1
|
Musunuri S, Weidenbacher PAB, Kim PS. Bringing immunofocusing into focus. NPJ Vaccines 2024; 9:11. [PMID: 38195562 PMCID: PMC10776678 DOI: 10.1038/s41541-023-00792-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Immunofocusing is a strategy to create immunogens that redirect humoral immune responses towards a targeted epitope and away from non-desirable epitopes. Immunofocusing methods often aim to develop "universal" vaccines that provide broad protection against highly variant viruses such as influenza virus, human immunodeficiency virus (HIV-1), and most recently, severe acute respiratory syndrome coronavirus (SARS-CoV-2). We use existing examples to illustrate five main immunofocusing strategies-cross-strain boosting, mosaic display, protein dissection, epitope scaffolding, and epitope masking. We also discuss obstacles for immunofocusing like immune imprinting. A thorough understanding, advancement, and application of the methods we outline here will enable the design of high-resolution vaccines that protect against future viral outbreaks.
Collapse
Affiliation(s)
- Sriharshita Musunuri
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Payton A B Weidenbacher
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Peter S Kim
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA.
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
2
|
Oliveira RJD. Coordinate-Dependent Drift-Diffusion Reveals the Kinetic Intermediate Traps of Top7-Based Proteins. J Phys Chem B 2022; 126:10854-10869. [PMID: 36519977 DOI: 10.1021/acs.jpcb.2c07031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The computer-designed Top7 served as a scaffold to produce immunoreactive proteins by grafting of the 2F5 HIV-1 antibody epitope (Top7-2F5) followed by biotinylation (Top7-2F5-biotin). The resulting nonimmunoglobulin affinity proteins were effective in inducing and detecting the HIV-1 antibody. However, the grafted Top7-2F5 design led to protein aggregation, as opposed to the soluble biotinylated Top7-2F5-biotin. The structure-based model predicted that the thermodynamic cooperativity of Top7 increases after grafting and biotin-labeling, reducing their intermediate state populations. In this work, the folding kinetic traps that might contribute to the aggregation propensity are investigated by the diffusion theory. Since the engineered proteins have similar sequence and structural homology, they served as protein models to study the kinetic intermediate traps that were uncovered by characterizing the position-dependent drift-velocity (v(Q)) and the diffusion (D(Q)) coefficients. These coordinate-dependent coefficients were taken into account to obtain the folding and transition path times over the free energy transition states containing the intermediate kinetic traps. This analysis may be useful to predict the aggregated kinetic traps of scaffold-epitope proteins that might compose novel diagnostic and therapeutic platforms.
Collapse
Affiliation(s)
- Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG38064-200, Brazil
| |
Collapse
|
3
|
Escobedo A, Piccirillo J, Aranda J, Diercks T, Mateos B, Garcia-Cabau C, Sánchez-Navarro M, Topal B, Biesaga M, Staby L, Kragelund BB, García J, Millet O, Orozco M, Coles M, Crehuet R, Salvatella X. A glutamine-based single α-helix scaffold to target globular proteins. Nat Commun 2022; 13:7073. [PMID: 36400768 PMCID: PMC9674830 DOI: 10.1038/s41467-022-34793-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
The binding of intrinsically disordered proteins to globular ones can require the folding of motifs into α-helices. These interactions offer opportunities for therapeutic intervention but their modulation with small molecules is challenging because they bury large surfaces. Linear peptides that display the residues that are key for binding can be targeted to globular proteins when they form stable helices, which in most cases requires their chemical modification. Here we present rules to design peptides that fold into single α-helices by instead concatenating glutamine side chain to main chain hydrogen bonds recently discovered in polyglutamine helices. The resulting peptides are uncharged, contain only natural amino acids, and their sequences can be optimized to interact with specific targets. Our results provide design rules to obtain single α-helices for a wide range of applications in protein engineering and drug design.
Collapse
Affiliation(s)
- Albert Escobedo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Jonathan Piccirillo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Juan Aranda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Tammo Diercks
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Borja Mateos
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Macarena Sánchez-Navarro
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN-CSIC), Armilla, Granada, Spain
| | - Busra Topal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Mateusz Biesaga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Lasse Staby
- REPIN and Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Birthe B Kragelund
- REPIN and Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Oscar Millet
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Avinguda Diagonal 645, 08028, Barcelona, Spain
| | - Murray Coles
- Department of Protein Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tubingen, Germany
| | - Ramon Crehuet
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
4
|
Oliveira RJD. Biotinylation Eliminates the Intermediate State of Top7 Designed with an HIV-1 Epitope. J Phys Chem B 2022; 126:7331-7342. [PMID: 36121918 DOI: 10.1021/acs.jpcb.2c04969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Broadly neutralizing antibodies against HIV-1 are rare with the 2F5 antibody being one of the most protective. Insertion of an antibody epitope into a stable and small protein scaffold overcomes many of the obstacles found to produce antibodies. However, the design leads to grafting of epitopes that may cause protein aggregation. Here, I investigated the 2F5 epitope grafted into the Top7 as the scaffold in which the resulting immunoreactive protein precipitates along the storage time, as opposed to its completely soluble biotinylated version. Molecular dynamics showed that biotinylation eliminates the intermediate state of the scaffold-epitope Top7-2F5 by switching a noncooperative to a cooperative folding. The aggregation propensity of the Top7-designed proteins is examined in light of thermodynamic cooperativity and kinetic traps along the decreasing depth of the intermediate ensemble in the free energy landscape. This protocol may predict stable and soluble scaffold-epitopes with the purpose of composing novel therapeutic and diagnostic platforms.
Collapse
Affiliation(s)
- Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| |
Collapse
|
5
|
Miniproteins in medicinal chemistry. Bioorg Med Chem Lett 2022; 71:128806. [PMID: 35660515 DOI: 10.1016/j.bmcl.2022.128806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
Miniproteins exhibit great potential as scaffolds for drug candidates because of their well-defined structure and good synthetic availability. Because of recently described methodologies for their de novo design, the field of miniproteins is emerging and can provide molecules that effectively bind to problematic targets, i.e., those that have been previously considered to be undruggable. This review describes methodologies for the development of miniprotein scaffolds and for the construction of biologically active miniproteins.
Collapse
|
6
|
Vince MJK, Holub JM. Synthesis of Scyllatoxin-Based BH3 Domain Mimetics with Diverse Patterns of Native Disulfide Bonds. Curr Protoc 2022; 2:e526. [PMID: 35994574 DOI: 10.1002/cpz1.526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article outlines the design and development of scyllatoxin (ScTx)-based BH3 domain mimetics with diverse patterns of native disulfide bonds. More specifically, this method summarizes the total chemical synthesis of ScTx-based peptides that contain zero, one, two, or three disulfide linkages, including techniques to generate variants with any combination of native disulfides. Each peptide reported herein is generated on solid-phase support using microwave-assisted coupling procedures, and all reaction parameters related to the peptide synthesis are described in detail. The various disulfide patterns of the ScTx-based constructs are established during peptide synthesis and are ultimately verified by mass analysis of trypsin-digested fragments. The BH3 domain mimetics developed herein were generated by transposing residues from the helical BH3 domain of the pro-apoptotic BCL2 protein Bax to the α-helix of wild-type ScTx. Interestingly, we found that the relative binding affinities of ScTx-Bax peptides for the anti-apoptotic BCL2 protein Bcl-2 (proper) were heavily influenced by the number and position of disulfide linkages within the ScTx-Bax sequence. As a consequence, we were able to utilize ScTx-Bax BH3 domain mimetics with varied patterns of disulfide bonds to survey how structural rigidity within the helical Bax BH3 domain affects binding to promiscuous anti-apoptotic BCL2 proteins. More broadly, the ability to generate ScTx-based molecules that contain any combination of native disulfide bonds expands the utility of such constructs as tools to study the molecular nature of protein-protein interactions. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Synthesis and characterization of ScTx-based Bax BH3 domain mimetics Basic Protocol 2: Oxidation of ScTx-Bax BH3 domain mimetics containing one, two, or three disulfide linkages Support Protocol: Mapping of disulfide linkages in oxidized ScTx-Bax BH3 domain mimetics.
