1
|
Wuckelt M, Laurent A, Mouville C, Meyer J, Jamet A, Lecuyer H, Nassif X, Bille E, Pelicic V, Coureuil M. Expanding the genetic toolbox for Neisseria meningitidis with efficient tools for unmarked gene editing, complementation, and labeling. Appl Environ Microbiol 2024; 90:e0088024. [PMID: 39140741 PMCID: PMC11409642 DOI: 10.1128/aem.00880-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
The efficient natural transformation of Neisseria meningitidis allows the rapid construction of bacterial mutants in which the genes of interest are interrupted or replaced by antibiotic-resistance cassettes. However, this proved to be a double-edged sword, i.e., although facilitating the genetic characterization of this important human pathogen, it has limited the development of strategies for constructing markerless mutants without antibiotic-resistance markers. In addition, efficient tools for complementation or labeling are also lacking in N. meningitidis. In this study, we significantly expand the meningococcal genetic toolbox by developing new and efficient tools for the construction of markerless mutants (using a dual counterselection strategy), genetic complementation (using integrative vectors), and cell labeling (using a self-labeling protein tag). This expanded toolbox paves the way for more in-depth genetic characterization of N. meningitidis and might also be useful in other Neisseria species.IMPORTANCENeisseria meningitidis and Neisseria gonorrhoeae are two important human pathogens. Research focusing on these bacteria requires genetic engineering, which is facilitated by their natural ability to undergo transformation. However, the ease of mutant engineering has led the Neisseria community to neglect the development of more sophisticated tools for gene editing, particularly for N. meningitidis. In this study, we have significantly expanded the meningococcal genetic toolbox by developing novel and efficient tools for markerless mutant construction, genetic complementation, and cell tagging. This expanded toolbox paves the way for more in-depth genetic characterization of N. meningitidis and might also be useful in other Neisseria species.
Collapse
Affiliation(s)
- Morgane Wuckelt
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| | - Audrey Laurent
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| | - Clémence Mouville
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| | - Julie Meyer
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| | - Anne Jamet
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| | - Hervé Lecuyer
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| | - Xavier Nassif
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| | - Emmanuelle Bille
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| | - Vladimir Pelicic
- Laboratoire de Chimie Bactérienne, Aix-Marseille Université-CNRS (UMR 7283), Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Mathieu Coureuil
- Université Paris Cité, UFR de Médecine, Paris, France
- Inserm U1151, Institut Necker-Enfants Malades, CNRS UMR 8253, Paris, France
| |
Collapse
|
2
|
Kekeisen-Chen JF, Tarbangdo FT, Sharma S, Marasini D, Marjuki H, Kibler JL, Reese HE, Ouattara S, Ake FH, Yameogo I, Ouedraogo I, Seini E, Zoma RL, Tonde I, Sanou M, Novak RT, McNamara LA. Expansion of Neisseria meningitidis Serogroup C Clonal Complex 10217 during Meningitis Outbreak, Burkina Faso, 2019. Emerg Infect Dis 2024; 30:460-468. [PMID: 38407254 PMCID: PMC10902552 DOI: 10.3201/eid3003.221760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
During January 28-May 5, 2019, a meningitis outbreak caused by Neisseria meningitidis serogroup C (NmC) occurred in Burkina Faso. Demographic and laboratory data for meningitis cases were collected through national case-based surveillance. Cerebrospinal fluid was collected and tested by culture and real-time PCR. Among 301 suspected cases reported in 6 districts, N. meningitidis was the primary pathogen detected; 103 cases were serogroup C and 13 were serogroup X. Whole-genome sequencing revealed that 18 cerebrospinal fluid specimens tested positive for NmC sequence type (ST) 10217 within clonal complex 10217, an ST responsible for large epidemics in Niger and Nigeria. Expansion of NmC ST10217 into Burkina Faso, continued NmC outbreaks in the meningitis belt of Africa since 2019, and ongoing circulation of N. meningitidis serogroup X in the region underscore the urgent need to use multivalent conjugate vaccines in regional mass vaccination campaigns to reduce further spread of those serogroups.
