1
|
Yang H, Cheung PHH, Wu L. SAMHD1 enhances HIV-1-induced apoptosis in monocytic cells via the mitochondrial pathway. mBio 2025:e0042525. [PMID: 40434097 DOI: 10.1128/mbio.00425-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025] Open
Abstract
Sterile alpha motif (SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) inhibits HIV-1 replication in non-dividing cells by reducing the intracellular dNTP pool. While SAMHD1 is known to promote spontaneous apoptosis, its role in HIV-1-induced apoptosis and the underlying mechanisms remain unclear. In this study, we identify a novel mechanism by which SAMHD1 enhances HIV-1-induced apoptosis in monocytic cells via the mitochondrial pathway. We demonstrate that SAMHD1 enhances apoptosis induced by HIV-1 infection in dividing monocytic THP-1 and U937 cell lines, but not in differentiated macrophage-like cells. Mechanistically, SAMHD1 expression reduces mitochondrial membrane potential and promotes cytochrome c release in HIV-1-infected THP-1 cells, thereby augmenting the mitochondrial apoptotic pathway. Furthermore, SAMHD1-enhanced apoptosis is linked to elevated levels of the pro-apoptotic protein BCL-2-interacting killer (BIK) in cells, which contributes to enhanced apoptosis during HIV-1 infection. These findings reveal a previously unrecognized regulatory role of SAMHD1 in amplifying HIV-1-induced apoptosis in monocytic cells, highlighting its involvement in the mitochondrial apoptotic pathway.IMPORTANCESterile alpha motif (SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1), a dNTP triphosphohydrolase, lowers intracellular dNTP levels and restricts HIV-1 replication in non-dividing cells. HIV-1 infection induces cell death mainly through apoptosis. While we have shown that endogenous SAMHD1 enhances spontaneous apoptosis in monocytic cells, its role in HIV-1-induced apoptosis and the underlying mechanisms remain unknown. In this study, we aim to bridge this knowledge gap by investigating the functional significance of SAMHD1 in regulating apoptosis during HIV-1 infection of immune cells. Our findings reveal a novel mechanism whereby SAMHD1 enhances HIV-1-induced apoptosis in monocytic cells through the mitochondrial pathway. This suggests a previously unrecognized role of SAMHD1 in modulating cellular responses to HIV-1 infection.
Collapse
Affiliation(s)
- Hua Yang
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Pak-Hin Hinson Cheung
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Cheung PHH, Yang H, Wu L. dNTP depletion and beyond: the multifaceted nature of SAMHD1-mediated viral restriction. J Virol 2025; 99:e0030225. [PMID: 40277359 PMCID: PMC12090746 DOI: 10.1128/jvi.00302-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
SAMHD1 is a dNTPase of mammalian cells. In 2011, SAMHD1 was found to be a host restriction factor against retroviruses through dNTP reduction. Recent research provides evidence that the antiviral mechanisms of SAMHD1 cannot be explained solely by its dNTPase activity. Instead, the versatility of SAMHD1-mediated restriction of various viruses suggests that its antiviral mechanisms extend beyond dNTP depletion. This explains the multifaceted and broad restriction functions of SAMHD1 that play a significant role in innate antiviral immunity.
Collapse
Affiliation(s)
- Pak-Hin Hinson Cheung
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Hua Yang
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Martínez-López A, Tyrkalska SD, Martínez-Morcillo FJ, Abenza-Olmos C, Lozano-Gil JM, Candel S, Mulero V, García-Moreno D. SAMHD1 deficiency enhances macrophage-mediated clearance of Salmonella Typhimurium via NF-κB activation in zebrafish. Front Immunol 2025; 16:1509725. [PMID: 40352920 PMCID: PMC12062899 DOI: 10.3389/fimmu.2025.1509725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/28/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction Mutations in the gene encoding the protein containing the sterile alpha motif and the HD domain (SAMHD1) have been implicated in the occurrence of type I interferonopathies. SAMHD1 is also involved in blocking the replication of retroviruses and certain DNA viruses by reducing the intracellular amount of deoxynucleotide triphosphates (dNTPs). It has also been suggested that SAMHD1 negatively regulates interferon (IFN) and the inflammatory responses to viral infections; however, the functions and mechanisms of SAMHD1 in modulating innate immunity are still under study. Methods In our laboratory, we have generated Samhd1-deficient zebrafish larvae using CRISPR-Cas9 and studied its role in the activation of nuclear factor kappa B (NF-κB) and the induction of type I IFN (IFN-I). Results It was shown that Samhd1 deficiency results in the overactivation of the IFN-I response, assayed as the increased transcript levels of the Interferon Stimulated Genes (ISGs), but only if the larvae were stimulated with suboptimal doses of IFN-I. However, Samhd1-deficient larvae showed robust spontaneous activation of NF-κB, which led to increased larval resistance to Salmonella enterica serovar Typhimurium (STM) infection. Genetic experiments further showed that the activation of NF-κB in macrophages mediated the resistance of Samhd1-deficient larvae against STM. Discussion These findings highlight the evolutionary conserved functions of SAMHD1 in the negative regulation of the inflammatory response of vertebrates and reveal, for the first time, a critical role for SAMHD1 in the regulation of NF-κB in macrophages to clear intracellular bacterial infection.
Collapse
Affiliation(s)
- Alicia Martínez-López
- Immunology, Microbiology and Infectious Diseases, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Sylwia D. Tyrkalska
- Immunology, Microbiology and Infectious Diseases, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J. Martínez-Morcillo
- Immunology, Microbiology and Infectious Diseases, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Celular e Histología, Facultad de BiologíaUniversidad de Murcia, Murcia, Spain
| | - Constantino Abenza-Olmos
- Departamento de Biología Celular e Histología, Facultad de BiologíaUniversidad de Murcia, Murcia, Spain
| | - Juan M. Lozano-Gil
- Immunology, Microbiology and Infectious Diseases, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Celular e Histología, Facultad de BiologíaUniversidad de Murcia, Murcia, Spain
| | - Sergio Candel
- Immunology, Microbiology and Infectious Diseases, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Celular e Histología, Facultad de BiologíaUniversidad de Murcia, Murcia, Spain
| | - Victoriano Mulero
- Immunology, Microbiology and Infectious Diseases, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Celular e Histología, Facultad de BiologíaUniversidad de Murcia, Murcia, Spain
| | - Diana García-Moreno
- Immunology, Microbiology and Infectious Diseases, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Shao J, Wang W, Li S, Yin G, Han L, Wang X, Cai M, Yang T, Wang Y, Qu W, Jiao Y, Wang P, Xu H, Zhu X, Ying S, Xu S, Sheng Q, Fang J, Jiang T, Wei C, Shen Y, Shen Y. Nuclear Overexpression of SAMHD1 Induces M Phase Stalling in Hepatoma Cells and Suppresses HCC Progression by Interacting with the Cohesin Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411988. [PMID: 39679869 PMCID: PMC11809348 DOI: 10.1002/advs.202411988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Emerging evidence suggests that the sterile alpha-motif (SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is implicated in various cancers, including hepatocellular carcinoma (HCC). However, its precise role in tumor cells and the underlying mechanisms remain unclear. This study aimed to investigate the expression patterns, prognostic values, and functional role of SAMHD1 in HCC progression. We constructed liver tissue microarrays using tumor and paired paratumor tissue specimens from 187 patients with primary HCC. Our findings indicate that nuclear SAMHD1 protein levels are increased in tumors compared to paratumor tissues. Moreover, nuclear SAMHD1 levels decline in advanced tumor stages, with higher SAMHD1 nuclear staining correlating with favorable prognostic outcomes. Hepatocyte-specific SAMHD1 knockout mice, generated by crossing SAMHD1fl/fl mice with Alb-cre mice, showed accelerated tumor progression in a diethylnitrosamine (DEN)-induced HCC model. In hepatoma cell lines, nuclear overexpression of SAMHD1 inhibited cell proliferation by stalling mitosis, independent of its deoxynucleotide triphosphohydrolase (dNTPase) function. Mechanistically, SAMHD1 interacts with the cohesin complex in nucleus, enhancing sister chromatid cohesion during cell division, which delays metaphase progression. Our findings suggest that nuclear SAMHD1 plays a critical role in slowing HCC progression by regulating mitosis, highlighting its potential as a therapeutic target by manipulating cohesin dynamics.
Collapse
Affiliation(s)
- Juntang Shao
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Wei Wang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical University218 Jixi RoadHefei230022China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Anhui Medical University218 Jixi RoadHefei230022China
| | - Shiyu Li
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Guangfa Yin
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Lili Han
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Xinyu Wang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Meng Cai
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Tao Yang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Ying Wang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Wenyan Qu
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Yanhong Jiao
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Peng Wang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Hanyang Xu
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Xu Zhu
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Songcheng Ying
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Sa Xu
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Qiang Sheng
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Jian Fang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Tongcui Jiang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Chuansheng Wei
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Yujun Shen
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Yuxian Shen
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical University218 Jixi RoadHefei230022China
| |
Collapse
|
5
|
Lu S, Chen S, Zhang Y, Mou X, Li M, Zhu S, Chen X, Strandin TM, Jiang Y, Xiang Z, Liu Y, Xiong H, Guo D, Chen L, Li Y, Hou W, Luo F. Hantaan virus glycoprotein Gc induces NEDD4-dependent PTEN ubiquitination and degradation to escape the restriction of autophagosomes and facilitate viral propagation. FASEB J 2025; 39:e70295. [PMID: 39792131 PMCID: PMC11721564 DOI: 10.1096/fj.202401916r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Hantaan virus (HTNV) infection causes severe hemorrhagic fever with renal syndrome (HFRS) in humans and the infectious process can be regulated by autophagy. The phosphatase and tensin homolog (PTEN) protein has antiviral effects and plays a critical role in the autophagy pathway. However, the relationship between PTEN and HTNV infection is not clear and whether PTEN-regulated autophagy involves in HTNV replication is unknown. Here, we identified that HTNV infection inhibits PTEN expression in vitro and in vivo. The HTNV glycoprotein Gc promotes PTEN ubiquitination and degradation through 26S-proteasome pathway via the E3 ubiquitin ligase NEDD4. In addition, knockdown of PTEN prevents autophagy and increases HTNV production, while overexpression of PTEN induces autophagosome formation which can wrap HTNV particles, thus leading to restrain the production of progeny viruses. Altogether, our findings reveal the role of PTEN in HTNV infection by autophagy, highlighting the potential importance of PTEN and autophagy in the treatment of HFRS diseases.
Collapse
Affiliation(s)
- Shuang Lu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- College of Life SciencesSouth‐Central Minzu UniversityWuhanHubeiChina
| | - Shuliang Chen
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Yuqing Zhang
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Xiaoli Mou
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Mingyang Li
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Shaowei Zhu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Xingyuan Chen
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Tomas M. Strandin
- Department of Virology, MedicumUniversity of HelsinkiHelsinkiFinland
| | - Yale Jiang
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- Shenzhen Research InstituteWuhan UniversityShenzhenGuangdongChina
| | - Zhoufu Xiang
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- Shenzhen Research InstituteWuhan UniversityShenzhenGuangdongChina
| | - Yuanyuan Liu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Hairong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Deyin Guo
- Guangzhou LaboratoryGuangzhou International Bio‐IslandGuangzhouGuangdongChina
| | - Liangjun Chen
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yirong Li
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- Shenzhen Research InstituteWuhan UniversityShenzhenGuangdongChina
- School of Public HealthWuhan UniversityWuhanHubeiChina
- Hubei Provincial Key Laboratory of Allergy and ImmunologyWuhanHubeiChina
| | - Fan Luo
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- Hubei Provincial Key Laboratory of Allergy and ImmunologyWuhanHubeiChina
- Pingyuan LaboratoryXinxiangHenanChina
| |
Collapse
|
6
|
Yang H, Cheung PHH, Wu L. SAMHD1 enhances HIV-1-induced apoptosis in monocytic cells via the mitochondrial pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.632057. [PMID: 39829911 PMCID: PMC11741301 DOI: 10.1101/2025.01.08.632057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Sterile alpha motif (SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) inhibits HIV-1 replication in non-dividing cells by reducing the intracellular dNTP pool. SAMHD1 enhances spontaneous apoptosis in cells, but its effects on HIV-1-induced apoptosis and the underlying mechanisms remain unknown. Here we uncover a new mechanism by which SAMHD1 enhances HIV-1-induced apoptosis in monocytic cells through the mitochondrial pathway. We found that endogenous SAMHD1 enhances apoptosis levels induced by HIV-1 infection in dividing THP-1 cells. Mechanistically, SAMHD1 expression decreases the mitochondrial membrane potential and promotes cytochrome c release induced by HIV-1 infection in THP-1 cells, thereby enhancing mitochondrial apoptotic pathway. SAMHD1-enhanced apoptosis is associated with increased expression of the pro-apoptotic protein BCL-2-interacting killer (BIK) in cells. We further demonstrated that BIK contributes to SAMHD1-enhanced apoptosis during HIV-1 infection. Overall, our results reveal an unappreciated regulatory mechanism of SAMHD1 in enhancing HIV-1-induced apoptosis via the mitochondrial pathway in monocytic cells.