Collapse
Affiliation(s)
- Matthew J K Vince
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio
- Institut für Bioanalytische Chemie, Fakultät für Chemie und Mineralogie, Universität Leipzig, Leipzig, Germany
- Biotechnologisch-Biomedizinisches Zentrum, Universität Leipzig, Leipzig, Germany
| | - Justin M Holub
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
| |
Collapse
|
7
|
Madden SK, Itzhaki LS. Exploring the binding of rationally engineered tandem-repeat proteins to E3 ubiquitin ligase Keap1. Protein Eng Des Sel 2021; 34:gzab027. [PMID: 34882773 PMCID: PMC8660007 DOI: 10.1093/protein/gzab027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 11/12/2022] Open
Abstract
The process of displaying functional peptides by 'grafting' them onto loops of a stable protein scaffold can be used to impart binding affinity for a target, but it can be difficult to predict the affinity of the grafted peptide and the effect of grafting on scaffold stability. In this study, we show that a series of peptides that bind to the E3 ubiquitin ligase Keap1 can be grafted into the inter-repeat loop of a consensus-designed tetratricopeptide repeat (CTPR) protein resulting in proteins with high stability. We found that these CTPR-grafted peptides had similar affinities to their free peptide counterparts and achieved a low nanomolar range. This result is likely due to a good structural match between the inter-repeat loop of the CTPR and the Keap1-binding peptide. The grafting process led to the discovery of a new Keap1-binding peptide, Ac-LDPETGELL-NH2, with low nanomolar affinity for Keap1, highlighting the potential of the repeat-protein class for application in peptide display.
Collapse
Affiliation(s)
- Sarah K Madden
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| |
Collapse
|
8
|
Ikeda T, Tennyson RL, Walker SN, Harris RS, McNaughton BR. Evolved Proteins Inhibit Entry of Enfuvirtide-Resistant HIV-1. ACS Infect Dis 2019; 5:634-640. [PMID: 30811933 DOI: 10.1021/acsinfecdis.8b00362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Drugs that block HIV-1 entry are relatively limited. Enfuvirtide is a 36-residue synthetic peptide that targets gp41 and blocks viral fusion. However, Enfuvirtide-resistant HIV has been reported, and this peptide drug requires daily injection. Previously, we have reported helix-grafted display proteins, consisting of HIV-1 gp41 C-peptide helix grafted onto Pleckstrin Homology domains. Some of these biologics inhibit HIV-1 entry with relatively modest and varied potency (IC50 = 190 nM to >1 μM). Here, we report that gp41 C-peptide helix-grafted Sac7d (Sac7d-Cpep) potently suppresses HIV-1 entry in a live virus assay (IC50 = 1.9-12.4 nM). Yeast display sequence optimization of solvent exposed helix residues led to new biologics with improved expression in E. coli (a common biosimilar expression host), with no appreciable change in entry inhibition. Evolved proteins inhibit the entry of a clinically relevant mutant of HIV-1 that is gp41 C-peptide sensitive and Enfuvirtide resistant. Fusion proteins designed for serum stability also potently suppress HIV-1 entry. Collectively, we report several evolved biologics that are functional against an Enfuvirtide-resistant strain and are designed for serum stability.
Collapse
Affiliation(s)
- Terumasa Ikeda
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 2231 6th Street S.E., Minneapolis, Minnesota 55455, United States
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States
| | - Rachel L. Tennyson
- Department of Chemistry, Colorado State University, 200 W. Lake Street, Fort Collins, Colorado 80523, United States
| | - Susanne N. Walker
- Department of Chemistry, Colorado State University, 200 W. Lake Street, Fort Collins, Colorado 80523, United States
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 2231 6th Street S.E., Minneapolis, Minnesota 55455, United States
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States
| | - Brian R. McNaughton
- Department of Chemistry, Colorado State University, 200 W. Lake Street, Fort Collins, Colorado 80523, United States
| |
Collapse
|
9
|
Madden SK, Perez‐Riba A, Itzhaki LS. Exploring new strategies for grafting binding peptides onto protein loops using a consensus-designed tetratricopeptide repeat scaffold. Protein Sci 2019; 28:738-745. [PMID: 30746804 PMCID: PMC6423998 DOI: 10.1002/pro.3586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/27/2022]
Abstract
Peptide display approaches, in which peptide epitopes of known binding activities are grafted onto stable protein scaffolds, have been developed to constrain the peptide in its bioactive conformation and to enhance its stability. However, peptide grafting can be a lengthy process requiring extensive computational modeling and/or optimisation by directed evolution techniques. In this study, we show that ultra-stable consensus-designed tetratricopeptide repeat (CTPR) proteins are amenable to the grafting of peptides that bind the Kelch-like ECH-associated protein 1 (Keap1) onto the loop between adjacent repeats. We explore simple strategies to optimize the grafting process and show that modest improvements in Keap1-binding affinity can be obtained by changing the composition of the linker sequence flanking either side of the binding peptide.
Collapse
Affiliation(s)
- Sarah K. Madden
- Department of PharmacologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Albert Perez‐Riba
- Department of PharmacologyUniversity of CambridgeCambridgeUnited Kingdom
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
| | - Laura S. Itzhaki
- Department of PharmacologyUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
10
|
Designing macrocyclic disulfide-rich peptides for biotechnological applications. Nat Chem Biol 2018; 14:417-427. [DOI: 10.1038/s41589-018-0039-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
|
11
|
Holub JM. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents. Drug Dev Res 2017; 78:268-282. [PMID: 28799168 DOI: 10.1002/ddr.21408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin M Holub
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
12
|
Nishihara T, Kitada H, Fujiwara D, Fujii I. Macrocyclization and labeling of helix-loop-helix peptide with intramolecular bis-thioether linkage. Biopolymers 2017; 106:415-21. [PMID: 26917088 DOI: 10.1002/bip.22826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/27/2016] [Accepted: 02/13/2016] [Indexed: 11/07/2022]
Abstract
Conformationally constrained peptides have been developed as an inhibitor for protein-protein interactions (PPIs), and we have de novo designed cyclized helix-loop-helix (cHLH) peptide with a disulfide bond consisting of 40 amino acids to generate molecular-targeting peptides. However, synthesis of long peptides has sometimes resulted in low yield according to the respective amino acid sequences. Here we developed a method for efficient synthesis and labeling for cHLH peptides. First, we synthesized two peptide fragments and connected them by the copper-mediated alkyne and azide cycloaddition (CuAAC) reaction. Cyclization was performed by bis-thioether linkage using 1,3-dibromomethyl-5-propargyloxybenzene, and subsequently, the cHLH peptide was labeled with an azide-labeled probe. Finally, we designed and synthesized a peptide inhibitor for the p53-HDM2 interaction using a structure-guided design and successfully labeled it with a fluorescent probe or a functional peptide, respectively, by click chemistry. This macrocyclization and labeling method for cHLH peptide would facilitate the discovery of de novo bioactive ligands and therapeutic leads. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 415-421, 2016.
Collapse
Affiliation(s)
- Toshio Nishihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Hidekazu Kitada
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Daisuke Fujiwara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Ikuo Fujii
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
13
|
Abstract
Computational grafting of target residues onto existing protein scaffolds is a powerful method for the design of proteins with novel function. In the grafting method side chain mutations are introduced into a preexisting protein scaffold to recreate a target functional motif. The success of this approach relies on two primary criteria: (1) the availability of compatible structural scaffolds, and (2) the introduction of mutations that do not affect the protein structure or stability. To identify compatible structural motifs we use the Erebus webserver, to search the protein data bank (PDB) for user-defined structural scaffolds. To identify potential design mutations we use the Eris webserver, which accurately predicts changes in protein stability resulting from mutations. Mutations that increase the protein stability are more likely to maintain the protein structure and therefore produce the desired function. Together these tools provide effective methods for identifying existing templates and guiding further design experiments. The software tools for scaffold searching and design are available at http://dokhlab.org .