Collapse
|
3
|
Chapman R, Jones L, D'Angelo A, Suliman A, Anwar M, Bagby S. Nanopore-Based Metagenomic Sequencing in Respiratory Tract Infection: A Developing Diagnostic Platform. Lung 2023; 201:171-179. [PMID: 37009923 PMCID: PMC10067523 DOI: 10.1007/s00408-023-00612-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 04/04/2023]
Abstract
Respiratory tract infection (RTI) remains a significant cause of morbidity and mortality across the globe. The optimal management of RTI relies upon timely pathogen identification via evaluation of respiratory samples, a process which utilises traditional culture-based methods to identify offending microorganisms. This process can be slow and often prolongs the use of broad-spectrum antimicrobial therapy, whilst also delaying the introduction of targeted therapy as a result. Nanopore sequencing (NPS) of respiratory samples has recently emerged as a potential diagnostic tool in RTI. NPS can identify pathogens and antimicrobial resistance profiles with greater speed and efficiency than traditional sputum culture-based methods. Increased speed to pathogen identification can improve antimicrobial stewardship by reducing the use of broad-spectrum antibiotic therapy, as well as improving overall clinical outcomes. This new technology is becoming more affordable and accessible, with some NPS platforms requiring minimal sample preparation and laboratory infrastructure. However, questions regarding clinical utility and how best to implement NPS technology within RTI diagnostic pathways remain unanswered. In this review, we introduce NPS as a technology and as a diagnostic tool in RTI in various settings, before discussing the advantages and limitations of NPS, and finally what the future might hold for NPS platforms in RTI diagnostics.
Collapse
Affiliation(s)
- Robert Chapman
- Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK.
| | - Luke Jones
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Alberto D'Angelo
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Ahmed Suliman
- Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK
| | - Muhammad Anwar
- Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK
| | - Stefan Bagby
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
4
|
Cassiolato AP, Camargo CH, Piccoli Cecconi MC, Christakis S, Gonçalves CR, Rodrigues Campos K, Takenori Higa F, Andrade Pereira G, de Moraes C, Silva de Lemos AP. Genomic characterization of invasive meningococcal X isolates from Brazil, 1992-2022. Int Microbiol 2023:10.1007/s10123-023-00325-5. [PMID: 36626096 PMCID: PMC9838296 DOI: 10.1007/s10123-023-00325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Invasive meningococcal disease (IMD) is a major health problem. Given the post-COVID-19 pandemic scenario with the loosening of the non-pharmacological measures to control the virus transmission and considering the observed global reduction of meningococcal vaccination coverage, an increase in IMD cases can be expected. METHODOLOGY Using whole-genome sequencing, we characterized six Neisseria meningitidis serogroup X (MenX) isolates recovered from IMD cases in Brazil in the last 30 years. RESULTS The predominance (66.6%, 4/6) of ST2888 presenting fHbp 160, NHBA 129, NadA 21, and PorA 19,15 was found on isolates. Two novel STs, 15458 and 15477, were described. CONCLUSION This study describes the circulation of MenX lineage ST2888 in Brazil, previously reported only in Europe. Continuous universal surveillance is crucial to implement prompt public health measures aiming to prevent and control non-vaccine preventable serogroup X IMD cases.
