1
|
Jia YX, Wang N, Hui SW, Chang J, Zhu QM, Zhang HL, Zhang J, Yan JK, Sun CP. Discovery of soluble epoxide hydrolase inhibitors from Inula britannica: Inhibition kinetics, molecular dynamics simulation, biochemical, and in vitro cell-based studies. Int J Biol Macromol 2025; 306:141704. [PMID: 40044011 DOI: 10.1016/j.ijbiomac.2025.141704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/22/2025] [Accepted: 03/01/2025] [Indexed: 05/03/2025]
Abstract
Soluble epoxide hydrolase (sEH) is an enzyme involved in transforming epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs). EETs play a pivotal role in maintaining anti-inflammatory response and pain regulation, making sEH as an important target for therapeutic interventions. Based on our present study of discovery of sEH inhibitors, herein, six new (1-6) and fifteen known compounds (7-21) with inhibitory effects toward sEH were isolated from Inula britannica. Among them, compounds 5 (inulabritanthymol G) and 9 (bellidtfolin) possessed strongest inhibitory abilities with IC50 values of 3.87 and 2.85 μM, respectively. Inhibition kinetics indicated that they were assigned as uncompetitive inhibitors, and their Ki values were 1.93 and 1.89 μM, respectively. Molecular dynamics simulation demonstrated that the stability and interactions of inhibitors 5/9 with sEH were attributed to hydrogen bonds with amino acid residues of Asp335, Ser374, or Asn472. In addition, inhibitors 5 and 9 could exert anti-inflammatory effects through suppressing the NF-κB activation in LPS-exposed RAW264.7 cells, highlighting their potential as natural therapeutic agents for managing inflammatory diseases.
Collapse
Affiliation(s)
- Ya-Xue Jia
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Na Wang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Si-Wen Hui
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Jing Chang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Qi-Meng Zhu
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Hui-Lin Zhang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Juan Zhang
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| | - Jian-Kun Yan
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, People's Republic of China.
| | - Cheng-Peng Sun
- School of Chinese Materia Medica, School of Medical Technology, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| |
Collapse
|
2
|
Wang S, Qi C, Rajpurohit C, Ghosh B, Xiong W, Wang B, Qi Y, Hwang SH, Hammock BD, Li H, Gan L, Zheng H. Inhibition of soluble epoxide hydrolase confers neuroprotection and restores microglial homeostasis in a tauopathy mouse model. Mol Neurodegener 2025; 20:44. [PMID: 40264187 PMCID: PMC12016400 DOI: 10.1186/s13024-025-00844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND The epoxyeicosatrienoic acids (EETs) are derivatives of the arachidonic acid metabolism with anti-inflammatory activities. However, their efficacy is limited due to the rapid hydrolysis by soluble epoxide hydrolase (sEH). Inhibition of sEH has been shown to stabilize the EETs and reduce neuroinflammation in Aβ mouse models of Alzheimer's disease (AD). However, the role of the sEH-EET signaling pathway in other CNS cell types and neurodegenerative conditions are less understood. METHODS Here we investigated the mechanisms and functional role of the sEH-EET axis in tauopathy by treating PS19 mice with a small molecule sEH inhibitor TPPU and by crossing the PS19 mice with Ephx2 (gene encoding sEH) knockout mice. This was followed by single-nucleus RNA-sequencing (snRNA-seq), biochemical and immunohistochemical analysis, and behavioral assessments. Additionally, we examined the effects of the sEH-EET pathway in primary microglia cultures and human induced pluripotent stem cell (iPSC)-derived neurons exhibiting seeding-induced Tau inclusions. RESULTS sEH inhibition improved cognitive function, rescued neuronal cell loss, and reduced Tau pathology and microglial reactivity. snRNA-seq revealed that TPPU treatment upregulated genes involved in actin cytoskeleton and excitatory synaptic pathways. Treatment of human iPSC-derived neurons with TPPU enhanced synaptic density without affecting Tau accumulation, suggesting a cell-autonomous neuroprotective effect of sEH blockade. Furthermore, sEH inhibition reversed disease-associated and interferon-responsive microglial states in PS19 mice, while EET supplementation promoted Tau phagocytosis and clearance in primary microglia cultures. CONCLUSION These findings demonstrate that sEH blockade or EET augmentation confers therapeutic benefit in neurodegenerative tauopathies by simultaneously targeting neuronal and microglial pathways.
Collapse
Affiliation(s)
- Shuo Wang
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chuangye Qi
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chetan Rajpurohit
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Baijayanti Ghosh
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Wen Xiong
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Baiping Wang
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Cao L, Ba Y, Chen F, Li D, Zhang S, Zhang H. The prognostic significance of epoxide hydrolases in colorectal cancer. Biochem Biophys Rep 2025; 41:101912. [PMID: 39850362 PMCID: PMC11754166 DOI: 10.1016/j.bbrep.2024.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Colorectal cancer (CRC) is a common malignant cancer. Epoxide hydrolases (EHs) are involved in the development of cancer by regulating epoxides, but their relationship with CRC is unclear. We used multiple datasets to confirm the expression of different EPHX family members in CRC tissues, and to explore their association with different clinicopathologic characteristics. The Kaplan-Meier method, correlation analysis and random forest algorithm were used to evaluate the prognostic value of EPHX family members for CRC. Finally, the cell experiment verified function of EPHX4 in CRC. The expressions of EPHX1 and EPHX2 were significantly decreased, while those of EPHX3 and EPHX4 were significantly increased in CRC. The expressions of EPHX family members were correlated with some clinicopathologic features and overall survival. The expressions of the EPHX family were positively associated with CD274, CTLA4, HAVCR2, and TIGIT. EPHX2 and EPHX4 were diagnostic and predictive biomarkers for CRC. EPHX4 promoted the malignant phenotype of CRC cells. Our study firstly elucidated the prognostic significance of EPHX family members in CRC and identified novel diagnostic and prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Lichao Cao
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| | - Ying Ba
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| | - Fang Chen
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| | - Dandan Li
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| | - Shenrui Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| | - Hezi Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| |
Collapse
|
4
|
Wang S, Qi C, Rajpurohit C, Ghosh B, Xiong W, Wang B, Qi Y, Hwang SH, Hammock BD, Li H, Gan L, Zheng H. Inhibition of Soluble Epoxide Hydrolase Confers Neuroprotection and Restores Microglial Homeostasis in a Tauopathy Mouse Model. RESEARCH SQUARE 2025:rs.3.rs-6038641. [PMID: 40060041 PMCID: PMC11888548 DOI: 10.21203/rs.3.rs-6038641/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Background The epoxyeicosatrienoic acids (EETs) are derivatives of the arachidonic acid metabolism with anti-inflammatory activities. However, their efficacy is limited due to the rapid hydrolasis by the soluble epoxide hydrolase (sEH). Accordingly, inhibition of sEH has been shown to stabilize the EETs and dampen neuroinflammation in Aβ mouse models of Alzheimer's disease (AD). However, the role of the sEH-EET signaling pathway in other cell types of the CNS and in other neurodegenerative conditions are less understood. Methods Here we examined the mechanisms and the functional role of the sEH-EET axis in tauopathy by treating the PS19 mice with a small molecule sEH inhibitor TPPU and by crossing the PS19 mice with Ephx2 (gene encoding sEH) knockout mice, followed by single-nucleus RNA-sequencing (snRNA-seq), biochemical and immunohistochemical characterization, and behavioral analysis. We also tested the effect of the sEH-EET pathway in primary microglia cultures and human induced pluripotent stem cell (iPSC)-derived neurons that develop seeding-induced Tau inclusions. Results We show that sEH inhibition improved cognitive function, rescued neuronal cell loss, and reduced Tau pathology and microglia reactivity. snRNA-seq revealed that TPPU treatment resulted in the upregulation of actin cytoskeleton and excitatory synaptic pathway genes. Treating the human iPSC-derived neurons with TPPU led to enhanced synaptic density without affecting Tau accumulation, indicating a cell-autonomous effect of sEH blockade in neuroprotection. Further, sEH inhibition reversed disease-associated and interferon-response microglia states in PS19 mice and EET supplementation enhanced Tau phagocytosis and clearance in primary microglia cultures. Conclusion These findings demonstrate that sEH blockade or EET augmentation confer therapeutic benefit against neurodegenerative tauopathies through parallel targeting of neuronal and microglial pathways.
Collapse
Affiliation(s)
- Shuo Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX
| | - Chuangye Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX
| | | | - Baijayanti Ghosh
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX
| | - Wen Xiong
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX
| | - Baiping Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Li Gan
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
5
|
Tang C, Border JJ, Zhang H, Gregory A, Bai S, Fang X, Liu Y, Wang S, Hwang SH, Gao W, Morgan GC, Smith J, Bunn D, Cantwell C, Wagner KM, Morisseau C, Yang J, Shin SM, O'Herron P, Bagi Z, Filosa JA, Dong Y, Yu H, Hammock BD, Roman RJ, Fan F. Inhibition of soluble epoxide hydrolase ameliorates cerebral blood flow autoregulation and cognition in alzheimer's disease and diabetes-related dementia rat models. GeroScience 2025:10.1007/s11357-025-01550-8. [PMID: 39903369 DOI: 10.1007/s11357-025-01550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
Alzheimer's Disease and Alzheimer's Disease-related dementias (AD/ADRD) pose major global healthcare challenges, with diabetes mellitus (DM) being a key risk factor. Both AD and DM-related ADRD are characterized by reduced cerebral blood flow, although the exact mechanisms remain unclear. We previously identified compromised cerebral hemodynamics as early signs in TgF344-AD and type 2 DM-ADRD (T2DN) rat models. Genome-wide studies have linked AD/ADRD to SNPs in soluble epoxide hydrolase (sEH). This study explored the effects of sEH inhibition with TPPU on cerebral vascular function and cognition in AD and DM-ADRD models. Chronic TPPU treatment improved cognition in both AD and DM-ADRD rats without affecting body weight. In DM-ADRD rats, TPPU reduced plasma glucose and HbA1c levels. Transcriptomic analysis of primary cerebral vascular smooth muscle cells from AD rats treated with TPPU revealed enhanced pathways related to cell contraction, alongside decreased oxidative stress and inflammation. Both AD and DM-ADRD rats exhibited impaired myogenic responses and autoregulation in the cerebral circulation, which were normalized with chronic sEH inhibition. Additionally, TPPU improved acetylcholine-induced vasodilation in the middle cerebral arteries (MCA) of DM-ADRD rats. Acute TPPU administration unexpectedly caused vasoconstriction in the MCA of DM-ADRD rats at lower doses. In contrast, higher doses or longer durations were required to induce effective vasodilation at physiological perfusion pressure in both control and ADRD rats. Additionally, TPPU decreased reactive oxygen species production in cerebral vessels of AD and DM-ADRD rats. These findings provide novel evidence that chronic sEH inhibition can reverse cerebrovascular dysfunction and cognitive impairments in AD/ADRD, offering a promising avenue for therapeutic development.
