1
|
Lu HC, Trevers KE, Solovieva T, Anderson C, Pérez-Campos L, Filipkova L, Arimia V, Colle C, De Oliveira NMM, Dale L, Stern CD. The organizer as a cooperative of signaling cells for neural induction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641623. [PMID: 40093132 PMCID: PMC11908251 DOI: 10.1101/2025.03.05.641623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The "organizer", discovered 100 years ago by Hans Spemann and Hilde Mangold, is a special region of vertebrate embryos at the gastrula stage; it emits signals that can re-direct the fate of neighboring cells to acquire neural plate identity. It is generally imagined as unique population of cells producing one or a few signaling molecules, responsible for neural induction and for patterning the neural plate and the mesoderm. Here we use single cell and tissue transcriptomics to explore the expression of signaling molecules in the node (the amniote organizer). Although all organizer cells express the homeobox gene Goosecoid, node cells show a diversity of transcription factor signatures associated with expression of subsets of many signaling molecules, suggesting distinct cell sub-populations. Using a recently described Gene Regulatory Network (GRN) of 175 transcriptional responses to neural induction, we explore the activities of 22 of these signals and find that some of them regulate the expression of components of the GRN that are not responsive to previously described pathways associated with neural induction. These results suggest that rather than a single, static, homogeneous population, the organizer comprises a diverse collective of specialized cells that emit cooperating signals to instruct receiving neighbors to adopt their new identities.
Collapse
Affiliation(s)
- Hui-Chun Lu
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Katherine E Trevers
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Tatiana Solovieva
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Claire Anderson
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Linette Pérez-Campos
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Lenka Filipkova
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Vlad Arimia
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Charlotte Colle
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Nidia M M De Oliveira
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Leslie Dale
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Claudio D Stern
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
2
|
Stern CD. Cell biology of the chick organizer: Origins, composition, population dynamics and fate. Cells Dev 2025:204017. [PMID: 40043777 DOI: 10.1016/j.cdev.2025.204017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
The year 2024 celebrates 100 years of perhaps one of the most important and influential papers in the field of developmental biology: Spemann and Mangold's publication reporting the discovery of the "organizer", which can induce and pattern the nervous system and also pattern the axial-lateral axis of the mesoderm. While many papers have investigated, and many others reviewed, the signalling aspects of the organizer, relatively fewer have concentrated on the cell biology of organizer cells. Here we survey more than 12 decades of knowledge on the chick organizer, including the cellular origins, fates, composition, cell movements, cell population properties and molecular dynamics of the chick organizer (the tip of the primitive streak). What emerges is a picture of an extremely complex and dynamic population of cells whose properties change over space and time, quite different from the "textbook" view of a static group of cells set aside during early development to perform a particular function in the normal embryo before being swept aside. Some of these findings also have more general implications for the interpretation of results from single cell RNA sequencing experiments.
Collapse
Affiliation(s)
- Claudio D Stern
- Department of Cell & Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Manning E, Placzek M. Organizing activities of axial mesoderm. Curr Top Dev Biol 2024; 157:83-123. [PMID: 38556460 DOI: 10.1016/bs.ctdb.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
For almost a century, developmental biologists have appreciated that the ability of the embryonic organizer to induce and pattern the body plan is intertwined with its differentiation into axial mesoderm. Despite this, we still have a relatively poor understanding of the contribution of axial mesoderm to induction and patterning of different body regions, and the manner in which axial mesoderm-derived information is interpreted in tissues of changing competence. Here, with a particular focus on the nervous system, we review the evidence that axial mesoderm notochord and prechordal mesoderm/mesendoderm act as organizers, discuss how their influence extends through the different axes of the developing organism, and describe how the ability of axial mesoderm to direct morphogenesis impacts on its role as a local organizer.