Collapse
Affiliation(s)
- Ana Paula Cassiolato
- grid.417672.10000 0004 0620 4215Center of Bacteriology, Instituto Adolfo Lutz (IAL), São Paulo, State of São Paulo Brazil
| | - Carlos Henrique Camargo
- grid.417672.10000 0004 0620 4215Center of Bacteriology, Instituto Adolfo Lutz (IAL), São Paulo, State of São Paulo Brazil
| | | | - Sandra Christakis
- Public Health Laboratory, Florianópolis, State of Santa Catarina Brazil
| | - Claudia Regina Gonçalves
- grid.417672.10000 0004 0620 4215Strategic Laboratory, Instituto Adolfo Lutz (IAL), São Paulo, State of São Paulo Brazil
| | - Karoline Rodrigues Campos
- grid.417672.10000 0004 0620 4215Strategic Laboratory, Instituto Adolfo Lutz (IAL), São Paulo, State of São Paulo Brazil
| | - Fabio Takenori Higa
- Center of Immunology, Institute Adolfo Lutz (IAL), São Paulo, State of São Paulo Brazil
| | - Gabriela Andrade Pereira
- grid.414596.b0000 0004 0602 9808Secretariat of Health Surveillance, Ministry of Health, Brasília, Federal District Brazil
| | - Camile de Moraes
- grid.414596.b0000 0004 0602 9808Secretariat of Health Surveillance, Ministry of Health, Brasília, Federal District Brazil
| | - Ana Paula Silva de Lemos
- grid.417672.10000 0004 0620 4215Center of Bacteriology, Instituto Adolfo Lutz (IAL), São Paulo, State of São Paulo Brazil
| |
Collapse
|
5
|
MinION Whole-Genome Sequencing in Resource-Limited Settings: Challenges and Opportunities. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022; 9:52-59. [DOI: 10.1007/s40588-022-00183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
Abstract
Abstract
Purpose of Review
The introduction of MinION whole-genome sequencing technology greatly increased and simplified complete genome sequencing in various fields of science across the globe. Sequences have been generated from complex organisms to microorganisms and are stored in genome databases that are readily accessible by researchers. Various new software for genome analysis, along with upgrades to older software packages, are being generated. New protocols are also being validated that enable WGS technology to be rapidly and increasingly used for sequencing in field settings.
Recent Findings
MinION WGS technology has been implemented in developed countries due to its advantages: portability, real-time analysis, and lower cost compared to other sequencing technologies. While these same advantages are critical in developing countries, MinION WGS technology is still under-utilized in resource-limited settings.
Summary
In this review, we look at the applications, advantages, challenges, and opportunities of using MinION WGS in resource-limited settings.
Collapse
|
6
|
Kwambana-Adams BA, Clark SA, Tay N, Agbla S, Chaguza C, Kagucia EW, Borrow R, Heyderman RS. Evaluation of Dried Blood and Cerebrospinal Fluid Filter Paper Spots for Storing and Transporting Clinical Material for the Molecular Diagnosis of Invasive Meningococcal Disease. Int J Mol Sci 2022; 23:ijms231911879. [PMID: 36233182 PMCID: PMC9569512 DOI: 10.3390/ijms231911879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
To improve the storage and transport of clinical specimens for the diagnosis of Neisseria meningitidis (Nm) infections in resource-limited settings, we have evaluated the performance of dried blood spot (DBS) and dried cerebrospinal fluid spot (DCS) assays. DBS and DCS were prepared on filter paper from liquid specimens previously tested for Nm in the United Kingdom. Nm was detected and genogrouped by real-time PCR performed on crude genomic DNA extracted from the DBS (n = 226) and DCS (n = 226) specimens. Targeted whole-genome sequencing was performed on a subset of specimens, DBS (n = 4) and DCS (n = 6). The overall agreement between the analysis of liquid and dried specimens was (94.2%; 95% CI 90.8−96.7) for blood and (96.4%; 95% CI 93.5−98.0) for cerebrospinal fluid. Relative to liquid specimens as the reference, the DBS and DCS assays had sensitivities of (89.1%; 95% CI 82.7−93.8) and (94.2%; 95% CI 88.9−97.5), respectively, and both assays had specificities above 98%. A genogroup was identified by dried specimen analysis for 81.9% of the confirmed meningococcal infections. Near full-length Nm genome sequences (>86%) were obtained for all ten specimens tested which allowed determination of the sequence type, clonal complex, presence of antimicrobial resistance and other meningococcal genotyping. Dried blood and CSF filter spot assays offer a practical alternative to liquid specimens for the molecular and genomic characterisation of invasive meningococcal diseases in low-resource settings.