Collapse
Affiliation(s)
- Chengyun Tang
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jane J Border
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Huawei Zhang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Andrew Gregory
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xing Fang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yedan Liu
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Shaoxun Wang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sung Hee Hwang
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Wenjun Gao
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gilbert C Morgan
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jhania Smith
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David Bunn
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Cameron Cantwell
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Karen M Wagner
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Christophe Morisseau
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Jun Yang
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Seung Min Shin
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Philip O'Herron
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zsolt Bagi
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jessica A Filosa
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yanbin Dong
- Georgia Prevention Center, Augusta University, Augusta, GA, USA
| | - Hongwei Yu
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bruce D Hammock
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Richard J Roman
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Fan Fan
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Physiology, Medical College of Georgia, Augusta University, 1462 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
6
|
Koubova K, Tauber Z, Cizkova K. Exploring the impact of sEH inhibition on intestinal cell differentiation and Colon Cancer: Insights from TPPU treatment. Toxicol Appl Pharmacol 2024; 492:117128. [PMID: 39414156 DOI: 10.1016/j.taap.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Inhibition of soluble epoxide hydrolase (sEH) appears to be promising for the treatment of many diseases. Studies have focused on the beneficial effects of epoxyeicosatrienoic acids (EETs), which are sEH substrates. However, our recent studies have shown that the sEH activity is crucial for the proper intestinal cell differentiation. In this recent study, we investigated the impact of TPPU, an inhibitor of sEH, on the colon cancer cell lines Caco2 and HT-29. We analysed the changes in the expression of the cytoskeletal protein ezrin and the phosphorylated protein kinase p38 (p-p38). Our results showed a decrease in ezrin expression in differentiated cells and an increase in p-p38 expression after TPPU treatment. Immunocytochemical staining revealed a higher staining intensity of p-p38 in the nuclei of HT-29 cells following TPPU treatment. Immunohistochemical staining was performed on human samples of normal colon tissue, grade 2 tumours, and embryonal/foetal tissues. The staining intensity of ezrin in tumours was reduced in the surface area compared to the crypts. Additionally, we observed the translocation of p-p38 expression from the cytoplasm to the nucleus during differentiation. The tumour samples exhibited higher levels of p-p38 in the cytoplasm, similar to normal undifferentiated tissue. To observe the disruption of the cytoskeleton after TPPU treatment, confocal microscopy was used. It was found that β-actin associated with ezrin forms clusters under the plasma membranes. All of these results are significant because sEH inhibitors are being tested in clinical trials, but they could cause an unexpected adverse effects.
Collapse
Affiliation(s)
- Katerina Koubova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Zdenek Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic.
| |
Collapse
|
7
|
Tang C, Border JJ, Zhang H, Gregory A, Bai S, Fang X, Liu Y, Wang S, Hwang SH, Gao W, Morgan GC, Smith J, Bunn D, Cantwell C, Wagner KM, Morisseau C, Yang J, Shin SM, O’Herron P, Bagi Z, Filosa JA, Dong Y, Yu H, Hammock BD, Roman RJ, Fan F. Inhibition of Soluble Epoxide Hydrolase Ameliorates Cerebral Blood Flow Autoregulation and Cognition in Alzheimer's Disease and Diabetes-Related Dementia Rat Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610540. [PMID: 39257786 PMCID: PMC11383657 DOI: 10.1101/2024.08.30.610540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Alzheimer's Disease and Alzheimer's Disease-related dementias (AD/ADRD) pose major global healthcare challenges, with diabetes mellitus (DM) being a key risk factor. Both AD and DM-related ADRD are characterized by reduced cerebral blood flow, although the exact mechanisms remain unclear. We previously identified compromised cerebral hemodynamics as early signs in TgF344-AD and type 2 DM-ADRD (T2DN) rat models. Genome-wide studies have linked AD/ADRD to SNPs in soluble epoxide hydrolase (sEH). This study explored the effects of sEH inhibition with TPPU on cerebral vascular function and cognition in AD and DM-ADRD models. Chronic TPPU treatment improved cognition in both AD and DM-ADRD rats without affecting body weight. In DM-ADRD rats, TPPU reduced plasma glucose and HbA1C levels. Transcriptomic analysis of primary cerebral vascular smooth muscle cells from AD rats treated with TPPU revealed enhanced pathways related to cell contraction, alongside decreased oxidative stress and inflammation. Both AD and DM-ADRD rats exhibited impaired myogenic responses and autoregulation in the cerebral circulation, which were normalized with chronic sEH inhibition. Additionally, TPPU improved acetylcholine-induced vasodilation in the middle cerebral arteries (MCA) of DM-ADRD rats. Acute TPPU administration unexpectedly caused vasoconstriction in the MCA of DM-ADRD rats at lower doses. In contrast, higher doses or longer durations were required to induce effective vasodilation at physiological perfusion pressure in both control and ADRD rats. Additionally, TPPU decreased reactive oxygen species production in cerebral vessels of AD and DM-ADRD rats. These findings provide novel evidence that chronic sEH inhibition can reverse cerebrovascular dysfunction and cognitive impairments in AD/ADRD, offering a promising avenue for therapeutic development.
Collapse
Affiliation(s)
- Chengyun Tang
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Jane J. Border
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Huawei Zhang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Andrew Gregory
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Xing Fang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Yedan Liu
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Shaoxun Wang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Sung Hee Hwang
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Wenjun Gao
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Gilbert C. Morgan
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jhania Smith
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - David Bunn
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Cameron Cantwell
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Karen M. Wagner
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Christophe Morisseau
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Jun Yang
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Seung Min Shin
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Philip O’Herron
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Zsolt Bagi
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jessica A. Filosa
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Yanbin Dong
- Georgia Prevention Center, Augusta University, Augusta, GA
| | - Hongwei Yu
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Bruce D. Hammock
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Richard J. Roman
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Fan Fan
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
8
|
Li S, Song H, Sun Y, Sun Y, Zhang H, Gao Z. Inhibition of soluble epoxide hydrolase as a therapeutic approach for blood-brain barrier dysfunction. Biochimie 2024; 223:13-22. [PMID: 38531484 DOI: 10.1016/j.biochi.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
The blood-brain barrier (BBB) is a protective semi-permeable structure that regulates the exchange of biomolecules between the peripheral blood and the central nervous system (CNS). Due to its specialized tight junctions and low vesicle trafficking, the BBB strictly limits the paracellular passage and transcellular transport of molecules to maintain the physiological condition of brain tissues. BBB breakdown is associated with many CNS disorders. Soluble epoxide hydrolase (sEH) is a hydrolase enzyme that converts epoxy-fatty acids (EpFAs) to their corresponding diols and is involved in the onset and progression of multiple diseases. EpFAs play a protective role in the central nervous system via preventing neuroinflammation, making sEH a potential therapeutic target for CNS diseases. Recent studies showed that sEH inhibition prevented BBB impairment caused by stroke, hemorrhage, traumatic brain injury, hyperglycemia and sepsis via regulating the expression of tight junctions. In this review, the protective actions of sEH inhibition on BBB and potential mechanisms are summarized, and some important questions that remain to be resolved are also addressed.
Collapse
Affiliation(s)
- Shuo Li
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Huijia Song
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yanping Sun
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yongjun Sun
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Huimin Zhang
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Zibin Gao
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China.
| |
Collapse
|
9
|
Shen N, Gao G, Lu X, Jin J, Lin L, Qian M, Qin Y. Comprehensive analysis of the immune implication of EPHX4 gene in laryngeal squamous cell carcinoma. Braz J Otorhinolaryngol 2024; 90:101411. [PMID: 38663041 PMCID: PMC11058101 DOI: 10.1016/j.bjorl.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVES The role of Epoxide Hydrolase-4 (EPHX4), a member of epoxide hydrolase family, has not been investigated in cancer. The purpose of this article is to explore the application value of EPHX4 in laryngeal cancer and its relationship with immune infiltration. METHODS We observed that EPHX4 expression and its survival assays in laryngeal cancer specimens based on The Cancer Genome Atlas (TCGA) cohorts. We also analyzed the correlation between immune cell infiltration levels and EPHX4 gene copy number in laryngeal cancer. Finally, we conducted in vitro assay to evaluate the functions of EPHX4 in laryngeal cancer cell line. RESULTS EPHX4 is highly expressed in laryngeal cancer specimens and has a poor prognosis. EPHX4 related immune cell analysis showed that it participated in NK Natural killer cell mediated cytotoxicity. Finally, Cell experiments indicate that EPHX4 could promote laryngeal cancer cell line proliferation, colony formation and invasion. CONCLUSIONS Our research results suggest that EPHX4 may be a potential immunotherapy target for laryngeal cancer. The nominated immune signature is a helpful and promising prognostic indicator in laryngeal cancer. LEVELS OF EVIDENCE Level 3.
Collapse
Affiliation(s)
- Nimei Shen
- The Second Affiliated Hospital of Nantong University, Jiangsu, China
| | - Gang Gao
- The Second Affiliated Hospital of Nantong University, Jiangsu, China
| | - Xinhong Lu
- The Second Affiliated Hospital of Nantong University, Jiangsu, China
| | - Jiaxin Jin
- The Second Affiliated Hospital of Nantong University, Jiangsu, China
| | - Liwei Lin
- The Second Affiliated Hospital of Nantong University, Jiangsu, China
| | - Maohua Qian
- The Second Affiliated Hospital of Nantong University, Jiangsu, China
| | - Yang Qin
- The Second Affiliated Hospital of Nantong University, Jiangsu, China.
| |
Collapse
|
10
|
Sanluca C, Spagnolo P, Mancinelli R, De Bartolo MI, Fava M, Maccarrone M, Carotti S, Gaudio E, Leuti A, Vivacqua G. Interaction between α-Synuclein and Bioactive Lipids: Neurodegeneration, Disease Biomarkers and Emerging Therapies. Metabolites 2024; 14:352. [PMID: 39057675 PMCID: PMC11278689 DOI: 10.3390/metabo14070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
The present review provides a comprehensive examination of the intricate dynamics between α-synuclein, a protein crucially involved in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, and endogenously-produced bioactive lipids, which play a pivotal role in neuroinflammation and neurodegeneration. The interaction of α-synuclein with bioactive lipids is emerging as a critical factor in the development and progression of neurodegenerative and neuroinflammatory diseases, offering new insights into disease mechanisms and novel perspectives in the identification of potential biomarkers and therapeutic targets. We delve into the molecular pathways through which α-synuclein interacts with biological membranes and bioactive lipids, influencing the aggregation of α-synuclein and triggering neuroinflammatory responses, highlighting the potential of bioactive lipids as biomarkers for early disease detection and progression monitoring. Moreover, we explore innovative therapeutic strategies aimed at modulating the interaction between α-synuclein and bioactive lipids, including the development of small molecules and nutritional interventions. Finally, the review addresses the significance of the gut-to-brain axis in mediating the effects of bioactive lipids on α-synuclein pathology and discusses the role of altered gut lipid metabolism and microbiota composition in neuroinflammation and neurodegeneration. The present review aims to underscore the potential of targeting α-synuclein-lipid interactions as a multifaceted approach for the detection and treatment of neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Chiara Sanluca
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Paolo Spagnolo
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | | | - Marina Fava
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Simone Carotti
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| | - Eugenio Gaudio
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | - Alessandro Leuti
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Giorgio Vivacqua
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| |
Collapse
|
11
|
Bu Y, Yang S, Wang D, Hu S, Zhang Q, Wu Z, Yang C. Role of soluble epoxide hydrolase in pain and depression comorbidity. Neurobiol Dis 2024; 193:106443. [PMID: 38395315 DOI: 10.1016/j.nbd.2024.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
The coexistence of chronic pain and depression in clinical practice places a substantial social burden and profoundly impacts in patients. Although a clear correlation exists, the underlying mechanism of comorbidity between chronic pain and depression remains elusive. Research conducted in recent decades has uncovered that soluble epoxide hydrolase, a pivotal enzyme in the metabolism of polyunsaturated fatty acids, plays a crucial role in inflammation. Interestingly, this enzyme is intricately linked to the development of both pain and depression. With this understanding, this review aims to summarize the roles of soluble epoxide hydrolase in pain, depression, and their comorbidity. Simultaneously, we will also explore the underlying mechanisms, providing guidance for future research and drug development.