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David D Mowrey
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
14
|
Fujiwara D, Kitada H, Oguri M, Nishihara T, Michigami M, Shiraishi K, Yuba E, Nakase I, Im H, Cho S, Joung JY, Kodama S, Kono K, Ham S, Fujii I. A Cyclized Helix-Loop-Helix Peptide as a Molecular Scaffold for the Design of Inhibitors of Intracellular Protein-Protein Interactions by Epitope and Arginine Grafting. Angew Chem Int Ed Engl 2016; 55:10612-5. [DOI: 10.1002/anie.201603230] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/07/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Daisuke Fujiwara
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Hidekazu Kitada
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Masahiro Oguri
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Toshio Nishihara
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Masataka Michigami
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Kazunori Shiraishi
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Eiji Yuba
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Ikuhiko Nakase
- N2RC; Osaka Prefecture University; 1-2, Gakuen-cho, Naka-ku Osaka 599-8570 Japan
| | - Haeri Im
- Department of Chemistry; Sookmyung Women's University; Hyochangwongil 52, Yongsanku Seoul 140-742 Korea
| | - Sunhee Cho
- Department of Chemistry; Sookmyung Women's University; Hyochangwongil 52, Yongsanku Seoul 140-742 Korea
| | - Jong Young Joung
- Department of Chemistry; Sookmyung Women's University; Hyochangwongil 52, Yongsanku Seoul 140-742 Korea
| | - Seiji Kodama
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Kenji Kono
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Sihyun Ham
- Department of Chemistry; Sookmyung Women's University; Hyochangwongil 52, Yongsanku Seoul 140-742 Korea
| | - Ikuo Fujii
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| |
Collapse
|
15
|
Fujiwara D, Kitada H, Oguri M, Nishihara T, Michigami M, Shiraishi K, Yuba E, Nakase I, Im H, Cho S, Joung JY, Kodama S, Kono K, Ham S, Fujii I. A Cyclized Helix-Loop-Helix Peptide as a Molecular Scaffold for the Design of Inhibitors of Intracellular Protein-Protein Interactions by Epitope and Arginine Grafting. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Daisuke Fujiwara
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Hidekazu Kitada
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Masahiro Oguri
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Toshio Nishihara
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Masataka Michigami
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Kazunori Shiraishi
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Eiji Yuba
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Ikuhiko Nakase
- N2RC; Osaka Prefecture University; 1-2, Gakuen-cho, Naka-ku Osaka 599-8570 Japan
| | - Haeri Im
- Department of Chemistry; Sookmyung Women's University; Hyochangwongil 52, Yongsanku Seoul 140-742 Korea
| | - Sunhee Cho
- Department of Chemistry; Sookmyung Women's University; Hyochangwongil 52, Yongsanku Seoul 140-742 Korea
| | - Jong Young Joung
- Department of Chemistry; Sookmyung Women's University; Hyochangwongil 52, Yongsanku Seoul 140-742 Korea
| | - Seiji Kodama
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Kenji Kono
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| | - Sihyun Ham
- Department of Chemistry; Sookmyung Women's University; Hyochangwongil 52, Yongsanku Seoul 140-742 Korea
| | - Ikuo Fujii
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; 1-1, Gakuen-cho, Naka-ku Osaka 599-8531 Japan
| |
Collapse
|
16
|
When the Scaffold Cannot Be Ignored: The Role of the Hydrophobic Core in Ligand Binding and Specificity. J Mol Biol 2015; 427:3316-3326. [PMID: 26301601 DOI: 10.1016/j.jmb.2015.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 11/21/2022]
Abstract
The traditional view of protein-ligand binding treats a protein as comprising distinct binding epitopes on the surface of a degenerate structural scaffold, largely ignoring the impact of a protein's energy landscape. To determine the robustness of this simplification, we compared two small helix-turn-helix transcription factors with different energy landscapes. λ-Repressor is stable and well folded, while MarA appears to be marginally stable with multiple native conformations (molten). While λ-repressor is known to tolerate any hydrophobic mutation in the core, we find MarA drastically less tolerant to core mutation. Moreover, core mutations in MarA (distant from the DNA-binding interface) change the relative affinities of its binding partners, altering ligand specificity. These results can be explained by taking into account the effects of mutations on the entire energy landscape and not just the native state. Thus, for proteins with multiple conformations that are close in energy, such as many intrinsically disordered proteins, residues distant from the active site can alter both binding affinity and specificity.
Collapse
|
17
|
Computational design and experimental verification of a symmetric protein homodimer. Proc Natl Acad Sci U S A 2015; 112:10714-9. [PMID: 26269568 DOI: 10.1073/pnas.1505072112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homodimers are the most common type of protein assembly in nature and have distinct features compared with heterodimers and higher order oligomers. Understanding homodimer interactions at the atomic level is critical both for elucidating their biological mechanisms of action and for accurate modeling of complexes of unknown structure. Computation-based design of novel protein-protein interfaces can serve as a bottom-up method to further our understanding of protein interactions. Previous studies have demonstrated that the de novo design of homodimers can be achieved to atomic-level accuracy by β-strand assembly or through metal-mediated interactions. Here, we report the design and experimental characterization of a α-helix-mediated homodimer with C2 symmetry based on a monomeric Drosophila engrailed homeodomain scaffold. A solution NMR structure shows that the homodimer exhibits parallel helical packing similar to the design model. Because the mutations leading to dimer formation resulted in poor thermostability of the system, design success was facilitated by the introduction of independent thermostabilizing mutations into the scaffold. This two-step design approach, function and stabilization, is likely to be generally applicable, especially if the desired scaffold is of low thermostability.
Collapse
|
18
|
Walker SN, Tennyson RL, Chapman AM, Kennan AJ, McNaughton BR. GLUE that sticks to HIV: a helix-grafted GLUE protein that selectively binds the HIV gp41 N-terminal helical region. Chembiochem 2014; 16:219-22. [PMID: 25477243 DOI: 10.1002/cbic.201402531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Indexed: 12/11/2022]
Abstract
Methods for the stabilization of well-defined helical peptide drugs and basic research tools have received considerable attention in the last decade. Here, we report the stable and functional display of an HIV gp41 C-peptide helix mimic on a GRAM-Like Ubiquitin-binding in EAP45 (GLUE) protein. C-peptide helix-grafted GLUE selectively binds a mimic of the N-terminal helical region of gp41, a well-established HIV drug target, in a complex cellular environment. Additionally, the helix-grafted GLUE is folded in solution, stable in human serum, and soluble in aqueous solutions, and thus overcomes challenges faced by a multitude of peptide drugs, including those derived from HIV gp41 C-peptide.
Collapse
Affiliation(s)
- Susanne N Walker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523 (USA)
| | | | | | | | | |
Collapse
|
19
|
Oshiro S, Honda S. Imparting albumin-binding affinity to a human protein by mimicking the contact surface of a bacterial binding protein. ACS Chem Biol 2014; 9:1052-60. [PMID: 24533528 DOI: 10.1021/cb400946m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (KD = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13-15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another.
Collapse
Affiliation(s)
- Satoshi Oshiro
- Department
of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shinya Honda
- Department
of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Biomedical
Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
20
|
Borgo B, Havranek JJ. Motif-directed redesign of enzyme specificity. Protein Sci 2014; 23:312-20. [PMID: 24407908 PMCID: PMC3945839 DOI: 10.1002/pro.2417] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/29/2013] [Indexed: 11/21/2022]
Abstract
Computational protein design relies on several approximations, including the use of fixed backbones and rotamers, to reduce protein design to a computationally tractable problem. However, allowing backbone and off-rotamer flexibility leads to more accurate designs and greater conformational diversity. Exhaustive sampling of this additional conformational space is challenging, and often impossible. Here, we report a computational method that utilizes a preselected library of native interactions to direct backbone flexibility to accommodate placement of these functional contacts. Using these native interaction modules, termed motifs, improves the likelihood that the interaction can be realized, provided that suitable backbone perturbations can be identified. Furthermore, it allows a directed search of the conformational space, reducing the sampling needed to find low energy conformations. We implemented the motif-based design algorithm in Rosetta, and tested the efficacy of this method by redesigning the substrate specificity of methionine aminopeptidase. In summary, native enzymes have evolved to catalyze a wide range of chemical reactions with extraordinary specificity. Computational enzyme design seeks to generate novel chemical activities by altering the target substrates of these existing enzymes. We have implemented a novel approach to redesign the specificity of an enzyme and demonstrated its effectiveness on a model system.