Collapse
Affiliation(s)
- Elizabeth Manning
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom; Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom; Bateson Centre, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
4
|
Abstract
In avian and mammalian embryos the "organizer" property associated with neural induction of competent ectoderm into a neural plate and its subsequent patterning into rostro-caudal domains resides at the tip of the primitive streak before neurulation begins, and before a morphological Hensen's node is discernible. The same region and its later derivatives (like the notochord) also have the ability to "dorsalize" the adjacent mesoderm, for example by converting lateral plate mesoderm into paraxial (pre-somitic) mesoderm. Both neural induction and dorsalization of the mesoderm involve inhibition of BMP, and the former also requires other signals. This review surveys the key experiments done to elucidate the functions of the organizer and the mechanisms of neural induction in amniotes. We conclude that the mechanisms of neural induction in amniotes and anamniotes are likely to be largely the same; apparent differences are likely to be due to differences in experimental approaches dictated by embryo topology and other practical constraints. We also discuss the relationships between "neural induction" assessed by grafts of the organizer and normal neural plate development, as well as how neural induction relates to the generation of neuronal cells from embryonic and other stem cells in vitro.
Collapse
Affiliation(s)
- Claudio D Stern
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| |
Collapse
|
5
|
Marchak A, Neilson KM, Majumdar HD, Yamauchi K, Klein SL, Moody SA. The sulfotransferase XB5850668.L is required to apportion embryonic ectodermal domains. Dev Dyn 2023; 252:1407-1427. [PMID: 37597164 PMCID: PMC10842325 DOI: 10.1002/dvdy.648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Members of the sulfotransferase superfamily (SULT) influence the activity of a wide range of hormones, neurotransmitters, metabolites and xenobiotics. However, their roles in developmental processes are not well characterized even though they are expressed during embryogenesis. We previously found in a microarray screen that Six1 up-regulates LOC100037047, which encodes XB5850668.L, an uncharacterized sulfotransferase. RESULTS Since Six1 is required for patterning the embryonic ectoderm into its neural plate, neural crest, preplacodal and epidermal domains, we used loss- and gain-of function assays to characterize the role of XB5850668.L during this process. Knockdown of endogenous XB5850668.L resulted in the reduction of epidermal, neural crest, cranial placode and otic vesicle gene expression domains, concomitant with neural plate expansion. Increased levels had minimal effects, but infrequently expanded neural plate and neural crest gene domains, and infrequently reduced cranial placode and otic vesicle gene domains. Mutation of two key amino acids in the sulfotransferase catalytic domain required for PAPS binding and enzymatic activity tended to reduce the effects of overexpressing the wild-type protein. CONCLUSIONS Our analyses indicates that XB5850668.L is a member of the SULT2 family that plays important roles in patterning the embryonic ectoderm. Some aspects of its influence likely depend on sulfotransferase activity.
Collapse
Affiliation(s)
- Alexander Marchak
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Karen M. Neilson
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Himani D. Majumdar
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Kiyoshi Yamauchi
- Department of Biological Science Shizuoka University Shizuoka, Japan
| | - Steven L. Klein
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| |
Collapse
|
6
|
Thiery AP, Buzzi AL, Hamrud E, Cheshire C, Luscombe NM, Briscoe J, Streit A. scRNA-sequencing in chick suggests a probabilistic model for cell fate allocation at the neural plate border. eLife 2023; 12:e82717. [PMID: 37530410 PMCID: PMC10425176 DOI: 10.7554/elife.82717] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/01/2023] [Indexed: 08/03/2023] Open
Abstract
The vertebrate 'neural plate border' is a transient territory located at the edge of the neural plate containing precursors for all ectodermal derivatives: the neural plate, neural crest, placodes and epidermis. Elegant functional experiments in a range of vertebrate models have provided an in-depth understanding of gene regulatory interactions within the ectoderm. However, these experiments conducted at tissue level raise seemingly contradictory models for fate allocation of individual cells. Here, we carry out single cell RNA sequencing of chick ectoderm from primitive streak to neurulation stage, to explore cell state diversity and heterogeneity. We characterise the dynamics of gene modules, allowing us to model the order of molecular events which take place as ectodermal fates segregate. Furthermore, we find that genes previously classified as neural plate border 'specifiers' typically exhibit dynamic expression patterns and are enriched in either neural, neural crest or placodal fates, revealing that the neural plate border should be seen as a heterogeneous ectodermal territory and not a discrete transitional transcriptional state. Analysis of neural, neural crest and placodal markers reveals that individual NPB cells co-express competing transcriptional programmes suggesting that their ultimate identify is not yet fixed. This population of 'border located undecided progenitors' (BLUPs) gradually diminishes as cell fate decisions take place. Considering our findings, we propose a probabilistic model for cell fate choice at the neural plate border. Our data suggest that the probability of a progenitor's daughters to contribute to a given ectodermal derivative is related to the balance of competing transcriptional programmes, which in turn are regulated by the spatiotemporal position of a progenitor.