Collapse
Affiliation(s)
- Yuchen Bu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
12
|
Morsy SAA, Fathelbab MH, El-Sayed NS, El-Habashy SE, Aly RG, Harby SA. Doxycycline-Loaded Calcium Phosphate Nanoparticles with a Pectin Coat Can Ameliorate Lipopolysaccharide-Induced Neuroinflammation Via Enhancing AMPK. J Neuroimmune Pharmacol 2024; 19:2. [PMID: 38236457 PMCID: PMC10796490 DOI: 10.1007/s11481-024-10099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Neuroinflammation occurs in response to different injurious triggers to limit their hazardous effects. However, failure to stop this process can end in multiple neurological diseases. Doxycycline (DX) is a tetracycline, with potential antioxidant and anti-inflammatory properties. The current study tested the effects of free DX, DX-loaded calcium phosphate (DX@CaP), and pectin-coated DX@CaP (Pec/DX@CaP) nanoparticles on the lipopolysaccharide (LPS)-induced neuroinflammation in mice and to identify the role of adenosine monophosphate-activated protein kinase (AMPK) in this effect. The present study was conducted on 48 mice, divided into 6 groups, eight mice each. Group 1 (normal control), Group 2 (blank nanoparticles-treated), Group 3 (LPS (untreated)), Groups 4, 5, and 6 received LPS, then Group 4 received free DX, Group 5 received DX-loaded calcium phosphate nanoparticles (DX@CaP), and Group 6 received DX-loaded calcium phosphate nanoparticles with a pectin coat (Pec/DX@CaP). At the end of the experimentation period, behavioral tests were carried out. Then, mice were sacrificed, and brain tissue was extracted and used for histological examination, and assessment of interleukin-6 positive cells in different brain areas, in addition to biochemical measurement of SOD activity, TLR-4, AMPK and Nrf2. LPS can induce prominent neuroinflammation. Treatment with (Pec/DX@CaP) can reverse most behavioral, histopathological, and biochemical changes caused by LPS. The findings of the current study suggest that (Pec/DX@CaP) exerts a significant reverse of LPS-induced neuroinflammation by enhancing SOD activity, AMPK, and Nrf2 expression, in addition to suppression of TLR-4.
Collapse
Affiliation(s)
| | - Mona Hassan Fathelbab
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Norhan S El-Sayed
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rania G Aly
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sahar A Harby
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
13
|
Pu Y, Cheng R, Zhang Q, Huang T, Lu C, Tang Z, Zhong Y, Wu L, Hammock BD, Hashimoto K, Luo Y, Liu Y. Role of soluble epoxide hydrolase in the abnormal activation of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Clin Immunol 2023; 257:109850. [PMID: 38013165 PMCID: PMC10872286 DOI: 10.1016/j.clim.2023.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by enigmatic pathogenesis. Polyunsaturated fatty acids (PUFAs) are implicated in RA's development and progression, yet their exact mechanisms of influence are not fully understood. Soluble epoxide hydrolase (sEH) is an enzyme that metabolizes anti-inflammatory epoxy fatty acids (EpFAs), derivatives of PUFAs. In this study, we report elevated sEH expression in the joints of CIA (collagen-induced arthritis) rats, concomitant with diminished levels of two significant EpFAs. Additionally, increased sEH expression was detected in both the synovium of CIA rats and in the synovium and fibroblast-like synoviocytes (FLS) of RA patients. The sEH inhibitor TPPU attenuated the migration and invasion capabilities of FLS derived from RA patients and to reduce the secretion of inflammatory factors by these cells. Our findings indicate a pivotal role for sEH in RA pathogenesis and suggest that sEH inhibitors offer a promising new therapeutic strategy for managing RA.
Collapse
Affiliation(s)
- Yaoyu Pu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruijuan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianwen Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenyang Lu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhigang Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yutong Zhong
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States of America.
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
14
|
Sarparast M, Hinman J, Pourmand E, Vonarx D, Ramirez L, Ma W, Liachko NF, Alan JK, Lee KSS. Cytochrome P450 and Epoxide Hydrolase Metabolites in Aβ and tau-induced Neurodegeneration: Insights from Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560527. [PMID: 37873467 PMCID: PMC10592936 DOI: 10.1101/2023.10.02.560527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This study aims to uncover potent cytochrome P450 (CYP) and epoxide hydrolase (EH) metabolites implicated in Aβ and/or tau-induced neurodegeneration, independent of neuroinflammation, by utilizing Caenorhabditis elegans (C. elegans) as a model organism. Our research reveals that Aβ and/or tau expression in C. elegans disrupts the oxylipin profile, and epoxide hydrolase inhibition alleviates the ensuing neurodegeneration, likely through elevating the epoxy-to-hydroxy ratio of various CYP-EH metabolites. In addition, our results indicated that the Aβ and tau likely affect the CYP-EH metabolism of PUFA through different mechanism. These findings emphasize the intriguing relationship between lipid metabolites and neurodegenerations, in particular, those linked to Aβ and/or tau aggregation. Furthermore, our investigation sheds light on the crucial and captivating role of CYP PUFA metabolites in C. elegans physiology, opening up possibilities for broader implications in mammalian and human contexts.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jennifer Hinman
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Elham Pourmand
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Derek Vonarx
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Leslie Ramirez
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Wenjuan Ma
- Center for Statistical Training and Consulting (CSTAT), Michigan State University, East Lansing, MI, USA
| | - Nicole F. Liachko
- Geriatrics Research Education and Clinical Center, Veterrans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jamie K. Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
15
|
Du Y, Coughlin JM, Amindarolzarbi A, Sweeney SE, Harrington CK, Brosnan MK, Zandi A, Shinehouse LK, Sanchez ANR, Abdallah R, Holt DP, Fan H, Lesniak WG, Nandi A, Rowe SP, Solnes LB, Dannals RF, Horti AG, Lodge MA, Pomper MG. [ 18F]FNDP PET neuroimaging test-retest repeatability and whole-body dosimetry in humans. Eur J Nucl Med Mol Imaging 2023; 50:3659-3665. [PMID: 37458759 DOI: 10.1007/s00259-023-06331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/04/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE Soluble epoxide hydrolase (sEH) is an enzyme that shapes immune signaling through its role in maintaining the homeostasis of polyunsaturated fatty acids and their related byproducts. [18F]FNDP is a radiotracer developed for use with positron emission tomography (PET) to image sEH, which has been applied to imaging sEH in the brains of healthy individuals. Here, we report the test-retest repeatability of [18F]FNDP brain PET binding and [18F]FNDP whole-body dosimetry in healthy individuals. METHODS Seven healthy adults (4 men, 3 women, ages 40.1 ± 4.6 years) completed [18F]FNDP brain PET on two occasions within a period of 14 days in a test-retest study design. [18F]FNDP regional total distribution volume (VT) values were derived from modeling time-activity data with a metabolite-corrected arterial input function. Test-retest variability, mean absolute deviation, and intraclass correlation coefficient (ICC) were investigated. Six other healthy adults (3 men, 3 women, ages 46.0 ± 7.0 years) underwent [18F]FNDP PET/CT for whole-body dosimetry, which was acquired over 4.5 h, starting immediately after radiotracer administration. Organ-absorbed doses and the effective dose were then estimated. RESULTS The mean test-retest difference in regional VT (ΔVT) was 0.82 ± 5.17%. The mean absolute difference in regional VT was 4.01 ± 3.33%. The ICC across different brain regions ranged from 0.92 to 0.99. The organs with the greatest radiation-absorbed doses included the gallbladder (0.081 ± 0.024 mSv/MBq), followed by liver (0.077 ± 0.018 mSv/MBq) and kidneys (0.063 ± 0.006 mSv/MBq). The effective dose was 0.020 ± 0.003 mSv/MBq. CONCLUSION These data support a favorable test-retest repeatability of [18F]FNDP brain PET regional VT. The radiation dose to humans from each [18F]FNDP PET scan is similar to that of other 18F-based PET radiotracers.
Collapse
Affiliation(s)
- Yong Du
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Alireza Amindarolzarbi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Shannon Eileen Sweeney
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Courtney K Harrington
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Mary Katherine Brosnan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Adeline Zandi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Laura K Shinehouse
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Alejandra N Reyes Sanchez
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Rehab Abdallah
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Daniel P Holt
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Hong Fan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Wojciech G Lesniak
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ayon Nandi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Lilja B Solnes
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Robert F Dannals
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Andrew G Horti
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Martin A Lodge
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
16
|
Zhang J, Zhang WH, Morisseau C, Zhang M, Dong HJ, Zhu QM, Huo XK, Sun CP, Hammock BD, Ma XC. Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase attenuated particulate matter 2.5 exposure mediated lung injury. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131890. [PMID: 37406527 PMCID: PMC10699546 DOI: 10.1016/j.jhazmat.2023.131890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Accepted: 06/17/2023] [Indexed: 07/07/2023]
Abstract
Air pollution represented by particulate matter 2.5 (PM2.5) is closely related to diseases of the respiratory system. Although the understanding of its mechanism is limited, pulmonary inflammation is closely correlated with PM2.5-mediated lung injury. Soluble epoxide hydrolase (sEH) and epoxy fatty acids play a vital role in the inflammation. Herein, we attempted to use the metabolomics of oxidized lipids for analyzing the relationship of oxylipins with lung injury in a PM2.5-mediated mouse model, and found that the cytochrome P450 oxidases/sEH mediated metabolic pathway was involved in lung injury. Furthermore, the sEH overexpression was revealed in lung injury mice. Interestingly, sEH genetic deletion or the selective sEH inhibitor TPPU increased levels of epoxyeicosatrienoic acids (EETs) in lung injury mice, and inactivated pulmonary macrophages based on the MAPK/NF-κB pathway, resulting in protection against PM2.5-mediated lung injury. Additionally, a natural sEH inhibitor luteolin from Inula japonica displayed a pulmonary protective effect towards lung injury mediated by PM2.5 as well. Our results are consistent with the sEH message and protein being both a marker and mechanism for PM2.5-induced inflammation, which suggest its potential as a pharmaceutical target for treating diseases of the respiratory system.
Collapse
Affiliation(s)
- Juan Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518061, People's Republic of China
| | - Wen-Hao Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Min Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Hong-Jun Dong
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Qi-Meng Zhu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xiao-Kui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Cheng-Peng Sun
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China; School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States.
| | - Xiao-Chi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China.
| |
Collapse
|
17
|
Dai C, Yu L, Wang Z, Deng P, Li L, Gu Z, He X, Wang J, Yuan J. Mangiferin and Taurine Ameliorate MSRV Infection by Suppressing NF-κB Signaling. Microbiol Spectr 2023; 11:e0514622. [PMID: 37255471 PMCID: PMC10434205 DOI: 10.1128/spectrum.05146-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
The emergence or reemergence of viruses pose a substantial threat and challenge to the world population, livestock, and wildlife. However, the landscape of antiviral agents either for human or animal viral diseases is still underdeveloped. The far tougher actuality is the case that there are no approved antiviral drugs in the aquaculture industry, although there are diverse viral pathogens. In this study, using a novel epithelial cell line derived from the brain of Micropterus salmoides (MSBr), inflammation and oxidative stress were found to implicate the major pathophysiology of M. salmoides rhabdovirus (MSRV) through transcriptome analysis and biochemical tests. Elevated levels of proinflammatory cytokines (interleukin-1β [IL-1β], IL-6, IL-8, tumor necrosis factor alpha [TNF-α], and gamma interferon [IFN-γ]) and accumulated contents of reactive oxygen species (ROS) as well as biomarkers of oxidative damage (protein carbonyl and 8-OHdG) were observed after MSRV infection in the MSBr cells. Mangiferin or taurine dampened MSRV-induced inflammation and rescued the oxidative stress and, thus, inhibited the replication of MSRV in the MSBr cells with 50% effective concentration (EC50) values of 6.77 μg/mL and 8.02 μg/mL, respectively. Further, mangiferin or taurine hampered the activation of NF-κB1 and the NF-κB1 promoter as well as the increase of phosphorylated NF-κB (p65) protein level induced by MSRV infection, indicating their antiviral mechanism by suppressing NF-κB signaling. These findings exemplify a practice approach, aiming to dampen and redirect inflammatory responses, to develop broad-spectrum antivirals. IMPORTANCE Aquaculture now provides almost half of all fish for human food in 2021 and plays a significant role in eliminating hunger, promoting health, and reducing poverty. There are diverse viral pathogens that decrease production in aquaculture. We developed a novel epithelial cell line derived from the brain of Micropterus salmoides, which can be used for virus isolation, gene expressing, and drug screening. In this study, we focus on M. salmoides rhabdovirus (MSRV) and revealed its pathophysiology of inflammation and oxidative stress. Aiming to dampen and redirect inflammatory responses, mangiferin or taurine exhibited their antiviral capability by suppressing NF-κB signaling. Our findings exemplify a practice approach to develop broad-spectrum antivirals by dampening and redirecting inflammatory responses.