Collapse
Affiliation(s)
- Benjamin Borgo
- Program in Computational and Systems Biology, Washington University in St. Louis, St. Louis, Missouri, 63110
| | | |
Collapse
|
21
|
Sensitivity of immune response quality to influenza helix 190 antigen structure displayed on a modular virus-like particle. Vaccine 2013; 31:4428-35. [PMID: 23845811 DOI: 10.1016/j.vaccine.2013.06.087] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/24/2013] [Accepted: 06/25/2013] [Indexed: 12/15/2022]
Abstract
Biomolecular engineering enables synthesis of improved proteins through synergistic fusion of modules from unrelated biomolecules. Modularization of peptide antigen from an unrelated pathogen for presentation on a modular virus-like particle (VLP) represents a new and promising approach to synthesize safe and efficacious vaccines. Addressing a key knowledge gap in modular VLP engineering, this study investigates the underlying fundamentals affecting the ability of induced antibodies to recognize the native pathogen. Specifically, this quality of immune response is correlated to the peptide antigen module structure. We modularized a helical peptide antigen element, helix 190 (H190) from the influenza hemagglutinin (HA) receptor binding region, for presentation on murine polyomavirus VLP, using two strategies aimed to promote H190 helicity on the VLP. In the first strategy, H190 was flanked by GCN4 structure-promoting elements within the antigen module; in the second, dual H190 copies were arrayed as tandem repeats in the module. Molecular dynamics simulation predicted that tandem repeat arraying would minimize secondary structural deviation of modularized H190 from its native conformation. In vivo testing supported this finding, showing that although both modularization strategies conferred high H190-specific immunogenicity, tandem repeat arraying of H190 led to a strikingly higher immune response quality, as measured by ability to generate antibodies recognizing a recombinant HA domain and split influenza virion. These findings provide new insights into the rational engineering of VLP vaccines, and could ultimately enable safe and efficacious vaccine design as an alternative to conventional approaches necessitating pathogen cultivation.
Collapse
|
22
|
Robinson JA. Max Bergmann lecture protein epitope mimetics in the age of structural vaccinology. J Pept Sci 2013; 19:127-40. [PMID: 23349031 PMCID: PMC3592999 DOI: 10.1002/psc.2482] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/09/2022]
Abstract
This review highlights the growing importance of protein epitope mimetics in the discovery of new biologically active molecules and their potential applications in drug and vaccine research. The focus is on folded β-hairpin mimetics, which are designed to mimic β-hairpin motifs in biologically important peptides and proteins. An ever-growing number of protein crystal structures reveal how β-hairpin motifs often play key roles in protein-protein and protein-nucleic acid interactions. This review illustrates how using protein structures as a starting point for small-molecule mimetic design can provide novel ligands as protein-protein interaction inhibitors, as protease inhibitors, and as ligands for chemokine receptors and folded RNA targets, as well as novel antibiotics to combat the growing health threat posed by the emergence of antibiotic-resistant bacteria. The β-hairpin antibiotics are shown to target a β-barrel outer membrane protein (LptD) in Pseudomonas sp., which is essential for the biogenesis of the outer cell membrane. Another exciting prospect is that protein epitope mimetics will be of increasing importance in synthetic vaccine design, in the emerging field of structural vaccinology. Crystal structures of protective antibodies bound to their pathogen-derived epitopes provide an ideal starting point for the design of synthetic epitope mimetics. The mimetics can be delivered to the immune system in a highly immunogenic format on the surface of synthetic virus-like particles. The scientific challenges in molecular design remain great, but the potential significance of success in this area is even greater.
Collapse
Affiliation(s)
- John A Robinson
- Chemistry Department, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
23
|
|
24
|
Tlatli R, Nozach H, Collet G, Beau F, Vera L, Stura E, Dive V, Cuniasse P. Grafting of functional motifs onto protein scaffolds identified by PDB screening--an efficient route to design optimizable protein binders. FEBS J 2012; 280:139-59. [PMID: 23121732 DOI: 10.1111/febs.12056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/19/2012] [Accepted: 10/30/2012] [Indexed: 12/23/2022]
Abstract
Artificial miniproteins that are able to target catalytic sites of matrix metalloproteinases (MMPs) were designed using a functional motif-grafting approach. The motif corresponded to the four N-terminal residues of TIMP-2, a broad-spectrum protein inhibitor of MMPs. Scaffolds that are able to reproduce the functional topology of this motif were obtained by exhaustive screening of the Protein Data Bank (PDB) using STAMPS software (search for three-dimensional atom motifs in protein structures). Ten artificial protein binders were produced. The designed proteins bind catalytic sites of MMPs with affinities ranging from 450 nm to 450 μm prior to optimization. The crystal structure of one artificial binder in complex with the catalytic domain of MMP-12 showed that the inter-molecular interactions established by the functional motif in the artificial binder corresponded to those found in the MMP-14-TIMP-2 complex, albeit with some differences in geometry. Molecular dynamics simulations of the ten binders in complex with MMP-14 suggested that these scaffolds may allow partial reproduction of native inter-molecular interactions, but differences in geometry and stability may contribute to the lower affinity of the artificial protein binders compared to the natural protein binder. Nevertheless, these results show that the in silico design method used provides sets of protein binders that target a specific binding site with a good rate of success. This approach may constitute the first step of an efficient hybrid computational/experimental approach to protein binder design.
Collapse
Affiliation(s)
- Rym Tlatli
- Service d'Ingénierie Moléculaire des Protéines, Institut de Biologie et Technologies de Saclay (IBITEC-S), Commissariat à l'Energie Atomique, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Guarise C, Shinde S, Kibler K, Ghirlanda G, Prins LJ, Scrimin P. A multivalent HIV-1 fusion inhibitor based on small helical foldamers. Tetrahedron 2012; 68:4346-4352. [PMID: 32287423 PMCID: PMC7125900 DOI: 10.1016/j.tet.2012.03.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/21/2012] [Accepted: 03/20/2012] [Indexed: 11/19/2022]
Abstract
The peptide sequence AcNH-TEG-Glu-Aib-Trp-AibAib-Trp-AibAib-Ile-Asp-OH (1), designed to display the WWI epitope found near the C-terminus of gp41, an envelope glycoprotein decorating the surface of the HIV-1 virus, has been synthesized and proved to have a relevant content of helical conformation because of the presence of five α-aminoisobutyric acid (Aib) units. Three copies of it have been connected to a tripodal platform based on 2,4,6-triethylbenzene-1,3,5-trimethylamine. The tripodal template 2 is even more structured than 1 thus suggesting a significant interaction between the three sequences connected to the platform. Preliminary inhibition assays of HIV-mediated cell fusion indicated that while the single peptide 1 is inactive within the concentration range of our assay, when it is conjugated to the tripodal platform, it is moderately active. These promising results suggest that our approach constitute a valid alternative to those reported so far.