Collapse
Affiliation(s)
- Hua Yang
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Pak-Hin Hinson Cheung
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
- Lead contact
| |
Collapse
|
7
|
Yip JQ, Oo A, Ng YL, Chin KL, Tan KK, Chu JJH, AbuBakar S, Zainal N. The role of inflammatory gene polymorphisms in severe COVID-19: a review. Virol J 2024; 21:327. [PMID: 39707400 PMCID: PMC11662554 DOI: 10.1186/s12985-024-02597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has profoundly impacted global healthcare systems and spurred extensive research efforts over the past three years. One critical aspect of the disease is the intricate interplay between the virus and the host immune response, particularly the role of inflammatory gene expression in severe COVID-19. While numerous previous studies have explored the role of genetic polymorphisms in COVID-19, research specifically focusing on inflammatory genes and their associations with disease severity remains limited. This review explores the relationship between severe COVID-19 outcomes and genetic polymorphisms within key inflammatory genes. By investigating the impact of genetic variations on immune responses, which include cytokine production and downstream signalling pathways, we aim to provide a comprehensive overview of how genetic polymorphisms contribute to the variability in disease presentation. Through an in-depth analysis of existing literature, we shed light on potential therapeutic targets and personalized approaches that may enhance our understanding of disease pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Jia Qi Yip
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Institute for Advanced Studies, Advanced Studies Complex, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adrian Oo
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Infectious Disease Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yan Ling Ng
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Infectious Disease Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Kim Ling Chin
- Institute for Advanced Studies, Advanced Studies Complex, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Infectious Disease Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Nurhafiza Zainal
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Mou X, Luo F, Zhang W, Cheng Q, Hepojoki J, Zhu S, Liu Y, Xiong H, Guo D, Yu J, Chen L, Li Y, Hou W, Chen S. SARS-CoV-2 NSP16 promotes IL-6 production by regulating the stabilization of HIF-1α. Cell Signal 2024; 124:111387. [PMID: 39251053 DOI: 10.1016/j.cellsig.2024.111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of coronavirus disease 2019 (COVID-19). Severe and fatal COVID-19 cases often display cytokine storm i.e. significant elevation of pro-inflammatory cytokines and acute respiratory distress syndrome (ARDS) with systemic hypoxia. Understanding the mechanisms of these pathogenic manifestations would be essential for the prevention and especially treatment of COVID-19 patients. Here, using a dual luciferase reporter assay for hypoxia-response element (HRE), we initially identified SARS-CoV-2 nonstructural protein 5 (NSP5), NSP16, and open reading frame 3a (ORF3a) to upregulate hypoxia-inducible factor-1α (HIF-1α) signaling. Further experiments showed NSP16 to have the most prominent effect on HIF-1α, thus contributing to the induction of COVID-19 associated pro-inflammatory response. We demonstrate that NSP16 interrupts von Hippel-Lindau (VHL) protein interaction with HIF-1α, thereby inhibiting ubiquitin-dependent degradation of HIF-1α and allowing it to bind HRE region in the IL-6 promoter region. Taken together, the findings imply that SARS-CoV-2 NSP16 induces HIF-1α expression, which in turn exacerbates the production of IL-6.
Collapse
Affiliation(s)
- Xiaoli Mou
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China; Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China
| | - Fan Luo
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China; Department of Virology, Faculty of Medicine, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Weihao Zhang
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China
| | - Qi Cheng
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China
| | - Jussi Hepojoki
- Department of Virology, Faculty of Medicine, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Shaowei Zhu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China
| | - Yuanyuan Liu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China
| | - Hairong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China
| | - Deyin Guo
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China
| | - Jingyou Yu
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China
| | - Liangjun Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China; School of Public Health, Wuhan University, Wuhan, Hubei 430071, China; School of Ecology and Environment, Tibet University, Lhasa, Tibet 850000, China; Shenzhen Research Institute, Wuhan University, Shenzhen, Guangdong 518057, China.
| | - Shuliang Chen
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China; Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China.
| |
Collapse
|
9
|
Lee JH, Sergi C, Kast RE, Kanwar BA, Bourbeau J, Oh S, Sohn MG, Lee CJ, Coleman MD. Aggravating mechanisms from COVID-19. Virol J 2024; 21:228. [PMID: 39334442 PMCID: PMC11430051 DOI: 10.1186/s12985-024-02506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces immune-mediated diseases. The pathophysiology of COVID-19 uses the following three mechanisms: (1) inflammasome activation mechanism; (2) cGAS-STING signaling mechanism; and (3) SAMHD1 tetramerization mechanism, which leads to IFN-I production. Interactions between the host and virus govern induction, resulting in multiorgan impacts. The NLRP3 with cGAS-STING constitutes the primary immune response. The expression of SARS-CoV-2 ORF3a, NSP6, NSP7, and NSP8 blocks innate immune activation and facilitates virus replication by targeting the RIG-I/MDA5, TRIF, and cGAS-STING signaling. SAMHD1 has a target motif for CDK1 to protect virion assembly, threonine 592 to modulate a catalytically active tetramer, and antiviral IFN responses to block retroviral infection. Plastic and allosteric nucleic acid binding of SAMHD1 modulates the antiretroviral activity of SAMHD1. Therefore, inflammasome activation, cGAS-STING signaling, and SAMHD1 tetramerization explain acute kidney injury, hepatic, cardiac, neurological, and gastrointestinal injury of COVID-19. It might be necessary to effectively block the pathological courses of diverse diseases.
Collapse
Affiliation(s)
- Jong Hoon Lee
- Science and Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Geriatrics, Gyeonggi Medical Center Pocheon Hospital, 1648 Pocheon-ro Sin-eup-dong, Pocheon-si, Gyeonggi-do, 11142, Republic of Korea.
| | - Consolato Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Richard E Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, 05408 VT, USA
| | - Badar A Kanwar
- Haider Associates, 1999 Forest Ridge Dr, Bedford, TX, 76021, USA
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montréal, QC, Canada
| | - Sangsuk Oh
- Department of Food Engineering, Food Safety Laboratory, Memory Unit, Ewha Womans University, Seoul, 03670, Korea
| | - Mun-Gi Sohn
- Department of Food Science, KyungHee University College of Life Science, Seoul, 17104, Republic of Korea
| | - Chul Joong Lee
- Department of Anesthesiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Michael D Coleman
- College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
10
|
Thuner J, Cognard J, Belot A. How to treat monogenic SLE? Best Pract Res Clin Rheumatol 2024; 38:101962. [PMID: 38876818 DOI: 10.1016/j.berh.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Systemic lupus erythematosus is a rare and life-threatening autoimmune disease characterized by autoantibodies against double-stranded DNA, with an immunopathology that remains partially unclear. New insights into the disease have been provided by the discovery of key mutations leading to the development of monogenic SLE, occurring in the context of early-onset disease, syndromic lupus, or familial clustering. The increased frequency of discovering these mutations in recent years, thanks to the advent of genetic screening, has greatly enhanced our understanding of the immunopathogenesis of SLE. These monogenic defects include defective clearance of apoptotic bodies, abnormalities in nucleic acid sensing, activation of the type-I interferon pathway, and the breakdown of tolerance through B or T cell activation or lymphocyte proliferation due to anomalies in TLR signalling and/or NFκB pathway overactivation. The translation of genetic discoveries into therapeutic strategies is presented here, within the framework of personalized therapy.
Collapse
Affiliation(s)
- Jonathan Thuner
- Internal Medicine Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Jade Cognard
- Pediatric Rheumatology, Nephrology, Dermatology Department, CMR RAISE, Women-Mother-Child Hospital, Hospices Civils de Lyon, Bron, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandre Belot
- Pediatric Rheumatology, Nephrology, Dermatology Department, CMR RAISE, Women-Mother-Child Hospital, Hospices Civils de Lyon, Bron, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France; CNRS, Centre National de La Recherche Scientifique, UMR5308, Lyon, France.
| |
Collapse
|
11
|
Bresadola L, Weber D, Ritzel C, Löwer M, Bukur V, Akilli-Öztürk Ö, Schuster C, Gargano A, Becker J, Mehanna H, Schrörs B, Vascotto F, Sahin U, Kong A. Temporal evolution and inter-patient heterogeneity in primary and recurrent head and neck squamous cell carcinoma. BJC REPORTS 2024; 2:62. [PMID: 39516649 PMCID: PMC11524138 DOI: 10.1038/s44276-024-00091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinomas (HNSCCs) are heterogeneous in terms of origin and aetiology. In addition, there is uncertainty about the genetic evolution from initial diagnosis to recurrence after primary treatments and further disease progression following systemic treatment. Changes in the genetic profile have implications on the selection of appropriate treatments for patients, especially in the era of targeted therapies and immunotherapies. METHODS We analysed a cohort of nine HNSCC patients with metachronous recurrence. All patients had paired primary and recurrent samples suitable for whole-exome sequencing, while transcriptomic data from seven patients could be analysed (multiple recurrent samples collected at different time points were available for three patients). RESULTS At the genomic level, the recurrences shared a fraction of the somatic single nucleotide variants (SNVs) with the index primary tumours, but they also acquired many additional mutations, while losing only a few others. A similar behaviour was also observed when examining the changes of mutational signatures between primary and recurrent samples. Overall, recurrences appeared thus more genetically diverse than the respective primary tumours. The transcriptomic analysis showed that recurrent samples had lower immune cell presence, which was also confirmed by the multiplex immunofluorescence (IF) histology assays performed on the PhenoCycler platform. Several genes related to immune response were significantly downregulated compared to the primary samples. CONCLUSIONS Our results underline the importance of analysing multiple samples per patient to obtain a more complete picture of the patient's tumour and advocate a re-biopsy in the event of recurrence and treatment failure, in order to select the most appropriate therapeutic strategy.
Collapse
Affiliation(s)
- Luisa Bresadola
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - David Weber
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christoph Ritzel
- University Medical Center at the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martin Löwer
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Valesca Bukur
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Özlem Akilli-Öztürk
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christian Schuster
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alessandra Gargano
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julia Becker
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hisham Mehanna
- Institute of Head and Neck Studies (InHANSE), Birmingham, UK
| | - Barbara Schrörs
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Fulvia Vascotto
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ugur Sahin
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
- University Medical Center at the Johannes Gutenberg University Mainz, Mainz, Germany.
- HI-TRON, Helmholtz Institute for Translational Oncology Mainz - A Helmholtz Institute of the DKFZ, Mainz, Germany.
| | - Anthony Kong
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
- Institute of Head and Neck Studies (InHANSE), Birmingham, UK.
- Comprehensive Cancer Centre, King's College London, London, UK.
| |
Collapse
|
12
|
Rashid F, Zaongo SD, Iqbal H, Harypursat V, Song F, Chen Y. Interactions between HIV proteins and host restriction factors: implications for potential therapeutic intervention in HIV infection. Front Immunol 2024; 15:1390650. [PMID: 39221250 PMCID: PMC11361988 DOI: 10.3389/fimmu.2024.1390650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Different host proteins target different HIV proteins and antagonize their functions, depending on the stage of the HIV life cycle and the stage of infection. Concurrently, HIV proteins also target and antagonize various different host proteins to facilitate HIV replication within host cells. The preceding quite specific area of knowledge in HIV pathogenesis, however, remains insufficiently understood. We therefore propose, in this review article, to examine and discuss the HIV proteins that counteract those host restriction proteins which results directly in increased infectivity of HIV. We elaborate on HIV proteins that antagonize host cellular proteins to promote HIV replication, and thus HIV infection. We examine the functions and mechanisms via which Nef, Vif, Vpu, Env, Vpr, and Vpx counteract host proteins such as Ser5, PSGL-1, IFITMS, A3G, tetherin, GBP5, SAMHD1, STING, HUSH, REAF, and TET2 to increase HIV infectivity. Nef antagonizes three host proteins, viz., Ser5, PSGL1, and IFITIMs, while Vpx also antagonizes three host restriction factors, viz., SAMHD1, STING, and HUSH complex; therefore, these proteins may be potential candidates for therapeutic intervention in HIV infection. Tetherin is targeted by Vpu and Env, PSGL1 is targeted by Nef and Vpu, while Ser5 is targeted by Nef and Env proteins. Finally, conclusive remarks and future perspectives are also presented.