Collapse
Affiliation(s)
- Caijiao Dai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan, People's Republic of China
| | - Li Yu
- Bureau of Agriculture and Rural Affairs of Xianyou County, Putian, People's Republic of China
| | - Zhiwen Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan, People's Republic of China
| | - Peng Deng
- Wuhan Academy of Agricultural Sciences, Wuhan, People’s Republic of China
| | - Lijuan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, People’s Republic of China
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan, People's Republic of China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, People’s Republic of China
| | - Xugang He
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, People’s Republic of China
| | - Jianghua Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, People’s Republic of China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan, People's Republic of China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, People’s Republic of China
| |
Collapse
|
18
|
Loveland PM, Yu JJ, Churilov L, Yassi N, Watson R. Investigation of Inflammation in Lewy Body Dementia: A Systematic Scoping Review. Int J Mol Sci 2023; 24:12116. [PMID: 37569491 PMCID: PMC10418754 DOI: 10.3390/ijms241512116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammatory mechanisms are increasingly recognized as important contributors to the pathogenesis of neurodegenerative diseases, including Lewy body dementia (LBD). Our objectives were to, firstly, review inflammation investigation methods in LBD (dementia with Lewy bodies and Parkinson's disease dementia) and, secondly, identify alterations in inflammatory signals in LBD compared to people without neurodegenerative disease and other neurodegenerative diseases. A systematic scoping review was performed by searching major electronic databases (MEDLINE, Embase, Web of Science, and PSYCHInfo) to identify relevant human studies. Of the 2509 results screened, 80 studies were included. Thirty-six studies analyzed postmortem brain tissue, and 44 investigated living subjects with cerebrospinal fluid, blood, and/or brain imaging assessments. Largely cross-sectional data were available, although two longitudinal clinical studies investigated prodromal Lewy body disease. Investigations were focused on inflammatory immune cell activity (microglia, astrocytes, and lymphocytes) and inflammatory molecules (cytokines, etc.). Results of the included studies identified innate and adaptive immune system contributions to inflammation associated with Lewy body pathology and clinical disease features. Different signals in early and late-stage disease, with possible late immune senescence and dystrophic glial cell populations, were identified. The strength of these associations is limited by the varying methodologies, small study sizes, and cross-sectional nature of the data. Longitudinal studies investigating associations with clinical and other biomarker outcomes are needed to improve understanding of inflammatory activity over the course of LBD. This could identify markers of disease activity and support therapeutic development.
Collapse
Affiliation(s)
- Paula M. Loveland
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3000, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
| | - Jenny J. Yu
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3000, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
| | - Leonid Churilov
- Department of Neurology, Melbourne Brain Centre, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
- Melbourne Medical School, University of Melbourne, Parkville 3000, Australia
| | - Nawaf Yassi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3000, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
- Department of Neurology, Melbourne Brain Centre, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
| | - Rosie Watson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3000, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
| |
Collapse
|
19
|
Wang W, Wang Y, Wagner KM, Lee RD, Hwang SH, Morisseau C, Wulff H, Hammock BD. Aflatoxin B 1 Increases Soluble Epoxide Hydrolase in the Brain and Induces Neuroinflammation and Dopaminergic Neurotoxicity. Int J Mol Sci 2023; 24:9938. [PMID: 37373086 PMCID: PMC10298596 DOI: 10.3390/ijms24129938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is an increasingly common neurodegenerative movement disorder with contributing factors that are still largely unexplored and currently no effective intervention strategy. Epidemiological and pre-clinical studies support the close association between environmental toxicant exposure and PD incidence. Aflatoxin B1 (AFB1), a hazardous mycotoxin commonly present in food and environment, is alarmingly high in many areas of the world. Previous evidence suggests that chronic exposure to AFB1 leads to neurological disorders as well as cancer. However, whether and how aflatoxin B1 contributes to the pathogenesis of PD is poorly understood. Here, oral exposure to AFB1 is shown to induce neuroinflammation, trigger the α-synuclein pathology, and cause dopaminergic neurotoxicity. This was accompanied by the increased expression and enzymatic activity of soluble epoxide hydrolase (sEH) in the mouse brain. Importantly, genetic deletion or pharmacological inhibition of sEH alleviated the AFB1-induced neuroinflammation by reducing microglia activation and suppressing pro-inflammatory factors in the brain. Furthermore, blocking the action of sEH attenuated dopaminergic neuron dysfunction caused by AFB1 in vivo and in vitro. Together, our findings suggest a contributing role of AFB1 to PD etiology and highlight sEH as a potential pharmacological target for alleviating PD-related neuronal disorders caused by AFB1 exposure.
Collapse
Affiliation(s)
- Weicang Wang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (W.W.); (Y.W.); (K.M.W.); (S.H.H.); (C.M.)
| | - Yuxin Wang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (W.W.); (Y.W.); (K.M.W.); (S.H.H.); (C.M.)
| | - Karen M. Wagner
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (W.W.); (Y.W.); (K.M.W.); (S.H.H.); (C.M.)
| | - Ruth Diana Lee
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (R.D.L.); (H.W.)
| | - Sung Hee Hwang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (W.W.); (Y.W.); (K.M.W.); (S.H.H.); (C.M.)
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (W.W.); (Y.W.); (K.M.W.); (S.H.H.); (C.M.)
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (R.D.L.); (H.W.)
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (W.W.); (Y.W.); (K.M.W.); (S.H.H.); (C.M.)
| |
Collapse
|
20
|
Sarparast M, Pourmand E, Hinman J, Vonarx D, Reason T, Zhang F, Paithankar S, Chen B, Borhan B, Watts JL, Alan J, Lee KSS. Dihydroxy-Metabolites of Dihomo-γ-linolenic Acid Drive Ferroptosis-Mediated Neurodegeneration. ACS CENTRAL SCIENCE 2023; 9:870-882. [PMID: 37252355 PMCID: PMC10214511 DOI: 10.1021/acscentsci.3c00052] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 05/31/2023]
Abstract
Even after decades of research, the mechanism of neurodegeneration remains understudied, hindering the discovery of effective treatments for neurodegenerative diseases. Recent reports suggest that ferroptosis could be a novel therapeutic target for neurodegenerative diseases. While polyunsaturated fatty acid (PUFA) plays an important role in neurodegeneration and ferroptosis, how PUFAs may trigger these processes remains largely unknown. PUFA metabolites from cytochrome P450 and epoxide hydrolase metabolic pathways may modulate neurodegeneration. Here, we test the hypothesis that specific PUFAs regulate neurodegeneration through the action of their downstream metabolites by affecting ferroptosis. We find that the PUFA dihomo-γ-linolenic acid (DGLA) specifically induces ferroptosis-mediated neurodegeneration in dopaminergic neurons. Using synthetic chemical probes, targeted metabolomics, and genetic mutants, we show that DGLA triggers neurodegeneration upon conversion to dihydroxyeicosadienoic acid through the action of CYP-EH (CYP, cytochrome P450; EH, epoxide hydrolase), representing a new class of lipid metabolites that induce neurodegeneration via ferroptosis.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Elham Pourmand
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jennifer Hinman
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Derek Vonarx
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tommy Reason
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Fan Zhang
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Shreya Paithankar
- Department
of Pediatrics and Human Development, Michigan
State University, Grand Rapids, Michigan 49503, United States
| | - Bin Chen
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
- Department
of Pediatrics and Human Development, Michigan
State University, Grand Rapids, Michigan 49503, United States
| | - Babak Borhan
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jennifer L. Watts
- School
of Molecular Biosciences, Washington State
University, Pullman, Washington 99164, United States
| | - Jamie Alan
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Kin Sing Stephen Lee
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
21
|
Abrishamdar M, Jalali MS, Farbood Y. Targeting Mitochondria as a Therapeutic Approach for Parkinson's Disease. Cell Mol Neurobiol 2023; 43:1499-1518. [PMID: 35951210 PMCID: PMC11412433 DOI: 10.1007/s10571-022-01265-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
Neurodegeneration is among the most critical challenges that involve modern societies and annually influences millions of patients worldwide. While the pathophysiology of Parkinson's disease (PD) is complicated, the role of mitochondrial is demonstrated. The in vitro and in vivo models and genome-wide association studies in human cases proved that specific genes, including PINK1, Parkin, DJ-1, SNCA, and LRRK2, linked mitochondrial dysfunction with PD. Also, mitochondrial DNA (mtDNA) plays an essential role in the pathophysiology of PD. Targeting mitochondria as a therapeutic approach to inhibit or slow down PD formation and progression seems to be an exciting issue. The current review summarized known mutations associated with both mitochondrial dysfunction and PD. The significance of mtDNA in Parkinson's disease pathogenesis and potential PD therapeutic approaches targeting mitochondrial dysfunction was then discussed.
Collapse
Affiliation(s)
- Maryam Abrishamdar
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Sadat Jalali
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Medicine Faculty, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Inhibition effect of 1-acetoxy-6α-(2-methylbutyryl)eriolanolide toward soluble epoxide hydrolase: Multispectral analysis, molecular dynamics simulation, biochemical, and in vitro cell-based studies. Int J Biol Macromol 2023; 235:123911. [PMID: 36878397 DOI: 10.1016/j.ijbiomac.2023.123911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Soluble epoxide hydrolase (sEH) serves as a potential target in inflammation-related diseases. Based on the bioactivity-guided separation, a new sesquiterpenoid inulajaponoid A (1) was isolated from Inula japonica with a sEH inhibitory effect, together with five known compounds, such as 1-O-acetyl-6-O-isobutyrylbritannilactone (2), 6β-hydroxytomentosin (3), 1β,8β-dihydroxyeudesma-4(15),11(13)-dien-12,6α-olide (4), (4S,6S,7S,8R)-1-O-acetyl-6-O-(3-methylvaleryloxy)-britannilactone (5), and 1-acetoxy-6α-(2-methylbutyryl)eriolanolide (6). Among them, compounds 1 and 6 were assigned as mixed and uncompetitive inhibitors, respectively. The result of immunoprecipitation (IP)-MS demonstrated the specific binding of compound 6 to sEH in the complex system, which was further confirmed by the fluorescence-based binding assay showing its equilibrium dissociation constant (Kd = 2.43 μM). The detail molecular stimulation revealed the mechanism of action of compound 6 with sEH through the hydrogen bond of amino acid residue Gln384. Furthermore, this natural sEH inhibitor (6) could suppress the MAPK/NF-κB activation to regulate inflammatory mediators, such as NO, TNF-α, and IL-6, which confirmed the anti-inflammatory effect of inhibition of sEH by 6. These findings provided a useful insight to develop sEH inhibitors upon the sesquiterpenoids.