Collapse
Affiliation(s)
- Cristian Guarise
- University of Padova, Department of Chemical Sciences, via Marzolo 1, 35131 Padova, Italy
| | - Sandip Shinde
- Arizona State University, Department of Chemistry and Biochemistry, PO Box 871604, Tempe, AZ 85287-1604, USA
| | - Karen Kibler
- The Biodesign Institute at the Arizona State University, Center for Infectious Diseases and Vaccinology, Tempe, AZ 85287-5401, USA
| | - Giovanna Ghirlanda
- Arizona State University, Department of Chemistry and Biochemistry, PO Box 871604, Tempe, AZ 85287-1604, USA
| | - Leonard J. Prins
- University of Padova, Department of Chemical Sciences, via Marzolo 1, 35131 Padova, Italy
| | - Paolo Scrimin
- University of Padova, Department of Chemical Sciences, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
26
|
Azoitei ML, Ban YEA, Julien JP, Bryson S, Schroeter A, Kalyuzhniy O, Porter JR, Adachi Y, Baker D, Pai EF, Schief WR. Computational design of high-affinity epitope scaffolds by backbone grafting of a linear epitope. J Mol Biol 2011; 415:175-92. [PMID: 22061265 PMCID: PMC7105911 DOI: 10.1016/j.jmb.2011.10.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 10/01/2011] [Accepted: 10/04/2011] [Indexed: 11/23/2022]
Abstract
Computational grafting of functional motifs onto scaffold proteins is a promising way to engineer novel proteins with pre-specified functionalities. Typically, protein grafting involves the transplantation of protein side chains from a functional motif onto structurally homologous regions of scaffold proteins. Using this approach, we previously transplanted the human immunodeficiency virus 2F5 and 4E10 epitopes onto heterologous proteins to design novel “epitope-scaffold” antigens. However, side-chain grafting is limited by the availability of scaffolds with compatible backbone for a given epitope structure and offers no route to modify backbone structure to improve mimicry or binding affinity. To address this, we report here a new and more aggressive computational method—backbone grafting of linear motifs—that transplants the backbone and side chains of linear functional motifs onto scaffold proteins. To test this method, we first used side-chain grafting to design new 2F5 epitope scaffolds with improved biophysical characteristics. We then independently transplanted the 2F5 epitope onto three of the same parent scaffolds using the newly developed backbone grafting procedure. Crystal structures of side-chain and backbone grafting designs showed close agreement with both the computational models and the desired epitope structure. In two cases, backbone grafting scaffolds bound antibody 2F5 with 30- and 9-fold higher affinity than corresponding side-chain grafting designs. These results demonstrate that flexible backbone methods for epitope grafting can significantly improve binding affinities over those achieved by fixed backbone methods alone. Backbone grafting of linear motifs is a general method to transplant functional motifs when backbone remodeling of the target scaffold is necessary.
Collapse
Affiliation(s)
- Mihai L Azoitei
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Azoitei ML, Correia BE, Ban YEA, Carrico C, Kalyuzhniy O, Chen L, Schroeter A, Huang PS, McLellan JS, Kwong PD, Baker D, Strong RK, Schief WR. Computation-guided backbone grafting of a discontinuous motif onto a protein scaffold. Science 2011; 334:373-6. [PMID: 22021856 DOI: 10.1126/science.1209368] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.
Collapse
Affiliation(s)
- Mihai L Azoitei
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sawada T, Ishiguro K, Takahashi T, Mihara H. A novel β-loop scaffold of phage-displayed peptides for highly specific affinities. MOLECULAR BIOSYSTEMS 2011; 7:2558-62. [PMID: 21655618 DOI: 10.1039/c1mb05085k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Loop peptides stabilized by two β-strands were used as a scaffold for a phage displayed peptide library. Affinity-based screening for insulin provided peptides, which showed affinity constants of 10(5) M(-1) order for insulin over 100 times greater than their affinity for the structurally similar insulin-like growth factor 1. The results suggested that the scaffold offers a powerful tool for generating and screening peptides as ligands for drugs and biologics.
Collapse
Affiliation(s)
- Toshiki Sawada
- Department of Bioengineering, Tokyo Institute of Technology, 4259-B40 Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | | | | | | |
Collapse
|
29
|
Shang S, Tan S, Li K, Wu J, Lin H, Liu S, Deng Y. Glu659Leu substitution of recombinant HIV fusion inhibitor C52L induces soluble expression in Escherichia coli with equivalent anti-HIV potency. Protein Eng Des Sel 2011; 24:545-51. [PMID: 21478177 DOI: 10.1093/protein/gzr013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The C-peptides used to prevent HIV infection, such as T20 and C34, are chemically synthesized, making them costly drugs. The sensitivity of peptides to protease also restricts their clinical application. We showed previously that C52L, a recombinant peptide produced in bacteria, is a potent anti-HIV C-peptide, although most of the peptide accumulates in inclusion bodies. Here we applied leucine and glutamine scanning mutagenesis to the heptad-repeat of C52L to produce an optimized variant of C52L that is potent and soluble when expressed in bacteria. We present that the substitution of Asn656 and Glu659 with leucine (peptide L14 and L15, respectively) can increase the helical content of this peptide. These substitutions also result in soluble expression. We measured the inhibitory activities of these mutant peptides against laboratory-adapted HIV-1 strains and found that L15 and its parental peptide C52L have equivalent anti-HIV activities. Moreover, L15 was found to be more stable to proteinase K digestion than C52L. Thus, we show that the L15 peptide can be expressed in a soluble state and exhibits potent anti-HIV activity. This peptide may be further developed as an anti-HIV therapeutic and/or microbicide for the prevention of HIV sexual transmission.
Collapse
Affiliation(s)
- Shufeng Shang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Li L, Liang S, Pilcher MM, Meroueh SO. Incorporating receptor flexibility in the molecular design of protein interfaces. Protein Eng Des Sel 2009; 22:575-86. [PMID: 19643976 DOI: 10.1093/protein/gzp042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The success of antibody-based pharmaceuticals has led to a resurgence in interest in computational structure-based design. Most efforts to date have been on the redesign of existing interfaces. These efforts have mostly neglected the inherent flexibility of the receptor that is critical for binding. In this work, we extend on a previous study to perform a series of designs of protein binding interfaces by incorporating receptor flexibility using an ensemble of conformers collected from explicit-solvent molecular dynamics (MD) simulations. All designer complexes are subjected to 30 ns of MD in explicit solvent to assess for stability for a total of 480 ns of dynamics. This is followed by end-point free energy calculations whereby intermolecular potential energy, polar and non-polar solvation energy and entropy of ligand and receptor are subtracted from that of the complex and averaged over 320 snapshots collected from each of the 30 ns MD simulations. Our initial effort consisted of redesigning the interface of three well-studied complexes, namely barnase-barstar, lysozyme-antibody D1.3 and trypsin-BPTI. The design was performed with flexible backbone approach. MD simulations revealed that all three complexes remained stable. Interestingly, the redesigned trypsin-BPTI complex was significantly more favorable than the native complex. This was attributed to the favorable electrostatics and entropy that complemented the already favorable non-polar component. Another aspect of this work consisted of grafting the surface of three proteins, namely tenascin, CheY and MBP1 to bind to barnase, trypsin and lysozyme. The process was initially performed using fixed backbone, and more than 300 ns of the explicit-solvent MD simulation revealed some of the complexes to dissociate over the course of the trajectories, whereas others remained stable. Free energy calculations confirmed that the non-polar component of the free energy as computed by summing the van der Waals energy and the non-polar solvation energy was a strong predictor of stability. Four complexes (two stable and two unstable) were selected, and redesigned using multiple conformers collected from the MD simulation. The resulting designer systems were then immersed in explicit solvent and 30 ns of MD was carried out on each. Interestingly, those complexes that were initially stable remained stable, whereas one of the unstable complexes became stable following redesign with flexible backbone. Free energy calculations showed significant improvements in the affinity for most complexes, revealing that the use of multiple conformers in protein design may significantly enhance such efforts.
Collapse
Affiliation(s)
- Liwei Li
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
31
|
Bautista AD, Stephens OM, Wang L, Domaoal RA, Anderson KS, Schepartz A. Identification of a beta3-peptide HIV fusion inhibitor with improved potency in live cells. Bioorg Med Chem Lett 2009; 19:3736-8. [PMID: 19497744 PMCID: PMC2737262 DOI: 10.1016/j.bmcl.2009.05.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 05/08/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
We recently reported a beta(3)-decapeptide, betaWWI-1, that binds a validated gp41 model in vitro and inhibits gp41-mediated fusion in cell culture. Here we report six analogs of betaWWI-1 containing a variety of non-natural side chains in place of the central tryptophan of the WWI-epitope. These analogs were compared on the basis of both gp41 affinity in vitro and fusion inibition in live, HIV-infected cells. One new beta(3)-peptide, betaWXI-a, offers a significantly improved CC(50)/EC(50) ratio in the live cell assay.
