1
|
Yousefpour N, Tansley SN, Locke S, Sharif B, Parisien M, Bourojeni FB, Deamond H, Mathur V, Arana NRK, Austin JS, Bourassa V, Wang C, Cabana VC, Wong C, Lister KC, Rodrigues R, St-Louis M, Paquet ME, Carroll MC, Andrews-Zwilling Y, Seguela P, Kania A, Yednock T, Mogil JS, De Koninck Y, Diatchenko L, Khoutorsky A, Ribeiro-da-Silva A. Targeting C1q prevents microglia-mediated synaptic removal in neuropathic pain. Nat Commun 2025; 16:4590. [PMID: 40382320 PMCID: PMC12085617 DOI: 10.1038/s41467-025-59849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/07/2025] [Indexed: 05/20/2025] Open
Abstract
Activation of spinal microglia following peripheral nerve injury is a central component of neuropathic pain pathology. While the contributions of microglia-mediated immune and neurotrophic signalling have been well-characterized, the phagocytic and synaptic pruning roles of microglia in neuropathic pain remain less understood. Here, we show that peripheral nerve injury induces microglial engulfment of dorsal horn synapses, leading to a preferential loss of inhibitory synapses and a shift in the balance between inhibitory and excitatory synapse density. This synapse removal is dependent on the microglial complement-mediated synapse pruning pathway, as mice deficient in complement C3 and C4 do not exhibit synapse elimination. Furthermore, pharmacological inhibition of the complement protein C1q prevents dorsal horn inhibitory synapse loss and attenuates neuropathic pain. Therefore, these results demonstrate that the complement pathway promotes persistent pain hypersensitivity via microglia-mediated engulfment of dorsal horn synapses in the spinal cord, revealing C1q as a therapeutic target in neuropathic pain.
Collapse
Affiliation(s)
- Noosha Yousefpour
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Annexon Biosciences, Brisbane, CA, USA
| | - Shannon N Tansley
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Psychology, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
| | - Samantha Locke
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | - Behrang Sharif
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute, Dept. of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Farin B Bourojeni
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Haley Deamond
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | | | | | | | - Valerie Bourassa
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | - Chengyang Wang
- Dept. of Psychology, McGill University, Montréal, QC, Canada
| | - Valérie C Cabana
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Calvin Wong
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
| | - Kevin C Lister
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Psychology, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
| | - Rose Rodrigues
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Manon St-Louis
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Marie-Eve Paquet
- Dép. de biochimie, microbiologie et bioinformatique, Université Laval, Québec, QC, Canada
- CERVO Brain Research Centre, Québec, QC, Canada
| | - Michael C Carroll
- Harvard Medical School and Boston Children's Hospital, Boston, MA, USA
| | | | - Philippe Seguela
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute, Dept. of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Artur Kania
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Dept. of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Science, McGill University, Montréal, QC, Canada
| | | | - Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Psychology, McGill University, Montréal, QC, Canada
| | - Yves De Koninck
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- CERVO Brain Research Centre, Québec, QC, Canada
- Dép. de psychiatrie et neurosciences, Université Laval, Québec, QC, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Arkady Khoutorsky
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada.
- Dept. of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Tenner AJ, Petrisko TJ. Knowing the enemy: strategic targeting of complement to treat Alzheimer disease. Nat Rev Neurol 2025; 21:250-264. [PMID: 40128350 DOI: 10.1038/s41582-025-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
The complement system protects against infection, positively responds to tissue damage, clears cell debris, directs and modulates the adaptive immune system, and functions in neuronal development, normal synapse elimination and intracellular metabolism. However, complement also has a role in aberrant synaptic pruning and neuroinflammation - processes that lead to a feedforward loop of inflammation, injury and neuronal death that can contribute to neurodegenerative and neurological disorders, including Alzheimer disease. This Review provides justification, largely from preclinical mouse models but also from correlates with human tissue and biomarkers, for targeting specific complement components for therapeutic intervention in Alzheimer disease. We discuss promising strategies to slow the progression of cognitive loss with minimal undesired effects. The diverse interactions and functions of complement system components can influence biological processes in the healthy and diseased brain; here, these functions are described as a prerequisite to selecting appropriate, safe and effective therapeutic targets for translation to the clinic.
Collapse
Affiliation(s)
- Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Tiffany J Petrisko
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Ageta-Ishihara N, Fukazawa Y, Arima-Yoshida F, Okuno H, Ishii Y, Takao K, Konno K, Fujishima K, Ageta H, Hioki H, Tsuchida K, Sato Y, Kengaku M, Watanabe M, Watabe AM, Manabe T, Miyakawa T, Inokuchi K, Bito H, Kinoshita M. Septin 3 regulates memory and L-LTP-dependent extension of endoplasmic reticulum into spines. Cell Rep 2025; 44:115352. [PMID: 40023151 DOI: 10.1016/j.celrep.2025.115352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025] Open
Abstract
Transient memories are converted to persistent memories at the synapse and circuit/systems levels. The synapse-level consolidation parallels electrophysiological transition from early- to late-phase long-term potentiation of synaptic transmission (E-/L-LTP). While glutamate signaling upregulations coupled with dendritic spine enlargement are common underpinnings of E-LTP and L-LTP, synaptic mechanisms conferring persistence on L-LTP remain unclear. Here, we show that L-LTP induced at the perforant path-hippocampal dentate gyrus (DG) synapses accompanies cytoskeletal remodeling that involves actin and the septin subunit SEPT3. L-LTP in DG neurons causes fast spine enlargement, followed by SEPT3-dependent smooth endoplasmic reticulum (sER) extension into enlarged spines. Spines containing sER show greater Ca2+ responses upon synaptic input and local synaptic activity. Consistently, Sept3 knockout in mice (Sept3-/-) impairs memory consolidation and causes a scarcity of sER-containing spines. These findings indicate a concept that sER extension into active spines serves as a synaptic basis of memory consolidation.
Collapse
Affiliation(s)
- Natsumi Ageta-Ishihara
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan; Department of Molecular Biology, Division of Biological Sciences, Nagoya University Graduate School of Science, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Fumiko Arima-Yoshida
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Kashiwa, Chiba 277-8567, Japan
| | - Hiroyuki Okuno
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yuichiro Ishii
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Kazuto Fujishima
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study (KUIAS-iCeMS), Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Hiroshi Ageta
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mineko Kengaku
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study (KUIAS-iCeMS), Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Ayako M Watabe
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Kashiwa, Chiba 277-8567, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Kaoru Inokuchi
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Makoto Kinoshita
- Department of Molecular Biology, Division of Biological Sciences, Nagoya University Graduate School of Science, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
4
|
Cao ZL, Zhu LX, Wang HM, Zhu LJ. Microglial Regulation of Neural Networks in Neuropsychiatric Disorders. Neuroscientist 2025:10738584251316558. [PMID: 39932233 DOI: 10.1177/10738584251316558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Microglia serve as vital innate immune cells in the central nervous system, playing crucial roles in the generation and development of brain neurons, as well as mediating a series of immune and inflammatory responses. The morphologic transitions of microglia are closely linked to their function. With the advent of single-cell sequencing technology, the diversity of microglial subtypes is increasingly recognized. The intricate interactions between microglia and neuronal networks have significant implications for psychiatric disorders and neurodegenerative diseases. A deeper investigation of microglia in neurologic diseases such as Alzheimer disease, depression, and epilepsy can provide valuable insights in understanding the pathogenesis of diseases and exploring novel therapeutic strategies, thereby addressing issues related to central nervous system disorders.
Collapse
Affiliation(s)
- Zi-Lin Cao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, China
| | - Li-Xia Zhu
- Patent Examination Cooperation (JIANGSU) Center of the Patent Office, China National Intellectual Property Administration (CNIPA), Suzhou, China
| | - Hong-Mei Wang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, China
| | - Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Andoh M, Shinoda N, Taira Y, Araki T, Kasahara Y, Takeuchi H, Miura M, Ikegaya Y, Koyama R. Nonapoptotic caspase-3 guides C1q-dependent synaptic phagocytosis by microglia. Nat Commun 2025; 16:918. [PMID: 39843445 PMCID: PMC11754728 DOI: 10.1038/s41467-025-56342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Caspases are known to mediate neuronal apoptosis during brain development. However, here we show that nonapoptotic activation of caspase-3 at presynapses drives microglial synaptic phagocytosis. Real-time observation and spatiotemporal manipulation of synaptic caspase-3 in the newly established, mouse-derived culture system demonstrate that increased neuronal activity triggers localized presynaptic caspase-3 activation, facilitating synaptic tagging by complements. High-resolution live imaging reveals that caspase-3 activation promotes synapse-selective complement-dependent microglial phagocytosis without axonal shearing. Furthermore, activity-dependent caspase-3 activation at inhibitory presynapses induces microglial phagocytosis in mice and increases seizure susceptibility. This increased susceptibility is reversed by genetic depletion of microglial complement receptors. Thus, localized, nonapoptotic caspase activity guides complement-dependent microglial synaptic phagocytosis and remodels neuronal circuits.
Collapse
Affiliation(s)
- Megumi Andoh
- Department of Translational Neurobiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Natsuki Shinoda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Taira
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tasuku Araki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuka Kasahara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Haruki Takeuchi
- Laboratory of Molecular Neurobiology, Department of Biophysics and Biochemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Ryuta Koyama
- Department of Translational Neurobiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan.
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
6
|
Tregub PP, Komleva YK, Kukla MV, Averchuk AS, Vetchinova AS, Rozanova NA, Illarioshkin SN, Salmina AB. Brain Plasticity and Cell Competition: Immediate Early Genes Are the Focus. Cells 2025; 14:143. [PMID: 39851571 PMCID: PMC11763428 DOI: 10.3390/cells14020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Brain plasticity is at the basis of many cognitive functions, including learning and memory. It includes several mechanisms of synaptic and extrasynaptic changes, neurogenesis, and the formation and elimination of synapses. The plasticity of synaptic transmission involves the expression of immediate early genes (IEGs) that regulate neuronal activity, thereby supporting learning and memory. In addition, IEGs are involved in the regulation of brain cells' metabolism, proliferation, and survival, in the establishment of multicellular ensembles, and, presumably, in cell competition in the tissue. In this review, we analyze the current understanding of the role of IEGs (c-Fos, c-Myc, Arg3.1/Arc) in controlling brain plasticity in physiological and pathological conditions, including brain aging and neurodegeneration. This work might inspire new gene therapy strategies targeting IEGs to regulate synaptic plasticity, and potentially prevent or mitigate neurodegenerative diseases.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Research Center of Neurology, 125367 Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | | | | | - Anna S. Vetchinova
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | | | | |
Collapse
|
7
|
Inberg S, Iosilevskii Y, Calatayud-Sanchez A, Setty H, Oren-Suissa M, Krieg M, Podbilewicz B. Sensory experience controls dendritic structure and behavior by distinct pathways involving degenerins. eLife 2025; 14:e83973. [PMID: 39791349 PMCID: PMC11756856 DOI: 10.7554/elife.83973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/08/2025] [Indexed: 01/12/2025] Open
Abstract
Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the Caenorhabditis elegans' arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals. We found that mechanosensory signals induced by conspecifics and by glass beads affect the dendritic structure of the PVD. Moreover, developmentally isolated animals show a decrease in their ability to respond to harsh touch. The structural and behavioral plasticity following sensory deprivation are functionally independent of each other and are mediated by an array of evolutionarily conserved mechanosensory amiloride-sensitive epithelial sodium channels (degenerins). Calcium imaging of the PVD neurons in a micromechanical device revealed that controlled mechanical stimulation of the body wall produces similar calcium dynamics in both isolated and crowded animals. Our genetic results, supported by optogenetic, behavioral, and pharmacological evidence, suggest an activity-dependent homeostatic mechanism for dendritic structural plasticity, that in parallel controls escape response to noxious mechanosensory stimuli.