Collapse
Affiliation(s)
- Brenda A. Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Malawi-Liverpool-Wellcome Clinical Research Programme (MLW), Blantyre P.O. Box 30096, Malawi
- Correspondence: (B.A.K.-A.); (S.A.C.)
| | - Stephen A. Clark
- Meningococcal Reference Unit, United Kingdom Health Security Agency (UKHSA), Manchester M13 9WL, UK
- Correspondence: (B.A.K.-A.); (S.A.C.)
| | - Nicole Tay
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Schadrac Agbla
- Department of Health Data Science, University of Liverpool, Liverpool L69 3GF, UK
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Chrispin Chaguza
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Eunice W. Kagucia
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi P.O. Box 230-8010, Kenya
| | - Ray Borrow
- Meningococcal Reference Unit, United Kingdom Health Security Agency (UKHSA), Manchester M13 9WL, UK
| | - Robert S. Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
7
|
Nyongesa S, Chenal M, Bernet È, Coudray F, Veyrier FJ. Sequential markerless genetic manipulations of species from the Neisseria genus. Can J Microbiol 2022; 68:551-560. [PMID: 35512370 DOI: 10.1139/cjm-2022-0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of simple and highly efficient strategies for genetic modifications are essential for post-genetic studies aimed at characterizing gene functions for various applications. We sought to develop a reliable system for Neisseria species that allows for both unmarked and accumulation of multiple genetic modifications in a single strain. In this work we developed and validated three-gene cassettes named RPLK and RPCC, comprising of an antibiotic resistance marker for positive selection, the phenotypic selection marker lacZ or mCherry, and the counter selection gene rpsL. These cassettes can be transformed with high efficiency across the Neisseria genus while significantly reducing the number of false positives compared to similar approaches. We exemplify the versatility and application of these systems by obtaining unmarked luminescent strains (knock-in) or mutants (knock-out) in different pathogenic and commensal species across the Neisseria genus in addition to the cumulative deletion of six loci in a single strain of Neisseria elongata.
Collapse
Affiliation(s)
- Sammy Nyongesa
- INRS, 14851, Centre Armand-Frappier Santé Biotechnologie, Quebec, Quebec, Canada;
| | - Martin Chenal
- INRS, 14851, Centre Armand-Frappier Santé Biotechnologie, Quebec, Quebec, Canada;
| | - Ève Bernet
- INRS, 14851, Centre Armand-Frappier Santé Biotechnologie, Quebec, Quebec, Canada;
| | - Florian Coudray
- INRS, 14851, Centre Armand-Frappier Santé Biotechnologie, Quebec, Quebec, Canada;
| | - Frédéric J Veyrier
- INRS, 14851, Centre Armand-Frappier Santé Biotechnologie, Quebec, Quebec, Canada;
| |
Collapse
|
8
|
Neisseria meningitidis Serogroup C Clonal Complex 10217 Outbreak in West Kpendjal Prefecture, Togo 2019. Microbiol Spectr 2022; 10:e0192321. [PMID: 35234504 PMCID: PMC8941916 DOI: 10.1128/spectrum.01923-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Togo has reported seasonal meningitis outbreaks caused by non-Neisseria meningitidis serogroup A (NmA) pathogens since the introduction of meningococcal serogroup A conjugate vaccine (MACV, MenAfriVac) in 2014. From 2016 to 2017, NmW caused several outbreaks. In early 2019, a NmC outbreak was detected in the Savanes region of Togo and its investigation is described here. Under case-based surveillance, epidemiological and clinical data, and cerebrospinal fluid specimens were collected for every suspected case of meningitis. Specimens were tested for meningitis pathogens using confirmatory microbiological and molecular methods. During epidemic weeks 9 to 15, 199 cases were reported, with 179 specimens being available for testing and 174 specimens (97.2%) were tested by at least one confirmatory method. The NmC was the predominant pathogen confirmed (93.9%), belonging to sequence type (ST)-9367 of clonal complex (CC) 10217. All NmC cases were localized to the West Kpendjal district of the Savanes region with attack rates ranging from 4.1 to 18.8 per 100,000 population and case fatality rates ranging up to 2.2% during weeks 9 to 15. Of the 93 NmC confirmed cases, 63.4% were males and 88.2% were in the 5 to 29 age group. This is the first report of a NmC meningitis outbreak in Togo. The changing epidemiology of bacterial meningitis in the meningitis belt post-MACV highlights the importance of monitoring of emerging strain and country preparedness for outbreaks in the region. IMPORTANCE The recent emergence of an invasive NmC strain in Togo is an example of the changing bacterial meningitis epidemiology in the meningitis belt post-MACV. The current epidemiology includes the regional circulation of various non-NmA serogroups, which emphasizes the need for effective molecular surveillance, laboratory diagnosis, and a multivalent vaccine that is effective against all serogroups in circulation.