Collapse
|
23
|
Atone J, Wagner K, Koike S, Yang J, Hwang SH, Hammock BD. Inhibition of soluble epoxide hydrolase reduces paraquat neurotoxicity in rodents. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104070. [PMID: 36682504 PMCID: PMC9992278 DOI: 10.1016/j.etap.2023.104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Given the paucity of research surrounding the effect of chronic paraquat on striatal neurotoxicity, there is a need for further investigation into the neurotoxic effects of paraquat in mouse striatum. Furthermore, while previous studies have shown that inhibiting soluble epoxide hydrolase mitigates MPTP-mediated endoplasmic reticulum stress in mouse striatum, its effect on paraquat toxicity is still unknown. Thus, this study attempts to observe changes in inflammatory and endoplasmic reticulum stress markers in mouse striatum following chronic paraquat administration to determine whether inhibiting soluble epoxide hydrolase mitigates paraquat-induced neurotoxicity and whether it can reduce TLR4-mediated inflammation in primary astrocytes and microglia. Our results show that while the pro-inflammatory effect of chronic paraquat is small, there is a significant induction of inflammatory and cellular stress markers, such as COX2 and CHOP, that can be mitigated through a prophylactic administration of a soluble epoxide hydrolase inhibitor.
Collapse
Affiliation(s)
- Jogen Atone
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Karen Wagner
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Shinichiro Koike
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
24
|
Wang W, Wagner KM, Wang Y, Singh N, Yang J, He Q, Morisseau C, Hammock BD. Soluble Epoxide Hydrolase Contributes to Cell Senescence and ER Stress in Aging Mice Colon. Int J Mol Sci 2023; 24:4570. [PMID: 36901999 PMCID: PMC10003560 DOI: 10.3390/ijms24054570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Aging, which is characterized by enhanced cell senescence and functional decline of tissues, is a major risk factor for many chronic diseases. Accumulating evidence shows that age-related dysfunction in the colon leads to disorders in multiple organs and systemic inflammation. However, the detailed pathological mechanisms and endogenous regulators underlying colon aging are still largely unknown. Here, we report that the expression and activity of the soluble epoxide hydrolase (sEH) enzyme are increased in the colon of aged mice. Importantly, genetic knockout of sEH attenuated the age-related upregulation of senescent markers p21, p16, Tp53, and β-galactosidase in the colon. Moreover, sEH deficiency alleviated aging-associated endoplasmic reticulum (ER) stress in the colon by reducing both the upstream regulators Perk and Ire1 as well as the downstream pro-apoptotic effectors Chop and Gadd34. Furthermore, treatment with sEH-derived linoleic acid metabolites, dihydroxy-octadecenoic acids (DiHOMEs), decreased cell viability and increased ER stress in human colon CCD-18Co cells in vitro. Together, these results support that the sEH is a key regulator of the aging colon, which highlights its potential application as a therapeutic target for reducing or treating age-related diseases in the colon.
Collapse
Affiliation(s)
- Weicang Wang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Karen M. Wagner
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Yuxin Wang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nalin Singh
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Qiyi He
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
25
|
Padhy B, Kapuganti RS, Hayat B, Mohanty PP, Alone DP. Wide-spread enhancer effect of SNP rs2279590 on regulating epoxide hydrolase-2 and protein tyrosine kinase 2-beta gene expression. Gene 2023; 854:147096. [PMID: 36470481 DOI: 10.1016/j.gene.2022.147096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Polymorphisms in the PTK2B-CLU locus have been associated with various neurodegenerative disorders including pseudoexfoliation glaucoma, Alzheimer's and Parkinson's. Many of these genomic variants are within enhancer elements and modulate genes associated with the disease pathogenesis. However, mechanisms by which they control the gene expression is unknown. Previously, we have shown that clusterin enhancer element surrounding rs2279590 intronic variant, a risk factor in the pathogenesis of pseudoexfoliation glaucoma modulates gene expression of clusterin (CLU), protein tyrosine kinase 2 beta (PTK2B) and epoxide hydrolase 2 (EPHX2). Here, we explored the mechanism by which rs2279590 enhancer regulates their gene expression through chromosome conformation capture assays. 3C assays revealed a strong enhancer-promoter chromatin interaction between rs2279590 enhancer and promoters of genes CLU, PTK2B and EPHX2 in the HEK293 wild type cells. Moreover, genomic knockout of rs2279590 element significantly decreases the chromatin-chromatin cross-linking frequency suggesting gene regulation at transcriptional level through formation of chromatin loop. In addition, molecular assays showed a significantly decreased expression of EPHX2 but not PTK2B at both mRNA and protein level in the lens capsule of pseudoexfoliation affected patients in comparison to control subjects implying a role of EPHX2 in the pathogenesis of pseudoexfoliation.
Collapse
Affiliation(s)
- Biswajit Padhy
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ramani Shyam Kapuganti
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Bushra Hayat
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | | | - Debasmita Pankaj Alone
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
26
|
Sarparast M, Pourmand E, Hinman J, Vonarx D, Reason T, Zhang F, Paithankar S, Chen B, Borhan B, Watts JL, Alan J, Lee KSS. Dihydroxy-Metabolites of Dihomo-gamma-linolenic Acid Drive Ferroptosis-Mediated Neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522933. [PMID: 36711920 PMCID: PMC9881903 DOI: 10.1101/2023.01.05.522933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Even after decades of research, the mechanism of neurodegeneration remains understudied, hindering the discovery of effective treatments for neurodegenerative diseases. Recent reports suggest that ferroptosis could be a novel therapeutic target for neurodegenerative diseases. While polyunsaturated fatty acid (PUFA) plays an important role in neurodegeneration and ferroptosis, how PUFAs may trigger these processes remains largely unknown. PUFA metabolites from cytochrome P450 and epoxide hydrolase metabolic pathways may modulate neurodegeneration. Here, we test the hypothesis that specific PUFAs regulate neurodegeneration through the action of their downstream metabolites by affecting ferroptosis. We find that the PUFA, dihomo gamma linolenic acid (DGLA), specifically induces ferroptosis-mediated neurodegeneration in dopaminergic neurons. Using synthetic chemical probes, targeted metabolomics, and genetic mutants, we show that DGLA triggers neurodegeneration upon conversion to dihydroxyeicosadienoic acid through the action of CYP-EH, representing a new class of lipid metabolite that induces neurodegeneration via ferroptosis.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Elham Pourmand
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jennifer Hinman
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Derek Vonarx
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Tommy Reason
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Shreya Paithankar
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Bin Chen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA,Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jennifer L. Watts
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA,Corresponding Authors
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI, USA,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA,Corresponding Authors
| |
Collapse
|
27
|
Characterization reveals a putative Epoxide hydrolase from Yarrowia lipolytica with the ability to convert rac-1,2-epoxyhexane to (R)-diol. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Zhang J, Zhang M, Zhang WH, Zhu QM, Huo XK, Sun CP, Ma XC, Xiao HT. Total flavonoids of Inula japonica alleviated the inflammatory response and oxidative stress in LPS-induced acute lung injury via inhibiting the sEH activity: Insights from lipid metabolomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154380. [PMID: 36150346 DOI: 10.1016/j.phymed.2022.154380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/04/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a severe respiratory disease characterized by diffuse lung interstitial and respiratory distress and pulmonary edema with a mortality rate of 35%-40%. Inula japonica Thunb., known as "Xuan Fu Hua" in Chinese, is a traditional Chinese medicine Inulae Flos to use for relieving cough, eliminating expectorant, and preventing bacterial infections in the clinic, and possesses an anti-pulmonary fibrosis effect. However, the effect and action mechanism of I. japonica on ALI is still unclear. PURPOSE This study aimed to investigate the protective effect and underlying mechanism of total flavonoids of I. japonica (TFIJ) in the treatment of ALI. STUDY DESIGN AND METHODS A mouse ALI model was established through administration of LPS by the intratracheal instillation. Protective effects of TFIJ in the inflammation and oxidative stress were studied in LPS-induced ALI mice based on inflammatory and oxidative stress factors, including MDA, MPO, SOD, and TNF-α. Lipid metabolomics, bioinformatics, Western blot, quantitative real-time PCR, and immunohistochemistry were performed to reveal the potential mechanism of TFIJ in the treatment of ALI. RESULTS TFIJ significantly alleviated the interstitial infiltration of inflammatory cells and the collapse of the alveoli in LPS-induced ALI mice. Lipid metabolomics demonstrated that TFIJ could significantly affect the CYP2J/sEH-mediated arachidonic acid metabolism, such as 11,12-EET, 14,15-EET, 8,9-DHET, 11,12-DHET, and 14,15-DHET, revealing that sEH was the potential target of TFIJ, which was further supported by the recombinant sEH-mediated the substrate hydrolysis in vitro (IC50 = 1.18 μg/ml). Inhibition of sEH by TFIJ alleviated the inflammatory response and oxidative stress via the MAPK, NF-κB, and Nrf2 signaling pathways. CONCLUSION These results demonstrated that TFIJ could suppress the sEH activity to stabilize the level of EETs, allowing the alleviation of the pathological course of lung injury in LPS-treated mice, which suggested that TFIJ could serve as the potential agents in the treatment of ALI.
Collapse
Affiliation(s)
- Juan Zhang
- School of pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China; Second Affiliated Hospital, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Min Zhang
- Second Affiliated Hospital, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Wen-Hao Zhang
- Second Affiliated Hospital, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qi-Meng Zhu
- Second Affiliated Hospital, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiao-Kui Huo
- Second Affiliated Hospital, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Cheng-Peng Sun
- Second Affiliated Hospital, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Xiao-Chi Ma
- Second Affiliated Hospital, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Hai-Tao Xiao
- School of pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
29
|
Nguyen N, Morisseau C, Li D, Yang J, Lam E, Woodside DB, Hammock BD, Shih PAB. Soluble Epoxide Hydrolase Is Associated with Postprandial Anxiety Decrease in Healthy Adult Women. Int J Mol Sci 2022; 23:11798. [PMID: 36233100 PMCID: PMC9569757 DOI: 10.3390/ijms231911798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
The metabolism of bioactive oxylipins by soluble epoxide hydrolase (sEH) plays an important role in inflammation, and sEH may be a risk modifier in various human diseases and disorders. The relationships that sEH has with the risk factors of these diseases remain elusive. Herein, sEH protein expression and activity in white blood cells were characterized before and after a high-fat meal in healthy women (HW) and women with anorexia nervosa (AN). sEH expression and sEH activity were significantly correlated and increased in both groups two hours after consumption of the study meal. Fasting sEH expression and activity were positively associated with body mass index (BMI) in both groups, while an inverse association with age was found in AN only (p value < 0.05). sEH was not associated with anxiety or depression in either group at the fasting timepoint. While the anxiety score decreased after eating in both groups, a higher fasting sEH was associated with a lower postprandial anxiety decrease in HW (p value < 0.05). sEH characterization using direct measurements verified the relationship between the protein expression and in vivo activity of this important oxylipin modulator, while a well-controlled food challenge study design using HW and a clinical control group of women with disordered eating elucidated sEH’s role in the health of adult women.