Collapse
Affiliation(s)
- Sharon Inberg
- Department of Biology, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Yael Iosilevskii
- Department of Biology, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Alba Calatayud-Sanchez
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Hagar Setty
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Michael Krieg
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | | |
Collapse
|
8
|
Lv X, Jia M, Feng X, Jian JX, Yang JJ, Ma DQ, Ji MH, Diao YG, Shen JC. STING Driving Synaptic Phagocytosis of Hippocampal Microglia/Macrophages Contributes to Cognitive Impairment in Sepsis-Associated Encephalopathy in Mice. CNS Neurosci Ther 2024; 30:e70166. [PMID: 39699038 DOI: 10.1111/cns.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 09/21/2024] [Accepted: 11/23/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a serious neurologic complication in septic patients with poor prognoses. There is increasing evidence that stimulator of interferon genes (STING) plays a crucial role in neuroinflammation and cognitive impairment. However, whether sepsis associated with STING changes contributes to cognitive impairment is unknown. METHODS Male adult mice received lipopolysaccharide (LPS) injection (a single dose of 4 mg/kg; i.p. injection) and 30 min later, they were injected with STING inhibitor C-176 (a single dose of 30 mg/kg, i.p. injection). Behavioral assessments, biochemical measurements, in vivo and ex vivo electrophysiology techniques were conducted to investigate the association between LPS-induced STING overexpression and cognitive function. RESULTS Cognitive impairment was associated with STING overexpression and activation of microglia/macrophages. Phagocytosis of microglia/macrophages as well as complement C1q release were increased after LPS injection, leading to abnormal pruning synapses, synaptic transmission reduction, long-term potentiation (LTP) impairment, as well as abnormal theta oscillation in the hippocampus. Notably, STING inhibitor C-176 significantly reversed these changes. CONCLUSIONS Sepsis-induced STING overexpression in microglia/macrophages may lead to synaptic loss, abnormal theta oscillation and LTP impairment through microglia/macrophages activation and complement C1q modulation, ultimately resulting in cognitive impairment.
Collapse
Affiliation(s)
- Xin Lv
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Min Jia
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Feng
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia-Xiong Jian
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Da-Qing Ma
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
- Perioperative and Systems Medicine Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Gang Diao
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jin-Chun Shen
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Krisanova N, Pozdnyakova N, Pastukhov A, Dudarenko M, Tarasenko A, Borysov A, Driuk M, Tolochko A, Bezkrovnyi O, Paliienko K, Sivko R, Gnatyuk O, Dovbeshko G, Borisova T. Synergistic neurological threat from Сu and wood smoke particulate matter. Food Chem Toxicol 2024; 193:115009. [PMID: 39304082 DOI: 10.1016/j.fct.2024.115009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Trace metal Cu and carbonaceous airborn particulate matter (PM) are dangerous neuropollutants. Here, the ability of Cu2+ to modulate the neurotoxicity caused by water-suspended wood smoke PM preparations (SPs) and vice versa was examined using presynaptic rat cortex nerve terminals. Interaction of Cu2+ and SPs, changes of particle size and surface properties were shown in the presence of Cu2+ using microscopy, DLS, and IR spectroscopy. In nerve terminals, Cu2+ and SPs per se elevated the ambient levels of excitatory and inhibitory neurotransmitters L-[14C]glutamate and [3H]GABA, respectively. During combined application, Cu2+ significantly enhanced a SPs-induced increase in the ambient levels of both neurotransmitters, thereby demonstrating a cumulative synergistic effect and significant interference in the neurotoxic threat associated with Cu2+and SPs. In fluorimetric measurements, Cu2+ and SPs also demonstrated cumulative synergistic effects on the membrane potential, mitochondrial potential, synaptic vesicle acidification and ROS generation. Therefore, synergistic effects of Cu2+ and SPs on the most crucial presynaptic characteristics and neurohazard of multiple pollutants through excitatory/inhibitory imbalance, disruption of the membrane and mitochondrial potential, vesicle acidification and ROS generation were revealed. Increased expansion and burden of neuropathology may result from underestimation of synergistic interference of the neurotoxic effects of Cu2+ and carbonaceous smoke PM.
Collapse
Affiliation(s)
- Nataliya Krisanova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine; Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Natalia Pozdnyakova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Artem Pastukhov
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Marina Dudarenko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Alla Tarasenko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Arsenii Borysov
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Mykola Driuk
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Anatoliy Tolochko
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kyiv, 03680, Ukraine
| | - Oleksii Bezkrovnyi
- Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Konstantin Paliienko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Roman Sivko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Olena Gnatyuk
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kyiv, 03680, Ukraine; Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Galyna Dovbeshko
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kyiv, 03680, Ukraine; Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine; Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland.
| |
Collapse
|
10
|
Steullet P. Editorial for the Special Issue "Oxidative Stress, Inflammation and Antioxidant Defense System in Psychiatric Disorders" in Antioxidants (2022-2023). Antioxidants (Basel) 2024; 13:1307. [PMID: 39594449 PMCID: PMC11590998 DOI: 10.3390/antiox13111307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
A growing body of evidence indicates that many genetic and environmental factors associated with psychiatric disorders affect redox homeostasis, mitochondria and energy metabolism, and neuroendocrine and immune systems in a complex synergistic manner, leading to oxidative stress and inflammation [...].
Collapse
Affiliation(s)
- Pascal Steullet
- Research Unit of Psychosis, Center of Psychiatric Neuroscience, Lausanne University Hospital, Prilly, 1008 Lausanne, Switzerland
| |
Collapse
|
11
|
Shen FS, Liu C, Sun HZ, Chen XY, Xue Y, Chen L. Emerging evidence of context-dependent synapse elimination by phagocytes in the CNS. J Leukoc Biol 2024; 116:511-522. [PMID: 38700080 DOI: 10.1093/jleuko/qiae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/09/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Precise synapse elimination is essential for the establishment of a fully developed neural circuit during brain development and higher function in adult brain. Beyond immune and nutrition support, recent groundbreaking studies have revealed that phagocytic microglia and astrocytes can actively and selectively eliminate synapses in normal and diseased brains, thereby mediating synapse loss and maintaining circuit homeostasis. Multiple lines of evidence indicate that the mechanisms of synapse elimination by phagocytic glia are not universal but rather depend on specific contexts and detailed neuron-glia interactions. The mechanism of synapse elimination by phagocytic glia is dependent on neuron-intrinsic factors and many innate immune and local apoptosis-related molecules. During development, microglial synapse engulfment in the visual thalamus is primarily influenced by the classic complement pathway, whereas in the barrel cortex, the fractalkine pathway is dominant. In Alzheimer's disease, microglia employ complement-dependent mechanisms for synapse engulfment in tauopathy and early β-amyloid pathology, but microglia are not involved in synapse loss at late β-amyloid stages. Phagocytic microglia also engulf synapses in a complement-dependent way in schizophrenia, anxiety, and stress. In addition, phagocytic astrocytes engulf synapses in a MEGF10-dependent way during visual development, memory, and stroke. Furthermore, the mechanism of a phenomenon that phagocytes selectively eliminate excitatory and inhibitory synapses is also emphasized in this review. We hypothesize that elucidating context-dependent synapse elimination by phagocytic microglia and astrocytes may reveal the molecular basis of synapse loss in neural disorders and provide a rationale for developing novel candidate therapies that target synapse loss and circuit homeostasis.
Collapse
Affiliation(s)
- Fang-Shuai Shen
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| | - Cui Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| | - Hui-Zhe Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| | - Xin-Yi Chen
- Department of International Medicine, No. 16 Jiangsu Road, Shinan District, Affiliated Hospital of Qingdao University 266000, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| |
Collapse
|
12
|
Schartz ND, Liang HY, Carvalho K, Chu SH, Mendoza-Arvilla A, Petrisko TJ, Gomez-Arboledas A, Mortazavi A, Tenner AJ. C5aR1 antagonism suppresses inflammatory glial responses and alters cellular signaling in an Alzheimer's disease mouse model. Nat Commun 2024; 15:7028. [PMID: 39147742 PMCID: PMC11327341 DOI: 10.1038/s41467-024-51163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults, and the need for effective, sustainable therapeutic targets is imperative. The complement pathway has been proposed as a therapeutic target. C5aR1 inhibition reduces plaque load, gliosis, and memory deficits in animal models, however, the cellular bases underlying this neuroprotection were unclear. Here, we show that the C5aR1 antagonist PMX205 improves outcomes in the Arctic48 mouse model of AD. A combination of single cell and single nucleus RNA-seq analysis of hippocampi derived from males and females identified neurotoxic disease-associated microglia clusters in Arctic mice that are C5aR1-dependent, while microglial genes associated with synapse organization and transmission and learning were overrepresented in PMX205-treated mice. PMX205 also reduced neurotoxic astrocyte gene expression, but clusters associated with protective responses to injury were unchanged. C5aR1 inhibition promoted mRNA-predicted signaling pathways between brain cell types associated with cell growth and repair, while suppressing inflammatory pathways. Finally, although hippocampal plaque load was unaffected, PMX205 prevented deficits in short-term memory in female Arctic mice. In conclusion, C5aR1 inhibition prevents cognitive loss, limits detrimental glial polarization while permitting neuroprotective responses, as well as leaving most protective functions of complement intact, making C5aR1 antagonism an attractive therapeutic strategy for AD.