Collapse
Affiliation(s)
- Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Hifza Iqbal
- School of science, University of Management and Technology, Lahore, Pakistan
| | - Vijay Harypursat
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Fangzhou Song
- Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
13
|
Guo H, Yang W, Li H, Yang J, Huang Y, Tang Y, Wang S, Ni F, Yang W, Yu XF, Wei W. The SAMHD1-MX2 axis restricts HIV-1 infection at postviral DNA synthesis. mBio 2024; 15:e0136324. [PMID: 38888311 PMCID: PMC11253599 DOI: 10.1128/mbio.01363-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
HIV-1 replication is tightly regulated in host cells, and various restriction factors have important roles in inhibiting viral replication. SAMHD1, a well-known restriction factor, suppresses HIV-1 replication by hydrolyzing intracellular dNTPs, thereby limiting the synthesis of viral cDNA in quiescent cells. In this study, we revealed an additional and distinct mechanism of SAMHD1 inhibition during the postviral cDNA synthesis stage. Using immunoprecipitation and mass spectrometry analysis, we demonstrated the interaction between SAMHD1 and MX2/MxB, an interferon-induced antiviral factor that inhibits HIV-1 cDNA nuclear import. The disruption of endogenous MX2 expression significantly weakened the ability of SAMHD1 to inhibit HIV-1. The crucial region within SAMHD1 that binds to MX2 has been identified. Notably, we found that SAMHD1 can act as a sensor that recognizes and binds to the incoming HIV-1 core, subsequently delivering it to the molecular trap formed by MX2, thereby blocking the nuclear entry of the HIV-1 core structure. SAMHD1 mutants unable to recognize the HIV-1 core showed a substantial decrease in antiviral activity. Certain mutations in HIV-1 capsids confer resistance to MX2 inhibition while maintaining susceptibility to suppression by the SAMHD1-MX2 axis. Overall, our study identifies an intriguing antiviral pattern wherein two distinct restriction factors, SAMHD1 and MX2, collaborate to establish an alternative mechanism deviating from their actions. These findings provide valuable insight into the complex immune defense networks against exogenous viral infections and have implications for the development of targeted anti-HIV therapeutics. IMPORTANCE In contrast to most restriction factors that directly bind to viral components to exert their antiviral effects, SAMHD1, the only known deoxynucleotide triphosphate (dNTP) hydrolase in eukaryotes, indirectly inhibits viral replication in quiescent cells by reducing the pool of dNTP substrates available for viral cDNA synthesis. Our study provides a novel perspective on the antiviral functions of SAMHD1. In addition to its role in dNTP hydrolysis, SAMHD1 cooperates with MX2 to inhibit HIV-1 nuclear import. In this process, SAMHD1 acts as a sensor for incoming HIV-1 cores, detecting and binding to them, before subsequently delivering the complex to the molecular trap formed by MX2, thereby immobilizing the virus. This study not only reveals a new antiviral pathway for SAMHD1 but also identifies a unique collaboration and interaction between two distinct restriction factors, establishing a novel line of defense against HIV-1 infection, which challenges the traditional view of restriction factors acting independently. Overall, our findings further indicate the intricate complexity of the host immune defense network and provide potential targets for promoting host antiviral immune defense.
Collapse
Affiliation(s)
- Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Wanying Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Huili Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Jiaxin Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yuehan Huang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yubin Tang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Shijin Wang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Fushun Ni
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | | | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Zhao S, Li F, Li W, Wang M, Wang Y, Zhang Y, Xia P, Chen J. Mass Spectrometry-Based Proteomic Analysis of Potential Host Proteins Interacting with N in PRRSV-Infected PAMs. Int J Mol Sci 2024; 25:7219. [PMID: 39000325 PMCID: PMC11241482 DOI: 10.3390/ijms25137219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
One of the most significant diseases in the swine business, porcine reproductive and respiratory syndrome virus (PRRSV) causes respiratory problems in piglets and reproductive failure in sows. The PRRSV nucleocapsid (N) protein is essential for the virus' assembly, replication, and immune evasion. Stages in the viral replication cycle can be impacted by interactions between the PRRSV nucleocapsid protein and the host protein components. Therefore, it is of great significance to explore the interaction between the PRRSV nucleocapsid protein and the host. Nevertheless, no information has been published on the network of interactions between the nucleocapsid protein and the host proteins in primary porcine alveolar macrophages (PAMs). In this study, 349 host proteins interacting with nucleocapsid protein were screened in the PRRSV-infected PAMs through a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics approach. Bioinformatics analysis, which included gene ontology annotation, Kyoto Encyclopedia of Genes and Genomes database enrichment, and a protein-protein interaction (PPI) network, revealed that the host proteins interacting with PRRSV-N may be involved in protein binding, DNA transcription, metabolism, and innate immune responses. This study confirmed the interaction between the nucleocapsid protein and the natural immune-related proteins. Ultimately, our findings suggest that the nucleocapsid protein plays a pivotal role in facilitating immune evasion during a PRRSV infection. This study contributes to enhancing our understanding of the role played by the nucleocapsid protein in viral pathogenesis and virus-host interaction, thereby offering novel insights for the prevention and control of PRRS as well as the development of vaccines.
Collapse
Affiliation(s)
- Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Fahao Li
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Mengxiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Yueshuai Wang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| |
Collapse
|
15
|
Karla AR, Pinard A, Boerio ML, Hemelsoet D, Tavernier SJ, De Pauw M, Vereecke E, Fraser S, Bamshad MJ, Guo D, Callewaert B, Milewicz DM. SAMHD1 compound heterozygous rare variants associated with moyamoya and mitral valve disease in the absence of other features of Aicardi-Goutières syndrome. Am J Med Genet A 2024; 194:e63486. [PMID: 38041217 PMCID: PMC11700514 DOI: 10.1002/ajmg.a.63486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Aicardi-Goutières syndrome (AGS) is an autosomal recessive inflammatory syndrome that manifests as an early-onset encephalopathy with both neurologic and extraneurologic clinical findings. AGS has been associated with pathogenic variants in nine genes: TREX1, RNASEH2B, RNASEH2C, RNASEH2A, SAMHD1, ADAR, IFIH1, LSM11, and RNU7-1. Diagnosis is established by clinical findings (encephalopathy and acquired microcephaly, intellectual and physical impairments, dystonia, hepatosplenomegaly, sterile pyrexia, and/or chilblains), characteristic abnormalities on cranial CT (calcification of the basal ganglia and white matter) and MRI (leukodystrophic changes), or the identification of pathogenic/likely pathogenic variants in the known genes. One of the genes associated with AGS, SAMHD1, has also been associated with a spectrum of cerebrovascular diseases, including moyamoya disease (MMD). In this report, we describe a 31-year-old male referred to genetics for MMD since childhood who lacked the hallmark features of AGS patients but was found to have compound heterozygous SAMHD1 variants. He later developed mitral valve insufficiency due to recurrent chordal rupture and ultimately underwent a heart transplant at 37 years of age. Thus, these data suggest that SAMHD1 pathogenic variants can cause MMD without typical AGS symptoms and support that SAMHD1 should be assessed in MMD patients even in the absence of AGS features.
Collapse
Affiliation(s)
- Aamuktha R. Karla
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Amélie Pinard
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Maura L. Boerio
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | | | - Simon J. Tavernier
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center; Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Michel De Pauw
- Department of Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Elke Vereecke
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
| | - Stuart Fraser
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Michael J. Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Dongchuan Guo
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Dianna M. Milewicz
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| |
Collapse
|
16
|
Zhao Z, Han S, Zhang Q, Wang Y, Yue K, Abbas S, He H. Impaired influenza A virus replication by the host restriction factor SAMHD1 which inhibited by PA-mediated dephosphorylation of the host transcription factor IRF3. Virol J 2024; 21:33. [PMID: 38287375 PMCID: PMC10826253 DOI: 10.1186/s12985-024-02295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Influenza A virus (IAV) can cause severe and life-threatening illness in humans and animals. Therefore, it is important to search for host antiviral proteins and elucidate their antiviral mechanisms for the development of potential treatments. As a part of human innate immunity, host restriction factors can inhibit the replication of viruses, among which SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) can restrict the replication of viruses, such as HIV and enterovirus EV71. Viruses also developed countermeasures in the arms race with their hosts. There are few reports about whether SAMHD1 has a restriction effect on IAV. METHODS To investigate the impact of IAV infection on SAMHD1 expression in A549 cells, we infected A549 cells with a varying multiplicity of infection (MOI) of IAV and collected cell samples at different time points for WB and RT-qPCR analysis to detect viral protein and SAMHD1 levels. The virus replication level in the cell culture supernatant was determined using TCID50 assay. Luciferase assay was used to reveal that H5N1 virus polymerase acidic protein (PA) affected the activity of the SAMHD1 promoter. To assess the antiviral capacity of SAMHD1, we generated a knockdown and overexpressed cell line for detecting H5N1 replication. RESULTS In this study, we observed that SAMHD1 can restrict the intracellular replication of H5N1 and that the H5N1 viral protein PA can downregulate the expression of SAMHD1 by affecting SAMHD1 transcriptional promoter activity. We also found that SAMHD1's ability to restrict H5N1 is related to phosphorylation at 592-tyrosine. CONCLUSIONS In conclusion, we found that SAMHD1 may affect the replication of IAVs as a host restriction factor and be countered by PA. Furthermore, SAMHD1 may be a potential target for developing antiviral drugs.
Collapse
Affiliation(s)
- Zhilei Zhao
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingxun Zhang
- Beijing Milu Ecological Research Center, Beijing, 100076, China
| | - Ye Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Kening Yue
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Salbia Abbas
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
17
|
Schüssler M, Schott K, Fuchs NV, Oo A, Zahadi M, Rauch P, Kim B, König R. Gene editing of SAMHD1 in macrophage-like cells reveals complex relationships between SAMHD1 phospho-regulation, HIV-1 restriction, and cellular dNTP levels. mBio 2023; 14:e0225223. [PMID: 37800914 PMCID: PMC10653793 DOI: 10.1128/mbio.02252-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE We introduce BLaER1 cells as an alternative myeloid cell model in combination with CRISPR/Cas9-mediated gene editing to study the influence of sterile α motif and HD domain-containing protein 1 (SAMHD1) T592 phosphorylation on anti-viral restriction and the control of cellular dNTP levels in an endogenous, physiologically relevant context. A proper understanding of the mechanism of the anti-viral function of SAMHD1 will provide attractive strategies aiming at selectively manipulating SAMHD1 without affecting other cellular functions. Even more, our toolkit may inspire further genetic analysis and investigation of restriction factors inhibiting retroviruses and their cellular function and regulation, leading to a deeper understanding of intrinsic anti-viral immunity.
Collapse
Affiliation(s)
- Moritz Schüssler
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Adrian Oo
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Morssal Zahadi
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Paula Rauch
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Baek Kim
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
18
|
Mumme H, Thomas BE, Bhasin SS, Krishnan U, Dwivedi B, Perumalla P, Sarkar D, Ulukaya GB, Sabnis HS, Park SI, DeRyckere D, Raikar SS, Pauly M, Summers RJ, Castellino SM, Wechsler DS, Porter CC, Graham DK, Bhasin M. Single-cell analysis reveals altered tumor microenvironments of relapse- and remission-associated pediatric acute myeloid leukemia. Nat Commun 2023; 14:6209. [PMID: 37798266 PMCID: PMC10556066 DOI: 10.1038/s41467-023-41994-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Acute myeloid leukemia (AML) microenvironment exhibits cellular and molecular differences among various subtypes. Here, we utilize single-cell RNA sequencing (scRNA-seq) to analyze pediatric AML bone marrow (BM) samples from diagnosis (Dx), end of induction (EOI), and relapse timepoints. Analysis of Dx, EOI scRNA-seq, and TARGET AML RNA-seq datasets reveals an AML blasts-associated 7-gene signature (CLEC11A, PRAME, AZU1, NREP, ARMH1, C1QBP, TRH), which we validate on independent datasets. The analysis reveals distinct clusters of Dx relapse- and continuous complete remission (CCR)-associated AML-blasts with differential expression of genes associated with survival. At Dx, relapse-associated samples have more exhausted T cells while CCR-associated samples have more inflammatory M1 macrophages. Post-therapy EOI residual blasts overexpress fatty acid oxidation, tumor growth, and stemness genes. Also, a post-therapy T-cell cluster associated with relapse samples exhibits downregulation of MHC Class I and T-cell regulatory genes. Altogether, this study deeply characterizes pediatric AML relapse- and CCR-associated samples to provide insights into the BM microenvironment landscape.