Collapse
Affiliation(s)
- Nhien Nguyen
- Department of Psychiatry, University of California San Diego, San Diego, CA 92037, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Dongyang Li
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Eileen Lam
- Centre for Mental Health, University Health Network, Toronto, ON M5G 2C4, Canada
| | - D. Blake Woodside
- Centre for Mental Health, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Bruce D. Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Pei-an Betty Shih
- Department of Psychiatry, University of California San Diego, San Diego, CA 92037, USA
| |
Collapse
|
30
|
Matsumoto N, Singh N, Lee KS, Barnych B, Morisseau C, Hammock BD. The epoxy fatty acid pathway enhances cAMP in mammalian cells through multiple mechanisms. Prostaglandins Other Lipid Mediat 2022; 162:106662. [PMID: 35779854 PMCID: PMC9530012 DOI: 10.1016/j.prostaglandins.2022.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
The cellular mechanism by which epoxy fatty acids (EpFA) improves disease status is not well characterized. Previous studies suggest the involvement of cellular receptors and cyclic AMP (cAMP). Herein, the action of EpFAs derived from linoleic acid (LA), arachidonic acid (ARA), and docosahexaenoic acid on cAMP levels was studied in multiple cell types to elucidate relationships between EpFAs, receptors and cells' origin. cAMP levels were enhanced in HEK293 and LLC-PK1 cells by EpFAs from LA and ARA. Using selective antagonists, the EpFA effects on cAMP levels appear dependent on the prostaglandin E2 receptor 2 (EP2) but not 4 (EP4). Human coronary artery smooth muscle cells responded similarly to the EpFAs. However, we were not able to show the involvement of any of the receptors tested in this cell type. The results pinpointed distinct cell lines and receptor subtypes that natively respond to EpFA.
Collapse
Affiliation(s)
- Naoki Matsumoto
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis CA, USA
| | - Nalin Singh
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis CA, USA
| | - Kin Sing Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing MI, USA
| | - Bogdan Barnych
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis CA, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis CA, USA.
| |
Collapse
|
31
|
Cao Q, Luo S, Yao W, Qu Y, Wang N, Hong J, Murayama S, Zhang Z, Chen J, Hashimoto K, Qi Q, Zhang JC. Suppression of abnormal α-synuclein expression by activation of BDNF transcription ameliorates Parkinson's disease-like pathology. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:1-15. [PMID: 35784012 PMCID: PMC9207554 DOI: 10.1016/j.omtn.2022.05.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
Abstract
Parkinson’s disease (PD) is characterized by the formation of Lewy bodies (LBs) in the brain. LBs are mainly composed of phosphorylated and aggregated α-synuclein (α-Syn). Thus, strategies to reduce the expression of α-Syn offer promising therapeutic avenues for PD. DNA/RNA heteroduplex oligonucleotides (HDOs) are a novel technology for gene silencing. Using an α-Syn-HDO that specifically targets α-Syn, we examined whether α-Syn-HDO attenuates pathological changes in the brain of mouse models of PD. Overexpression of α-Syn induced dopaminergic neuron degeneration through inhibition of cyclic AMP-responsive-element-binding protein (CREB) and activation of methyl CpG binding protein 2 (MeCP2), resulting in brain-derived neurotrophic factor (BDNF) downregulation. α-Syn-HDO exerted a more potent silencing effect on α-Syn than α-Syn-antisense oligonucleotides (ASOs). α-Syn-HDO attenuated abnormal α-Syn expression and ameliorated dopaminergic neuron degeneration via BDNF upregulation by activation of CREB and inhibition of MeCP2. These findings demonstrated that inhibition of α-Syn by α-Syn-HDO protected against dopaminergic neuron degeneration via activation of BDNF transcription. Therefore, α-Syn-HDO may serve as a new therapeutic agent for PD.
Collapse
Affiliation(s)
- Qianqian Cao
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shilin Luo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Wei Yao
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 260-8670 Chiba, Japan
| | - Nanbu Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510632, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shigeo Murayama
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology, Tokyo 173-0015, Japan
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 260-8670 Chiba, Japan
| | - Qi Qi
- MOE Key Laboratory of Tumor Molecular Biology, Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ji-Chun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
32
|
(R)-ketamine as prophylactic and therapeutic drug for neurological disorders: beyond depression. Neurosci Biobehav Rev 2022; 139:104762. [PMID: 35779628 DOI: 10.1016/j.neubiorev.2022.104762] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022]
Abstract
Neurological disorders are the leading cause of disability and the second leading cause of death worldwide. The increasing social and economic burdens of neurological disorders are driven by global population growth and aging. Depression is a common psychiatric symptom in numerous neurological disorders. It is also a risk factor for Alzheimer's disease (AD) and other dementias, Parkinson's disease (PD), and stroke. The rapid-acting and sustained antidepressant actions of (R,S)-ketamine for severe depression was accidentally discovered. Interestingly, (R)-ketamine has greater potency and longer-lasting antidepressant-like effects than (S)-ketamine in rodents. Importantly, its side effects in rodents and humans are lower than those of (R,S)-ketamine and (S)-ketamine. Furthermore, (R)-ketamine could elicit beneficial actions in various rodent models of neurological disorders, including PD, multiple sclerosis (MS), and stroke. In this article, we review the potential of (R)-ketamine as a prophylactic or therapeutic drug for neurological disorders including AD and other dementias, PD, MS, and stroke.
Collapse
|
33
|
Evidence for Oxidative Pathways in the Pathogenesis of PD: Are Antioxidants Candidate Drugs to Ameliorate Disease Progression? Int J Mol Sci 2022; 23:ijms23136923. [PMID: 35805928 PMCID: PMC9266756 DOI: 10.3390/ijms23136923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that arises due to a complex and variable interplay between elements including age, genetic, and environmental risk factors that manifest as the loss of dopaminergic neurons. Contemporary treatments for PD do not prevent or reverse the extent of neurodegeneration that is characteristic of this disorder and accordingly, there is a strong need to develop new approaches which address the underlying disease process and provide benefit to patients with this debilitating disorder. Mitochondrial dysfunction, oxidative damage, and inflammation have been implicated as pathophysiological mechanisms underlying the selective loss of dopaminergic neurons seen in PD. However, results of studies aiming to inhibit these pathways have shown variable success, and outcomes from large-scale clinical trials are not available or report varying success for the interventions studied. Overall, the available data suggest that further development and testing of novel therapies are required to identify new potential therapies for combating PD. Herein, this review reports on the most recent development of antioxidant and anti-inflammatory approaches that have shown positive benefit in cell and animal models of disease with a focus on supplementation with natural product therapies and selected synthetic drugs.
Collapse
|
34
|
Shan J, Qu Y, Zhang J, Ma L, Hashimoto K. Effects of Subdiaphragmatic Vagotomy in the MPTP-induced Neurotoxicity in the Striatum and Colon of Mice. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:389-393. [PMID: 35466109 PMCID: PMC9047999 DOI: 10.9758/cpn.2022.20.2.389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022]
Abstract
Objective Gut—microbiota—brain axis plays a role in the pathogenesis of Parkinson’s disease (PD). The subdiaphragmatic vagus nerve serves as a major modulatory pathway between the gut microbiota and the brain. However, the role of subdiaphragmatic vagus nerve in PD pathogenesis are unknown. Here, we investigated the effects of subdiaphragmatic vagotomy (SDV) on the neurotoxicity in the mouse striatum and colon after administration of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP). Methods Sham or SVD was performed. Subsequently, saline or MPTP (10 mg/kg × 3, 2-hour interval) was administered to mice. Western blot analysis of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the striatum and phosphorylated a-synuclein (p-a-Syn) in the colon was performed. Results Repeated administration of MPTP significantly caused reduction of TH and DAT in the striatum and increase of p-a-Syn in the colon of mice. However, SDV did not affect the reduction of TH and DAT in the striatum and increases in p-a-Syn in the colon after repeated MPTP administration. Conclusion These data suggest that subdiaphragmatic vagus nerve doses not play a role in the MPTP-induced neurotoxicity in the brain and colon.
Collapse
Affiliation(s)
- Jiajing Shan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Jiancheng Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
35
|
Regulation of BDNF transcription by Nrf2 and MeCP2 ameliorates MPTP-induced neurotoxicity. Cell Death Dis 2022; 8:267. [PMID: 35595779 PMCID: PMC9122988 DOI: 10.1038/s41420-022-01063-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 12/31/2022]
Abstract
Mounting evidence suggests the key role of brain-derived neurotrophic factor (BDNF) in the dopaminergic neurotoxicity of Parkinson’s disease (PD). Activation of NF-E2-related factor-2 (Nrf2) and inhibition of methyl CpG-binding protein 2 (MeCP2) can regulate BDNF upregulation. However, the regulation of BDNF by Nrf2 and MeCP2 in the PD pathogenesis has not been reported. Here, we revealed that Nrf2/MeCP2 coordinately regulated BDNF transcription, reversing the decreased levels of BDNF expression in 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Repeated administration of sulforaphane (SFN, an Nrf2 activator) attenuated dopaminergic neurotoxicity in MPTP-treated mice through activation of BDNF and suppression of MeCP2 expression. Furthermore, intracerebroventricular injection of MeCP2-HDO, a DNA/RNA heteroduplex oligonucleotide (HDO) silencing MeCP2 expression, ameliorated dopaminergic neurotoxicity in MPTP-treated mice via activation of Nrf2 and BDNF expression. Moreover, we found decreased levels of Nrf2 and BDNF, and increased levels of MeCP2 protein expression in the striatum of patients with dementia with Lewy bodies (DLB). Interesting, there were correlations between BDNF and Nrf2 (or MeCP2) expression in the striatum from DLB patients. Therefore, it is likely that the activation of BDNF transcription by activation of Nrf2 and/or suppression of MeCP2 could be a new therapeutic approach for PD.
Collapse
|
36
|
Shan J, Hashimoto K. Soluble Epoxide Hydrolase as a Therapeutic Target for Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094951. [PMID: 35563342 PMCID: PMC9099663 DOI: 10.3390/ijms23094951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
It has been found that soluble epoxide hydrolase (sEH; encoded by the EPHX2 gene) in the metabolism of polyunsaturated fatty acids (PUFAs) plays a key role in inflammation, which, in turn, plays a part in the pathogenesis of neuropsychiatric disorders. Meanwhile, epoxy fatty acids such as epoxyeicosatrienoic acids (EETs), epoxyeicosatetraenoic acids (EEQs), and epoxyeicosapentaenoic acids (EDPs) have been found to exert neuroprotective effects in animal models of neuropsychiatric disorders through potent anti-inflammatory actions. Soluble expoxide hydrolase, an enzyme present in all living organisms, metabolizes epoxy fatty acids into the corresponding dihydroxy fatty acids, which are less active than the precursors. In this regard, preclinical findings using sEH inhibitors or Ephx2 knock-out (KO) mice have indicated that the inhibition or deficiency of sEH can have beneficial effects in several models of neuropsychiatric disorders. Thus, this review discusses the current findings of the role of sEH in neuropsychiatric disorders, including depression, autism spectrum disorder (ASD), schizophrenia, Parkinson’s disease (PD), and stroke, as well as the potential mechanisms underlying the therapeutic effects of sEH inhibitors.