Collapse
Affiliation(s)
- Nicole D Schartz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Heidi Y Liang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Klebea Carvalho
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Shu-Hui Chu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Adrian Mendoza-Arvilla
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Tiffany J Petrisko
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Angela Gomez-Arboledas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Ali Mortazavi
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA, USA.
| |
Collapse
|
13
|
Arizanovska D, Dallera CA, Folorunso OO, Bush GF, Frye JB, Doyle KP, Jagid JR, Wolosker H, Monaco BA, Cordeiro JG, Atkins CM, Griswold AJ, Liebl DJ. Cognitive dysfunction following brain trauma results from sex-specific reactivation of the developmental pruning processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607610. [PMID: 39211262 PMCID: PMC11360988 DOI: 10.1101/2024.08.13.607610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cognitive losses resulting from severe brain trauma have long been associated with the focal region of tissue damage, leading to devastating functional impairment. For decades, researchers have focused on the sequelae of cellular alterations that exist within the perilesional tissues; however, few clinical trials have been successful. Here, we employed a mouse brain injury model that resulted in expansive synaptic damage to regions outside the focal injury. Our findings demonstrate that synaptic damage results from the prolonged increase in D-serine release from activated microglia and astrocytes, which leads to hyperactivation of perisynaptic NMDARs, tagging of damaged synapses by complement components, and the reactivation of developmental pruning processes. We show that this mechanistic pathway is reversible at several stages within a prolonged and progressive period of synaptic loss. Importantly, these key factors are present in acutely injured brain tissue acquired from patients with brain injury, which supports a therapeutic neuroprotective strategy.
Collapse
|
14
|
Deng Q, Wu C, Parker E, Liu TCY, Duan R, Yang L. Microglia and Astrocytes in Alzheimer's Disease: Significance and Summary of Recent Advances. Aging Dis 2024; 15:1537-1564. [PMID: 37815901 PMCID: PMC11272214 DOI: 10.14336/ad.2023.0907] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
Alzheimer's disease, one of the most common forms of dementia, is characterized by a slow progression of cognitive impairment and neuronal loss. Currently, approved treatments for AD are hindered by various side effects and limited efficacy. Despite considerable research, practical treatments for AD have not been developed. Increasing evidence shows that glial cells, especially microglia and astrocytes, are essential in the initiation and progression of AD. During AD progression, activated resident microglia increases the ability of resting astrocytes to transform into reactive astrocytes, promoting neurodegeneration. Extensive clinical and molecular studies show the involvement of microglia and astrocyte-mediated neuroinflammation in AD pathology, indicating that microglia and astrocytes may be potential therapeutic targets for AD. This review will summarize the significant and recent advances of microglia and astrocytes in the pathogenesis of AD in three parts. First, we will review the typical pathological changes of AD and discuss microglia and astrocytes in terms of function and phenotypic changes. Second, we will describe microglia and astrocytes' physiological and pathological role in AD. These roles include the inflammatory response, "eat me" and "don't eat me" signals, Aβ seeding, propagation, clearance, synapse loss, synaptic pruning, remyelination, and demyelination. Last, we will review the pharmacological and non-pharmacological therapies targeting microglia and astrocytes in AD. We conclude that microglia and astrocytes are essential in the initiation and development of AD. Therefore, understanding the new role of microglia and astrocytes in AD progression is critical for future AD studies and clinical trials. Moreover, pharmacological, and non-pharmacological therapies targeting microglia and astrocytes, with specific studies investigating microglia and astrocyte-mediated neuronal damage and repair, may be a promising research direction for future studies regarding AD treatment and prevention.
Collapse
Affiliation(s)
- Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Xing Y, Shi H, Gao X, Zhu X, Zhang D, Fang L, Wang J, Liu C, Wu D, Wang X, Min W. Walnut-Derived Peptides Alleviate Learning and Memory Impairments in a Mice Model via Inhibition of Microglia Phagocytose Synapses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38853533 DOI: 10.1021/acs.jafc.4c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Microglia phagocytose synapses have an important effect on the pathogenesis of neurological disorders. Here, we investigated the neuroprotective effects of the walnut-derived peptide, TWLPLPR(TW-7), against LPS-induced cognitive deficits in mice and explored the underlying C1q-mediated microglia phagocytose synapses mechanisms in LPS-treated HT22 cells. The MWM showed that TW-7 improved the learning and memory capacity of the LPS-injured mice. Both transmission electron microscopy and immunofluorescence analysis illustrated that synaptic density and morphology were increased while associated with the decreased colocalized synapses with C1q. Immunohistochemistry and immunofluorescence demonstrated that TW-7 effectively reduced the microglia phagocytosis of synapses. Subsequently, overexpression of C1q gene plasmid was used to verify the contribution of the TW-7 via the classical complement pathway-regulated mitochondrial function-mediated microglia phagocytose synapses in LPS-treated HT22 cells. These data suggested that TW-7 improved the learning and memory capability of LPS-induced cognitively impaired mice through a mechanism associated with the classical complement pathway-mediated microglia phagocytose synapse.
Collapse
Affiliation(s)
- Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Haoyuan Shi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xi Gao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xinyu Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Dingwen Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, P. R. China
| |
Collapse
|
16
|
Kirkland JM, Edgar EL, Patel I, Feustel P, Belin S, Kopec AM. Synaptic pruning during adolescence shapes adult social behavior in both males and females. Dev Psychobiol 2024; 66:e22473. [PMID: 38433422 PMCID: PMC11758907 DOI: 10.1002/dev.22473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Evolutionarily conserved, peer-directed social behaviors are essential to participate in many aspects of human society. These behaviors directly impact psychological, physiological, and behavioral maturation. Adolescence is an evolutionarily conserved period during which reward-related behaviors, including social behaviors, develop via developmental plasticity in the mesolimbic dopaminergic "reward" circuitry of the brain. The nucleus accumbens (NAc) is an intermediate reward relay center that develops during adolescence and mediates both social behaviors and dopaminergic signaling. In several developing brain regions, synaptic pruning mediated by microglia, the resident immune cells of the brain, is important for normal behavioral development. We previously demonstrated that during adolescence, in rats, microglial synaptic pruning shapes the development of NAc and social play behavior in males and females. In this report, we hypothesize that interrupting microglial pruning in NAc during adolescence will have persistent effects on male and female social behavior in adulthood. We found that inhibiting microglial pruning in the NAc during adolescence had different effects on social behavior in males and females. In males, inhibiting pruning increased familiar exploration and increased nonsocial contact. In females, inhibiting pruning did not change familiar exploration behavior but increased active social interaction. This leads us to infer that naturally occurring NAc pruning serves to reduce social behaviors toward a familiar conspecific in both males and females.
Collapse
Affiliation(s)
- Julia M Kirkland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Erin L Edgar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Ishan Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Paul Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
17
|
Tang S, Hu W, Zou H, Luo Q, Deng W, Cao S. The complement system: a potential target for the comorbidity of chronic pain and depression. Korean J Pain 2024; 37:91-106. [PMID: 38433474 PMCID: PMC10985490 DOI: 10.3344/kjp.23284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 03/05/2024] Open
Abstract
The mechanisms of the chronic pain and depression comorbidity have gained significant attention in recent years. The complement system, widely involved in central nervous system diseases and mediating non-specific immune mechanisms in the body, remains incompletely understood in its involvement in the comorbidity mechanisms of chronic pain and depression. This review aims to consolidate the findings from recent studies on the complement system in chronic pain and depression, proposing that it may serve as a promising shared therapeutic target for both conditions. Complement proteins C1q, C3, C5, as well as their cleavage products C3a and C5a, along with the associated receptors C3aR, CR3, and C5aR, are believed to have significant implications in the comorbid mechanism. The primary potential mechanisms encompass the involvement of the complement cascade C1q/C3-CR3 in the activation of microglia and synaptic pruning in the amygdala and hippocampus, the role of complement cascade C3/C3a-C3aR in the interaction between astrocytes and microglia, leading to synaptic pruning, and the C3a-C3aR axis and C5a-C5aR axis to trigger inflammation within the central nervous system. We focus on studies on the role of the complement system in the comorbid mechanisms of chronic pain and depression.
Collapse
Affiliation(s)
- Shanshan Tang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wen Hu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Helin Zou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qingyang Luo
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wenwen Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Song Cao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Gomez‐Arboledas A, Fonseca MI, Kramar E, Chu S, Schartz ND, Selvan P, Wood MA, Tenner AJ. C5aR1 signaling promotes region- and age-dependent synaptic pruning in models of Alzheimer's disease. Alzheimers Dement 2024; 20:2173-2190. [PMID: 38278523 PMCID: PMC10984438 DOI: 10.1002/alz.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Synaptic loss is a hallmark of Alzheimer's disease (AD) that correlates with cognitive decline in AD patients. Complement-mediated synaptic pruning has been associated with this excessive loss of synapses in AD. Here, we investigated the effect of C5aR1 inhibition on microglial and astroglial synaptic pruning in two mouse models of AD. METHODS A combination of super-resolution and confocal and tridimensional image reconstruction was used to assess the effect of genetic ablation or pharmacological inhibition of C5aR1 on the Arctic48 and Tg2576 models of AD. RESULTS Genetic ablation or pharmacological inhibition of C5aR1 partially rescues excessive pre-synaptic pruning and synaptic loss in an age and region-dependent fashion in two mouse models of AD, which correlates with improved long-term potentiation (LTP). DISCUSSION Reduction of excessive synaptic pruning is an additional beneficial outcome of the suppression of C5a-C5aR1 signaling, further supporting its potential as an effective targeted therapy to treat AD. HIGHLIGHTS C5aR1 ablation restores long-term potentiation in the Arctic model of AD. C5aR1 ablation rescues region specific excessive pre-synaptic loss. C5aR1 antagonist, PMX205, rescues VGlut1 loss in the Tg2576 model of AD. C1q tagging is not sufficient to induce VGlut1 microglial ingestion. Astrocytes contribute to excessive pre-synaptic loss at late stages of the disease.
Collapse
Affiliation(s)
- Angela Gomez‐Arboledas
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Maria I. Fonseca
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Enikö Kramar
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Shu‐Hui Chu
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Nicole D. Schartz
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Purnika Selvan
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Marcelo A. Wood
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Andrea J. Tenner
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaSchool of MedicineIrvineCaliforniaUSA
| |
Collapse
|
19
|
Pozdnyakova N, Krisanova N, Pastukhov A, Dudarenko M, Tarasenko A, Borysov A, Kalynovska L, Paliienko K, Borisova T. Multipollutant reciprocal neurological hazard from smoke particulate matter and heavy metals cadmium and lead in brain nerve terminals. Food Chem Toxicol 2024; 185:114449. [PMID: 38215962 DOI: 10.1016/j.fct.2024.114449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Heavy metals, Cd2+ and Pb2+, and carbonaceous air pollution particulate matter are hazardous neurotoxicants. Here, a capability of water-suspended smoke particulate matter preparations obtained from poplar wood (WPs) and polypropylene fibers (medical facemasks) (MPs) to influence Cd2+/Pb2+-induced neurotoxicity, and vice versa, was monitored using biological system, i.e. isolated presynaptic rat cortex nerve terminals. Combined application of Pb2+ and WPs/MPs to nerve terminals in an acute manner revealed that smoke preparations did not change a Pb2+-induced increase in the extracellular levels of excitatory neurotransmitter L-[14C]glutamate and inhibitory one [3H]GABA, thereby demonstrating additive result and no interference of neurotoxic effects of Pb2+ and particulate matter. Whereas, both smoke preparations decreased a Cd2+-induced increase in the extracellular level of L-[14C]glutamate and [3H]GABA in nerve terminals. In fluorimetric measurements, the metals and smoke preparations demonstrated additive effects on the membrane potential of nerve terminals causing membrane depolarisation. WPs/MPs-induced reduction of spontaneous ROS generation was mitigated by Cd2+ and Pb2+. Therefore, a potential variety of multipollutant heavy metal-/airborne particulate-induced effects on key presynaptic processes was revealed. Multipollutant reciprocal neurological hazard through disturbance of the excitation-inhibition balance, membrane potential and ROS generation was evidenced. This multipollutant approach and data contribute to up-to-date environmental quality/health risk estimation.