Collapse
Affiliation(s)
- Arjel D Bautista
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
32
|
Liang S, Li L, Hsu WL, Pilcher MN, Uversky V, Zhou Y, Dunker AK, Meroueh SO. Exploring the molecular design of protein interaction sites with molecular dynamics simulations and free energy calculations. Biochemistry 2009; 48:399-414. [PMID: 19113835 DOI: 10.1021/bi8017043] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The significant work that has been invested toward understanding protein-protein interaction has not translated into significant advances in structure-based predictions. In particular redesigning protein surfaces to bind to unrelated receptors remains a challenge, partly due to receptor flexibility, which is often neglected in these efforts. In this work, we computationally graft the binding epitope of various small proteins obtained from the RCSB database to bind to barnase, lysozyme, and trypsin using a previously derived and validated algorithm. In an effort to probe the protein complexes in a realistic environment, all native and designer complexes were subjected to a total of nearly 400 ns of explicit-solvent molecular dynamics (MD) simulation. The MD data led to an unexpected observation: some of the designer complexes were highly unstable and decomposed during the trajectories. In contrast, the native and a number of designer complexes remained consistently stable. The unstable conformers provided us with a unique opportunity to define the structural and energetic factors that lead to unproductive protein-protein complexes. To that end we used free energy calculations following the MM-PBSA approach to determine the role of nonpolar effects, electrostatics and entropy in binding. Remarkably, we found that a majority of unstable complexes exhibited more favorable electrostatics than native or stable designer complexes, suggesting that favorable electrostatic interactions are not prerequisite for complex formation between proteins. However, nonpolar effects remained consistently more favorable in native and stable designer complexes reinforcing the importance of hydrophobic effects in protein-protein binding. While entropy systematically opposed binding in all cases, there was no observed trend in the entropy difference between native and designer complexes. A series of alanine scanning mutations of hot-spot residues at the interface of native and designer complexes showed less than optimal contacts of hot-spot residues with their surroundings in the unstable conformers, resulting in more favorable entropy for these complexes. Finally, disorder predictions revealed that secondary structures at the interface of unstable complexes exhibited greater disorder than the stable complexes.
Collapse
Affiliation(s)
- Shide Liang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gunasekera S, Foley FM, Clark RJ, Sando L, Fabri LJ, Craik DJ, Daly NL. Engineering stabilized vascular endothelial growth factor-A antagonists: synthesis, structural characterization, and bioactivity of grafted analogues of cyclotides. J Med Chem 2009; 51:7697-704. [PMID: 19053834 DOI: 10.1021/jm800704e] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclotides are plant derived mini-proteins with compact folded structures and exceptional stability. Their stability derives from a head-to-tail cyclized backbone coupled with a cystine knot arrangement of three-conserved disulfide bonds. Taking advantage of this stable framework we developed novel VEGF-A antagonists by grafting a peptide epitope involved in VEGF-A antagonism onto the stable cyclotide framework. Antagonists of this kind have potential therapeutic applications in diseases where angiogenesis is an important component of disease progression, including cancer and rheumatoid arthritis. A grafted analogue showed biological activity in an in vitro VEGF-A antagonism assay at low micromolar concentration and the in vitro stability of the target epitope was markedly increased using this approach. In general, the stabilization of bioactive peptide epitopes is a significant problem in medicinal chemistry and in the current study we have provided insight into one approach to stabilize these peptides in a biological environment.
Collapse
Affiliation(s)
- Sunithi Gunasekera
- The University of Queensland, Institute for Molecular Bioscience, Brisbane QLD 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Lederman MM, Jump R, Pilch-Cooper HA, Root M, Sieg SF. Topical application of entry inhibitors as "virustats" to prevent sexual transmission of HIV infection. Retrovirology 2008; 5:116. [PMID: 19094217 PMCID: PMC2637900 DOI: 10.1186/1742-4690-5-116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 12/18/2008] [Indexed: 11/10/2022] Open
Abstract
With the continuing march of the AIDS epidemic and little hope for an effective vaccine in the near future, work to develop a topical strategy to prevent HIV infection is increasingly important. This stated, the track record of large scale "microbicide" trials has been disappointing with nonspecific inhibitors either failing to protect women from infection or even increasing HIV acquisition. Newer strategies that target directly the elements needed for viral entry into cells have shown promise in non-human primate models of HIV transmission and as these agents have not yet been broadly introduced in regions of highest HIV prevalence, they are particularly attractive for prophylaxis. We review here the agents that can block HIV cellular entry and that show promise as topical strategies or "virustats" to prevent mucosal transmission of HIV infection.
Collapse
Affiliation(s)
- Michael M Lederman
- Department of Medicine, Case Western Reserve University, 1100 Euclid Ave, Cleveland, OH 44118, USA
| | - Robin Jump
- Department of Medicine, Case Western Reserve University, 1100 Euclid Ave, Cleveland, OH 44118, USA
| | - Heather A Pilch-Cooper
- Department of Medicine, Case Western Reserve University, 1100 Euclid Ave, Cleveland, OH 44118, USA
| | - Michael Root
- Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia PA, 19107, USA
| | - Scott F Sieg
- Department of Medicine, Case Western Reserve University, 1100 Euclid Ave, Cleveland, OH 44118, USA
| |
Collapse
|
35
|
Li Y, Kaur H, Oakley MG. Probing the Recognition Properties of the Antiparallel Coiled Coil Motif from PKN by Protein Grafting. Biochemistry 2008; 47:13564-72. [DOI: 10.1021/bi8017448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yinyin Li
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102
| | - Harmeet Kaur
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102
| | - Martha G. Oakley
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102
| |
Collapse
|
36
|
Nelson JD, Kinkead H, Brunel FM, Leaman D, Jensen R, Louis JM, Maruyama T, Bewley CA, Bowdish K, Clore GM, Dawson PE, Frederickson S, Mage RG, Richman DD, Burton DR, Zwick MB. Antibody elicited against the gp41 N-heptad repeat (NHR) coiled-coil can neutralize HIV-1 with modest potency but non-neutralizing antibodies also bind to NHR mimetics. Virology 2008; 377:170-83. [PMID: 18499210 DOI: 10.1016/j.virol.2008.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 03/11/2008] [Accepted: 04/09/2008] [Indexed: 11/28/2022]
Abstract
Following CD4 receptor binding to the HIV-1 envelope spike (Env), the conserved N-heptad repeat (NHR) region of gp41 forms a coiled-coil that is a precursor to the fusion reaction. Although it has been a target of drug and vaccine design, there are few monoclonal antibody (mAb) tools with which to probe the antigenicity and immunogenicity specifically of the NHR coiled-coil. Here, we have rescued HIV-1-neutralizing anti-NHR mAbs from immune phage display libraries that were prepared (i) from b9 rabbits immunized with a previously described mimetic of the NHR coiled-coil, N35(CCG)-N13, and (ii) from an HIV-1 infected individual. We describe a rabbit single-chain Fv fragment (scFv), 8K8, and a human Fab, DN9, which specifically recognize NHR coiled-coils that are unoccupied by peptide corresponding to the C-heptad repeat or CHR region of gp41 (e.g. C34). The epitopes of 8K8 and DN9 were found to partially overlap with that of a previously described anti-NHR mAb, IgG D5; however, 8K8 and DN9 were much more specific than D5 for unoccupied NHR trimers. The mAbs, including a whole IgG 8K8 molecule, neutralized primary HIV-1 of clades B and C in a pseudotyped virus assay with comparable, albeit relatively modest potency. Finally, a human Fab T3 and a rabbit serum (both non-neutralizing) were able to block binding of D5 and 8K8 to a gp41 NHR mimetic, respectively, but not the neutralizing activity of these mAbs. We conclude from these results that NHR coiled-coil analogs of HIV-1 gp41 elicit many Abs during natural infection and through immunization, but that due to limited accessibility to the corresponding region on fusogenic gp41 few can neutralize. Caution is therefore required in targeting the NHR for vaccine design. Nevertheless, the mAb panel may be useful as tools for elucidating access restrictions to the NHR of gp41 and in designing potential improvements to mimetics of receptor-activated Env.