Collapse
Affiliation(s)
- Hope Mumme
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Upaasana Krishnan
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Pruthvi Perumalla
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Debasree Sarkar
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gulay B Ulukaya
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Himalee S Sabnis
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunita I Park
- Department of Pathology, Children's Healthcare of Atlanta, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Melinda Pauly
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan J Summers
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon M Castellino
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel S Wechsler
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher C Porter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
19
|
Cai Y, Chen X, Lu T, Fang X, Ding M, Yu Z, Hu S, Liu J, Zhou X, Wang X. Activation of STING by SAMHD1 Deficiency Promotes PANoptosis and Enhances Efficacy of PD-L1 Blockade in Diffuse Large B-cell Lymphoma. Int J Biol Sci 2023; 19:4627-4643. [PMID: 37781035 PMCID: PMC10535696 DOI: 10.7150/ijbs.85236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/11/2023] [Indexed: 10/03/2023] Open
Abstract
Genomic instability is a significant driver of cancer. As the sensor of cytosolic DNA, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in regulating anti-tumor immunity and cell death. However, the role and regulatory mechanisms of STING in diffuse large B-cell lymphoma (DLBCL) are still undefined. In this study, we reported that sterile alpha motif and HD domain-containing protein 1 (SAMHD1) deficiency induced STING expression and inhibited tumor growth in DLBCL. High level of SAMHD1 was associated with poor prognosis in DLBCL patients. Down-regulation of SAMHD1 inhibited DLBCL cell proliferation both in vitro and in vivo. Moreover, we found that SAMHD1 deficiency induced DNA damage and promoted the expression of DNA damage adaptor STING. STING overexpression promoted the formation of Caspase 8/RIPK3/ASC, further leading to MLKL phosphorylation, Caspase 3 cleavage, and GSDME cleavage. Up-regulation of necroptotic, apoptotic, and pyroptotic effectors indicated STING-mediated PANoptosis. Finally, we demonstrated that the STING agonist, DMXAA, enhanced the efficacy of a PD-L1 inhibitor in DLBCL. Our findings highlight the important role of STING-mediated PANoptosis in restricting DLBCL progression and provide a potential strategy for enhancing the efficacy of immune checkpoint inhibitor agents in DLBCL.
Collapse
Affiliation(s)
- Yiqing Cai
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiaomin Chen
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Tiange Lu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Mengfei Ding
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Zhuoya Yu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Jiarui Liu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| |
Collapse
|
20
|
Schüssler M, Schott K, Fuchs NV, Oo A, Zahadi M, Rauch P, Kim B, König R. Gene editing of SAMHD1 in macrophage-like cells reveals complex relationships between SAMHD1 phospho-regulation, HIV-1 restriction and cellular dNTP levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554731. [PMID: 37662193 PMCID: PMC10473771 DOI: 10.1101/2023.08.24.554731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Sterile α motif (SAM) and HD domain-containing protein 1 (SAMHD1) is a dNTP triphosphate triphosphohydrolase (dNTPase) and a potent restriction factor for immunodeficiency virus 1 (HIV-1), active in myeloid and resting CD4+ T cells. The anti-viral activity of SAMHD1 is regulated by dephosphorylation of the residue T592. However, the impact of T592 phosphorylation on dNTPase activity is still under debate. Whether additional cellular functions of SAMHD1 impact anti-viral restriction is not completely understood. We report BLaER1 cells as a novel human macrophage HIV-1 infection model combined with CRISPR/Cas9 knock-in (KI) introducing specific mutations into the SAMHD1 locus to study mutations in a physiological context. Transdifferentiated BLaER1 cells harbor active dephosphorylated SAMHD1 that blocks HIV-1 reporter virus infection. As expected, homozygous T592E mutation, but not T592A, relieved a block to HIV-1 reverse transcription. Co-delivery of VLP-Vpx to SAMHD1 T592E KI mutant cells did not further enhance HIV-1 infection indicating the absence of an additional SAMHD1-mediated antiviral activity independent of T592 de-phosphorylation. T592E KI cells retained dNTP levels similar to WT cells indicating uncoupling of anti-viral and dNTPase activity of SAMHD1. The integrity of the catalytic site in SAMHD1 was critical for anti-viral activity, yet poor correlation of HIV-1 restriction and global cellular dNTP levels was observed in cells harboring catalytic core mutations. Together, we emphasize the complexity of the relationship between HIV-1 restriction, SAMHD1 enzymatic function and T592 phospho-regulation and provide novel tools for investigation in an endogenous and physiological context.
Collapse
Affiliation(s)
- Moritz Schüssler
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Adrian Oo
- Department of Pediatrics, Emory University, Atlanta, USA
| | - Morssal Zahadi
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Paula Rauch
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Baek Kim
- Department of Pediatrics, Emory University, Atlanta, USA
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, USA
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
21
|
Gatti V, De Domenico S, Melino G, Peschiaroli A. Senataxin and R-loops homeostasis: multifaced implications in carcinogenesis. Cell Death Discov 2023; 9:145. [PMID: 37147318 PMCID: PMC10163015 DOI: 10.1038/s41420-023-01441-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
R-loops are inherent byproducts of transcription consisting of an RNA:DNA hybrid and a displaced single-stranded DNA. These structures are of key importance in controlling numerous physiological processes and their homeostasis is tightly controlled by the activities of several enzymes deputed to process R-loops and prevent their unproper accumulation. Senataxin (SETX) is an RNA/DNA helicase which catalyzes the unwinding of RNA:DNA hybrid portion of the R-loops, promoting thus their resolution. The key importance of SETX in R-loops homeostasis and its relevance with pathophysiological events is highlighted by the evidence that gain or loss of function SETX mutations underlie the pathogenesis of two distinct neurological disorders. Here, we aim to describe the potential impact of SETX on tumor onset and progression, trying to emphasize how dysregulation of this enzyme observed in human tumors might impact tumorigenesis. To this aim, we will describe the functional relevance of SETX in regulating gene expression, genome integrity, and inflammation response and discuss how cancer-associated SETX mutations might affect these pathways, contributing thus to tumor development.
Collapse
Affiliation(s)
- Veronica Gatti
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy
| | - Sara De Domenico
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Angelo Peschiaroli
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy.
| |
Collapse
|
22
|
Cabral-Piccin MP, Papagno L, Lahaye X, Perdomo-Celis F, Volant S, White E, Monceaux V, Llewellyn-Lacey S, Fromentin R, Price DA, Chomont N, Manel N, Saez-Cirion A, Appay V. Primary role of type I interferons for the induction of functionally optimal antigen-specific CD8 + T cells in HIV infection. EBioMedicine 2023; 91:104557. [PMID: 37058769 PMCID: PMC10130611 DOI: 10.1016/j.ebiom.2023.104557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND CD8+ T cells equipped with a full arsenal of antiviral effector functions are critical for effective immune control of HIV-1. It has nonetheless remained unclear how best to elicit such potent cellular immune responses in the context of immunotherapy or vaccination. HIV-2 has been associated with milder disease manifestations and more commonly elicits functionally replete virus-specific CD8+ T cell responses compared with HIV-1. We aimed to learn from this immunological dichotomy and to develop informed strategies that could enhance the induction of robust CD8+ T cell responses against HIV-1. METHODS We developed an unbiased in vitro system to compare the de novo induction of antigen-specific CD8+ T cell responses after exposure to HIV-1 or HIV-2. The functional properties of primed CD8+ T cells were assessed using flow cytometry and molecular analyses of gene transcription. FINDINGS HIV-2 primed functionally optimal antigen-specific CD8+ T cells with enhanced survival properties more effectively than HIV-1. This superior induction process was dependent on type I interferons (IFNs) and could be mimicked via the adjuvant delivery of cyclic GMP-AMP (cGAMP), a known agonist of the stimulator of interferon genes (STING). CD8+ T cells elicited in the presence of cGAMP were polyfunctional and highly sensitive to antigen stimulation, even after priming from people living with HIV-1. INTERPRETATION HIV-2 primes CD8+ T cells with potent antiviral functionality by activating the cyclic GMP-AMP synthase (cGAS)/STING pathway, which results in the production of type I IFNs. This process may be amenable to therapeutic development via the use of cGAMP or other STING agonists to bolster CD8+ T cell-mediated immunity against HIV-1. FUNDING This work was funded by INSERM, the Institut Curie, and the University of Bordeaux (Senior IdEx Chair) and by grants from Sidaction (17-1-AAE-11097, 17-1-FJC-11199, VIH2016126002, 20-2-AEQ-12822-2, and 22-2-AEQ-13411), the Agence Nationale de la Recherche sur le SIDA (ECTZ36691, ECTZ25472, ECTZ71745, and ECTZ118797), and the Fondation pour la Recherche Médicale (EQ U202103012774). D.A.P. was supported by a Wellcome Trust Senior Investigator Award (100326/Z/12/Z).
Collapse
Affiliation(s)
- Mariela P Cabral-Piccin
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Laura Papagno
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Xavier Lahaye
- Institut Curie, INSERM U932, Immunity and Cancer Department, PSL Research University, 75005, Paris, France
| | | | - Stevenn Volant
- Institut Pasteur, Hub Bioinformatique et Biostatistique, 75015, Paris, France
| | - Eoghann White
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Valérie Monceaux
- Institut Pasteur, Unité HIV Inflammation et Persistance, 75015, Paris, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Nicolas Manel
- Institut Curie, INSERM U932, Immunity and Cancer Department, PSL Research University, 75005, Paris, France.
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV Inflammation et Persistance, 75015, Paris, France; Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, 75015, Paris, France.
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France; International Research Center of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
23
|
Mirzaei M, Dodi G, Gardikiotis I, Pasca SA, Mirdamadi S, Subra G, Echalier C, Puel C, Morent R, Ghobeira R, Soleymanzadeh N, Moser M, Goriely S, Shavandi A. 3D high-precision melt electro written polycaprolactone modified with yeast derived peptides for wound healing. BIOMATERIALS ADVANCES 2023; 149:213361. [PMID: 36965401 DOI: 10.1016/j.bioadv.2023.213361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
In this study melt electro written (MEW) scaffolds of poly(ε-caprolactone) PCL are decorated with anti-inflammatory yeast-derived peptide for skin wound healing. Initially, 13 different yeast-derived peptides were screened and analyzed using both in vitro and in vivo assays. The MEW scaffolds are functionalized with the selected peptide VLSTSFPPW (VW-9) with the highest activity in reducing pro-inflammatory cytokines and stimulating fibroblast proliferation, migration, and collagen production. The peptide was conjugated to the MEW scaffolds using carbodiimide (CDI) and thiol chemistry, with and without plasma treatment, as well as by directly mixing the peptide with the polymer before printing. The MEW scaffolds modified using CDI and thiol chemistry with plasma treatment showed improved fibroblast and macrophage penetration and adhesion, as well as increased cell proliferation and superior anti-inflammatory properties, compared to the other groups. When applied to full-thickness excisional wounds in rats, the peptide-modified MEW scaffold significantly enhanced the healing process compared to controls (p < 0.05). This study provides proof of concept for using yeast-derived peptides to functionalize biomaterials for skin wound healing.