Collapse
Affiliation(s)
- Natalia Pozdnyakova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Nataliya Krisanova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Artem Pastukhov
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine.
| | - Marina Dudarenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Alla Tarasenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Arsenii Borysov
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Liliia Kalynovska
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Konstantin Paliienko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Tatiana Borisova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| |
Collapse
|
20
|
Asghari Adib E, Shadrach JL, Reilly-Jankowiak L, Dwivedi MK, Rogers AE, Shahzad S, Passino R, Giger RJ, Pierchala BA, Collins CA. DLK signaling in axotomized neurons triggers complement activation and loss of upstream synapses. Cell Rep 2024; 43:113801. [PMID: 38363678 PMCID: PMC11088462 DOI: 10.1016/j.celrep.2024.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/27/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Axotomized spinal motoneurons (MNs) lose presynaptic inputs following peripheral nerve injury; however, the cellular mechanisms that lead to this form of synapse loss are currently unknown. Here, we delineate a critical role for neuronal kinase dual leucine zipper kinase (DLK)/MAP3K12, which becomes activated in axotomized neurons. Studies with conditional knockout mice indicate that DLK signaling activation in injured MNs triggers the induction of phagocytic microglia and synapse loss. Aspects of the DLK-regulated response include expression of C1q first from the axotomized MN and then later in surrounding microglia, which subsequently phagocytose presynaptic components of upstream synapses. Pharmacological ablation of microglia inhibits the loss of cholinergic C boutons from axotomized MNs. Together, the observations implicate a neuronal mechanism, governed by the DLK, in the induction of inflammation and the removal of synapses.
Collapse
Affiliation(s)
- Elham Asghari Adib
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jennifer L Shadrach
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | - Manish K Dwivedi
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Abigail E Rogers
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Shameena Shahzad
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brian A Pierchala
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Catherine A Collins
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
21
|
Olivero G, Taddeucci A, Vallarino G, Trebesova H, Roggeri A, Gagliani MC, Cortese K, Grilli M, Pittaluga A. Complement tunes glutamate release and supports synaptic impairments in an animal model of multiple sclerosis. Br J Pharmacol 2024. [PMID: 38369641 DOI: 10.1111/bph.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND AND PURPOSE To deepen our knowledge of the role of complement in synaptic impairment in experimental autoimmune encephalomyelitis (EAE) mice, we investigated the distribution of C1q and C3 proteins and the role of complement as a promoter of glutamate release in purified nerve endings (synaptosomes) and astrocytic processes (gliosomes) isolated from the cortex of EAE mice at the acute stage of the disease (21 ± 1 day post-immunization). EXPERIMENTAL APPROACH EAE cortical synaptosomes and gliosomes were analysed for glutamate release efficiency (measured as release of preloaded [3 H]D-aspartate ([3 H]D-ASP)), C1q and C3 protein density, and for viability and ongoing apoptosis. KEY RESULTS In healthy mice, complement releases [3 H]D-ASP from gliosomes more efficiently than from synaptosomes. The releasing activity occurs in a dilution-dependent manner and involves the reversal of the excitatory amino acid transporters (EAATs). In EAE mice, the complement-induced releasing activity is significantly reduced in cortical synaptosomes but amplified in cortical gliosomes. These adaptations are paralleled by decreased density of the EAAT2 protein in synaptosomes and increased EAAT1 staining in gliosomes. Concomitantly, PSD95, GFAP, and CD11b, but not SNAP25, proteins are overexpressed in the cortex of the EAE mice. Similarly, C1q and C3 protein immunostaining is increased in EAE cortical synaptosomes and gliosomes, although signs of ongoing apoptosis or altered viability are not detectable. CONCLUSION AND IMPLICATIONS Our results unveil a new noncanonical role of complement in the CNS of EAE mice relevant to disease progression and central synaptopathy that suggests new therapeutic targets for the management of MS.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Alice Taddeucci
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Giulia Vallarino
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Hanna Trebesova
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Alessandra Roggeri
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Maria Cristina Gagliani
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Laboratory, Università di Genova, Genoa, Italy
| | - Katia Cortese
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Laboratory, Università di Genova, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, Centre of Excellence for Biomedical Research, 3Rs Center, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
22
|
Miao S, Fourgeaud L, Burrola PG, Stern S, Zhang Y, Happonen KE, Novak SW, Gage FH, Lemke G. Tyro3 promotes the maturation of glutamatergic synapses. Front Neurosci 2024; 18:1327423. [PMID: 38410160 PMCID: PMC10894971 DOI: 10.3389/fnins.2024.1327423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
The receptor tyrosine kinase Tyro3 is abundantly expressed in neurons of the neocortex, hippocampus, and striatum, but its role in these cells is unknown. We found that neuronal expression of this receptor was markedly up-regulated in the postnatal mouse neocortex immediately prior to the final development of glutamatergic synapses. In the absence of Tyro3, cortical and hippocampal synapses never completed end-stage differentiation and remained electrophysiologically and ultrastructurally immature. Tyro3-/- cortical neurons also exhibited diminished plasma membrane expression of the GluA2 subunits of AMPA-type glutamate receptors, which are essential to mature synaptic function. Correspondingly, GluA2 membrane insertion in wild-type neurons was stimulated by Gas6, a Tyro3 ligand widely expressed in the postnatal brain. Behaviorally, Tyro3-/- mice displayed learning enhancements in spatial recognition and fear-conditioning assays. Together, these results demonstrate that Tyro3 promotes the functional maturation of glutamatergic synapses by driving plasma membrane translocation of GluA2 AMPA receptor subunits.
Collapse
Affiliation(s)
- Sheng Miao
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Lawrence Fourgeaud
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Patrick G Burrola
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Shani Stern
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Yuhan Zhang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Kaisa E Happonen
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
23
|
Wen L, Bi D, Shen Y. Complement-mediated synapse loss in Alzheimer's disease: mechanisms and involvement of risk factors. Trends Neurosci 2024; 47:135-149. [PMID: 38129195 DOI: 10.1016/j.tins.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The complement system is increasingly recognized as a key player in the synapse loss and cognitive impairments observed in Alzheimer's disease (AD). In particular, the process of complement-dependent synaptic pruning through phagocytosis is over-activated in AD brains, driving detrimental excessive synapse elimination and contributing to synapse loss, which is the strongest neurobiological correlate of cognitive impairments in AD. Herein we review recent advances in characterizing complement-mediated synapse loss in AD, summarize the underlying mechanisms, and discuss the possible involvement of AD risk factors such as aging and various risk genes. We conclude with an overview of key questions that remain to be addressed.
Collapse
Affiliation(s)
- Lang Wen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Danlei Bi
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
24
|
Tewari M, Michalski S, Egan TM. Modulation of Microglial Function by ATP-Gated P2X7 Receptors: Studies in Rat, Mice and Human. Cells 2024; 13:161. [PMID: 38247852 PMCID: PMC10814008 DOI: 10.3390/cells13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in a variety of cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to fully activate in humans. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated levels of extracellular ATP that accompany inflammation and tissue damage. In this review, we focus on microglia because they are the primary immune cells of the central nervous system, and they activate in response to ATP or its synthetic analog, BzATP. We start by introducing purinergic receptors and then briefly consider the roles that microglia play in neurodevelopment and disease by referencing both original works and relevant reviews. Next, we move to the role of extracellular ATP and P2X receptors in initiating and/or modulating innate immunity in the central nervous system. While most of the data that we review involve work on mice and rats, we highlight human studies of P2X7R whenever possible.
Collapse
|
25
|
Krisanova N, Pastukhov A, Dekaliuk M, Dudarenko M, Pozdnyakova N, Driuk M, Borisova T. Mercury-induced excitotoxicity in presynaptic brain nerve terminals: modulatory effects of carbonaceous airborne particulate simulants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3512-3525. [PMID: 38085481 DOI: 10.1007/s11356-023-31359-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Multipollutant approach is a breakthrough in up-to-date environmental quality and health risk estimation. Both mercury and carbonaceous air particulate are hazardous neurotoxicants. Here, the ability of carbonaceous air particulate simulants, i.e. carbon dots obtained by heating of organics, and nanodiamonds, to influence Hg2+-induced neurotoxicity was monitored using biological system, i.e. presynaptic rat cortex nerve terminals. Using HgCl2 and classical reducing/chelating agents, an adequate synaptic parameter, i.e. the extracellular level of key excitatory neurotransmitter L-[14C]glutamate, was selected for further analysis. HgCl2 starting from 5 µM caused an acute and concentration-dependent increase in the extracellular L-[14C]glutamate level in nerve terminals. Combined application of Hg2+ and carbon dots from heating of citric acid/urea showed that this simulant was able to mitigate in an acute manner excitotoxic Hg2+-induced increase in the extracellular L-[14C]glutamate level in nerve terminals by 37%. These carbon dots and Hg2+ acted as a complex in nerve terminals that was confirmed with fluorimetric data on Hg2+-induced changes in their spectroscopic features. Nanodiamonds and carbon dots from β-alanine were not able to mitigate a Hg2+-induced increase in the extracellular L-[14C]glutamate level in nerve terminals. Developed approach can be applicable for monitoring capability of different particles/compounds to have Hg2+-chelating signs in the biological systems. Therefore, among testing simulants, the only carbon dots from citric acid/urea were able to mitigate acute Hg2+-induced neurotoxicity in nerve terminals, thereby showing a variety of effects of carbonaceous airborne particulate in situ and its potential to interfere and modulate Hg2+-associated health hazard.