Collapse
|
37
|
Sun CP, Zhou JJ, Yu ZL, Huo XK, Zhang J, Morisseau C, Hammock BD, Ma XC. Kurarinone alleviated Parkinson's disease via stabilization of epoxyeicosatrienoic acids in animal model. Proc Natl Acad Sci U S A 2022; 119:e2118818119. [PMID: 35217618 PMCID: PMC8892522 DOI: 10.1073/pnas.2118818119] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by loss of dopaminergic neurons in the substantia nigra (SN), causing bradykinesia and rest tremors. Although the molecular mechanism of PD is still not fully understood, neuroinflammation has a key role in the damage of dopaminergic neurons. Herein, we found that kurarinone, a unique natural product from Sophora flavescens, alleviated the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral deficits and dopaminergic neurotoxicity, including the losses of neurotransmitters and tyrosine hydroxylase (TH)-positive cells (SN and striatum [STR]). Furthermore, kurarinone attenuated the MPTP-mediated neuroinflammation via suppressing the activation of microglia involved in the nuclear factor kappa B signaling pathway. The proteomics result of the solvent-induced protein precipitation and thermal proteome profiling suggest that the soluble epoxide hydrolase (sEH) enzyme, which is associated with the neuroinflammation of PD, is a promising target of kurarinone. This is supported by the increase of plasma epoxyeicosatrienoic acids (sEH substrates) and the decrease of dihydroxyeicosatrienoic acids (sEH products), and the results of in vitro inhibition kinetics, surface plasmon resonance, and cocrystallization of kurarinone with sEH revealed that this natural compound is an uncompetitive inhibitor. In addition, sEH knockout (KO) attenuated the progression of PD, and sEH KO plus kurarinone did not further reduce the protection of PD in MPTP-induced PD mice. These findings suggest that kurarinone could be a potential natural candidate for the treatment of PD, possibly through sEH inhibition.
Collapse
Affiliation(s)
- Cheng-Peng Sun
- College of Pharmacy, The Second Affiliated Hospital, Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Jun-Jun Zhou
- College of Pharmacy, The Second Affiliated Hospital, Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Zhen-Long Yu
- College of Pharmacy, The Second Affiliated Hospital, Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xiao-Kui Huo
- College of Pharmacy, The Second Affiliated Hospital, Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Juan Zhang
- College of Pharmacy, The Second Affiliated Hospital, Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616
| | - Xiao-Chi Ma
- College of Pharmacy, The Second Affiliated Hospital, Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China;
| |
Collapse
|
38
|
Wan D, Morisseau C, Hammock BD, Yang J. A Fast and Selective Approach for Profiling Vicinal Diols Using Liquid Chromatography-Post Column Derivatization-Double Precursor Ion Scanning Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010283. [PMID: 35011515 PMCID: PMC8747065 DOI: 10.3390/molecules27010283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022]
Abstract
Vicinal diols are important signaling metabolites of various inflammatory diseases, and some of them are potential biomarkers for some diseases. Utilizing the rapid reaction between diol and 6-bromo-3-pyridinylboronic acid (BPBA), a selective and sensitive approach was established to profile these vicinal diols using liquid chromatography-post column derivatization coupled with double precursor ion scan-mass spectrometry (LC-PCD-DPIS-MS). After derivatization, all BPBA-vicinal-diol esters gave a pair of characteristic isotope ions resulting from 79Br and 81Br. The unique isotope pattern generated two characteristic fragment ions of m/z 200 and 202. Compared to a traditional offline derivatization technique, the new LC-PCD-DPIS-MS method retained the capacity of LC separation. In addition, it is more sensitive and selective than a full scan MS method. As an application, an in vitro study of the metabolism of epoxy fatty acids by human soluble epoxide hydrolase was tested. These vicinal-diol metabolites of individual regioisomers from different types of polyunsaturated fatty acids were easily identified. The limit of detection (LOD) reached as low as 25 nM. The newly developed LC-PCD-DPIS-MS method shows significant advantages in improving the selectivity and therefore can be employed as a powerful tool for profiling vicinal-diol compounds from biological matrices.
Collapse
Affiliation(s)
| | | | | | - Jun Yang
- Correspondence: ; Tel.: +1-530-752-5109
| |
Collapse
|
39
|
Yamaguchi A, Ishikawa KI, Akamatsu W. Methods to Induce Small-Scale Differentiation of iPS Cells into Dopaminergic Neurons and to Detect Disease Phenotypes. Methods Mol Biol 2022; 2549:271-279. [PMID: 33755905 DOI: 10.1007/7651_2021_376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Disease-specific induced pluripotent stem (iPS) cells are useful tools to analyze the pathology of neurodegenerative diseases. In this chapter, we describe a procedure to efficiently induce small-scale differentiation of patient iPS cells into midbrain dopaminergic neurons to detect cell death and mitochondrial clearance by using immunostaining. A combination of our method described here and an image analysis system, such as the IN Cell Analyzer, will enable the quantitative assessment of cell vulnerability and mitochondrial quality control abnormalities in cells derived from patients with Parkinson's disease; this set-up might be used to perform drug screening.
Collapse
Affiliation(s)
- Akihiro Yamaguchi
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei-Ichi Ishikawa
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, Tokyo, Japan
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
40
|
Huang C, Gao J, Wei T, Shen W. Angiotensin II-induced erythrocyte senescence contributes to oxidative stress. Rejuvenation Res 2021; 25:30-38. [PMID: 34969261 DOI: 10.1089/rej.2021.0054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oxidative stress may be an important cause of erythrocyte senescence. Angiotensin II (Ang II) has recently been shown to promote vascular cell senescence. However, its effects on erythrocytes remain unclear. This study aims to investigate the role of Ang II in regulating erythrocyte lifespan through oxidative stress. Experiments were performed in C57/BL6J mice infused with Ang II (1500 ng/kg per minute) or saline for 7 days. Following Ang II infusion, we found that Ang II increased erythrocyte number, hemoglobin and red blood cell distribution width (RDW). These differences were accompanied by a decrease in glutathione (GSH) and an increase in malondialdehyde (MDA) concentration. In vitro, after 24 hours of Ang II treatment, erythrocytes showed reduced surface expression of CD47 and increased phosphatidylserine exposure. In parallel, Ang II reduced the levels of antioxidant enzymes, including Cu/ZnSOD, catalase, and peroxidase 2 (PRDX2). These effects were reversed by the addition of the antioxidant N-acetyl-L-cysteine or the Ang II type 1 receptor (AT1) blocker losartan. In addition, Ang II treatment increased pro-inflammatory oxylipin, including hydroxyeicosatetraenoic acids (HETEs) and dihydroxyoctadecenoic acids (DiHOMEs) in the erythrocyte membranes. Collectively, Ang II induced erythrocyte senescence and susceptibility to eryptosis, partially due to enhanced oxidative stress.
Collapse
Affiliation(s)
- Chenglin Huang
- Shanghai Institute of Hypertension, 194034, Shanghai, Shanghai, China;
| | - Jing Gao
- Shanghai Institute of Hypertension, 194034, Shanghai, China;
| | - Tong Wei
- Shanghai Institute of Hypertension, 194034, Shanghai, China;
| | - Weili Shen
- Shanghai Institute of Hypertension, 194034, 197,2nd Ruijin road, Shanghai, China, 200025;
| |
Collapse
|
41
|
Shen W, Jiang L, Zhao J, Wang H, Hu M, Chen L, Chen Y. Bioactive lipids and their metabolism: new therapeutic opportunities for Parkinson's disease. Eur J Neurosci 2021; 55:846-872. [PMID: 34904314 DOI: 10.1111/ejn.15566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by motor dysfunction, which can also be associated with non-motor symptoms. Its pathogenesis is thought to stem from a loss of dopaminergic neurons in the substantia nigra pars compacta and the formation of Lewy bodies containing aggregated α-synuclein. Recent works suggested that lipids might play a pivotal role in the pathophysiology of PD. In particular, the so-called "bioactive" lipids whose changes in the concentration may lead to functional consequences and affect many pathophysiological processes, including neuroinflammation, are closely related to PD in terms of symptoms, disease progression, and incidence. This study aimed to explore the molecular metabolism and physiological functions of bioactive lipids, such as fatty acids (mainly unsaturated fatty acids), eicosanoids, endocannabinoids, oxysterols, representative sphingolipids, diacylglycerols, and lysophosphatidic acid, in the development of PD. The knowledge of bioactive lipids in PD gained through preclinical and clinical studies is expected to improve the understanding of disease pathogenesis and provide novel therapeutic avenues.
Collapse
Affiliation(s)
- Wenjing Shen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Jiang
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingyi Zhao
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Haili Wang
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Meng Hu
- The Second Xiangya Hospital, Central Sounth University, Changsha, Hunan Province, China
| | - Lanlan Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingzhu Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
42
|
Inhibition of Soluble Epoxide Hydrolase Is Protective against the Multiomic Effects of a High Glycemic Diet on Brain Microvascular Inflammation and Cognitive Dysfunction. Nutrients 2021; 13:nu13113913. [PMID: 34836168 PMCID: PMC8622784 DOI: 10.3390/nu13113913] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Diet is a modifiable risk factor for cardiovascular disease (CVD) and dementia, yet relatively little is known about the effect of a high glycemic diet (HGD) on the brain’s microvasculature. The objective of our study was to determine the molecular effects of an HGD on hippocampal microvessels and cognitive function and determine if a soluble epoxide hydrolase (sEH) inhibitor (sEHI), known to be vasculoprotective and anti-inflammatory, modulates these effects. Wild type male mice were fed a low glycemic diet (LGD, 12% sucrose/weight) or an HGD (34% sucrose/weight) with/without the sEHI, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), for 12 weeks. Brain hippocampal microvascular gene expression was assessed by microarray and data analyzed using a multi-omic approach for differential expression of protein and non-protein-coding genes, gene networks, functional pathways, and transcription factors. Global hippocampal microvascular gene expression was fundamentally different for mice fed the HGD vs. the LGD. The HGD response was characterized by differential expression of 608 genes involved in cell signaling, neurodegeneration, metabolism, and cell adhesion/inflammation/oxidation effects reversible by t-AUCB and hence sEH inhibitor correlated with protection against Alzheimer’s dementia. Ours is the first study to demonstrate that high dietary glycemia contributes to brain hippocampal microvascular inflammation through sEH.
Collapse
|
43
|
Tian Y, Yuan X, Wang Y, Wu Q, Fang Y, Zhu Z, Song G, Xu L, Wang W, Xie M. Soluble epoxide hydrolase inhibitor attenuates BBB disruption and neuroinflammation after intracerebral hemorrhage in mice. Neurochem Int 2021; 150:105197. [PMID: 34592333 DOI: 10.1016/j.neuint.2021.105197] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 11/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease with high mortality and morbidity. Soluble epoxide hydrolase (sEH) is the key enzyme in the epoxyeicosatrienoic acids (EETs) signaling. sEH inhibition has been demonstrated to have neuroprotective effects against multiple brain injuries. However, its role in the secondary injuries after ICH has not been fully elucidated. Here we tested the hypothesis that 1-Trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea (TPPU), a potent and highly selective sEH inhibitor, suppresses inflammation and the secondary injuries after ICH. Adult male C57BL/6 mice were subjected to a collagenase-induced ICH model. TPPU alleviated blood-brain barrier damage, inhibited inflammatory response, increased M2 polarization of microglial cells, reduced the infiltration of peripheral neutrophils. In addition, TPPU attenuated neuronal injury and promoted functional recovery. The results suggest that sEH may represent a potential therapeutic target for the treatment of ICH.