Collapse
Affiliation(s)
- Mahta Mirzaei
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; Centre for Food Chemistry and Technology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, South Korea; Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Gianina Dodi
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania; Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania
| | - Sorin-Aurelian Pasca
- Pathology Department, Faculty of Veterinary Medicine, Ion Ionescu de la Brad Iasi University of Life Sciences, Romania
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Gilles Subra
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Chloé Puel
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Rino Morent
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Rouba Ghobeira
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Architecture and Engineering, Ghent University, St-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Nazila Soleymanzadeh
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Muriel Moser
- ULB Center for Research in Immunology (U-CRI), Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Stanislas Goriely
- ULB Center for Research in Immunology (U-CRI), Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
24
|
Lazarchuk P, Nguyen VN, Brunon S, Pavlova MN, Sidorova JM. Innate immunity mediator STING modulates nascent DNA metabolism at stalled forks in human cells. Front Mol Biosci 2023; 9:1048726. [PMID: 36710880 PMCID: PMC9877313 DOI: 10.3389/fmolb.2022.1048726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Background: The cGAS/STING pathway, part of the innate immune response to foreign DNA, can be activated by cell's own DNA arising from the processing of the genome, including the degradation of nascent DNA at arrested replication forks, which can be upregulated in cancer cells. Recent evidence raises a possibility that the cGAS/STING pathway may also modulate the very processes that trigger it, e.g., DNA damage repair or processing of stalled forks. Methods: We manipulated STING levels in human cells by depleting or re-expressing it, and assessed the effects of STING on replication using microfluidics-assisted replication track analysis, or maRTA, a DNA fiber assay, as well as immuno-precipitation of nascent DNA, or iPOND. We also assessed STING subcellular distribution and its ability to activate. Results: Depletion of STING suppressed and its re-expression in STING-deficient cancer cells upregulated the degradation of nascent DNA at arrested replication forks. Replication fork arrest was accompanied by the STING pathway activation, and a STING mutant that does not activate the pathway failed to upregulate nascent DNA degradation. cGAS was required for STING's effect on degradation, but this requirement could be bypassed by treating cells with a STING agonist. Cells expressing inactive STING had a reduced level of RPA on parental and nascent DNA of arrested forks and a reduced CHK1 activation compared to cells with the wild type STING. STING also affected unperturbed fork progression in a subset of cell lines. STING fractionated to the nuclear fractions enriched for structural components of chromatin and nuclear envelope, and furthermore, it associated with the chromatin of arrested replication forks as well as post-replicative chromatin. Conclusion: Our data highlight STING as a determinant of stalled replication fork integrity, thus revealing a novel connection between the replication stress and innate immune responses.
Collapse
Affiliation(s)
| | | | | | | | - Julia M. Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
25
|
Li Y, Gao Y, Jiang X, Cheng Y, Zhang J, Xu L, Liu X, Huang Z, Xie C, Gong Y. SAMHD1 silencing cooperates with radiotherapy to enhance anti-tumor immunity through IFI16-STING pathway in lung adenocarcinoma. J Transl Med 2022; 20:628. [PMID: 36578072 PMCID: PMC9798699 DOI: 10.1186/s12967-022-03844-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Sterile alpha motif domain and histidine-aspartate domain-containing protein 1 (SAMHD1) is a DNA end resection factor, which is involved in DNA damage repair and innate immunity. However, the role of SAMHD1 in anti-tumor immunity is still unknown. This study investigated the effects of SAMHD1 on stimulator of interferon genes (STING)-type I interferon (IFN) pathway and radiation-induced immune responses. METHODS The roles of SAMHD1 in the activation of cytosolic DNA sensing STING pathway in lung adenocarcinoma (LUAD) cells were investigated with flow cytometry, immunofluorescence, immunoblotting and qPCR. The combined effects of SAMHD1 silencing and radiation on tumor cell growth and STING pathway activation were also evaluated with colony formation and CCK8 assay. The Lewis lung cancer mouse model was used to evaluate the combined efficiency of SAMHD1 silencing and radiotherapy in vivo. Macrophage M1 polarization and cytotoxic T cell infiltration were evaluated with flow cytometry. RESULTS The single-stranded DNA (ssDNA) accumulated in the cytosol of SAMHD1-deficient lung adenocarcinoma (LUAD) cells, accompanied by upregulated DNA sensor IFN-γ-inducible protein 16 (IFI16) and activated STING pathway. The translocation of IFI16 from nucleus to cytosol was detected in SAMHD1-deficient cells. IFI16 and STING were acquired in the activation of STING-IFN-I pathway in SAMHD1-deficient cells. SAMHD1 silencing in LUAD cells promoted macrophage M1 polarization in vitro. SAMHD1 silencing synergized with radiation to activate ssDNA-STING-IFN-I pathway, inhibit proliferation, promote apoptosis and regulate cell cycle. SAMHD1 silencing cooperated with radiotherapy to inhibit tumor growth and increase CD86+MHC-IIhigh M1 proportion and CD8+ T cell infiltration in vivo. CONCLUSIONS SAMHD1 deficiency induced IFN-I production through cytosolic IFI16-STING pathway in LUAD cells. Moreover, SAMHD1 downregulation and radiation cooperated to inhibit tumor growth and enhance anti-tumor immune responses through macrophage M1 polarization and CD8+ T cell infiltration. Combination of SAMHD1 inhibition and radiotherapy may be a potentially therapeutic strategy for LUAD patients.
Collapse
Affiliation(s)
- Yangyi Li
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Yuke Gao
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Xueping Jiang
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Yajie Cheng
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Jianguo Zhang
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Liexi Xu
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Xinyu Liu
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Zhengrong Huang
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Conghua Xie
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China ,grid.413247.70000 0004 1808 0969Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China ,grid.413247.70000 0004 1808 0969Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Yan Gong
- grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China ,grid.413247.70000 0004 1808 0969Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| |
Collapse
|
26
|
Zhou L, Cheng A, Wang M, Wu Y, Yang Q, Tian B, Ou X, Sun D, Zhang S, Mao S, Zhao XX, Huang J, Gao Q, Zhu D, Jia R, Liu M, Chen S. Mechanism of herpesvirus protein kinase UL13 in immune escape and viral replication. Front Immunol 2022; 13:1088690. [PMID: 36531988 PMCID: PMC9749954 DOI: 10.3389/fimmu.2022.1088690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Upon infection, the herpes viruses create a cellular environment suitable for survival, but innate immunity plays a vital role in cellular resistance to viral infection. The UL13 protein of herpesviruses is conserved among all herpesviruses and is a serine/threonine protein kinase, which plays a vital role in escaping innate immunity and promoting viral replication. On the one hand, it can target various immune signaling pathways in vivo, such as the cGAS-STING pathway and the NF-κB pathway. On the other hand, it phosphorylates regulatory many cellular and viral proteins for promoting the lytic cycle. This paper reviews the research progress of the conserved herpesvirus protein kinase UL13 in immune escape and viral replication to provide a basis for elucidating the pathogenic mechanism of herpesviruses, as well as providing insights into the potential means of immune escape and viral replication of other herpesviruses that have not yet resolved the function of it.
Collapse
Affiliation(s)
- Lin Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,*Correspondence: Mingshu Wang,
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Feng Z, Su X, Wang T, Guo S. Identification of Biomarkers That Modulate Osteogenic Differentiation in Mesenchymal Stem Cells Related to Inflammation and Immunity: A Bioinformatics-Based Comprehensive Study. Pharmaceuticals (Basel) 2022; 15:ph15091094. [PMID: 36145314 PMCID: PMC9504288 DOI: 10.3390/ph15091094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Inducing mesenchymal stem cells (MSCs) osteogenesis may be beneficial in a number of clinical applications. The aim of this study is to identify key novel biomarkers of this process and to analyze the possible regulatory effects on inflammation and immunity. Results: Seven datasets (GSE159137, GSE159138, GSE114117, GSE88865, GSE153829, GSE63754, GSE73087) were obtained from the Gene Expression Omnibus database and were assigned to either the training or the validation dataset. The least absolute shrinkage and selection operator (LASSO) logistic regression model was applied to the training data to select biomarkers of osteogenesis, which were then confirmed using the validation dataset. FK506 binding protein 5 (FKBP5), insulin-like growth factor binding protein (IGFBP2), prostaglandin E receptor 2 (PTGER2), SAM domain and HD domain-containing protein 1 (SAMHD1), and transmembrane tetratricopeptide 1 (TMTC1) were highlighted as potential biomarkers. In addition, the differential expressions of immunity and inflammation-related genes were examined and their correlations with the five identified biomarkers were analyzed. The results from performing RT-qPCR and Western blots confirmed that the levels of each of these biomarkers were all significantly increased following osteogenic differentiation of MSCs. Conclusions: Our results identify five biomarkers related to MSCs osteogenesis and allow us to identify their potential roles in immunoregulation and inflammation. Each biomarker was verified by in vitro experiments.
Collapse
|
28
|
Yang G, Wang K, Song H, Zhu R, Ding S, Yang H, Sun J, Wen X, Sun L. Celastrol ameliorates osteoarthritis via regulating TLR2/NF-κB signaling pathway. Front Pharmacol 2022; 13:963506. [PMID: 36034791 PMCID: PMC9399520 DOI: 10.3389/fphar.2022.963506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: Osteoarthritis (OA) is a joint disease characterized by degeneration of joint cartilage and is a significant cause of severe joint pain, physical disability, and impaired quality of life in the aging population. Celastrol, a Chinese herbal medicine, has attracted wide interests because of its anti-inflammatory effects on a variety of diseases. This study aimed to investigate the effect of celastrol on OA as well as the mechanisms in vivo and in vitro. Methods: A rat knee OA model was established using “medial collateral ligament transection (MCLT) + partial meniscectomy (pMMT)”. Eight weeks after surgery, the OA rats started to receive intra-articular injection of celastrol (1 mg/kg) once a week. Safranin O-fast green (S&F) and hematoxylin and eosin (H&E) staining were used to estimate histopathological changes. Micro-CT was used to evaluate bone volume of the subchondral bone of the knee joint. Chondrocytes were isolated from the knee cartilage of rats and OA patients. Enzyme linked immunosorbent assay (ELISA), Western Blot (WB), Polymerase Chain Reaction (PCR), and Immunohistochemistry (IHC) were used to detect the expression of inflammatory factors and stromal proteins, respectively. Results: We found that celastrol treatment significantly delayed the progression of cartilage damage with a significant reduction in osteophyte formation and bone resorption in OA rat model. In IL-1β-stimulated rat chondrocytes, celastrol significantly suppressed the production of inflammatory factors such as cyclooxygenase-2 (COX2), interleukin-6 (IL-6), and prostaglandin E2 (PEG2), and reduced IL-1β-induced matrix degradation by down-regulating the expression of matrix metalloproteinase 13 (MMP13). In addition, we found that toll-like receptor 2 (TLR2) was up-regulated in OA patients and rat knee OA models, while celastrol inhibited TLR2 signal and its downstream nuclear factor-kappa B (NF-κB) phosphorylation. Conclusion: In summary, celastrol may improve OA by inhibiting the TLR2/NF-κB signaling pathway, which provides innovative strategies for the treatment of OA.
Collapse
Affiliation(s)
- Guangxia Yang
- Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kai Wang
- Department of Rheumatology, Affiliated Huai’an No 1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Hua Song
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Rujie Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Shuai Ding
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hui Yang
- Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Sun
- Department of Rheumatology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
- *Correspondence: Jian Sun, ; Xin Wen, ; Lingyun Sun,
| | - Xin Wen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Jian Sun, ; Xin Wen, ; Lingyun Sun,
| | - Lingyun Sun
- Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Jian Sun, ; Xin Wen, ; Lingyun Sun,
| |
Collapse
|
29
|
Bowen NE, Oo A, Kim B. Mechanistic Interplay between HIV-1 Reverse Transcriptase Enzyme Kinetics and Host SAMHD1 Protein: Viral Myeloid-Cell Tropism and Genomic Mutagenesis. Viruses 2022; 14:v14081622. [PMID: 35893688 PMCID: PMC9331428 DOI: 10.3390/v14081622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly converts the viral RNA into double-stranded proviral DNA, which is integrated into the host genome. The successful completion of the viral life cycle highly depends on the enzymatic DNA polymerase activity of RT. Furthermore, HIV-1 RT has long been known as an error-prone DNA polymerase due to its lack of proofreading exonuclease properties. Indeed, the low fidelity of HIV-1 RT has been considered as one of the key factors in the uniquely high rate of mutagenesis of HIV-1, which leads to efficient viral escape from immune and therapeutic antiviral selective pressures. Interestingly, a series of studies on the replication kinetics of HIV-1 in non-dividing myeloid cells and myeloid specific host restriction factor, SAM domain, and HD domain-containing protein, SAMHD1, suggest that the myeloid cell tropism and high rate of mutagenesis of HIV-1 are mechanistically connected. Here, we review not only HIV-1 RT as a key antiviral target, but also potential evolutionary and mechanistic crosstalk among the unique enzymatic features of HIV-1 RT, the replication kinetics of HIV-1, cell tropism, viral genetic mutation, and host SAMHD1 protein.