Collapse
Affiliation(s)
- Nataliya Krisanova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Artem Pastukhov
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Mariia Dekaliuk
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Marina Dudarenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Mikola Driuk
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Tatiana Borisova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine.
| |
Collapse
|
26
|
Vecchiarelli HA, Lopes LT, Paolicelli RC, Stevens B, Wake H, Tremblay MÈ. Synapse Regulation. ADVANCES IN NEUROBIOLOGY 2024; 37:179-208. [PMID: 39207693 DOI: 10.1007/978-3-031-55529-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are the resident immune cells of the brain. As such, they rapidly detect changes in normal brain homeostasis and accurately respond by fine-tuning in a tightly regulated manner their morphology, gene expression, and functional behavior. Depending on the nature of these changes, microglia can thicken and retract their processes, proliferate and migrate, release numerous signaling factors and compounds influencing neuronal physiology (e.g., cytokines and trophic factors), in addition to secreting proteases able to transform the extracellular matrix, and phagocytosing various types of cellular debris, etc. Because microglia also transform rapidly (on a time scale of minutes) during experimental procedures, studying these very special cells requires methods that are specifically non-invasive. The development of such methods has provided unprecedented insights into the roles of microglia during normal physiological conditions. In particular, transcranial two-photon in vivo imaging revealed that presumably "resting" microglia continuously survey the brain parenchyma with their highly motile processes, in addition to modulating their structural and functional interactions with neuronal circuits along the changes in neuronal activity and behavioral experience occurring throughout the lifespan. In this chapter, we will describe how surveillant microglia interact with synaptic elements and modulate the number, maturation, function, and plasticity of synapses in the healthy developing, mature, and aging brain, with consequences on neuronal activity, learning and memory, and the behavioral outcome.
Collapse
Affiliation(s)
| | | | - Rosa C Paolicelli
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - Beth Stevens
- Department of Neurology, Harvard Medical School, Center for Life Science, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
| | - Hiroaki Wake
- Division of Brain Circuits, National Institute for Basic Biology, Myodaiji-cho, Okazaki, Japan
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
27
|
Le L, Miyanishi K, Tanaka J, Majewska AK. Microglial Regulation of Sleep and Wakefulness. ADVANCES IN NEUROBIOLOGY 2024; 37:243-260. [PMID: 39207696 DOI: 10.1007/978-3-031-55529-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sleep serves a multitude of roles in brain maturation and function. Although the neural networks involved in sleep regulation have been extensively characterized, it is increasingly recognized that neurons are not the sole conductor orchestrating the rhythmic cycle of sleep and wakefulness. In the central nervous system, microglia have emerged as an important player in sleep regulation. Within the last two decades, microglia have gained substantial attention for carrying out numerous nonimmune tasks that are crucial for brain development and function by co-opting similar mechanisms used in their conventional immune functions. Here, we highlight the importance of microglia in sleep regulation with recent findings reporting an arrhythmic sleep/wake cycle in the absence of microglia. Although the underlying mechanisms for such regulation are still being uncovered, it is likely that microglial contributions to the rhythmic control of the sleep/wake cycle come from their influence on synaptic strength and neuronal activity. We review the current literature to provide speculative signaling pathways and suggest key questions for future research. Advancing our knowledge of the mechanistic contribution of microglia to sleep regulation will not only further our insight into this critical biological process but also be instrumental in providing novel therapeutic strategies for sleep disorders.
Collapse
Affiliation(s)
- Linh Le
- Department of Neuroscience, Del Monte Institute of Neuroscience, Center for Visual Science, Neuroscience Graduate Program, University of Rochester, Rochester, NY, USA
| | - Kazuya Miyanishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan.
| | - Ania K Majewska
- Department of Neuroscience, Del Monte Institute of Neuroscience, Center for Visual Science, Neuroscience Graduate Program, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
28
|
Morales M, Findley AP, Mitchell DM. Intercellular contact and cargo transfer between Müller glia and to microglia precede apoptotic cell clearance in the developing retina. Development 2024; 151:dev202407. [PMID: 38174987 PMCID: PMC10820749 DOI: 10.1242/dev.202407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
To clarify our understanding of glial phagocytosis in retinal development, we used real-time imaging of larval zebrafish to provide cell-type specific resolution of this process. We show that radial Müller glia frequently participate in microglial phagocytosis while also completing a subset of phagocytic events. Müller glia actively engage with dying cells through initial target cell contact and phagocytic cup formation, after which an exchange of the dying cell from Müller glia to microglia often takes place. In addition, we find evidence that Müller glia cellular material, possibly from the initial Müller cell phagocytic cup, is internalized into microglial compartments. Previously undescribed Müller cell behaviors were seen, including cargo splitting, wrestling for targets and lateral passing of cargo to neighbors. Collectively, our work provides new insight into glial functions and intercellular interactions, which will allow future work to understand these behaviors on a molecular level.
Collapse
Affiliation(s)
- Michael Morales
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Anna P. Findley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Diana M. Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
29
|
Queen NJ, Huang W, Zou X, Mo X, Cao L. AAV-BDNF gene therapy ameliorates a hypothalamic neuroinflammatory signature in the Magel2-null model of Prader-Willi syndrome. Mol Ther Methods Clin Dev 2023; 31:101108. [PMID: 37766791 PMCID: PMC10520877 DOI: 10.1016/j.omtm.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Individuals with Prader-Willi syndrome (PWS) exhibit several metabolic and behavioral abnormalities associated with excessive food-seeking activity. PWS is thought to be driven in part by dysfunctional hypothalamic circuitry and blunted responses to peripheral signals of satiety. Previous work described a hypothalamic transcriptomic signature of individuals with PWS. Notably, PWS patients exhibited downregulation of genes involved in neuronal development and an upregulation of neuroinflammatory genes. Deficiencies of brain-derived neurotrophic factor (BDNF) and its receptor were identified as potential drivers of PWS phenotypes. Our group recently applied an adeno-associated viral (AAV)-BDNF gene therapy within a preclinical PWS model, Magel2-null mice, to improve metabolic and behavioral function. While this proof-of-concept project was promising, it remained unclear how AAV-BDNF was influencing the hypothalamic microenvironment and how its therapeutic effect was mediated. To investigate, we hypothalamically injected AAV-BDNF to wild type and Magel2-null mice and performed mRNA sequencing on hypothalamic tissue. Here, we report that (1) Magel2 deficiency is associated with neuroinflammation in the hypothalamus and (2) AAV-BDNF gene therapy reverses this neuroinflammation. These data newly reveal Magel2-null mice as a valid model of PWS-related neuroinflammation and furthermore suggest that AAV-BDNF may modulate obesity-related neuroinflammatory phenotypes through direct or indirect means.
Collapse
Affiliation(s)
- Nicholas J. Queen
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Wei Huang
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xunchang Zou
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
30
|
Tumurbaatar B, Fracassi A, Scaduto P, Guptarak J, Woltjer R, Jupiter D, Taglialatela G. Preserved autophagy in cognitively intact non-demented individuals with Alzheimer's neuropathology. Alzheimers Dement 2023; 19:5355-5370. [PMID: 37191183 PMCID: PMC10651802 DOI: 10.1002/alz.13074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Growing evidence supports that dysfunctional autophagy, the major cell mechanism responsible for removing protein aggregates and a route of clearance for Tau in healthy neurons, is a major finding in demented Alzheimer's disease (AD) patients. However, the association of autophagy with maintenance of cognitive integrity in resilient individuals who have AD neuropathology but remain non-demented (NDAN) has not been evaluated. METHODS Using post mortem brain samples from age-matched healthy control, AD, and NDAN subjects, we evaluated autophagy in relation to Tau pathology using Western blot, immunofluorescence and RNA-seq. RESULTS Compared to AD patients, NDAN subjects had preserved autophagy and reduced tauopathy. Furthermore, expression of autophagy genes and AD-related proteins were significantly associated in NDAN compared to AD and control subjects. DISCUSSION Our results suggest preserved autophagy is a protective mechanism that maintains cognitive integrity in NDAN individuals. This novel observation supports the potential of autophagy-inducing strategies in AD therapeutics. HIGHLIGHTS NDAN subjects have preserved autophagic protein levels comparable with control subjects. Compared to control subjects, NDAN subjects have significantly reduced Tau oligomers and PHF Tau phosphorylation at synapses that negatively correlate with autophagy markers. Transcription of autophagy genes strongly associates with AD-related proteins in NDAN donors.
Collapse
Affiliation(s)
- Batbayar Tumurbaatar
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, Texas, 77555 USA
| | - Anna Fracassi
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, Texas, 77555 USA
| | - Pietro Scaduto
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, Texas, 77555 USA
| | - Jutatip Guptarak
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, Texas, 77555 USA
| | - Randall Woltjer
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA
| | - Daniel Jupiter
- Department of Biostatistics & Data Science, Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, Texas, 77555 USA
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, Texas, 77555 USA
| |
Collapse
|
31
|
Fang S, Wu Z, Guo Y, Zhu W, Wan C, Yuan N, Chen J, Hao W, Mo X, Guo X, Fan L, Li X, Chen J. Roles of microglia in adult hippocampal neurogenesis in depression and their therapeutics. Front Immunol 2023; 14:1193053. [PMID: 37881439 PMCID: PMC10597707 DOI: 10.3389/fimmu.2023.1193053] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
Adult hippocampal neurogenesis generates functional neurons from neural progenitor cells in the hippocampal dentate gyrus (DG) to complement and repair neurons and neural circuits, thus benefiting the treatment of depression. Increasing evidence has shown that aberrant microglial activity can disrupt the appropriate formation and development of functional properties of neurogenesis, which will play a crucial role in the occurrence and development of depression. However, the mechanisms of the crosstalk between microglia and adult hippocampal neurogenesis in depression are not yet fully understood. Therefore, in this review, we first introduce recent discoveries regarding the roles of microglia and adult hippocampal neurogenesis in the etiology of depression. Then, we systematically discuss the possible mechanisms of how microglia regulate adult hippocampal neurogenesis in depression according to recent studies, which involve toll-like receptors, microglial polarization, fractalkine-C-X3-C motif chemokine receptor 1, hypothalamic-pituitary-adrenal axis, cytokines, brain-derived neurotrophic factor, and the microbiota-gut-brain axis, etc. In addition, we summarize the promising drugs that could improve the adult hippocampal neurogenesis by regulating the microglia. These findings will help us understand the complicated pathological mechanisms of depression and shed light on the development of new treatment strategies for this disease.