Collapse
Affiliation(s)
- Josh D Nelson
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sadler K, Zhang Y, Xu J, Yu Q, Tam JP. Quaternary protein mimetics of gp41 elicit neutralizing antibodies against HIV fusion-active intermediate state. Biopolymers 2008; 90:320-9. [DOI: 10.1002/bip.20979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Nonhelical leash and alpha-helical structures determine the potency of a peptide antagonist of human T-cell leukemia virus entry. J Virol 2008; 82:4965-73. [PMID: 18305034 DOI: 10.1128/jvi.02458-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral fusion proteins mediate the entry of enveloped viral particles into cells by inducing fusion of the viral and target cell membranes. Activated fusion proteins undergo a cascade of conformational transitions and ultimately resolve into a compact trimer of hairpins or six-helix bundle structure, which pulls the interacting membranes together to promote lipid mixing. Significantly, synthetic peptides based on a C-terminal region of the trimer of hairpins are potent inhibitors of membrane fusion and viral entry, and such peptides are typically extensively alpha-helical. In contrast, an atypical peptide inhibitor of human T-cell leukemia virus (HTLV) includes alpha-helical and nonhelical leash segments. We demonstrate that both the C helix and C-terminal leash are critical to the inhibitory activities of these peptides. Amino acid side chains in the leash and C helix extend into deep hydrophobic pockets at the membrane-proximal end of the HTLV type 1 (HTLV-1) coiled coil, and these contacts are necessary for potent antagonism of membrane fusion. In addition, a single amino acid substitution within the inhibitory peptide improves peptide interaction with the core coiled coil and yields a peptide with enhanced potency. We suggest that the deep pockets on the coiled coil are ideal targets for small-molecule inhibitors of HTLV-1 entry into cells. Moreover, the extended nature of the HTLV-1-inhibitory peptide suggests that such peptides may be intrinsically amenable to modifications designed to improve inhibitory activity. Finally, we propose that leash-like mimetic peptides may be of value as entry inhibitors for other clinically important viral infections.
Collapse
|
39
|
Novel antiviral agents targeting HIV entry and transmission. Virol Sin 2008. [DOI: 10.1007/s12250-007-0046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Rajagopal S, Meyer SC, Goldman A, Zhou M, Ghosh I. A minimalist approach toward protein recognition by epitope transfer from functionally evolved beta-sheet surfaces. J Am Chem Soc 2007; 128:14356-63. [PMID: 17076509 DOI: 10.1021/ja064885b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New approaches for identifying small molecules that specifically target protein surfaces as opposed to active site clefts are of much current interest. Toward this goal, we describe a three-step methodology: in step one, we target a protein of interest by directed evolution of a small beta-sheet scaffold; in step two, we identify residues on the scaffold that are implicated in binding; and in step three, we transfer the chemical information from the beta-sheet to a small molecule mimic. As a case study, we targeted the proteolytic enzyme thrombin, involved in blood coagulation, utilizing a library of beta-sheet epitopes displayed on phage that were previously selected for conservation of structure. We found that the thrombin-binding, beta-sheet displaying mini-proteins retained their structure and stability while inhibiting thrombin at low micromolar inhibition constants. A conserved dityrosine recognition motif separated by 9.2 A was found to be common among the mini-protein inhibitors and was further verified by alanine scanning. A molecule containing two tyrosine residues separated by a linker that matched the spacing on the beta-sheet scaffold inhibited thrombin, whereas a similar dityrosine molecule separated by a shorter 6 A linker could not. Moreover, kinetic analysis revealed that both the mini-protein as well as its minimalist mimic with only two functional residues exhibited noncompetitive inhibition of thrombin. Thus, this reductionist approach affords a simple methodology for transferring information from structured protein scaffolds to yield small molecule leads for targeting protein surfaces with novel mechanisms of action.
Collapse
Affiliation(s)
- Srivats Rajagopal
- Department of Chemistry, University of Arizona, P. O. Box 210041, 1306 East University Boulevard, Tucson, Arizona 85721-0041, USA
| | | | | | | | | |
Collapse
|
41
|
Yingliang W, Hong Y, Zhijian C, Wenxin L. Conformation of Trimeric Envelope Glycoproteins: The CD4-dependent Membrane Fusion Mechanism of HIV-1. J Biomol Struct Dyn 2007; 25:1-9. [PMID: 17676933 DOI: 10.1080/07391102.2007.10507150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The HIV-1 envelope glycoproteins are assembled by the trimeric gp120s and gp41s proteins. The gp120 binds sequentially to CD4 and coreceptor for initiating virus entry. Because of noncovalent interaction and heavy glycosylation for envelope glycoproteins, it is highly difficult to determine entire envelope glycoproteins structure now. Such question extremely limits our good understanding of HIV-1 membrane fusion mechanism. Here, a novel and reasonable assembly model of trimeric gp120s and gp41s was proposed based on the conformational dynamics of trimeric gp120-gp41 complex and gp41, respectively. As for gp41, the heptad repeat sequences in the gp41 C-terminal is of enormous flexibility. On the contrary, the heptad repeat sequences in the gp41 N-terminal likely present stable three-helical bundle due to strong nonpolar interaction, and they were predicted to associate three alpha1 helixes from the non-neutralizing face of the gp120 inner domain, which is quite similar to gp41 fusion core structure. Such interaction likely leads to the formation of noncovalent gp120-gp41 complex. In the proposed assembly of trimeric gp120-gp41 complex, three gp120s present not only perfectly complementary and symmetrical distribution around the gp41, but also different flexibility degree in the different structural domains. Thus, the new model can well explain numerous experimental phenomena, present plenty of structural information, elucidate effectively HIV-1 membrane fusion mechanism, and direct to further develop vaccine and novel fusion inhibitors.
Collapse
Affiliation(s)
- Wu Yingliang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | |
Collapse
|
42
|
Binz HK, Plückthun A. Engineered proteins as specific binding reagents. Curr Opin Biotechnol 2007; 16:459-69. [PMID: 16005204 DOI: 10.1016/j.copbio.2005.06.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 06/10/2005] [Accepted: 06/24/2005] [Indexed: 11/20/2022]
Abstract
Over the past 30 years, monoclonal antibodies have become the standard binding proteins and currently find applications in research, diagnostics and therapy. Yet, monoclonal antibodies now face strong competition from synthetic antibody libraries in combination with powerful library selection technologies. More recently, an increased understanding of other natural binding proteins together with advances in protein engineering, selection and evolution technologies has also triggered the exploration of numerous other protein architectures for the generation of designed binding molecules. Valuable protein-binding scaffolds have been obtained and represent promising alternatives to antibodies for biotechnological and, potentially, clinical applications.
Collapse
Affiliation(s)
- H Kaspar Binz
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
43
|
Kritzer JA, Zutshi R, Cheah M, Ran FA, Webman R, Wongjirad TM, Schepartz A. Miniature Protein Inhibitors of the p53-hDM2 Interaction. Chembiochem 2006; 7:29-31. [PMID: 16397877 DOI: 10.1002/cbic.200500324] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Joshua A Kritzer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06511, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Stephens OM, Kim S, Welch BD, Hodsdon ME, Kay MS, Schepartz A. Inhibiting HIV fusion with a beta-peptide foldamer. J Am Chem Soc 2005; 127:13126-7. [PMID: 16173723 PMCID: PMC2873035 DOI: 10.1021/ja053444+] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Linear peptides derived from the HIV gp41 C-terminus (C-peptides), such as the 36-residue Fuzeon, are potent HIV fusion inhibitors. These molecules bind to the N-peptide region of gp41 and inhibit an intramolecular protein-protein interaction that powers fusion of the viral and host cell membranes. The N-peptide region contains a surface pocket that is occupied in the post-fusion state by three alpha-helical residues found near the gp41 C-terminus: Trp628, Trp631, and Ile635-the WWI epitope. Here, we describe a set of beta3-decapeptides (betaWWI-1-4) in which the WWI epitope is presented on one face of a short 14-helix stabilized by macrodipole neutralization and side chain-side chain salt bridges. betaWWI-1-4 bind in vitro to IZN17, a validated gp41 model, and inhibit syncytia formation in cell culture. Molecules lacking a complete WWI functional epitope neither bind IZN17 nor inhibit syncytia formation. These results provide evidence that short beta-peptide 14-helices can inhibit an intramolecular protein-protein interaction in vivo. Molecules related to betaWWI-1-4 could represent starting points for the development of highly potent inhibitors or antigens effective against HIV or other viruses, including SARS, Ebola, HRSV, and influenza, that employ common fusion mechanisms.