Collapse
Affiliation(s)
- Nicole E. Bowen
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
| | - Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
- Correspondence:
| |
Collapse
|
30
|
Kermi C, Lau L, Asadi Shahmirzadi A, Classon M. Disrupting Mechanisms that Regulate Genomic Repeat Elements to Combat Cancer and Drug Resistance. Front Cell Dev Biol 2022; 10:826461. [PMID: 35602594 PMCID: PMC9114874 DOI: 10.3389/fcell.2022.826461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Despite advancements in understanding cancer pathogenesis and the development of many effective therapeutic agents, resistance to drug treatment remains a widespread challenge that substantially limits curative outcomes. The historical focus on genetic evolution under drug “pressure” as a key driver of resistance has uncovered numerous mechanisms of therapeutic value, especially with respect to acquired resistance. However, recent discoveries have also revealed a potential role for an ancient evolutionary balance between endogenous “viral” elements in the human genome and diverse factors involved in their restriction in tumor evolution and drug resistance. It has long been appreciated that the stability of genomic repeats such as telomeres and centromeres affect tumor fitness, but recent findings suggest that de-regulation of other repetitive genome elements, including retrotransposons, might also be exploited as cancer therapy. This review aims to present an overview of these recent findings.
Collapse
|
31
|
Pararajasingam A, Bradley RE, Evans J, Lowe A, Goodwin R, Jolles S. Case Report: Generalised Panniculitis as a Post-COVID-19 Presentation in Aicardi-Goutières Syndrome Treated With Ruxolitinib. Front Pediatr 2022; 10:837568. [PMID: 35547545 PMCID: PMC9085217 DOI: 10.3389/fped.2022.837568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Aicardi-Goutières syndrome (AGS) is a rare hereditary early-onset encephalopathy. The syndrome was first described in 1984, and is characterised by upregulation of the type I interferon (IFN) pathway, which is involved in the host immune response against viral infections, including SARS-CoV-2. Whilst defects in type I IFN pathways have been described in association with severe coronavirus disease 2019 (COVID-19), less is known about the outcomes of upregulation. We describe an unusual case of generalised panniculitis as a post-COVID-19 phenomenon in a child with AGS. Our patient was initially managed with systemic steroid therapy, but due to relapse of symptoms on weaning, an alternative therapy was sought. In this case, a novel use of ruxolitinib, a JAK inhibitor, has resulted in lasting remission without complications. We discuss the probable protective role of IFN upregulation following COVID-19 infection in AGS and possible immunological mechanisms driving the panniculitis and therapeutic response in our case.
Collapse
Affiliation(s)
- Abirami Pararajasingam
- Department of Dermatology, Aneurin Bevan University Health Board, Newport, United Kingdom
| | - Rachel E. Bradley
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Jennifer Evans
- Department of Paediatrics, University Hospital of Wales, Cardiff, United Kingdom
| | - Ashima Lowe
- Department of Dermatology, Aneurin Bevan University Health Board, Newport, United Kingdom
| | - Richard Goodwin
- Department of Dermatology, Aneurin Bevan University Health Board, Newport, United Kingdom
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| |
Collapse
|
32
|
Qiu W, Chen B, Tang L, Zheng C, Xu B, Liu Z, Magnuson JT, Zhang S, Schlenk D, Xu EG, Xing B. Antibiotic Chlortetracycline Causes Transgenerational Immunosuppression via NF-κB. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4251-4261. [PMID: 35286074 PMCID: PMC8988297 DOI: 10.1021/acs.est.1c07343] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/01/2023]
Abstract
The extensive and increasing global use of antibiotics results in the ubiquitous presence of antibiotics in the environment, which has made them "pseudo persistent organic contaminants." Despite numerous studies showing wide adverse effects of antibiotics on organisms, the chronic environmental risk of their exposure is unknown, and the molecular and cellular mechanisms of antibiotic toxicity remain unclear. Here, we systematically quantified transgenerational immune disturbances after chronic parental exposure to environmental levels of a common antibiotic, chlortetracycline (CTC), using zebrafish as a model. CTC strongly reduced the antibacterial activities of fish offspring by transgenerational immunosuppression. Both innate and adaptive immunities of the offspring were suppressed, showing significant perturbation of macrophages and neutrophils, expression of immune-related genes, and other immune functions. Moreover, these CTC-induced immune effects were either prevented or alleviated by the supplementation with PDTC, an antagonist of nuclear factor-κB (NF-κB), uncovering a seminal role of NF-κB in CTC immunotoxicity. Our results provide the evidence in fish that CTC at environmentally relevant concentrations can be transmitted over multiple generations and weaken the immune defense of offspring, raising concerns on the population hazards and ecological risk of antibiotics in the natural environment.
Collapse
Affiliation(s)
- Wenhui Qiu
- School
of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong
Provincial Key Laboratory of Soil and Groundwater Pollution Control,
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bei Chen
- Fisheries
Research Institute of Fujian, Xiamen 361013, China
| | - Liang Tang
- School
of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chunmiao Zheng
- Guangdong
Provincial Key Laboratory of Soil and Groundwater Pollution Control,
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bentuo Xu
- School
of Life and Environmental Science, Wenzhou
University, Wenzhou 325035, China
| | - Zhiyu Liu
- Fisheries
Research Institute of Fujian, Xiamen 361013, China
| | - Jason T. Magnuson
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Shuwen Zhang
- Guangdong
Provincial Key Laboratory of Soil and Groundwater Pollution Control,
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Daniel Schlenk
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Elvis Genbo Xu
- Department
of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Baoshan Xing
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
33
|
Genetic background influences survival of infections with Salmonella enterica serovar Typhimurium in the Collaborative Cross. PLoS Genet 2022; 18:e1010075. [PMID: 35417454 PMCID: PMC9067680 DOI: 10.1371/journal.pgen.1010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Salmonella infections typically cause self-limiting gastroenteritis, but in some individuals these bacteria can spread systemically and cause disseminated disease. Salmonella Typhimurium (STm), which causes severe systemic disease in most inbred mice, has been used as a model for disseminated disease. To screen for new infection phenotypes across a range of host genetics, we orally infected 32 Collaborative Cross (CC) mouse strains with STm and monitored their disease progression for seven days by telemetry. Our data revealed a broad range of phenotypes across CC strains in many parameters including survival, bacterial colonization, tissue damage, complete blood counts (CBC), and serum cytokines. Eighteen CC strains survived to day 7, while fourteen susceptible strains succumbed to infection before day 7. Several CC strains had sex differences in survival and colonization. Surviving strains had lower pre-infection baseline temperatures and were less active during their daily active period. Core body temperature disruptions were detected earlier after STm infection than activity disruptions, making temperature a better detector of illness. All CC strains had STm in spleen and liver, but susceptible strains were more highly colonized. Tissue damage was weakly negatively correlated to survival. We identified loci associated with survival on Chromosomes (Chr) 1, 2, 4, 7. Polymorphisms in Ncf2 and Slc11a1, known to reduce survival in mice after STm infections, are located in the Chr 1 interval, and the Chr 7 association overlaps with a previously identified QTL peak called Ses2. We identified two new genetic regions on Chr 2 and 4 associated with susceptibility to STm infection. Our data reveal the diversity of responses to STm infection across a range of host genetics and identified new candidate regions for survival of STm infection.
Collapse
|
34
|
Oo A, Zandi K, Shepard C, Bassit LC, Musall K, Goh SL, Cho YJ, Kim DH, Schinazi RF, Kim B. Elimination of Aicardi-Goutières syndrome protein SAMHD1 activates cellular innate immunity and suppresses SARS-CoV-2 replication. J Biol Chem 2022; 298:101635. [PMID: 35085552 PMCID: PMC8786443 DOI: 10.1016/j.jbc.2022.101635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/23/2022] Open
Abstract
The lack of antiviral innate immune responses during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is characterized by limited production of interferons (IFNs). One protein associated with Aicardi-Goutières syndrome, SAMHD1, has been shown to negatively regulate the IFN-1 signaling pathway. However, it is unclear whether elevated IFN signaling associated with genetic loss of SAMHD1 would affect SARS-CoV-2 replication. In this study, we established in vitro tissue culture model systems for SARS-CoV-2 and human coronavirus OC43 infections in which SAMHD1 protein expression was absent as a result of CRISPR-Cas9 gene KO or lentiviral viral protein X-mediated proteosomal degradation. We show that both SARS-CoV-2 and human coronavirus OC43 replications were suppressed in SAMHD1 KO 293T and differentiated THP-1 macrophage cell lines. Similarly, when SAMHD1 was degraded by virus-like particles in primary monocyte-derived macrophages, we observed lower levels of SARS-CoV-2 RNA. The loss of SAMHD1 in 293T and differentiated THP-1 cells resulted in upregulated gene expression of IFNs and innate immunity signaling proteins from several pathways, with STAT1 mRNA being the most prominently elevated ones. Furthermore, SARS-CoV-2 replication was significantly increased in both SAMHD1 WT and KO cells when expression and phosphorylation of STAT1 were downregulated by JAK inhibitor baricitinib, which over-rode the activated antiviral innate immunity in the KO cells. This further validates baricitinib as a treatment of SARS-CoV-2-infected patients primarily at the postviral clearance stage. Overall, our tissue culture model systems demonstrated that the elevated innate immune response and IFN activation upon genetic loss of SAMHD1 effectively suppresses SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Keivan Zandi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Caitlin Shepard
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Leda C Bassit
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Katie Musall
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Shu Ling Goh
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Young-Jae Cho
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Dong-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA; Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
35
|
Barrett B, Nguyen DH, Xu J, Guo K, Shetty S, Jones ST, Mickens KL, Shepard C, Roers A, Behrendt R, Wu L, Kim B, Santiago ML. SAMHD1 Promotes the Antiretroviral Adaptive Immune Response in Mice Exposed to Lipopolysaccharide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:444-453. [PMID: 34893529 DOI: 10.4049/jimmunol.2001389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
SAMHD1 is a potent HIV-1 restriction factor that blocks reverse transcription in monocytes, dendritic cells and resting CD4+ T cells by decreasing intracellular dNTP pools. However, SAMHD1 may diminish innate immune sensing and Ag presentation, resulting in a weaker adaptive immune response. To date, the role of SAMHD1 on antiretroviral immunity remains unclear, as mouse SAMHD1 had no impact on murine retrovirus replication in prior in vivo studies. Here, we show that SAMHD1 significantly inhibits acute Friend retrovirus infection in mice. Pretreatment with LPS, a significant driver of inflammation during HIV-1 infection, further unmasked a role for SAMHD1 in influencing immune responses. LPS treatment in vivo doubled the intracellular dNTP levels in immune compartments of SAMHD1 knockout but not wild-type mice. SAMHD1 knockout mice exhibited higher plasma infectious viremia and proviral DNA loads than wild-type mice at 7 d postinfection (dpi), and proviral loads inversely correlated with a stronger CD8+ T cell response. SAMHD1 deficiency was also associated with weaker NK, CD4+ T and CD8+ T cell responses by 14 dpi and weaker neutralizing Ab responses by 28 dpi. Intriguingly, SAMHD1 influenced these cell-mediated immune (14 dpi) and neutralizing Ab (28 dpi) responses in male but not female mice. Our findings formally demonstrate SAMHD1 as an antiretroviral factor in vivo that could promote adaptive immune responses in a sex-dependent manner. The requirement for LPS to unravel the SAMHD1 immunological phenotype suggests that comorbidities associated with a "leaky" gut barrier may influence the antiviral function of SAMHD1 in vivo.
Collapse
Affiliation(s)
- BradleyS Barrett
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - David H Nguyen
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Joella Xu
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA
| | - Kejun Guo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Shravida Shetty
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Sean T Jones
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Kaylee L Mickens
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Caitlin Shepard
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA
| | - Axel Roers
- Institute for Immunology, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Rayk Behrendt
- Institute for Immunology, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA; and
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA.,Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, GA
| | - Mario L Santiago
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO; .,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
36
|
Wang Y, Qian G, Zhu L, Zhao Z, Liu Y, Han W, Zhang X, Zhang Y, Xiong T, Zeng H, Yu X, Yu X, Zhang X, Xu J, Zou Q, Yan D. HIV-1 Vif suppresses antiviral immunity by targeting STING. Cell Mol Immunol 2022; 19:108-121. [PMID: 34811497 PMCID: PMC8752805 DOI: 10.1038/s41423-021-00802-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/25/2021] [Indexed: 01/03/2023] Open
Abstract
HIV-1 infection-induced cGAS-STING-TBK1-IRF3 signaling activates innate immunity to produce type I interferon (IFN). The HIV-1 nonstructural protein viral infectivity factor (Vif) is essential in HIV-1 replication, as it degrades the host restriction factor APOBEC3G. However, whether and how it regulates the host immune response remains to be determined. In this study, we found that Vif inhibited the production of type I IFN to promote immune evasion. HIV-1 infection induced the activation of the host tyrosine kinase FRK, which subsequently phosphorylated the immunoreceptor tyrosine-based inhibitory motif (ITIM) of Vif and enhanced the interaction between Vif and the cellular tyrosine phosphatase SHP-1 to inhibit type I IFN. Mechanistically, the association of Vif with SHP-1 facilitated SHP-1 recruitment to STING and inhibited the K63-linked ubiquitination of STING at Lys337 by dephosphorylating STING at Tyr162. However, the FRK inhibitor D-65495 counteracted the phosphorylation of Vif to block the immune evasion of HIV-1 and antagonize infection. These findings reveal a previously unknown mechanism through which HIV-1 evades antiviral immunity via the ITIM-containing protein to inhibit the posttranslational modification of STING. These results provide a molecular basis for the development of new therapeutic strategies to treat HIV-1 infection.