Collapse
Affiliation(s)
- Shaoyi Fang
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhibin Wu
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yali Guo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wenjun Zhu
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Chunmiao Wan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Naijun Yuan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Shenzhen People’s Hospital, 2Clinical Medical College, Jinan University, Shenzhen, China
| | - Jianbei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenzhi Hao
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaowei Mo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaofang Guo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lili Fan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
32
|
Morales M, Findley AP, Mitchell DM. Intercellular contact and cargo transfer between Müller glia and to microglia precede apoptotic cell clearance in the developing retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561302. [PMID: 37873206 PMCID: PMC10592698 DOI: 10.1101/2023.10.06.561302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
To clarify our understanding of glial phagocytosis in retinal development, we used real time imaging of larval zebrafish to provide cell-type specific resolution of this process. We show that radial Müller glia frequently participate in microglial phagocytosis while also completing a subset of phagocytic events. Müller glia (MG) actively engage with dying cells through initial target cell contact and phagocytic cup formation after which an exchange of the dying cell from MG to microglia often takes place. Additionally, we find evidence that Müller glia cellular material, possibly from the initial Müller cell's phagocytic cup, is internalized into microglial compartments. Previously undescribed Müller cell behaviors were seen, including cargo splitting, wrestling for targets, lateral passing of cargo to neighbors, and engulfment of what is possibly synaptic puncta. Collectively, our work provides new insight into glial functions and intercellular interactions, which will allow future work to understand these behaviors on a molecular level.
Collapse
Affiliation(s)
| | - Anna P Findley
- Biological Sciences, University of Idaho, Moscow, ID 83844
| | | |
Collapse
|
33
|
Rueda‐Carrasco J, Sokolova D, Lee S, Childs T, Jurčáková N, Crowley G, De Schepper S, Ge JZ, Lachica JI, Toomey CE, Freeman OJ, Hardy J, Barnes SJ, Lashley T, Stevens B, Chang S, Hong S. Microglia-synapse engulfment via PtdSer-TREM2 ameliorates neuronal hyperactivity in Alzheimer's disease models. EMBO J 2023; 42:e113246. [PMID: 37575021 PMCID: PMC10548173 DOI: 10.15252/embj.2022113246] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Neuronal hyperactivity is a key feature of early stages of Alzheimer's disease (AD). Genetic studies in AD support that microglia act as potential cellular drivers of disease risk, but the molecular determinants of microglia-synapse engulfment associated with neuronal hyperactivity in AD are unclear. Here, using super-resolution microscopy, 3D-live imaging of co-cultures, and in vivo imaging of lipids in genetic models, we found that spines become hyperactive upon Aβ oligomer stimulation and externalize phosphatidylserine (ePtdSer), a canonical "eat-me" signal. These apoptotic-like spines are targeted by microglia for engulfment via TREM2 leading to amelioration of Aβ oligomer-induced synaptic hyperactivity. We also show the in vivo relevance of ePtdSer-TREM2 signaling in microglia-synapse engulfment in the hAPP NL-F knock-in mouse model of AD. Higher levels of apoptotic-like synapses in mice as well as humans that carry TREM2 loss-of-function variants were also observed. Our work supports that microglia remove hyperactive ePtdSer+ synapses in Aβ-relevant context and suggest a potential beneficial role for microglia in the earliest stages of AD.
Collapse
Affiliation(s)
- Javier Rueda‐Carrasco
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
| | - Dimitra Sokolova
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
- Neuroscience BioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Sang‐Eun Lee
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
- Department of Physiology and Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea
| | - Thomas Childs
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
| | - Natália Jurčáková
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Gerard Crowley
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
| | | | - Judy Z Ge
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
| | - Joanne I Lachica
- The Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| | - Christina E Toomey
- The Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| | | | - John Hardy
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
| | - Samuel J Barnes
- UK Dementia Research Institute, Department of Brain SciencesImperial College LondonLondonUK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Neurodegenerative DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | - Beth Stevens
- F.M. Kirby Neurobiology CenterBoston Children's HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridgeMAUSA
- Howard Hughes Medical Institute, Boston Children's HospitalBostonMAUSA
| | - Sunghoe Chang
- Department of Physiology and Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea
| | - Soyon Hong
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
34
|
Gomez-Arboledas A, Fonseca MI, Kramar E, Chu SH, Schartz N, Selvan P, Wood MA, Tenner AJ. C5aR1 signaling promotes region and age dependent synaptic pruning in models of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560234. [PMID: 37873302 PMCID: PMC10592845 DOI: 10.1101/2023.09.29.560234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Synaptic loss is a hallmark of Alzheimer's disease (AD) that correlates with cognitive decline in AD patients. Complement-mediated synaptic pruning has been associated with this excessive loss of synapses in AD. Here, we investigated the effect of C5aR1 inhibition on microglial and astroglial synaptic pruning in two mouse models of AD. METHODS A combination of super-resolution and confocal and tridimensional image reconstruction was used to assess the effect of genetic ablation or pharmacological inhibition of C5aR1 on the Arctic48 and Tg2576 models of AD. RESULTS Genetic ablation or pharmacological inhibition of C5aR1 rescues the excessive pre-synaptic pruning and synaptic loss in an age and region dependent fashion in two mouse models of AD, which correlates with improved long-term potentiation (LTP). DISCUSSION Reduction of excessive synaptic pruning is an additional beneficial outcome of the suppression of C5a-C5aR1 signaling, further supporting its potential as an effective targeted therapy to treat AD.
Collapse
Affiliation(s)
- Angela Gomez-Arboledas
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Maria I. Fonseca
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Enikö Kramar
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Shu-Hui Chu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Nicole Schartz
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Purnika Selvan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Andrea J. Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| |
Collapse
|
35
|
Xing Y, Zhang D, Fang L, Wang J, Liu C, Wu D, Liu X, Wang X, Min W. Complement in Human Brain Health: Potential of Dietary Food in Relation to Neurodegenerative Diseases. Foods 2023; 12:3580. [PMID: 37835232 PMCID: PMC10572247 DOI: 10.3390/foods12193580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The complement pathway is a major component of the innate immune system, which is critical for recognizing and clearing pathogens that rapidly react to defend the body against external pathogens. Many components of this pathway are expressed throughout the brain and play a beneficial role in synaptic pruning in the developing central nervous system (CNS). However, excessive complement-mediated synaptic pruning in the aging or injured brain may play a contributing role in a wide range of neurodegenerative diseases. Complement Component 1q (C1q), an initiating recognition molecule of the classical complement pathway, can interact with a variety of ligands and perform a range of functions in physiological and pathophysiological conditions of the CNS. This review considers the function and immunomodulatory mechanisms of C1q; the emerging role of C1q on synaptic pruning in developing, aging, or pathological CNS; the relevance of C1q; the complement pathway to neurodegenerative diseases; and, finally, it summarizes the foods with beneficial effects in neurodegenerative diseases via C1q and complement pathway and highlights the need for further research to clarify these roles. This paper aims to provide references for the subsequent study of food functions related to C1q, complement, neurodegenerative diseases, and human health.
Collapse
Affiliation(s)
- Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Dingwen Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
36
|
Guan PP, Ge TQ, Wang P. As a Potential Therapeutic Target, C1q Induces Synapse Loss Via Inflammasome-activating Apoptotic and Mitochondria Impairment Mechanisms in Alzheimer's Disease. J Neuroimmune Pharmacol 2023; 18:267-284. [PMID: 37386257 DOI: 10.1007/s11481-023-10076-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
C1q, the initiator of the classical pathway of the complement system, is activated during Alzheimer's disease (AD) development and progression and is especially associated with the production and deposition of β-amyloid protein (Aβ) and phosphorylated tau in β-amyloid plaques (APs) and neurofibrillary tangles (NFTs). Activation of C1q is responsible for induction of synapse loss, leading to neurodegeneration in AD. Mechanistically, C1q could activate glial cells, which results in the loss of synapses via regulation of synapse pruning and phagocytosis in AD. In addition, C1q induces neuroinflammation by inducing proinflammatory cytokine secretion, which is partially mediated by inflammasome activation. Activation of inflammasomes might mediate the effects of C1q on induction of synapse apoptosis. On the other hand, activation of C1q impairs mitochondria, which hinders the renovation and regeneration of synapses. All these actions of C1q contribute to the loss of synapses during neurodegeneration in AD. Therefore, pharmacological, or genetic interventions targeting C1q may provide potential therapeutic strategies for combating AD.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, 110819, Shenyang, People's Republic of China
| | - Tong-Qi Ge
- College of Life and Health Sciences, Northeastern University, 110819, Shenyang, People's Republic of China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, 110819, Shenyang, People's Republic of China.
| |
Collapse
|
37
|
Datta D. Interrogating the Etiology of Sporadic Alzheimer's Disease Using Aging Rhesus Macaques: Cellular, Molecular, and Cortical Circuitry Perspectives. J Gerontol A Biol Sci Med Sci 2023; 78:1523-1534. [PMID: 37279946 PMCID: PMC10460555 DOI: 10.1093/gerona/glad134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 06/08/2023] Open
Abstract
Aging is the most significant risk factor for neurodegenerative disorders such as Alzheimer's disease (AD) associated with profound socioeconomic and personal costs. Consequently, there is an urgent need for animal models that recapitulate the age-related spatial and temporal complexity and patterns of pathology identical to human AD. Our research in aging nonhuman primate models involving rhesus macaques has revealed naturally occurring amyloid and tau pathology, including the formation of amyloid plaques and neurofibrillary tangles comprising hyperphosphorylated tau. Moreover, rhesus macaques exhibit synaptic dysfunction in association cortices and cognitive impairments with advancing age, and thus can be used to interrogate the etiological mechanisms that generate neuropathological cascades in sporadic AD. Particularly, unique molecular mechanisms (eg, feedforward cyclic adenosine 3',5'-monophosphate [cAMP]-Protein kinase A (PKA)-calcium signaling) in the newly evolved primate dorsolateral prefrontal cortex are critical for persistent firing required for subserving higher-order cognition. For example, dendritic spines in primate dorsolateral prefrontal cortex contain a specialized repertoire of proteins to magnify feedforward cAMP-PKA-calcium signaling such as N-methyl-d-aspartic acid receptors and calcium channels on the smooth endoplasmic reticulum (eg, ryanodine receptors). This process is constrained by phosphodiesterases (eg, PDE4) that hydrolyze cAMP and calcium-buffering proteins (eg, calbindin) in the cytosol. However, genetic predispositions and age-related insults exacerbate feedforward cAMP-Protein kinase A-calcium signaling pathways that induce a myriad of downstream effects, including the opening of K+ channels to weaken network connectivity, calcium-mediated dysregulation of mitochondria, and activation of inflammatory cascades to eliminate synapses, thereby increasing susceptibility to atrophy. Therefore, aging rhesus macaques provide an invaluable model to explore novel therapeutic strategies in sporadic AD.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
38
|
Schartz ND, Liang HY, Carvalho K, Chu SH, Mendoza-Arvilla A, Petrisko TJ, Gomez-Arboledas A, Mortazavi A, Tenner AJ. C5aR1 antagonism suppresses inflammatory glial gene expression and alters cellular signaling in an aggressive Alzheimer's model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554306. [PMID: 37662399 PMCID: PMC10473603 DOI: 10.1101/2023.08.22.554306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults, and the need for effective, sustainable therapeutic targets is imperative. Pharmacologic inhibition of C5aR1 reduces plaque load, gliosis and memory deficits in animal models. However, the cellular basis underlying this neuroprotection and which processes were the consequence of amyloid reduction vs alteration of the response to amyloid were unclear. In the Arctic model, the C5aR1 antagonist PMX205 did not reduce plaque load, but deficits in short-term memory in female mice were prevented. Hippocampal single cell and single nucleus RNA-seq clusters revealed C5aR1 dependent and independent gene expression and cell-cell communication. Microglial clusters containing neurotoxic disease-associated microglial genes were robustly upregulated in Arctic mice and drastically reduced with PMX205 treatment, while genes in microglia clusters that were overrepresented in the Arctic-PMX205 vs Arctic group were associated with synapse organization and transmission and learning. PMX205 treatment also reduced some A-1 astrocyte genes. In spite of changes in transcript levels, overall protein levels of some reactive glial markers were relatively unchanged by C5aR1 antagonism, as were clusters associated with protective responses to injury. C5aR1 inhibition promoted signaling pathways associated with cell growth and repair, such as TGFβ and FGF, in Arctic mice, while suppressing inflammatory pathways including PROS, Pecam1, and EPHA. In conclusion, pharmacologic C5aR1 inhibition prevents cognitive loss, limits microglial polarization to a detrimental inflammatory state and permits neuroprotective responses, as well as leaving protective functions of complement intact, making C5aR1 antagonism an attractive therapeutic strategy for individuals with AD.