Collapse
Affiliation(s)
- Alexandre P Thiery
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Ailin Leticia Buzzi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Eva Hamrud
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Chris Cheshire
- Bioinformatics and Computational Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Nicholas M Luscombe
- Bioinformatics and Computational Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - James Briscoe
- Bioinformatics and Computational Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
7
|
Cvekl A, Camerino MJ. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology. Cells 2022; 11:3516. [PMID: 36359912 PMCID: PMC9658148 DOI: 10.3390/cells11213516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro differentiation of human pluripotent stem cells (hPSCs) into specialized tissues and organs represents a powerful approach to gain insight into those cellular and molecular mechanisms regulating human development. Although normal embryonic eye development is a complex process, generation of ocular organoids and specific ocular tissues from pluripotent stem cells has provided invaluable insights into the formation of lineage-committed progenitor cell populations, signal transduction pathways, and self-organization principles. This review provides a comprehensive summary of recent advances in generation of adenohypophyseal, olfactory, and lens placodes, lens progenitor cells and three-dimensional (3D) primitive lenses, "lentoid bodies", and "micro-lenses". These cells are produced alone or "community-grown" with other ocular tissues. Lentoid bodies/micro-lenses generated from human patients carrying mutations in crystallin genes demonstrate proof-of-principle that these cells are suitable for mechanistic studies of cataractogenesis. Taken together, current and emerging advanced in vitro differentiation methods pave the road to understand molecular mechanisms of cataract formation caused by the entire spectrum of mutations in DNA-binding regulatory genes, such as PAX6, SOX2, FOXE3, MAF, PITX3, and HSF4, individual crystallins, and other genes such as BFSP1, BFSP2, EPHA2, GJA3, GJA8, LIM2, MIP, and TDRD7 represented in human cataract patients.
Collapse
Affiliation(s)
- Aleš Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael John Camerino
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
8
|
Bolkhovitinov L, Weselman BT, Shaw GA, Dong C, Giribhattanavar J, Saha MS. Tissue Rotation of the Xenopus Anterior-Posterior Neural Axis Reveals Profound but Transient Plasticity at the Mid-Gastrula Stage. J Dev Biol 2022; 10:38. [PMID: 36135371 PMCID: PMC9503425 DOI: 10.3390/jdb10030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The establishment of anterior-posterior (AP) regional identity is an essential step in the appropriate development of the vertebrate central nervous system. An important aspect of AP neural axis formation is the inherent plasticity that allows developing cells to respond to and recover from the various perturbations that embryos continually face during the course of development. While the mechanisms governing the regionalization of the nervous system have been extensively studied, relatively less is known about the nature and limits of early neural plasticity of the anterior-posterior neural axis. This study aims to characterize the degree of neural axis plasticity in Xenopus laevis by investigating the response of embryos to a 180-degree rotation of their AP neural axis during gastrula stages by assessing the expression of regional marker genes using in situ hybridization. Our results reveal the presence of a narrow window of time between the mid- and late gastrula stage, during which embryos are able undergo significant recovery following a 180-degree rotation of their neural axis and eventually express appropriate regional marker genes including Otx, Engrailed, and Krox. By the late gastrula stage, embryos show misregulation of regional marker genes following neural axis rotation, suggesting that this profound axial plasticity is a transient phenomenon that is lost by late gastrula stages.
