAAS) plays a crucial role in maintaining water and electrolytes homoeostasis, and its deregulation contributes to the development of arterial hypertension. Since the historical description of the "classical" RAAS, a dramatic increase in our understanding of the molecular mechanisms underlying the development of both essential and secondary hypertension has occurred. Approximatively 25% of the patients affected by arterial hypertension display low-renin levels, a definition that is largely arbitrary and depends on the investigated population and the specific characteristics of the assay. Most often, low-renin levels are expression of a physiological response to sodium-volume overload, but also a significant number of secondary hereditary or acquired conditions falls within this category. In a context of suppressed renin status, the concomitant examination of plasma aldosterone levels (which can be inappropriately elevated, within the normal range or suppressed) and plasma potassium are essential to formulate a differential diagnosis. To distinguish between the different forms of low-renin hypertension is of fundamental importance to address the patient to the proper clinical management, as each subtype requires a specific and targeted therapy. The present review will discuss the differential diagnosis of the most common medical conditions manifesting with a clinical phenotype of low-renin hypertension, enlightening the novelties in genetics of the familial forms.
Collapse
Affiliation(s)
- Silvia Monticone
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Isabel Losano
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Martina Tetti
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Fabrizio Buffolo
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Franco Veglio
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
36
|
Carvajal CA, Tapia-Castillo A, Valdivia CP, Allende F, Solari S, Lagos CF, Campino C, Martínez-Aguayo A, Vecchiola A, Pinochet C, Godoy C, Iturrieta V, Baudrand R, Fardella CE. Serum Cortisol and Cortisone as Potential Biomarkers of Partial 11β-Hydroxysteroid Dehydrogenase Type 2 Deficiency. Am J Hypertens 2018; 31:910-918. [PMID: 29617893 DOI: 10.1093/ajh/hpy051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/29/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pathogenic variations in HSD11B2 gene triggers the apparent mineralocorticoid excess syndrome (AME). There is scarce information regarding the phenotypes of subjects carrying heterozygous pathogenic variants in HSD11B2 gene. We investigated if serum cortisol/cortisone (F/E) ratio and cortisone are useful for identifying partial 11βHSD2 deficiency in those heterozygous subjects. METHODS We studied two patients diagnosed with AME and their families carrying either D223N or R213C mutation. We also evaluated 32 healthy control subjects (13 children and 19 adults) to obtain normal references ranges for all measured variables. Case 1: A boy carrying D223N mutation in HSD11B2 gene and Case 2: A girl carrying R213C mutation. We assessed serum F/E ratio and cortisone by HPLC-MS/MS, aldosterone, plasma-renin-activity(PRA), electrolytes, and HSD11B2 genetic analyses. RESULTS The normal values (median [interquartile range]) in children for serum F/E and cortisone (µg/dl) were 2.56 [2.21-3.69] and 2.54 [2.35-2.88], and in adults were 4.42 [3.70-4.90] and 2.23 [1.92-2.57], respectively. Case 1 showed a very high serum F/E 28.8 and low cortisone 0.46 µg/dl. His mother and sister were normotensives and heterozygous for D223N mutation with high F/E (13.2 and 6.0, respectively) and low cortisone (2.0 and 2.2, respectively). Case 2 showed a very high serum F/E 175 and suppressed cortisone 0.11 µg/dl. Her parents and sister were heterozygous for the R213C mutation with normal phenotype, but high F/E and low cortisone. Heterozygous subjects showed normal aldosterone, PRA, but lower fractional excretion of sodium and urinary Na/K ratio than controls. CONCLUSION Serum F/E ratio and cortisone allow to identify partial 11βHSD2 deficiencies, as occurs in heterozygous subjects, who would be susceptible to develop arterial hypertension.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
- Faculty of Medicine, Universidad del Desarrollo, Santiago, Chile
| | - Carolina P Valdivia
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fidel Allende
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sandra Solari
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos F Lagos
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
- Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Carmen Campino
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Alejandro Martínez-Aguayo
- Endocrinology Pediatrics Division, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Vecchiola
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Constanza Pinochet
- Endocrinology Pediatrics Division, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Godoy
- Endocrinology Pediatrics Division, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Virginia Iturrieta
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rene Baudrand
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| |
Collapse
|
37
|
Kardalas E, Paschou SA, Anagnostis P, Muscogiuri G, Siasos G, Vryonidou A. Hypokalemia: a clinical update. Endocr Connect 2018; 7:R135-R146. [PMID: 29540487 PMCID: PMC5881435 DOI: 10.1530/ec-18-0109] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/14/2018] [Indexed: 12/19/2022]
Abstract
Hypokalemia is a common electrolyte disturbance, especially in hospitalized patients. It can have various causes, including endocrine ones. Sometimes, hypokalemia requires urgent medical attention. The aim of this review is to present updated information regarding: (1) the definition and prevalence of hypokalemia, (2) the physiology of potassium homeostasis, (3) the various causes leading to hypokalemia, (4) the diagnostic steps for the assessment of hypokalemia and (5) the appropriate treatment of hypokalemia depending on the cause. Practical algorithms for the optimal diagnostic, treatment and follow-up strategy are presented, while an individualized approach is emphasized.
Collapse
Affiliation(s)
- Efstratios Kardalas
- Department of Endocrinology and DiabetesEvangelismos Hospital, Athens, Greece
| | - Stavroula A Paschou
- Division of Endocrinology and Diabetes'Aghia Sophia' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Anagnostis
- Unit of Reproductive EndocrinologyFirst Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giovanna Muscogiuri
- Division of EndocrinologyDepartment of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy
| | - Gerasimos Siasos
- First Department of CardiologyHippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and DiabetesHellenic Red Cross Hospital, Athens, Greece
| |
Collapse
|