Collapse
|
45
|
Binz HK, Amstutz P, Plückthun A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 2005; 23:1257-68. [PMID: 16211069 DOI: 10.1038/nbt1127] [Citation(s) in RCA: 502] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Not all adaptive immune systems use the immunoglobulin fold as the basis for specific recognition molecules: sea lampreys, for example, have evolved an adaptive immune system that is based on leucine-rich repeat proteins. Additionally, many other proteins, not necessarily involved in adaptive immunity, mediate specific high-affinity interactions. Such alternatives to immunoglobulins represent attractive starting points for the design of novel binding molecules for research and clinical applications. Indeed, through progress and increased experience in library design and selection technologies, gained not least from working with synthetic antibody libraries, researchers have now exploited many of these novel scaffolds as tailor-made affinity reagents. Significant progress has been made not only in the basic science of generating specific binding molecules, but also in applications of the selected binders in laboratory procedures, proteomics, diagnostics and therapy. Challenges ahead include identifying applications where these novel proteins can not only be an alternative, but can enable approaches so far deemed technically impossible, and delineate those therapeutic applications commensurate with the molecular properties of the respective proteins.
Collapse
Affiliation(s)
- H Kaspar Binz
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | |
Collapse
|
46
|
Ni L, Zhao L, Qian Y, Zhu J, Jin Z, Chen YW, Tien P, Gao GF. Design and Characterization of Human Respiratory Syncytial Virus Entry Inhibitors. Antivir Ther 2005. [DOI: 10.1177/135965350501000707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human respiratory syncytial virus (hRSV) is a pathogen of worldwide health concern. The crucial membrane fusion event during viral entry into host cells involves a ‘trimer-of-hairpins’ structure that brings the amino (N)- and carboxy (C)-terminal regions of the viral fusion glycoprotein (F protein) into close proximity. Two heptad repeat regions that are highly conserved in the F protein - HR1 (N-terminal) and HR2 (C-terminal) - have an important role in this process. It has been shown that both HR1-and HR2-based peptides can inhibit viral entry. However, these proteins, and the HR1 peptides in particular, are liable to aggregation. We designed three peptides containing multiple copies of alternating HR1 and HR2 sequences denoted 5-Helix, HR121 and HR212, respectively. The 5-Helix, HR121 and HR212 proteins were functionally analogous to single HR1, HR1 and HR2 sequences, respectively. All three proteins were expressed in soluble form and biophysical analysis showed that they exhibited α-helical secondary structures. The three proteins were potent fusion inhibitors in vitro, at the micromolar scale, with the HR1 analogues being approximately two times more effective than the HR2 analogue. Our results suggest that these rationally designed protein inhibitors could serve as a new class of anti-hRSV agents.
Collapse
Affiliation(s)
- Ling Ni
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | | | - Yuan Qian
- Capital Pediatrics Institute, Beijing, China
| | - Jieqing Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhibo Jin
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu Wai Chen
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Po Tien
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Stephens OM, Kim S, Welch BD, Hodsdon ME, Kay MS, Schepartz A. Inhibiting HIV fusion with a beta-peptide foldamer. J Am Chem Soc 2005. [PMID: 16173723 DOI: 10.1021/ja053444] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Linear peptides derived from the HIV gp41 C-terminus (C-peptides), such as the 36-residue Fuzeon, are potent HIV fusion inhibitors. These molecules bind to the N-peptide region of gp41 and inhibit an intramolecular protein-protein interaction that powers fusion of the viral and host cell membranes. The N-peptide region contains a surface pocket that is occupied in the post-fusion state by three alpha-helical residues found near the gp41 C-terminus: Trp628, Trp631, and Ile635-the WWI epitope. Here, we describe a set of beta3-decapeptides (betaWWI-1-4) in which the WWI epitope is presented on one face of a short 14-helix stabilized by macrodipole neutralization and side chain-side chain salt bridges. betaWWI-1-4 bind in vitro to IZN17, a validated gp41 model, and inhibit syncytia formation in cell culture. Molecules lacking a complete WWI functional epitope neither bind IZN17 nor inhibit syncytia formation. These results provide evidence that short beta-peptide 14-helices can inhibit an intramolecular protein-protein interaction in vivo. Molecules related to betaWWI-1-4 could represent starting points for the development of highly potent inhibitors or antigens effective against HIV or other viruses, including SARS, Ebola, HRSV, and influenza, that employ common fusion mechanisms.
Collapse
Affiliation(s)
- Olen M Stephens
- Department of Chemistry, , Yale University, New Haven, Connecticut 06520-8107, USA
| | | | | | | | | | | |
Collapse
|
48
|
Hamburger AE, Kim S, Welch BD, Kay MS. Steric accessibility of the HIV-1 gp41 N-trimer region. J Biol Chem 2005; 280:12567-72. [PMID: 15657041 DOI: 10.1074/jbc.m412770200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During human immunodeficiency virus entry, gp41 undergoes a series of conformational changes that induce membrane fusion. Immediately prior to fusion, gp41 exists in a prehairpin intermediate in which the N- and C-peptide regions of gp41 are exposed. Rearrangement of this intermediate into a six-helix bundle composed of a trimeric coiled coil from the N-peptide region (N-trimer) surrounded by three peptides from the C-peptide region provides the driving force for membrane fusion, whereas prevention of six-helix bundle formation inhibits viral entry. Because of its central role in mediating viral entry, the N-trimer region of gp41 is a key vaccine target. Extensive efforts to discover potent and broadly neutralizing antibodies (Abs) against the N-trimer region have, thus far, been unsuccessful. In this study, we attached a potent C-peptide inhibitor that binds to the N-trimer region to cargo proteins of various sizes to examine the steric accessibility of the N-trimer during fusion. These inhibitors show a progressive loss of potency with increasing cargo size. Extension of the cargo/C-peptide linker partially restores inhibitory potency. These results demonstrate that the human immunodeficiency virus defends its critical hairpin-forming machinery by steric exclusion of large proteins and may explain the current dearth of neutralizing Abs against the N-trimer. In contrast, previous results suggest the C-peptide region is freely accessible during fusion, demonstrating that the N- and C-peptide regions are in structurally distinct environments. Based on these results, we also propose new strategies for the generation of neutralizing Abs that overcome this steric block.
Collapse
Affiliation(s)
- Agnes E Hamburger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Rational design, usually guided by computational prediction, and selection from libraries of variants of natural proteins have been used with success in the engineering of novel non-natural receptors. Many of these engineered protein binders will find use in biotechnological, diagnostic and medical applications, sometimes in the place of natural antibodies.
Collapse
Affiliation(s)
- Pascale Mathonet
- Laboratoire de Biochimie Physique et des Biopolymères, Institut des Sciences de la Vie, place Louis Pasteur 1, B1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
50
|
Abstract
The first X-ray crystal structures of gp41, the protein that mediates fusion of HIV-1 to target cells, were solved in the mid-1990s. The structures provide a foundation for understanding viral entry and the mechanism of action of compounds that block fusion. The first fusion inhibitor has recently entered the clinic, and the hope is that more potent and broadly active compounds, based on molecular design, will follow.
Collapse
Affiliation(s)
- Michael B Zwick
- Departments of Immunology and Molecular Biology, The Scripps Research Institute, La Jolla, 92037 California USA
| | - Erica O Saphire
- Departments of Immunology and Molecular Biology, The Scripps Research Institute, La Jolla, 92037 California USA
| | - Dennis R Burton
- Departments of Immunology and Molecular Biology, The Scripps Research Institute, La Jolla, 92037 California USA
| |
Collapse
|