Collapse
Affiliation(s)
- Lyuba Bolkhovitinov
- Department of Molecular Biology, Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
| | - Bryan T. Weselman
- School of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Gladys A. Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Chen Dong
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, VA 23185, USA
| |
Collapse
|
9
|
Alata Jimenez N, Strobl-Mazzulla PH. Folate Carrier Deficiency Drives Differential Methylation and Enhanced Cellular Potency in the Neural Plate Border. Front Cell Dev Biol 2022; 10:834625. [PMID: 35912103 PMCID: PMC9326018 DOI: 10.3389/fcell.2022.834625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
The neural plate border (NPB) of vertebrate embryos segregates from the neural and epidermal regions, and it is comprised of an intermingled group of multipotent progenitor cells. Folate is the precursor of S-adenosylmethionine, the main methyl donor for DNA methylation, and it is critical for embryonic development, including the specification of progenitors which reside in the NPB. Despite the fact that several intersecting signals involved in the specification and territorial restriction of NPB cells are known, the role of epigenetics, particularly DNA methylation, has been a matter of debate. Here, we examined the temporal and spatial distribution of the methyl source and analyzed the abundance of 5mC/5 hmC and their epigenetic writers throughout the segregation of the neural and NPB territories. Reduced representation bisulfite sequencing (RRBS) on Reduced Folate Carrier 1 (RFC1)-deficient embryos leads to the identification of differentially methylated regions (DMRs). In the RFC1-deficient embryos, we identified several DMRs in the Notch1 locus, and the spatiotemporal expression of Notch1 and its downstream target gene Bmp4 were expanded in the NPB. Cell fate analysis on folate deficient embryos revealed a significant increase in the number of cells coexpressing both neural (SOX2) and NPB (PAX7) markers, which may represent an enhancing effect in the cellular potential of those progenitors. Taken together, our findings propose a model where the RFC1 deficiency drives methylation changes in specific genomic regions that are correlated with a dysregulation of pathways involved in early development such as Notch1 and BMP4 signaling. These changes affect the potency of the progenitors residing in the juncture of the neural plate and NPB territories, thus driving them to a primed state.
Collapse
|
10
|
Klein SL, Tavares ALP, Peterson M, Sullivan CH, Moody SA. Repressive Interactions Between Transcription Factors Separate Different Embryonic Ectodermal Domains. Front Cell Dev Biol 2022; 10:786052. [PMID: 35198557 PMCID: PMC8859430 DOI: 10.3389/fcell.2022.786052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The embryonic ectoderm is composed of four domains: neural plate, neural crest, pre-placodal region (PPR) and epidermis. Their formation is initiated during early gastrulation by dorsal-ventral and anterior-posterior gradients of signaling factors that first divide the embryonic ectoderm into neural and non-neural domains. Next, the neural crest and PPR domains arise, either via differential competence of the neural and non-neural ectoderm (binary competence model) or via interactions between the neural and non-neural ectoderm tissues to produce an intermediate neural border zone (NB) (border state model) that subsequently separates into neural crest and PPR. Many previous gain- and loss-of-function experiments demonstrate that numerous TFs are expressed in initially overlapping zones that gradually resolve into patterns that by late neurula stages are characteristic of each of the four domains. Several of these studies suggested that this is accomplished by a combination of repressive TF interactions and competence to respond to local signals. In this study, we ectopically expressed TFs that at neural plate stages are characteristic of one domain in a different domain to test whether they act cell autonomously as repressors. We found that almost all tested TFs caused reduced expression of the other TFs. At gastrulation these effects were strictly within the lineage-labeled cells, indicating that the effects were cell autonomous, i.e., due to TF interactions within individual cells. Analysis of previously published single cell RNAseq datasets showed that at the end of gastrulation, and continuing to neural tube closure stages, many ectodermal cells express TFs characteristic of more than one neural plate stage domain, indicating that different TFs have the opportunity to interact within the same cell. At neurula stages repression was observed both in the lineage-labeled cells and in adjacent cells not bearing detectable lineage label, suggesting that cell-to-cell signaling has begun to contribute to the separation of the domains. Together, these observations directly demonstrate previous suggestions in the literature that the segregation of embryonic ectodermal domains initially involves cell autonomous, repressive TF interactions within an individual cell followed by the subsequent advent of non-cell autonomous signaling to neighbors.