Collapse
|
9
|
Bettencourt C, Nunes A, Gomes JP, Simões MJ. Genomic surveillance of Neisseria meningitidis serogroup W in Portugal from 2003 to 2019. Eur J Clin Microbiol Infect Dis 2021; 41:289-298. [PMID: 34787749 DOI: 10.1007/s10096-021-04371-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
In recent years, a change in the epidemiology of meningococcal disease caused by Neisseria meningitidis serogroup W (MenW) has been observed worldwide, with the emergence of new sublineages associated with a higher rate of fatal cases. The present study intends to describe the epidemiology of invasive meningococcal disease (IMD) due to MenW in Portugal between 2003 and 2019, and to genetically characterize population structure. Despite MenW has a low incidence in Portugal, having almost disappeared from 2008 to 2015, since 2016, the number of MenW cases has been steadily increasing at a rate of ~ twofold per year, with more than 80% of the characterized isolates belonging to clonal complex 11 (cc11). Core-genome phylogeny of 25 Portuguese (PT) MenW isolates showed a strain clustering mainly either with the Original UK or the UK 2013 sublineages. Our study also reported for the first time the presence of distinct prophages with a notable overrepresentation of an ~ 32-35-kb PS_1-like prophage found in MenW cc11 genomes. The presence of the PS_1-like prophage in almost all 4723 cc11 genomes selected from Neisseria PubMLST database regardless of the capsular group they belong to suggests an ancestral acquisition of this mobile element prior to capsular switching events. Overall, by mimicking the scenario observed worldwide, this study reinforces the importance of a close monitoring of MenW disease, especially from cc11, in order to promptly adapt the vaccination plan for IMD control in Portugal. Moreover, future studies are needed to understand the putative contribution of prophages to fitness and virulence of PT MenW strains.
Collapse
Affiliation(s)
- Célia Bettencourt
- National Reference Laboratory for Neisseria meningitidis, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal. .,CBIOS - Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisbon, Portugal.
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Maria João Simões
- National Reference Laboratory for Neisseria meningitidis, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
10
|
Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 2021; 39:1348-1365. [PMID: 34750572 PMCID: PMC8988251 DOI: 10.1038/s41587-021-01108-x] [Citation(s) in RCA: 797] [Impact Index Per Article: 199.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Rapid advances in nanopore technologies for sequencing single long DNA and RNA molecules have led to substantial improvements in accuracy, read length and throughput. These breakthroughs have required extensive development of experimental and bioinformatics methods to fully exploit nanopore long reads for investigations of genomes, transcriptomes, epigenomes and epitranscriptomes. Nanopore sequencing is being applied in genome assembly, full-length transcript detection and base modification detection and in more specialized areas, such as rapid clinical diagnoses and outbreak surveillance. Many opportunities remain for improving data quality and analytical approaches through the development of new nanopores, base-calling methods and experimental protocols tailored to particular applications.
Collapse
Affiliation(s)
- Yunhao Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Biomedical Informatics Shared Resources, The Ohio State University, Columbus, OH, USA
| | - Audrey Bollas
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Yuru Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Kin Fai Au
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
- Biomedical Informatics Shared Resources, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Sanabria AM, Janice J, Hjerde E, Simonsen GS, Hanssen AM. Shotgun-metagenomics based prediction of antibiotic resistance and virulence determinants in Staphylococcus aureus from periprosthetic tissue on blood culture bottles. Sci Rep 2021; 11:20848. [PMID: 34675288 PMCID: PMC8531021 DOI: 10.1038/s41598-021-00383-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Shotgun-metagenomics may give valuable clinical information beyond the detection of potential pathogen(s). Identification of antimicrobial resistance (AMR), virulence genes and typing directly from clinical samples has been limited due to challenges arising from incomplete genome coverage. We assessed the performance of shotgun-metagenomics on positive blood culture bottles (n = 19) with periprosthetic tissue for typing and prediction of AMR and virulence profiles in Staphylococcus aureus. We used different approaches to determine if sequence data from reads provides more information than from assembled contigs. Only 0.18% of total reads was derived from human DNA. Shotgun-metagenomics results and conventional method results were consistent in detecting S. aureus in all samples. AMR and known periprosthetic joint infection virulence genes were predicted from S. aureus. Mean coverage depth, when predicting AMR genes was 209 ×. Resistance phenotypes could be explained by genes predicted in the sample in most of the cases. The choice of bioinformatic data analysis approach clearly influenced the results, i.e. read-based analysis was more accurate for pathogen identification, while contigs seemed better for AMR profiling. Our study demonstrates high genome coverage and potential for typing and prediction of AMR and virulence profiles in S. aureus from shotgun-metagenomics data.