Collapse
Affiliation(s)
- Nicole D. Schartz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Heidi Y. Liang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Klebea Carvalho
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Shu-Hui Chu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Adrian Mendoza-Arvilla
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Tiffany J. Petrisko
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Angela Gomez-Arboledas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Ali Mortazavi
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Andrea J. Tenner
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA 92697
| |
Collapse
|
39
|
Marcatti M, Jamison D, Fracassi A, Zhang WR, Limon A, Taglialatela G. A method to study human synaptic protein-protein interactions by using flow cytometry coupled to proximity ligation assay (Syn-FlowPLA). J Neurosci Methods 2023; 396:109920. [PMID: 37459899 DOI: 10.1016/j.jneumeth.2023.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Synapses are highly specialized sites characterized by intricate networks of protein-protein interactions (PPIs) important to maintain healthy synapses. Therefore, mapping these networks could address unsolved questions about human cognition, synaptic plasticity, learning, and memory in physiological and pathological conditions. The limitation of analyzing synaptic interactions in living humans has led to the development of methods to isolate synaptic terminals (synaptosomes) from cryopreserved human brains. NEW METHOD Here, we established a method to detect synaptic PPIs by applying flow cytometric proximity ligation assay (FlowPLA) to synaptosomes isolated from frozen human frontal cortex (FC) and hippocampus (HP) (Syn-FlowPLA). RESULTS Applying this method in synaptosomes, we were able to detect the known post-synaptic interactions between distinct subtypes of N-methyl-D-aspartate glutamate receptors (NMDARs) and their anchoring postsynaptic density 95 protein (PSD95). Moreover, we detected the known pre-synaptic interactions between the SNARE complex proteins synaptosomal-associated protein of 25 kDa (SNAP25), synaptobrevin (VAMP2), and syntaxin 1a (STX1A). As a negative control, we analyzed the interaction between mitochondrial superoxide dismutase 2 (SOD2) and PSD95, which are not expected to be physically associated. COMPARISON WITH EXISTING METHODS PPIs have been studied in vitro primarily by co-immunoprecipitation, affinity chromatography, protein-fragment complementation assays (PCAs), and flow cytometry. All these are valid approaches; however, they require more steps or combination with other techniques. PLA technology identifies PPIs with high specificity and sensitivity. CONCLUSIONS The Syn-FlowPLA described here allows rapid analyses of PPIs, specifically within the synaptic compartment isolated from frozen autopsy specimens, achieving greater target sensitivity. Syn-FlowPLA, as presented here, is therefore a useful method to study human synaptic PPI in physiological and pathological conditions.
Collapse
Affiliation(s)
- Michela Marcatti
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA
| | - Danielle Jamison
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, USA
| | - Anna Fracassi
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA
| | - Wen-Ru Zhang
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, USA
| | - Agenor Limon
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA.
| |
Collapse
|
40
|
Whitelaw BS, Stoessel MB, Majewska AK. Movers and shakers: Microglial dynamics and modulation of neural networks. Glia 2023; 71:1575-1591. [PMID: 36533844 PMCID: PMC10729610 DOI: 10.1002/glia.24323] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Microglia are multifaceted cells that act as immune sentinels, with important roles in pathological events, but also as integral contributors to the normal development and function of neural circuits. In the last decade, our understanding of the contributions these cells make to synaptic health and dysfunction has expanded at a dizzying pace. Here we review the known mechanisms that govern the dynamics of microglia allowing these motile cells to interact with synapses, and recruit microglia to specific sites on neurons. We then review the molecular signals that may underlie the function of microglia in synaptic remodeling. The emerging picture from the literature suggests that microglia are highly sensitive cells, reacting to neuronal signals with dynamic and specific actions tuned to the need of specific synapses and networks.
Collapse
Affiliation(s)
- Brendan Steven Whitelaw
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, New York, USA
| | - Mark Blohm Stoessel
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, New York, USA
| | - Ania Katarzyna Majewska
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, New York, USA
| |
Collapse
|
41
|
Chung HY, Wickel J, Hahn N, Mein N, Schwarzbrunn M, Koch P, Ceanga M, Haselmann H, Baade-Büttner C, von Stackelberg N, Hempel N, Schmidl L, Groth M, Andreas N, Götze J, Coldewey SM, Bauer M, Mawrin C, Dargvainiene J, Leypoldt F, Steinke S, Wang ZQ, Hust M, Geis C. Microglia mediate neurocognitive deficits by eliminating C1q-tagged synapses in sepsis-associated encephalopathy. SCIENCE ADVANCES 2023; 9:eabq7806. [PMID: 37235660 DOI: 10.1126/sciadv.abq7806] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe and frequent complication of sepsis causing delirium, coma, and long-term cognitive dysfunction. We identified microglia and C1q complement activation in hippocampal autopsy tissue of patients with sepsis and increased C1q-mediated synaptic pruning in a murine polymicrobial sepsis model. Unbiased transcriptomics of hippocampal tissue and isolated microglia derived from septic mice revealed an involvement of the innate immune system, complement activation, and up-regulation of lysosomal pathways during SAE in parallel to neuronal and synaptic damage. Microglial engulfment of C1q-tagged synapses could be prevented by stereotactic intrahippocampal injection of a specific C1q-blocking antibody. Pharmacologically targeting microglia by PLX5622, a CSF1-R inhibitor, reduced C1q levels and the number of C1q-tagged synapses, protected from neuronal damage and synapse loss, and improved neurocognitive outcome. Thus, we identified complement-dependent synaptic pruning by microglia as a crucial pathomechanism for the development of neuronal defects during SAE.
Collapse
Affiliation(s)
- Ha-Yeun Chung
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| | - Jonathan Wickel
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| | - Nina Hahn
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| | - Nils Mein
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Meike Schwarzbrunn
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena 07745, Germany
| | - Mihai Ceanga
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Holger Haselmann
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Carolin Baade-Büttner
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Nikolai von Stackelberg
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Nina Hempel
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Lars Schmidl
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena 07745, Germany
| | - Nico Andreas
- Institute of Immunology, Jena University Hospital, Jena 07743, Germany
| | - Juliane Götze
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
- Septomics Research Center, Jena University Hospital, Jena 07745, Germany
| | - Sina M Coldewey
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
- Septomics Research Center, Jena University Hospital, Jena 07745, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
| | - Christian Mawrin
- Department of Neuropathology, University of Magdeburg, Magdeburg, Germany
- Section of Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07749, Germany
| | | | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, UKSH, Kiel/Lübeck, Germany
- Department of Neurology, Christian-Albrechts University, Kiel 24105, Germany
| | - Stephan Steinke
- Department Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena 07745, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena 07745, Germany
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Michael Hust
- Department Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
42
|
Kirkland JM, Edgar EL, Patel I, Kopec AM. Impaired microglia-mediated synaptic pruning in the nucleus accumbens during adolescence results in persistent dysregulation of familiar, but not novel social interactions in sex-specific ways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539115. [PMID: 37205324 PMCID: PMC10187149 DOI: 10.1101/2023.05.02.539115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Evolutionarily conserved, peer-directed social behaviors are essential to participate in many aspects of human society. These behaviors directly impact psychological, physiological, and behavioral maturation. Adolescence is an evolutionarily conserved period during which reward-related behaviors, including social behaviors, develop via developmental plasticity in the mesolimbic dopaminergic 'reward' circuitry of the brain. The nucleus accumbens (NAc) is an intermediate reward relay center that develops during adolescence and mediates both social behaviors and dopaminergic signaling. In several developing brain regions, synaptic pruning mediated by microglia, the resident immune cells of the brain, is important for normal behavioral development. In rats, we previously demonstrated that microglial synaptic pruning also mediates NAc and social development during sex-specific adolescent periods and via sex-specific synaptic pruning targets. In this report, we demonstrate that interrupting microglial pruning in NAc during adolescence persistently dysregulates social behavior towards a familiar, but not novel social partner in both sexes, via sex-specific behavioral expression. This leads us to infer that naturally occurring NAc pruning serves to reduce social behaviors primarily directed toward a familiar conspecific in both sexes, but in sex-specific ways.
Collapse
Affiliation(s)
- Julia M. Kirkland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Erin L. Edgar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ishan Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ashley M. Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| |
Collapse
|
43
|
Bohlson SS, Tenner AJ. Complement in the Brain: Contributions to Neuroprotection, Neuronal Plasticity, and Neuroinflammation. Annu Rev Immunol 2023; 41:431-452. [PMID: 36750318 DOI: 10.1146/annurev-immunol-101921-035639] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The complement system is an ancient collection of proteolytic cascades with well-described roles in regulation of innate and adaptive immunity. With the convergence of a revolution in complement-directed clinical therapeutics, the discovery of specific complement-associated targetable pathways in the central nervous system, and the development of integrated multi-omic technologies that have all emerged over the last 15 years, precision therapeutic targeting in Alzheimer disease and other neurodegenerative diseases and processes appears to be within reach. As a sensor of tissue distress, the complement system protects the brain from microbial challenge as well as the accumulation of dead and/or damaged molecules and cells. Additional more recently discovered diverse functions of complement make it of paramount importance to design complement-directed neurotherapeutics such that the beneficial roles in neurodevelopment, adult neural plasticity, and neuroprotective functions of the complement system are retained.