Collapse
Affiliation(s)
- Steven L Klein
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., DC, United States
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., DC, United States
| | - Meredith Peterson
- Department of Biology, State College, Penn State University, University Park, PA, United States
| | | | - Sally A Moody
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., DC, United States
| |
Collapse
|
11
|
Tyser RCV, Mahammadov E, Nakanoh S, Vallier L, Scialdone A, Srinivas S. Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 2021; 600:285-289. [PMID: 34789876 PMCID: PMC7615353 DOI: 10.1038/s41586-021-04158-y] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/05/2021] [Indexed: 12/25/2022]
Abstract
Gastrulation is the fundamental process in all multicellular animals through which the basic body plan is first laid down1-4. It is pivotal in generating cellular diversity coordinated with spatial patterning. In humans, gastrulation occurs in the third week after fertilization. Our understanding of this process in humans is relatively limited and based primarily on historical specimens5-8, experimental models9-12 or, more recently, in vitro cultured samples13-16. Here we characterize in a spatially resolved manner the single-cell transcriptional profile of an entire gastrulating human embryo, staged to be between 16 and 19 days after fertilization. We use these data to analyse the cell types present and to make comparisons with other model systems. In addition to pluripotent epiblast, we identified primordial germ cells, red blood cells and various mesodermal and endodermal cell types. This dataset offers a unique glimpse into a central but inaccessible stage of our development. This characterization provides new context for interpreting experiments in other model systems and represents a valuable resource for guiding directed differentiation of human cells in vitro.
Collapse
Affiliation(s)
- Richard C V Tyser
- Department of Physiology, Anatomy and Genetics, South Parks Road, University of Oxford, Oxford, UK
| | - Elmir Mahammadov
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München-German Research Center for Environmental Health, Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Shota Nakanoh
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München-German Research Center for Environmental Health, Munich, Germany.
- Institute of Functional Epigenetics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, South Parks Road, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Roffers-Agarwal J, Lidberg KA, Gammill LS. The lysine methyltransferase SETD2 is a dynamically expressed regulator of early neural crest development. Genesis 2021; 59:e23448. [PMID: 34498354 DOI: 10.1002/dvg.23448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 11/11/2022]
Abstract
SETD2 is a histone H3 lysine 36 (H3K36) tri-methylase that is upregulated in response to neural crest induction. Because the H3K36 di-methylase NSD3 and cytoplasmic non-histone protein methylation are necessary for neural crest development, we investigated the expression and requirement for SETD2 in the neural crest. SetD2 is expressed throughout the chick blastoderm beginning at gastrulation. Subsequently, SetD2 mRNA becomes restricted to the neural plate, where it is strongly and dynamically expressed as neural tissue is regionalized and cell fate decisions are made. This includes expression in premigratory neural crest cells, which is downregulated prior to migration. Likely due to the early onset of its expression, SETD2 morpholino knockdown does not significantly alter premigratory Sox10 expression or neural crest migration; however, both are disrupted by a methyltransferase mutant SETD2 construct. These results suggest that SETD2 activity is essential for early neural crest development, further demonstrating that lysine methylation is an important mechanism regulating the neural crest.
Collapse
Affiliation(s)
- Julaine Roffers-Agarwal
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kevin A Lidberg
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Laura S Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Thawani A, Groves AK. Building the Border: Development of the Chordate Neural Plate Border Region and Its Derivatives. Front Physiol 2020; 11:608880. [PMID: 33364980 PMCID: PMC7750469 DOI: 10.3389/fphys.2020.608880] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
The paired cranial sensory organs and peripheral nervous system of vertebrates arise from a thin strip of cells immediately adjacent to the developing neural plate. The neural plate border region comprises progenitors for four key populations of cells: neural plate cells, neural crest cells, the cranial placodes, and epidermis. Putative homologues of these neural plate border derivatives can be found in protochordates such as amphioxus and tunicates. In this review, we summarize key signaling pathways and transcription factors that regulate the inductive and patterning events at the neural plate border region that give rise to the neural crest and placodal lineages. Gene regulatory networks driven by signals from WNT, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling primarily dictate the formation of the crest and placodal lineages. We review these studies and discuss the potential of recent advances in spatio-temporal transcriptomic and epigenomic analyses that would allow a mechanistic understanding of how these signaling pathways and their downstream transcriptional cascades regulate the formation of the neural plate border region.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
14
|
Seal S, Monsoro-Burq AH. Insights Into the Early Gene Regulatory Network Controlling Neural Crest and Placode Fate Choices at the Neural Border. Front Physiol 2020; 11:608812. [PMID: 33324244 PMCID: PMC7726110 DOI: 10.3389/fphys.2020.608812] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022] Open
Abstract
The neural crest (NC) cells and cranial placodes are two ectoderm-derived innovations in vertebrates that led to the acquisition of a complex head structure required for a predatory lifestyle. They both originate from the neural border (NB), a portion of the ectoderm located between the neural plate (NP), and the lateral non-neural ectoderm. The NC gives rise to a vast array of tissues and cell types such as peripheral neurons and glial cells, melanocytes, secretory cells, and cranial skeletal and connective cells. Together with cells derived from the cranial placodes, which contribute to sensory organs in the head, the NC also forms the cranial sensory ganglia. Multiple in vivo studies in different model systems have uncovered the signaling pathways and genetic factors that govern the positioning, development, and differentiation of these tissues. In this literature review, we give an overview of NC and placode development, focusing on the early gene regulatory network that controls the formation of the NB during early embryonic stages, and later dictates the choice between the NC and placode progenitor fates.