Collapse
Affiliation(s)
- Adriana Maria Sanabria
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Jessin Janice
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
- Norwegian Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Erik Hjerde
- Centre for Bioinformatics, Department of Chemistry, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Gunnar Skov Simonsen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Anne-Merethe Hanssen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
12
|
Kwambana-Adams BA, Cohen AL, Hampton L, Nhantumbo AA, Heyderman RS, Antonio M, Bita A, Mwenda JM. Toward Establishing Integrated, Comprehensive, and Sustainable Meningitis Surveillance in Africa to Better Inform Vaccination Strategies. J Infect Dis 2021; 224:S299-S306. [PMID: 34469559 PMCID: PMC8409533 DOI: 10.1093/infdis/jiab268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Large populations across sub-Saharan Africa remain at risk of devastating acute bacterial meningitis epidemics and endemic disease. Meningitis surveillance is a cornerstone of disease control, essential for describing temporal changes in disease epidemiology, the rapid detection of outbreaks, guiding vaccine introduction and monitoring vaccine impact. However, meningitis surveillance in most African countries is weak, undermined by parallel surveillance systems with little to no synergy and limited laboratory capacity. African countries need to implement comprehensive meningitis surveillance systems to adapt to the rapidly changing disease trends and vaccine landscapes. The World Health Organization and partners have developed a new investment case to restructure vaccine-preventable disease surveillance. With this new structure, countries will establish comprehensive and sustainable meningitis surveillance systems integrated with greater harmonization between population-based and sentinel surveillance systems. There will also be stronger linkage with existing surveillance systems for vaccine-preventable diseases, such as polio, measles, yellow fever, and rotavirus, as well as with other epidemic-prone diseases to leverage their infrastructure, transport systems, equipment, human resources and funding. The implementation of these concepts is currently being piloted in a few countries in sub-Saharan Africa with support from the World Health Organization and other partners. African countries need to take urgent action to improve synergies and coordination between different surveillance systems to set joint priorities that will inform action to control devastating acute bacterial meningitis effectively.
Collapse
Affiliation(s)
- Brenda Anna Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, United Kingdom
- World Health Organization Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia
| | - Adam L Cohen
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lee Hampton
- Gavi, The Vaccine Alliance, Global Health Campus, Geneva, Switzerland
| | - Aquino Albino Nhantumbo
- Laboratório Nacional de Referência de Microbiologia, Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Martin Antonio
- World Health Organization Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia
- Centre for Epidemic Preparedness and Response, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andre Bita
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| | - Jason Mathiu Mwenda
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| |
Collapse
|
13
|
Osnes MN, van Dorp L, Brynildsrud OB, Alfsnes K, Schneiders T, Templeton KE, Yahara K, Balloux F, Caugant DA, Eldholm V. Antibiotic Treatment Regimes as a Driver of the Global Population Dynamics of a Major Gonorrhea Lineage. Mol Biol Evol 2021; 38:1249-1261. [PMID: 33432328 PMCID: PMC8042733 DOI: 10.1093/molbev/msaa282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Neisseria gonorrhoeae multilocus sequence type (ST) 1901 is among the lineages most commonly associated with treatment failure. Here, we analyze a global collection of ST-1901 genomes to shed light on the emergence and spread of alleles associated with reduced susceptibility to extended-spectrum cephalosporins (ESCs). The genetic diversity of ST-1901 falls into a minor and a major clade, both of which were inferred to have originated in East Asia. The dispersal of the major clade from Asia happened in two separate waves expanding from ∼1987 and 1996, respectively. Both waves first reached North America, and from there spread to Europe and Oceania, with multiple secondary reintroductions to Asia. The ancestor of the second wave acquired the penA 34.001 allele, which significantly reduces susceptibility to ESCs. Our results suggest that the acquisition of this allele granted the second wave a fitness advantage at a time when ESCs became the key drug class used to treat gonorrhea. Following its establishment globally, the lineage has served as a reservoir for the repeated emergence of clones fully resistant to the ESC ceftriaxone, an essential drug for effective treatment of gonorrhea. We infer that the effective population sizes of both clades went into decline as treatment schemes shifted from fluoroquinolones via ESC monotherapy to dual therapy with ceftriaxone and azithromycin in Europe and the United States. Despite the inferred recent population size decline, the short evolutionary path from the penA 34.001 allele to alleles providing full ceftriaxone resistance is a cause of concern.