Collapse
Affiliation(s)
- Yu Wang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, China
- Department of Basic Courses, NCO School, Army Medical University, Shijiazhuang, 050081, China
| | - Gui Qian
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Lingyan Zhu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Zhuo Zhao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yinan Liu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Wendong Han
- Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China
| | - Xiaokai Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yihua Zhang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Tingrong Xiong
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Hao Zeng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xiaofang Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130061, China
| | - Xiaoyan Zhang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Jianqing Xu
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Quanming Zou
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| | - Dapeng Yan
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
37
|
Fu L, Xing L, Hao Y, Yang Z, Teng S, Wei L, Zhang W. The anti-inflammatory effects of dry-cured ham derived peptides in RAW264.7 macrophage cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
38
|
Time-series transcriptomic analysis of bronchoalveolar lavage cells from virulent and low virulent PRRSV-1-infected piglets. J Virol 2021; 96:e0114021. [PMID: 34851149 PMCID: PMC8826917 DOI: 10.1128/jvi.01140-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has evolved to escape the immune surveillance for a survival advantage leading to a strong modulation of host’s immune responses and favoring secondary bacterial infections. However, limited data are available on how the immunological and transcriptional responses elicited by virulent and low-virulent PRRSV-1 strains are comparable and how they are conserved during the infection. To explore the kinetic transcriptional signature associated with the modulation of host immune response at lung level, a time-series transcriptomic analysis was performed in bronchoalveolar lavage cells upon experimental in vivo infection with two PRRSV-1 strains of different virulence, virulent subtype 3 Lena strain or the low-virulent subtype 1 3249 strain. The time-series analysis revealed overlapping patterns of dysregulated genes enriched in T-cell signaling pathways among both virulent and low-virulent strains, highlighting an upregulation of co-stimulatory and co-inhibitory immune checkpoints that were disclosed as Hub genes. On the other hand, virulent Lena infection induced an early and more marked “negative regulation of immune system process” with an overexpression of co-inhibitory receptors genes related to T-cell and NK cell functions, in association with more severe lung lesion, lung viral load, and BAL cell kinetics. These results underline a complex network of molecular mechanisms governing PRRSV-1 immunopathogenesis at lung level, revealing a pivotal role of co-inhibitory and co-stimulatory immune checkpoints in the pulmonary disease, which may have an impact on T-cell activation and related pathways. These immune checkpoints, together with the regulation of cytokine-signaling pathways, modulated in a virulence-dependent fashion, orchestrate an interplay among pro- and anti-inflammatory responses. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the major threats to swine health and global production, causing substantial economic losses. We explore the mechanisms involved in the modulation of host immune response at lung level performing a time-series transcriptomic analysis upon experimental infection with two PRRSV-1 strains of different virulence. A complex network of molecular mechanisms was revealed to control the immunopathogenesis of PRRSV-1 infection, highlighting an interplay among pro- and anti-inflammatory responses as a potential mechanism to restrict inflammation-induced lung injury. Moreover, a pivotal role of co-inhibitory and co-stimulatory immune checkpoints was evidenced, which may lead to progressive dysfunction of T cells, impairing viral clearance and leading to persistent infection, favoring as well secondary bacterial infections or viral rebound. However, further studies should be conducted to evaluate the functional role of immune checkpoints in advanced stages of PRRSV infection and explore a possible T-cell exhaustion state.
Collapse
|
39
|
Qi M, Liu B, Li S, Ni Z, Li F. Construction and Investigation of Competing Endogenous RNA Networks and Candidate Genes Involved in SARS-CoV-2 Infection. Int J Gen Med 2021; 14:6647-6659. [PMID: 34675627 PMCID: PMC8520483 DOI: 10.2147/ijgm.s335162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction The current COVID-19 pandemic caused by a novel coronavirus SARS-CoV-2 is a quickly developing global health crisis, yet the mechanisms of pathogenesis in COVID-19 are not fully understood. Methods The RNA sequencing data of SARS-CoV-2-infected cells was obtained from the Gene Expression Omnibus (GEO). The differentially expressed mRNAs (DEmRNAs), long non-coding RNAs (DElncRNAs), and microRNAs (DEmiRNAs) were identified by edgeR, and the SARS-CoV-2-associated competing endogenous RNA (ceRNA) network was constructed based on the prediction of bioinformatic databases. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted with the SARS-CoV-2-related DEmRNAs, and the protein–protein interaction network was also built basing on STRING database. The ROC analysis was performed for assessing the diagnostic efficiency of hub genes. Results The results indicated that SARS-CoV-2-related DEmRNAs were associated with the interferon signaling pathway and other antiviral processes, such as IFNL3, IFNL1 and CH25H. Our analysis suggested that lncRNA NEAT1 might regulate the host immune response through two miRNAs, hsa-miR-374-5p and hsa-miR-155-5p, which control the expression of SOCS1, IL6, IL1B, CSF1R, CD274, TLR6, and TNF. Additionally, IFI6, HRASLS2, IGFBP4 and PTN may be potential targets based on an analysis comparing the transcriptional responses of SARS-CoV-2 infection with that of other respiratory viruses. Discussion The unique ceRNA network identified potential non-coding RNAs and their possible targets as well as a new perspective to understand the molecular mechanisms of the host immune response to SARS-CoV-2. This study may also aid in the development of innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mingran Qi
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, People's Republic of China
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuai Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhaohui Ni
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, People's Republic of China.,The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, Jilin, People's Republic of China.,Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, Jilin, People's Republic of China.,Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, Jilin, People's Republic of China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, People's Republic of China.,The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, Jilin, People's Republic of China.,Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, Jilin, People's Republic of China.,Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, Jilin, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, People's Republic of China
| |
Collapse
|
40
|
Bowen NE, Temple J, Shepard C, Oo A, Arizaga F, Kapoor-Vazirani P, Persaud M, Yu CH, Kim DH, Schinazi RF, Ivanov DN, Diaz-Griffero F, Yu DS, Xiong Y, Kim B. Structural and functional characterization explains loss of dNTPase activity of the cancer-specific R366C/H mutant SAMHD1 proteins. J Biol Chem 2021; 297:101170. [PMID: 34492268 PMCID: PMC8497992 DOI: 10.1016/j.jbc.2021.101170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
Elevated intracellular levels of dNTPs have been shown to be a biochemical marker of cancer cells. Recently, a series of mutations in the multifunctional dNTP triphosphohydrolase (dNTPase), sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1), have been reported in various cancers. Here, we investigated the structure and functions of SAMHD1 R366C/H mutants, found in colon cancer and leukemia. Unlike many other cancer-specific mutations, the SAMHD1 R366 mutations do not alter cellular protein levels of the enzyme. However, R366C/H mutant proteins exhibit a loss of dNTPase activity, and their X-ray structures demonstrate the absence of dGTP substrate in their active site, likely because of a loss of interaction with the γ-phosphate of the substrate. The R366C/H mutants failed to reduce intracellular dNTP levels and restrict HIV-1 replication, functions of SAMHD1 that are dependent on the ability of the enzyme to hydrolyze dNTPs. However, these mutants retain dNTPase-independent functions, including mediating dsDNA break repair, interacting with CtIP and cyclin A2, and suppressing innate immune responses. Finally, SAMHD1 degradation in human primary-activated/dividing CD4+ T cells further elevates cellular dNTP levels. This study suggests that the loss of SAMHD1 dNTPase activity induced by R366 mutations can mechanistically contribute to the elevated dNTP levels commonly found in cancer cells.
Collapse
Affiliation(s)
- Nicole E Bowen
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Joshua Temple
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Caitlin Shepard
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Fidel Arizaga
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Priya Kapoor-Vazirani
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Mirjana Persaud
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Corey H Yu
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Dong-Hyun Kim
- School of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Dmitri N Ivanov
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David S Yu
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut, USA.
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA; Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
41
|
Schott K, Majer C, Bulashevska A, Childs L, Schmidt MHH, Rajalingam K, Munder M, König R. SAMHD1 in cancer: curse or cure? J Mol Med (Berl) 2021; 100:351-372. [PMID: 34480199 PMCID: PMC8843919 DOI: 10.1007/s00109-021-02131-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/15/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Human sterile α motif and HD domain-containing protein 1 (SAMHD1), originally described as the major cellular deoxyribonucleoside triphosphate triphosphohydrolase (dNTPase) balancing the intracellular deoxynucleotide (dNTP) pool, has come recently into focus of cancer research. As outlined in this review, SAMHD1 has been reported to be mutated in a variety of cancer types and the expression of SAMHD1 is dysregulated in many cancers. Therefore, SAMHD1 is regarded as a tumor suppressor in certain tumors. Moreover, it has been proposed that SAMHD1 might fulfill the requirements of a driver gene in tumor development or might promote a so-called mutator phenotype. Besides its role as a dNTPase, several novel cellular functions of SAMHD1 have come to light only recently, including a role as negative regulator of innate immune responses and as facilitator of DNA end resection during DNA replication and repair. Therefore, SAMHD1 can be placed at the crossroads of various cellular processes. The present review summarizes the negative role of SAMHD1 in chemotherapy sensitivity, highlights reported SAMHD1 mutations found in various cancer types, and aims to discuss functional consequences as well as underlying mechanisms of SAMHD1 dysregulation potentially involved in cancer development.
Collapse
Affiliation(s)
- Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Catharina Majer
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Alla Bulashevska
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Liam Childs
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- University Cancer Center Mainz, University Medical Center Mainz, Mainz, Germany
| | - Markus Munder
- Third Department of Medicine, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany.
| |
Collapse
|
42
|
Chintala K, Mohareer K, Banerjee S. Dodging the Host Interferon-Stimulated Gene Mediated Innate Immunity by HIV-1: A Brief Update on Intrinsic Mechanisms and Counter-Mechanisms. Front Immunol 2021; 12:716927. [PMID: 34394123 PMCID: PMC8358655 DOI: 10.3389/fimmu.2021.716927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Host restriction factors affect different phases of a viral life cycle, contributing to innate immunity as the first line of defense against viruses, including HIV-1. These restriction factors are constitutively expressed, but triggered upon infection by interferons. Both pre-integration and post-integration events of the HIV-1 life cycle appear to play distinct roles in the induction of interferon-stimulated genes (ISGs), many of which encode antiviral restriction factors. However, HIV-1 counteracts the mechanisms mediated by these restriction factors through its encoded components. Here, we review the recent findings of pathways that lead to the induction of ISGs, and the mechanisms employed by the restriction factors such as IFITMs, APOBEC3s, MX2, and ISG15 in preventing HIV-1 replication. We also reflect on the current understanding of the counter-mechanisms employed by HIV-1 to evade innate immune responses and overcome host restriction factors. Overall, this mini-review provides recent insights into the HIV-1-host cross talk bridging the understanding between intracellular immunity and research avenues in the field of therapeutic interventions against HIV-1.