Collapse
Affiliation(s)
- Suzanne S Bohlson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA; ,
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA; ,
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
44
|
Antignano I, Liu Y, Offermann N, Capasso M. Aging microglia. Cell Mol Life Sci 2023; 80:126. [PMID: 37081238 PMCID: PMC10119228 DOI: 10.1007/s00018-023-04775-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023]
Abstract
Microglia are the tissue-resident macrophage population of the brain, specialized in supporting the CNS environment and protecting it from endogenous and exogenous insults. Nonetheless, their function declines with age, in ways that remain to be fully elucidated. Given the critical role played by microglia in neurodegenerative diseases, a better understanding of the aging microglia phenotype is an essential prerequisite in designing better preventive and therapeutic strategies. In this review, we discuss the most recent literature on microglia in aging, comparing findings in rodent models and human subjects.
Collapse
Affiliation(s)
- Ignazio Antignano
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Yingxiao Liu
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nina Offermann
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Melania Capasso
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.
| |
Collapse
|
45
|
VanderZwaag J, Halvorson T, Dolhan K, Šimončičová E, Ben-Azu B, Tremblay MÈ. The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochem Res 2023; 48:1129-1166. [PMID: 36327017 DOI: 10.1007/s11064-022-03772-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics - psychedelic, anesthetic, and dissociative agents - as they have demonstrated surprising efficacy in treating central nervous system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide such profound psychological benefits are still to be fully elucidated. Microglia, the CNS's resident innate immune cells, are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharmacological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mechanism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacology and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.
Collapse
Affiliation(s)
- Jared VanderZwaag
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Vancouver, BC, Canada
- Department of Biology, University of Victoria, Vancouver, BC, Canada
| | - Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
46
|
Cangalaya C, Wegmann S, Sun W, Diez L, Gottfried A, Richter K, Stoyanov S, Pakan J, Fischer KD, Dityatev A. Real-time mechanisms of exacerbated synaptic remodeling by microglia in acute models of systemic inflammation and tauopathy. Brain Behav Immun 2023; 110:245-259. [PMID: 36906076 DOI: 10.1016/j.bbi.2023.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/13/2023] Open
Abstract
Remodeling of synapses by microglia is essential for synaptic plasticity in the brain. However, during neuroinflammation and neurodegenerative diseases, microglia can induce excessive synaptic loss, although the precise underlying mechanisms are unknown. To directly observe microglia-synapse interactions under inflammatory conditions, we performed in vivo two-photon time-lapse imaging of microglia-synapse interactions after bacterial lipopolysaccharide administration to model systemic inflammation, or after inoculation of Alzheimer's disease (AD) brain extracts to model disease-associated neuroinflammatory microglial response. Both treatments prolonged microglia-neuron contacts, decreased basal surveillance of synapses and promoted synaptic remodeling in response to synaptic stress induced by focal single-synapse photodamage. Spine elimination correlated with the expression of microglial complement system/phagocytic proteins and the occurrence of synaptic filopodia. Microglia were observed contacting spines, then stretching and phagocytosing spine head filopodia. Thus, in response to inflammatory stimuli microglia exacerbated spine remodeling through prolonged microglial contact and elimination of spines 'tagged' by synaptic filopodia.
Collapse
Affiliation(s)
- Carla Cangalaya
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany; ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Magdeburg, Germany
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Weilun Sun
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Lisa Diez
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Anna Gottfried
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
| | - Karin Richter
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
| | - Stoyan Stoyanov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Janelle Pakan
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
47
|
Enomoto S, Ohgidani M, Sagata N, Inamine S, Kato TA. Preliminary analysis of hippocampus synaptic apoptosis and microglial phagocytosis induced by severe restraint stress. Neuropsychopharmacol Rep 2023; 43:120-125. [PMID: 36419367 PMCID: PMC10009418 DOI: 10.1002/npr2.12298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
AIM Several studies reported stress-induced microglial phagocytosis, but the biochemical mechanisms by which stress alters microglial synaptic phagocytosis are not fully uncovered. Local or limited apoptosis without cell death was observed at neuronal synapses in previous studies, and proposed as an upstream mechanism for microglial synapse elimination. In this micro-report, we aimed to preliminary examine local synaptic apoptosis in the mouse hippocampus following severe restraint stress, and its effect on microglial phagocytosis. METHODS Mice were exposed to 10-day water immersion restraint stress (WIRS). Brain sections including stratum lucidum in the hippocampal CA3 subfield were stained with antibodies against cleaved caspase 3, ionized calcium-binding adapter molecule1 (Iba1), lysosomal-associated membrane protein1 (LAMP1), vesicular glutamate transporter1 (VGLUT1). Co-localization among these proteins were calculated. RESULTS Our image analysis revealed that synaptic apoptosis was increased while there were no significant changes in microglial phagocytic activity and synaptic phagocytosis following 10-day WIRS. CONCLUSION Severe restraint stress enhanced pre-synaptic apoptosis in mouse CA3 stratum lucidum region, but did not promote microglial phagocytosis. The phenomenon microglia fail to phagocytose weakened and unnecessary synapses may be related to pathology of stress.
Collapse
Affiliation(s)
- Shingo Enomoto
- Self Defense Force, Fukuoka Hospital, Fukuoka, Japan.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Hokkaido, Japan
| | - Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Inamine
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
48
|
Time-dependent and selective microglia-mediated removal of spinal synapses in neuropathic pain. Cell Rep 2023; 42:112010. [PMID: 36656715 DOI: 10.1016/j.celrep.2023.112010] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 09/20/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Neuropathic pain is a debilitating condition resulting from damage to the nervous system. Imbalance of spinal excitation and inhibition has been proposed to contribute to neuropathic pain. However, the structural basis of this imbalance remains unknown. Using a preclinical model of neuropathic pain, we show that microglia selectively engulf spinal synapses that are formed by central neurons and spare those of peripheral sensory neurons. Furthermore, we reveal that removal of inhibitory and excitatory synapses exhibits distinct temporal patterns, in which microglia-mediated inhibitory synapse removal precedes excitatory synapse removal. We also find selective and gradual increase in complement depositions on dorsal horn synapses that corresponds to the temporal pattern of microglial synapse pruning activity and type-specific synapse loss. Together, these results define a specific role for microglia in the progression of neuropathic pain pathogenesis and implicate these immune cells in structural remodeling of dorsal horn circuitry.
Collapse
|
49
|
Fracassi A, Marcatti M, Tumurbaatar B, Woltjer R, Moreno S, Taglialatela G. TREM2-induced activation of microglia contributes to synaptic integrity in cognitively intact aged individuals with Alzheimer's neuropathology. Brain Pathol 2023; 33:e13108. [PMID: 35816404 PMCID: PMC9836373 DOI: 10.1111/bpa.13108] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/16/2022] [Indexed: 01/21/2023] Open
Abstract
The existence of individuals who remain cognitively intact despite presenting histopathological signs of Alzheimer's disease (AD), here referred to as "Nondemented with AD neuropathology" (NDAN), suggests that some mechanisms are triggered to resist cognitive impairment. Exposed phosphatidylserine (ePS) represents a neuronal "eat-me" signal involved in microglial-mediated phagocytosis of damaged synapses. A possible mediator of this process is TREM2, a microglial surface receptor activated by ligands including PS. Based on TREM2 role in the scavenging function of microglia, we hypothesize that an efficient microglial phagocytosis of damaged synapses underlies synaptic resilience in NDAN, thus protecting from memory deficits. Using immunofluorescence microscopy, we performed a comparative study of human post-mortem frontal cortices of aged-matched, AD and NDAN individuals. We studied the distribution of activated microglia (IBA1, IBA1+ /CD68+ cells) and phagocytic microglia-related proteins (TREM2, DAP12), demonstrating higher microglial activation and TREM2 expression in NDAN versus AD. A study of the preservation of synapses around plaques, assessed using MAP2 and βIII tubulin as dendritic and axonal markers, respectively, and PSD95 as a postsynaptic marker, revealed preserved axonal/dendritic structure around plaques in NDAN versus AD. Moreover, high levels of PSD95 around NDAN plaques and the colocalization of PSD95 with CD68 indicated a prompt removal of damaged synapses by phagocytic microglia. Furthermore, Annexin V assay on aged-matched, AD and NDAN individuals synaptosomes revealed increased levels of ePS in NDAN, confirming damaged synapses engulfment. Our results suggest a higher efficiency of TREM2-induced phagocytic microglia in removing damaged synapses, underlying synaptic resilience in NDAN individuals.
Collapse
Affiliation(s)
- Anna Fracassi
- Mitchell Center for Neurodegenerative Diseases, Department of NeurologyUniversity of Texas Medical Branch (UTMB)GalvestonTexasUSA
| | - Michela Marcatti
- Mitchell Center for Neurodegenerative Diseases, Department of NeurologyUniversity of Texas Medical Branch (UTMB)GalvestonTexasUSA
| | - Batbayar Tumurbaatar
- Mitchell Center for Neurodegenerative Diseases, Department of NeurologyUniversity of Texas Medical Branch (UTMB)GalvestonTexasUSA
| | - Randall Woltjer
- Department of PathologyOregon Health and Science UniversityPortlandOregonUSA
| | - Sandra Moreno
- Department of Science, LIMEUniversity Roma TreRomeItaly
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Diseases, Department of NeurologyUniversity of Texas Medical Branch (UTMB)GalvestonTexasUSA
| |
Collapse
|
50
|
Evidence of Chronic Complement Activation in Asymptomatic Pediatric Brain Injury Patients: A Pilot Study. CHILDREN (BASEL, SWITZERLAND) 2022; 10:children10010045. [PMID: 36670596 PMCID: PMC9856304 DOI: 10.3390/children10010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022]
Abstract
Physical insult from a mild Traumatic Brain Injury (mTBI) leads to changes in blood flow in the brain and measurable changes in white matter, suggesting a physiological basis for chronic symptom presentation. Post-traumatic headache (PTH) is frequently reported by persons after an mTBI that may persist beyond the acute period (>3 months). It remains unclear whether ongoing inflammation may contribute to the clinical trajectory of PTH. We recruited a cohort of pediatric subjects with PTH who had an acute or a persistent clinical trajectory, each around the 3-month post-injury time point, as well as a group of age and sex-matched healthy controls. We collected salivary markers of mRNA expression as well as brain imaging and psychological testing. The persistent PTH group showed the highest levels of psychological burden and pain symptom reporting. Our data suggest that the acute and persistent PTH cohort had elevated levels of complement factors relative to healthy controls. The greatest change in mRNA expression was found in the acute-PTH cohort wherein the complement cascade and markers of vascular health showed a prominent role for C1Q in PTH pathophysiology. These findings (1) underscore a prolonged engagement of what is normally a healthy response and (2) show that a persistent PTH symptom trajectory may parallel a poorly regulated inflammatory response.
Collapse
|