Collapse
Affiliation(s)
- Subham Seal
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France.,Institut Curie Research Division, PSL Research University, Orsay Cedex, France
| | - Anne H Monsoro-Burq
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France.,Institut Curie Research Division, PSL Research University, Orsay Cedex, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
15
|
Cell fate decisions during the development of the peripheral nervous system in the vertebrate head. Curr Top Dev Biol 2020; 139:127-167. [PMID: 32450959 DOI: 10.1016/bs.ctdb.2020.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sensory placodes and neural crest cells are among the key cell populations that facilitated the emergence and diversification of vertebrates throughout evolution. Together, they generate the sensory nervous system in the head: both form the cranial sensory ganglia, while placodal cells make major contributions to the sense organs-the eye, ear and olfactory epithelium. Both are instrumental for integrating craniofacial organs and have been key to drive the concentration of sensory structures in the vertebrate head allowing the emergence of active and predatory life forms. Whereas the gene regulatory networks that control neural crest cell development have been studied extensively, the signals and downstream transcriptional events that regulate placode formation and diversity are only beginning to be uncovered. Both cell populations are derived from the embryonic ectoderm, which also generates the central nervous system and the epidermis, and recent evidence suggests that their initial specification involves a common molecular mechanism before definitive neural, neural crest and placodal lineages are established. In this review, we will first discuss the transcriptional networks that pattern the embryonic ectoderm and establish these three cell fates with emphasis on sensory placodes. Second, we will focus on how sensory placode precursors diversify using the specification of otic-epibranchial progenitors and their segregation as an example.
Collapse
|
16
|
Prasad MS, Uribe-Querol E, Marquez J, Vadasz S, Yardley N, Shelar PB, Charney RM, García-Castro MI. Blastula stage specification of avian neural crest. Dev Biol 2020; 458:64-74. [PMID: 31610145 PMCID: PMC7050198 DOI: 10.1016/j.ydbio.2019.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 11/21/2022]
Abstract
Cell fate specification defines the earliest steps towards a distinct cell lineage. Neural crest, a multipotent stem cell population, is thought to be specified from the ectoderm, but its varied contributions defy canons of segregation potential and challenges its embryonic origin. Aiming to resolve this conflict, we have assayed the earliest specification of neural crest using blastula stage chick embryos. Specification assays on isolated chick epiblast explants identify an intermediate region specified towards the neural crest cell fate. Furthermore, low density culture suggests that the specification of intermediate cells towards the neural crest lineage is independent of contact mediated induction and Wnt-ligand induced signaling, but is, however, dependent on transcriptional activity of β-catenin. Finally, we have validated the regional identity of the intermediate region towards the neural crest cell fate using fate map studies. Our results suggest a model of neural crest specification within a restricted epiblast region in blastula stage chick embryos.