Collapse
|
43
|
Tovo PA, Garazzino S, Daprà V, Pruccoli G, Calvi C, Mignone F, Alliaudi C, Denina M, Scolfaro C, Zoppo M, Licciardi F, Ramenghi U, Galliano I, Bergallo M. COVID-19 in Children: Expressions of Type I/II/III Interferons, TRIM28, SETDB1, and Endogenous Retroviruses in Mild and Severe Cases. Int J Mol Sci 2021; 22:7481. [PMID: 34299101 PMCID: PMC8303145 DOI: 10.3390/ijms22147481] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
Children with the new coronavirus disease 2019 (COVID-19) have milder symptoms and a better prognosis than adult patients. Several investigations assessed type I, II, and III interferon (IFN) signatures in SARS-CoV-2 infected adults, however no data are available for pediatric patients. TRIM28 and SETDB1 regulate the transcription of multiple genes involved in the immune response as well as of human endogenous retroviruses (HERVs). Exogenous viral infections can trigger the activation of HERVs, which in turn can induce inflammatory and immune reactions. Despite the potential cross-talks between SARS-CoV-2 infection and TRIM28, SETDB1, and HERVs, information on their expressions in COVID-19 patients is lacking. We assessed, through a PCR real time Taqman amplification assay, the transcription levels of six IFN-I stimulated genes, IFN-II and three of its sensitive genes, three IFN-lIIs, as well as of TRIM28, SETDB1, pol genes of HERV-H, -K, and -W families, and of env genes of Syncytin (SYN)1, SYN2, and multiple sclerosis-associated retrovirus (MRSV) in peripheral blood from COVID-19 children and in control uninfected subjects. Higher expression levels of IFN-I and IFN-II inducible genes were observed in 36 COVID-19 children with mild or moderate disease as compared to uninfected controls, whereas their concentrations decreased in 17 children with severe disease and in 11 with multisystem inflammatory syndrome (MIS-C). Similar findings were found for the expression of TRIM-28, SETDB1, and every HERV gene. Positive correlations emerged between the transcriptional levels of type I and II IFNs, TRIM28, SETDB1, and HERVs in COVID-19 patients. IFN-III expressions were comparable in each group of subjects. This preserved induction of IFN-λs could contribute to the better control of the infection in children as compared to adults, in whom IFN-III deficiency has been reported. The upregulation of IFN-I, IFN-II, TRIM28, SETDB1, and HERVs in children with mild symptoms, their declines in severe cases or with MIS-C, and the positive correlations of their transcription in SARS-CoV-2-infected children suggest that they may play important roles in conditioning the evolution of the infection.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
| | - Silvia Garazzino
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (S.G.); (F.M.); (C.S.); (M.Z.)
| | - Valentina Daprà
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, 10126 Turin, Italy;
| | - Giulia Pruccoli
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
| | - Cristina Calvi
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, 10126 Turin, Italy;
| | - Federica Mignone
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (S.G.); (F.M.); (C.S.); (M.Z.)
| | - Carla Alliaudi
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, 10126 Turin, Italy;
| | - Marco Denina
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
| | - Carlo Scolfaro
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (S.G.); (F.M.); (C.S.); (M.Z.)
| | - Marisa Zoppo
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (S.G.); (F.M.); (C.S.); (M.Z.)
| | - Francesco Licciardi
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
| | - Ugo Ramenghi
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
| | - Ilaria Galliano
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, 10126 Turin, Italy;
| | - Massimiliano Bergallo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (G.P.); (C.C.); (C.A.); (M.D.); (F.L.); (U.R.); (I.G.)
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, 10126 Turin, Italy;
| |
Collapse
|
44
|
Huang C, Xu X, Jiang D, Jiang W. Binding mediated MNAzyme signal amplification strategy for enzyme-free and label-free detection of DNA-binding proteins. Anal Chim Acta 2021; 1166:338560. [PMID: 34022996 DOI: 10.1016/j.aca.2021.338560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
A novel MNAzyme signal amplification strategy was developed for enzyme-free and label-free detection of DNA-binding proteins. This strategy relied on the binding-mediated MNAzyme cleavage and G-quadruplex-based light-up fluorescence switch. Three DNA sequences were designed to construct the MNAzyme in which DNA1 (including half binding site of the target protein and a toehold sequence) and DNA2 (including another half binding site of the target protein and one MNAzyme partzyme) firstly hybridized. The target protein recognized the binding sites on DNA1-DNA2 hybrid to form a stable protein-DNA1-DNA2 conjugates. Then, the MNAzyme was assembled with the presence of DNA3 which contained another MNAzyme partzyme and the complementary sequence of DNA1. The active MNAzyme cleaved DNA4 to release the G-quadruplex that was locked in the stem of DNA4. Finally, N-methyl mesoporphyrin IX (NMM) was inserted into the released G-quadruplex structure and the fluorescence signal was turned on. Taking nuclear factor-κB p50 (NF-κB p50) as the model, the limit of detection was low to 0.14 nM. Furthermore, the sequence-specific recognition of NF-κB p50 with DNA displayed excellent selectivity and specificity. The results in present work showed that this strategy will be a promising tool for DNA-binding proteins analysis in biomedical exploration and clinical diagnosis.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, PR China.
| | - Wei Jiang
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China; School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China.
| |
Collapse
|
45
|
Interferon Gamma Inhibits Equine Herpesvirus 1 Replication in a Cell Line-Dependent Manner. Pathogens 2021; 10:pathogens10040484. [PMID: 33923733 PMCID: PMC8073143 DOI: 10.3390/pathogens10040484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The sole equine herpesvirus 1 (EHV-1) immediate-early protein (IEP) is essential for viral replication by transactivating viral immediate-early (IE), early (E), and late (L) genes. Here, we report that treatment of mouse MH-S, equine NBL6, and human MRC-5 cells with 20 ng/mL of IFN-γ reduced EHV-1 yield by 1122-, 631-, and 10,000-fold, respectively. However, IFN-γ reduced virus yield by only 2–4-fold in mouse MLE12, mouse L-M, and human MeWo cells compared to those of untreated cells. In luciferase assays with the promoter of the EHV-1 early regulatory EICP0 gene, IFN-γ abrogated trans-activation activity of the IEP by 96% in MH-S cells, but only by 21% in L-M cells. Similar results were obtained in assays with the early regulatory UL5 and IR4 promoter reporter plasmids. IFN-γ treatment reduced IEP protein expression by greater than 99% in MH-S cells, but only by 43% in L-M cells. The expression of IEP and UL5P suppressed by IFN-γ was restored by JAK inhibitor treatment, indicating that the inhibition of EHV-1 replication is mediated by JAK/STAT1 signaling. These results suggest that IFN-γ blocks EHV-1 replication by inhibiting the production of the IEP in a cell line-dependent manner. Affymetrix microarray analyses of IFN-γ-treated MH-S and L-M cells revealed that five antiviral ISGs (MX1, SAMHD1, IFIT2, NAMPT, TREX1, and DDX60) were upregulated 3.2–18.1-fold only in MH-S cells.
Collapse
|
46
|
Chen S, Kumar S, Espada CE, Tirumuru N, Cahill MP, Hu L, He C, Wu L. N6-methyladenosine modification of HIV-1 RNA suppresses type-I interferon induction in differentiated monocytic cells and primary macrophages. PLoS Pathog 2021; 17:e1009421. [PMID: 33690734 PMCID: PMC7984636 DOI: 10.1371/journal.ppat.1009421] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/22/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) is a prevalent RNA modification that plays a key role in regulating eukaryotic cellular mRNA functions. RNA m6A modification is regulated by two groups of cellular proteins, writers and erasers that add or remove m6A, respectively. HIV-1 RNA contains m6A modifications that modulate viral infection and gene expression in CD4+ T cells. However, it remains unclear whether m6A modifications of HIV-1 RNA modulate innate immune responses in myeloid cells that are important for antiviral immunity. Here we show that m6A modification of HIV-1 RNA suppresses the expression of antiviral cytokine type-I interferon (IFN-I) in differentiated human monocytic cells and primary monocyte-derived macrophages. Transfection of differentiated monocytic U937 cells with HIV-1 RNA fragments containing a single m6A-modification significantly reduced IFN-I mRNA expression relative to their unmodified RNA counterparts. We generated HIV-1 with altered m6A levels of RNA by manipulating the expression of the m6A erasers (FTO and ALKBH5) or pharmacological inhibition of m6A addition in virus-producing cells, or by treating HIV-1 RNA with recombinant FTO in vitro. HIV-1 RNA transfection or viral infection of differentiated U937 cells and primary macrophages demonstrated that HIV-1 RNA with decreased m6A levels enhanced IFN-I expression, whereas HIV-1 RNA with increased m6A modifications had opposite effects. Our mechanistic studies indicated that m6A of HIV-1 RNA escaped retinoic acid-induced gene I (RIG-I)-mediated RNA sensing and activation of the transcription factors IRF3 and IRF7 that drive IFN-I gene expression. Together, these findings suggest that m6A modifications of HIV-1 RNA evade innate immune sensing in myeloid cells.
Collapse
Affiliation(s)
- Shuliang Chen
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Sameer Kumar
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Constanza E. Espada
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Nagaraja Tirumuru
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael P. Cahill
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Lulu Hu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, United States of America
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, United States of America
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
47
|
SAMHD1 … and Viral Ways around It. Viruses 2021; 13:v13030395. [PMID: 33801276 PMCID: PMC7999308 DOI: 10.3390/v13030395] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
The SAM and HD domain-containing protein 1 (SAMHD1) is a dNTP triphosphohydrolase that plays a crucial role for a variety of different cellular functions. Besides balancing intracellular dNTP concentrations, facilitating DNA damage repair, and dampening excessive immune responses, SAMHD1 has been shown to act as a major restriction factor against various virus species. In addition to its well-described activity against retroviruses such as HIV-1, SAMHD1 has been identified to reduce the infectivity of different DNA viruses such as the herpesviruses CMV and EBV, the poxvirus VACV, or the hepadnavirus HBV. While some viruses are efficiently restricted by SAMHD1, others have developed evasion mechanisms that antagonize the antiviral activity of SAMHD1. Within this review, we summarize the different cellular functions of SAMHD1 and highlight the countermeasures viruses have evolved to neutralize the restriction factor SAMHD1.
Collapse
|
48
|
Elevation in viral entry genes and innate immunity compromise underlying increased infectivity and severity of COVID-19 in cancer patients. Sci Rep 2021; 11:4533. [PMID: 33633121 PMCID: PMC7907391 DOI: 10.1038/s41598-021-83366-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/03/2020] [Indexed: 12/30/2022] Open
Abstract
Multiple studies have reported a doubling in risk of Coronavirus Disease-2019 (COVID-19) among cancer patients. Here, we examine the potential biological rationale behind this recurrent epidemiological observation. By leveraging large-scale genome-wide transcriptional data of normal and malignant tissues from adults and children, we found evidence of increased expression of SARS-CoV-2 viral entry genes in the cancer state, particularly in respiratory, gastrointestinal, and genitourinary tract tissues, with decreased expression in pediatric vs. adult samples. Additionally, by interrogating the temporal effects of radiotherapy on human peripheral blood mononuclear and mucosal cells, we observed important treatment-related alterations in host innate immunity, specifically type I interferon responses. Overall, cancers enhance expression of critical viral entry genes, and innate viral defenses can be dysregulated transiently during radiation treatments. These factors may contribute to the observed increased susceptibility to SARS-CoV-2 entry and severity of COVID-19 in cancer patients.
Collapse
|
49
|
Wayne J, Brooks T, Landras A, Massey AJ. Targeting DNA damage response pathways to activate the STING innate immune signaling pathway in human cancer cells. FEBS J 2021; 288:4507-4540. [DOI: 10.1111/febs.15747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/21/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
|
50
|
Cingöz O, Arnow ND, Puig Torrents M, Bannert N. Vpx enhances innate immune responses independently of SAMHD1 during HIV-1 infection. Retrovirology 2021; 18:4. [PMID: 33563288 PMCID: PMC7871410 DOI: 10.1186/s12977-021-00548-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background The genomes of HIV-2 and some SIV strains contain the accessory gene vpx, which carries out several functions during infection, including the downregulation of SAMHD1. Vpx is also commonly used in experiments to increase HIV-1 infection efficiency in myeloid cells, particularly in studies that investigate the activation of antiviral pathways. However, the potential effects of Vpx on cellular innate immune signaling is not completely understood. We investigated whether and how Vpx affects ISG responses in monocytic cell lines and MDMs during HIV-1 infection. Results HIV-1 infection at excessively high virus doses can induce ISG activation, although at the expense of high levels of cell death. At equal infection levels, the ISG response is potentiated by the presence of Vpx and requires the initiation of reverse transcription. The interaction of Vpx with the DCAF1 adaptor protein is important for the enhanced response, implicating Vpx-mediated degradation of a host factor. Cells lacking SAMHD1 show similarly augmented responses, suggesting an effect that is independent of SAMHD1 degradation. Overcoming SAMHD1 restriction in MDMs to reach equal infection levels with viruses containing and lacking Vpx reveals a novel function of Vpx in elevating innate immune responses. Conclusions Vpx likely has as yet undefined roles in infected cells. Our results demonstrate that Vpx enhances ISG responses in myeloid cell lines and primary cells independently of its ability to degrade SAMHD1. These findings have implications for innate immunity studies in myeloid cells that use Vpx delivery with HIV-1 infection.
Collapse
Affiliation(s)
- Oya Cingöz
- Department of Infectious Diseases HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany.
| | - Nicolas D Arnow
- Department of Infectious Diseases HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Mireia Puig Torrents
- Department of Infectious Diseases HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Norbert Bannert
- Department of Infectious Diseases HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| |
Collapse
|