Collapse
Affiliation(s)
- Magnus N Osnes
- Division of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Biostatistics, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Ola B Brynildsrud
- Division of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristian Alfsnes
- Division of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Thamarai Schneiders
- Division of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kate E Templeton
- Department of Laboratory Medicine, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, United Kingdom
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Francois Balloux
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Dominique A Caugant
- Division of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Eldholm
- Division of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
14
|
Zhou M, Wu Y, Kudinha T, Jia P, Wang L, Xu Y, Yang Q. Comprehensive Pathogen Identification, Antibiotic Resistance, and Virulence Genes Prediction Directly From Simulated Blood Samples and Positive Blood Cultures by Nanopore Metagenomic Sequencing. Front Genet 2021; 12:620009. [PMID: 33841495 PMCID: PMC8024499 DOI: 10.3389/fgene.2021.620009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Bloodstream infection is a major cause of morbidity and mortality worldwide. We explored whether MinION nanopore sequencing could accelerate diagnosis, resistance, and virulence profiling prediction in simulated blood samples and blood cultures. One milliliter of healthy blood samples each from direct spike (sample 1), anaerobic (sample 2), and aerobic (sample 3) blood cultures with initial inoculation of ∼30 CFU/ml of a clinically isolated Klebsiella pneumoniae strain was subjected to DNA extraction and nanopore sequencing. Hybrid assembly of Illumina and nanopore reads from pure colonies of the isolate (sample 4) was used as a reference for comparison. Hybrid assembly of the reference genome identified a total of 39 antibiotic resistance genes and 77 virulence genes through alignment with the CARD and VFDB databases. Nanopore correctly detected K. pneumoniae in all three blood samples. The fastest identification was achieved within 8 h from specimen to result in sample 1 without blood culture. However, direct sequencing in sample 1 only identified seven resistance genes (20.6%) but 28 genes in samples 2–4 (82.4%) compared to the reference within 2 h of sequencing time. Similarly, 11 (14.3%) and 74 (96.1%) of the virulence genes were detected in samples 1 and 2–4 within 2 h of sequencing time, respectively. Direct nanopore sequencing from positive blood cultures allowed comprehensive pathogen identification, resistance, and virulence genes prediction within 2 h, which shows its promising use in point-of-care clinical settings.
Collapse
Affiliation(s)
- Menglan Zhou
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yarong Wu
- Beijing Applied Biological Technologies Co., Ltd., Beijing, China
| | - Timothy Kudinha
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW, Australia.,Pathology West, NSW Health Pathology, Orange, NSW, Australia
| | - Peiyao Jia
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Wang
- Beijing Applied Biological Technologies Co., Ltd., Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Tsang RSW. A Narrative Review of the Molecular Epidemiology and Laboratory Surveillance of Vaccine Preventable Bacterial Meningitis Agents: Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae and Streptococcus agalactiae. Microorganisms 2021; 9:449. [PMID: 33671611 PMCID: PMC7926440 DOI: 10.3390/microorganisms9020449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
This narrative review describes the public health importance of four most common bacterial meningitis agents, Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, and S. agalactiae (group B Streptococcus). Three of them are strict human pathogens that normally colonize the nasopharynx and may invade the blood stream to cause systemic infections and meningitis. S. agalactiae colonizes the genito-gastrointestinal tract and is an important meningitis agent in newborns, but also causes invasive infections in infants or adults. These four bacteria have polysaccharide capsules that protect them against the host complement defense. Currently licensed conjugate vaccines (against S. pneumoniae, H. influenza, and N. meningitidis only but not S. agalactiae) can induce protective serum antibodies in infants as young as two months old offering protection to the most vulnerable groups, and the ability to eliminate carriage of homologous serotype strains in vaccinated subjects lending further protection to those not vaccinated through herd immunity. However, the serotype-specific nature of these vaccines have driven the bacteria to adapt by mechanisms that affect the capsule antigens through either capsule switching or capsule replacement in addition to the possibility of unmasking of strains or serotypes not covered by the vaccines. The post-vaccine molecular epidemiology of vaccine-preventable bacterial meningitis is discussed based on findings obtained with newer genomic laboratory surveillance methods.