Collapse
Affiliation(s)
- Maneeshi S Prasad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | | | | | | | | | - Patrick B Shelar
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Rebekah M Charney
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Martín I García-Castro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA.
| |
Collapse
|
17
|
Prajapati RS, Hintze M, Streit A. PRDM1 controls the sequential activation of neural, neural crest and sensory progenitor determinants. Development 2019; 146:dev.181107. [PMID: 31806661 DOI: 10.1242/dev.181107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/27/2019] [Indexed: 12/25/2022]
Abstract
During early embryogenesis, the ectoderm is rapidly subdivided into neural, neural crest and sensory progenitors. How the onset of lineage determinants and the loss of pluripotency markers are temporally and spatially coordinated in vivo is still debated. Here, we identify a crucial role for the transcription factor PRDM1 in the orderly transition from epiblast to defined neural lineages in chick. PRDM1 is initially expressed broadly in the entire epiblast, but becomes gradually restricted as cell fates are specified. We find that PRDM1 is required for the loss of some pluripotency markers and the onset of neural, neural crest and sensory progenitor specifier genes. PRDM1 directly activates their expression by binding to their promoter regions and recruiting the histone demethylase Kdm4a to remove repressive histone marks. However, once neural lineage determinants become expressed, they in turn repress PRDM1, whereas prolonged PRDM1 expression inhibits neural, neural crest and sensory progenitor genes, suggesting that its downregulation is necessary for cells to maintain their identity. Therefore, PRDM1 plays multiple roles during ectodermal cell fate allocation.
Collapse
Affiliation(s)
- Ravindra S Prajapati
- Centre for Craniofacial & Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Mark Hintze
- Centre for Craniofacial & Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial & Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
18
|
Transplantation of Neural Tissue: Quail-Chick Chimeras. Methods Mol Biol 2019. [PMID: 31552671 DOI: 10.1007/978-1-4939-9732-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Tissue transplantation is an important approach in developmental neurobiology to determine cell fate, to uncover inductive interactions required for tissue specification and patterning as well as to establish tissue competence and commitment. Combined with state-of-the-art molecular approaches, transplantation assays have been instrumental for the discovery of gene regulatory networks controlling cell fate choices and how such networks change over time. Avian species are among the favorite model systems for these approaches because of their accessibility and relatively large size. Here we describe two culture techniques used to generate quail-chick chimeras at different embryonic stages and methods to distinguish graft and donor tissue.
Collapse
|
19
|
Abstract
Znf703 is an RAR- and Wnt-inducible transcription factor that exhibits a complex expression pattern in the developing embryo: Znf703 mRNA is found in the early circumblastoporal ring, then later throughout the neural plate and its border, and subsequently in the mid/hindbrain and somites. We show that Znf703 has a different and separable function in early mesoderm versus neural crest and placode development. Independent of its early knockdown phenotype on Gdf3 and Wnt8, Znf703 disrupts patterning of distinct neural crest migratory streams normally delineated by Sox10, Twist, and Foxd3 and inhibits otocyst formation and otic expression of Sox10 and Eya1. Furthermore, Znf703 promotes massive overgrowth of SOX2+ cells, disrupting the SoxB1 balance at the neural plate border. Despite prominent expression in other neural plate border-derived cranial and sensory domains, Znf703 is selectively absent from the otocyst, suggesting that Znf703 must be specifically cleared or down-regulated for proper otic development. We show that mutation of the putative Groucho-repression domain does not ameliorate Znf703 effects on mesoderm, neural crest, and placodes. We instead provide evidence that Znf703 requires the Buttonhead domain for transcriptional repression.
Collapse
|
20
|
Sullivan CH, Majumdar HD, Neilson KM, Moody SA. Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation. Dev Biol 2019; 446:68-79. [PMID: 30529252 PMCID: PMC6349505 DOI: 10.1016/j.ydbio.2018.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 01/04/2023]
Abstract
The specialized sensory organs of the vertebrate head are derived from thickened patches of cells in the ectoderm called cranial sensory placodes. The developmental program that generates these placodes and the genes that are expressed during the process have been studied extensively in a number of animals, yet very little is known about how these genes regulate one another. We previously found via a microarray screen that Six1, a known transcriptional regulator of cranial placode fate, up-regulates Irx1 in ectodermal explants. In this study, we investigated the transcriptional relationship between Six1 and Irx1 and found that they reciprocally regulate each other throughout cranial placode and otic vesicle formation. Although Irx1 expression precedes that of Six1 in the neural border zone, its continued and appropriately patterned expression in the pre-placodal region (PPR) and otic vesicle requires Six1. At early PPR stages, Six1 expands the Irx1 domain, but this activity subsides over time and changes to a predominantly repressive effect. Likewise, Irx1 initially expands Six1 expression in the PPR, but later represses it. We also found that Irx1 and Sox11, a known direct target of Six1, reciprocally affect each other. This work demonstrates that the interactions between Six1 and Irx1 are continuous during PPR and placode development and their transcriptional effects on one another change over developmental time.