Collapse
Affiliation(s)
- Yeye Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiao Yuan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yao Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Qiao Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Li Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
44
|
Shan J, Qu Y, Wang S, Wei Y, Chang L, Ma L, Hashimoto K. Regulation of neurotoxicity in the striatum and colon of MPTP-induced Parkinson's disease mice by gut microbiome. Brain Res Bull 2021; 177:103-110. [PMID: 34560239 DOI: 10.1016/j.brainresbull.2021.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests the role of gut-microbiota-brain axis in the pathogenesis of Parkinson's disease (PD). The objective of this study was to examine whether repeated administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) can influence the neurotoxicity in the striatum and colon, and the composition of gut microbiota and short-chain fatty acids (SCFAs) in feces of adult mice. MPTP caused the reduction of dopamine transporter (DAT) and tyrosine hydroxylase (TH) in the striatum, and increases in phosphorylated α-synuclein (p-α-Syn) in the striatum and colon. There was a negative correlation between the expression of TH in the striatum and the expression of p-α-Syn in the colon, suggesting a role of gut-brain communication. MPTP caused abnormalities in the α- and β-diversity of gut microbiota in the mice. Furthermore, the relative abundance of the genus Faecalicatena in the MPTP-treated group was significantly lower than that of control group. Interestingly, there was a positive correlation between the genus Faecalicatena and the expression of TH in the striatum. Moreover, MPTP did not alter the levels of SCFAs in feces samples. However, there was a positive correlation between the relative abundance of the genus Faecalicatena and propionic acid. The data suggest that MPTP-induced increases in colonic p-α-Syn expression might be associated with dopaminergic neurotoxicity in the striatum via gut-microbiota-brain axis.
Collapse
Affiliation(s)
- Jiajing Shan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Siming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yan Wei
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
45
|
Serum metabolomic biomarkers of perceptual speed in cognitively normal and mildly impaired subjects with fasting state stratification. Sci Rep 2021; 11:18964. [PMID: 34556796 PMCID: PMC8460824 DOI: 10.1038/s41598-021-98640-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cognitive decline is associated with both normal aging and early pathologies leading to dementia. Here we used quantitative profiling of metabolites involved in the regulation of inflammation, vascular function, neuronal function and energy metabolism, including oxylipins, endocannabinoids, bile acids, and steroid hormones to identify metabolic biomarkers of mild cognitive impairment (MCI). Serum samples (n = 212) were obtained from subjects with or without MCI opportunistically collected with incomplete fasting state information. To maximize power and stratify the analysis of metabolite associations with MCI by the fasting state, we developed an algorithm to predict subject fasting state when unknown (n = 73). In non-fasted subjects, linoleic acid and palmitoleoyl ethanolamide levels were positively associated with perceptual speed. In fasted subjects, soluble epoxide hydrolase activity and tauro-alpha-muricholic acid levels were negatively associated with perceptual speed. Other cognitive domains showed associations with bile acid metabolism, but only in the non-fasted state. Importantly, this study shows unique associations between serum metabolites and cognitive function in the fasted and non-fasted states and provides a fasting state prediction algorithm based on measurable metabolites.
Collapse
|
46
|
Wang S, Ishima T, Qu Y, Shan J, Chang L, Wei Y, Zhang J, Pu Y, Fujita Y, Tan Y, Wang X, Ma L, Wan X, Hammock BD, Hashimoto K. Ingestion of Faecalibaculum rodentium causes depression-like phenotypes in resilient Ephx2 knock-out mice: A role of brain-gut-microbiota axis via the subdiaphragmatic vagus nerve. J Affect Disord 2021; 292:565-573. [PMID: 34147969 PMCID: PMC8282729 DOI: 10.1016/j.jad.2021.06.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The brain-gut-microbiota axis plays a crucial role in the bidirectional interactions between the brain and the gut. Soluble epoxide hydrolase (coded by the Ephx2 gene) plays an important role in inflammation, which has been implicated in stress-related depression. Ephx2 knock-out (KO) mice exposed to chronic social defeat stress (CSDS) did not show depression-like behaviors, indicating stress resilience. Here we examined whether the brain-gut-microbiota axis influences the resilience in Ephx2 KO mice. METHODS Effects of fecal microbiota transplantation (FMT) from CSDS-susceptible (or control) mice in wild-type (WT) mice and Ephx2 KO mice treated with an antibiotic cocktail (ABX) were investigated. Behavioral, biochemical tests and 16S ribosome RNA analysis were performed. RESULTS FMT from CSDS-susceptible mice produced anhedonia-like behavior in ABX-treated WT and Ephx2 KO mice. The 16S ribosome RNA analysis showed that Faecalibaculum rodentium (F. rodentium) may be responsible for the observed anhedonia-like behavior following FMT from CSDS-susceptible mice. Ingestion of F. rodentium for 14 days produced depression- and anhedonia-like behaviors, higher blood levels of interleukin-6, and reduced expression of synaptic proteins in the prefrontal cortex of ABX-treated Ephx2 KO mice. Furthermore, subdiaphragmatic vagotomy blocked the development of these behavioral abnormalities after ingestion of F. rodentium. LIMITATIONS Detailed mechanisms are unclear. CONCLUSIONS These findings suggest that F. rodentium might contribute to the conversion of resilient Ephx2 KO mice into KO mice with depression-like phenotypes. The brain-gut-microbiota axis via the subdiaphragmatic vagus nerve plays a crucial role in susceptibility and resilience to stress.
Collapse
Affiliation(s)
- Siming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan
| | - Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan
| | - Jiajing Shan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan
| | - Yan Wei
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jiancheng Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan
| | - Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan
| | - Yunfei Tan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan
| | - Xingming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan.
| |
Collapse
|
47
|
Sun CP, Zhang XY, Zhou JJ, Huo XK, Yu ZL, Morisseau C, Hammock BD, Ma XC. Inhibition of sEH via stabilizing the level of EETs alleviated Alzheimer's disease through GSK3β signaling pathway. Food Chem Toxicol 2021; 156:112516. [PMID: 34411643 DOI: 10.1016/j.fct.2021.112516] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/04/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by dementia. Inhibition of soluble epoxide hydrolase (sEH) regulates inflammation involving in central nervous system (CNS) diseases. However, the exactly mechanism of sEH in AD is still unclear. In this study, we evaluated the vital role of sEH in amyloid beta (Aβ)-induced AD mice, and revealed a possible molecular mechanism for inhibition of sEH in the treatment of AD. The results showed that the sEH expression and activity were remarkably increased in the hippocampus of Aβ-induced AD mice. Chemical inhibition of sEH by TPPU, a selective sEH inhibitor, alleviated spatial learning and memory deficits, and elevated levels of neurotransmitters in Aβ-induced AD mice. Furthermore, inhibition of sEH could ameliorate neuroinflammation, neuronal death, and oxidative stress via stabilizing the in vivo level of epoxyeicosatrienoic acids (EETs), especially 8,9-EET and 14,15-EET, further resulting in the anti-AD effect through the regulation of GSK3β-mediated NF-κB, p53, and Nrf2 signaling pathways. These findings revealed the underlying mechanism of sEH as a potential therapeutic target in treatment of AD.
Collapse
Affiliation(s)
- Cheng-Peng Sun
- The Second Affiliated Hospital, College of Pharmacy, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xin-Yue Zhang
- The Second Affiliated Hospital, College of Pharmacy, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jun-Jun Zhou
- The Second Affiliated Hospital, College of Pharmacy, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiao-Kui Huo
- The Second Affiliated Hospital, College of Pharmacy, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Zhen-Long Yu
- The Second Affiliated Hospital, College of Pharmacy, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, United States.
| | - Xiao-Chi Ma
- The Second Affiliated Hospital, College of Pharmacy, Institute of Integrative Medicine, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China.
| |
Collapse
|
48
|
Yu Z, Jiang N, Su W, Zhuo Y. Necroptosis: A Novel Pathway in Neuroinflammation. Front Pharmacol 2021; 12:701564. [PMID: 34322024 PMCID: PMC8311004 DOI: 10.3389/fphar.2021.701564] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation is a complex inflammatory process in the nervous system that is expected to play a significant role in neurological diseases. Necroptosis is a kind of necrosis that triggers innate immune responses by rupturing dead cells and releasing intracellular components; it can be caused by Toll-like receptor (TLR)-3 and TLR-4 agonists, tumor necrosis factor (TNF), certain microbial infections, and T cell receptors. Necroptosis signaling is modulated by receptor-interacting protein kinase (RIPK) 1 when the activity of caspase-8 becomes compromised. Activated death receptors (DRs) cause the activation of RIPK1 and the RIPK1 kinase activity-dependent formation of an RIPK1-RIPK3-mixed lineage kinase domain-like protein (MLKL), which is complex II. RIPK3 phosphorylates MLKL, ultimately leading to necrosis through plasma membrane disruption and cell lysis. Current studies suggest that necroptosis is associated with the pathogenesis of neuroinflammatory diseases, such as Alzheimer’s disease, Parkinson’s disease, and traumatic brain injury. Inhibitors of necroptosis, such as necrostatin-1 (Nec-1) and stable variant of Nec (Nec-1s), have been proven to be effective in many neurological diseases. The purpose of this article is to illuminate the mechanism underlying necroptosis and the important role that necroptosis plays in neuroinflammatory diseases. Overall, this article shows a potential therapeutic strategy in which targeting necroptotic factors may improve the pathological changes and clinical symptoms of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Ziyu Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Nan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Pediatric Ophthalmology, Guangzhou Children's Hospital and Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
49
|
Rodrigues PS, Kale PP. Mini review - The role of Glucocerebrosidase and Progranulin as possible targets in the treatment of Parkinson's disease. Rev Neurol (Paris) 2021; 177:1082-1089. [PMID: 34175090 DOI: 10.1016/j.neurol.2021.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 10/21/2022]
Abstract
As per recent reports, there is an association between glucocerebrosidase (Gcase) enzyme and Parkinson's disease (PD). In addition, certain mutations in the Gcase gene (GBA) and the progranulin (PGRN) gene are found to be linked with the imbalance in the levels of Gcase enzyme. This imbalance or decrease or impairment in Gcase activity can lead to Gaucher disease, frontotemporal lobar degeneration (FTLD), dementia, etc. Recent evidences suggest that the drugs used to treat these diseases can be used for PD. The present review has focused on the therapeutic approaches used for diseases linked with Gcase enzyme, which can be used for PD. The review also considered possible target specific novel strategies, which may help to meet the unmet needs in the treatment of PD.
Collapse
Affiliation(s)
- P S Rodrigues
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle west, 400056 Mumbai, India
| | - P P Kale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle west, 400056 Mumbai, India.
| |
Collapse
|
50
|
Baek SJ, Hammock BD, Hwang IK, Li Q, Moustaid-Moussa N, Park Y, Safe S, Suh N, Yi SS, Zeldin DC, Zhong Q, Bradbury JA, Edin ML, Graves JP, Jung HY, Jung YH, Kim MB, Kim W, Lee J, Li H, Moon JS, Yoo ID, Yue Y, Lee JY, Han HJ. Natural Products in the Prevention of Metabolic Diseases: Lessons Learned from the 20th KAST Frontier Scientists Workshop. Nutrients 2021; 13:1881. [PMID: 34072678 PMCID: PMC8227583 DOI: 10.3390/nu13061881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-related diseases sharply increased in the 21st century. Major underlying causes for these diseases are inflammation and oxidative stress. Accordingly, natural products and their bioactive components are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory properties. Research in this area has been significantly expanded to include chemical identification of these compounds using advanced analytical techniques, determining their mechanism of action, food fortification and supplement development, and enhancing their bioavailability and bioactivity using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This review summarizes presentations at the workshop to provide current knowledge of the role of natural products in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Seung J. Baek
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Bruce D. Hammock
- Department of Entomology, University of California, Davis, CA 95616, USA;
| | - In-Koo Hwang
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Qingxiao Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences & Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX 77843, USA;
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Sun-Shin Yi
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Darryl C. Zeldin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Qixin Zhong
- Department of Food Sciences, University of Tennessee, Knoxville, TN 37996, USA;
| | - Jennifer Alyce Bradbury
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Matthew L. Edin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Joan P. Graves
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Hyo-Young Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Young-Hyun Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Woosuk Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Jaehak Lee
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Hong Li
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Jong-Seok Moon
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Ik-Dong Yoo
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Ho-Jae Han
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| |
Collapse
|