Collapse
Affiliation(s)
- Charles H Sullivan
- Department of Biology, Grinnell College, Grinnell, IA, 50112, USA; bDepartment of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, N.W., Washington DC 20037, USA
| | - Himani D Majumdar
- bDepartment of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, N.W., Washington DC 20037, USA
| | - Karen M Neilson
- bDepartment of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, N.W., Washington DC 20037, USA
| | - Sally A Moody
- bDepartment of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, N.W., Washington DC 20037, USA.
| |
Collapse
|
21
|
Prasad MS, Charney RM, García-Castro MI. Specification and formation of the neural crest: Perspectives on lineage segregation. Genesis 2019; 57:e23276. [PMID: 30576078 PMCID: PMC6570420 DOI: 10.1002/dvg.23276] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Abstract
The neural crest is a fascinating embryonic population unique to vertebrates that is endowed with remarkable differentiation capacity. Thought to originate from ectodermal tissue, neural crest cells generate neurons and glia of the peripheral nervous system, and melanocytes throughout the body. However, the neural crest also generates many ectomesenchymal derivatives in the cranial region, including cell types considered to be of mesodermal origin such as cartilage, bone, and adipose tissue. These ectomesenchymal derivatives play a critical role in the formation of the vertebrate head, and are thought to be a key attribute at the center of vertebrate evolution and diversity. Further, aberrant neural crest cell development and differentiation is the root cause of many human pathologies, including cancers, rare syndromes, and birth malformations. In this review, we discuss the current findings of neural crest cell ontogeny, and consider tissue, cell, and molecular contributions toward neural crest formation. We further provide current perspectives into the molecular network involved during the segregation of the neural crest lineage.
Collapse
Affiliation(s)
- Maneeshi S Prasad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Rebekah M Charney
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Martín I García-Castro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| |
Collapse
|
22
|
A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis. BMC Biol 2018; 16:79. [PMID: 30012125 PMCID: PMC6048776 DOI: 10.1186/s12915-018-0540-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/14/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The neural plate border ectoderm gives rise to key developmental structures during embryogenesis, including the neural crest and the preplacodal ectoderm. Many sensory organs and ganglia of vertebrates develop from cranial placodes, which themselves arise from preplacodal ectoderm, defined by expression of transcription factor Six1 and its coactivator Eya1. Here we elucidate the gene regulatory network underlying the specification of the preplacodal ectoderm in Xenopus, and the functional interactions among transcription factors that give rise to this structure. RESULTS To elucidate the gene regulatory network upstream of preplacodal ectoderm formation, we use gain- and loss-of-function studies to explore the role of early ectodermal transcription factors for establishing the preplacodal ectoderm and adjacent ectodermal territories, and the role of Six1 and Eya1 in feedback regulation of these transcription factors. Our findings suggest that transcription factors with expression restricted to ventral (non-neural) ectoderm (AP2, Msx1, FoxI1, Vent2, Dlx3, GATA2) and those restricted to dorsal (neural) ectoderm (Pax3, Hairy2b, Zic1) are required for specification of both preplacodal ectoderm and neural crest in a context-dependent fashion and are cross-regulated by Eya1 and Six1. CONCLUSION These findings allow us to elucidate a detailed gene regulatory network at the neural plate border upstream of preplacodal ectoderm formation based on functional interactions between ectodermal transcription factors. We propose a new model to explain the formation of immediately juxtaposed preplacodal ectoderm and neural crest territories at the neural plate border, uniting previous models.
Collapse
|