Collapse
Affiliation(s)
- Raymond S W Tsang
- Laboratory for Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| |
Collapse
|
16
|
Osnes MN, Didelot X, de Korne-Elenbaas J, Alfsnes K, Brynildsrud OB, Syversen G, Nilsen ØJ, De Blasio BF, Caugant DA, Eldholm V. Sudden emergence of a Neisseria gonorrhoeae clade with reduced susceptibility to extended-spectrum cephalosporins, Norway. Microb Genom 2020; 6:mgen000480. [PMID: 33200978 PMCID: PMC8116678 DOI: 10.1099/mgen.0.000480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/02/2020] [Indexed: 01/01/2023] Open
Abstract
Neisseria gonorrhoeae multilocus sequence type (ST)-7827 emerged in a dramatic fashion in Norway in the period 2016-2018. Here, we aim to shed light on the provenance and expansion of this ST. ST-7827 was found to be polyphyletic, but the majority of members belonged to a monophyletic clade we termed PopPUNK cluster 7827 (PC-7827). In Norway, both PC-7827 and ST-7827 isolates were almost exclusively isolated from men. Phylogeographical analyses demonstrated an Asian origin of the genogroup, with multiple inferred exports to Europe and the USA. The genogroup was uniformly resistant to fluoroquinolones, and associated with reduced susceptibility to both azithromycin and the extended-spectrum cephalosporins (ESCs) cefixime and ceftriaxone. From a genetic background including the penA allele 13.001, associated with reduced ESC susceptibility, we identified repeated events of acquisition of porB alleles associated with further reduction in ceftriaxone susceptibility. Transmission of the strain was significantly reduced in Norway in 2019, but our results indicate the existence of a recently established global reservoir. The worrisome drug-resistance profile and rapid emergence of PC-7827 calls for close monitoring of the situation.
Collapse
Affiliation(s)
- Magnus N. Osnes
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| | | | - Kristian Alfsnes
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ola B. Brynildsrud
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gaute Syversen
- Department of Microbiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Øivind Jul Nilsen
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Birgitte Freiesleben De Blasio
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Dominique A. Caugant
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Community Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- AMR Centre, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Eldholm
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- AMR Centre, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
17
|
Topaz N, Kristiansen PA, Schmink S, Congo-Ouédraogo M, Kambiré D, Mbaeyi S, Paye M, Sanou M, Sangaré L, Ouédraogo R, Wang X. Molecular insights into meningococcal carriage isolates from Burkina Faso 7 years after introduction of a serogroup A meningococcal conjugate vaccine. Microb Genom 2020; 6:mgen000486. [PMID: 33332261 PMCID: PMC8116689 DOI: 10.1099/mgen.0.000486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/10/2020] [Indexed: 11/26/2022] Open
Abstract
In 2010, Burkina Faso completed the first nationwide mass-vaccination campaign of a meningococcal A conjugate vaccine, drastically reducing the incidence of disease caused by serogroup A meningococci. Since then, other strains, such as those belonging to serogroups W, X and C, have continued to cause outbreaks within the region. A carriage study was conducted in 2016 and 2017 in the country to characterize the meningococcal strains circulating among healthy individuals following the mass-vaccination campaign. Four cross-sectional carriage evaluation rounds were conducted in two districts of Burkina Faso, Kaya and Ouahigouya. Oropharyngeal swabs were collected for the detection of Neisseria meningitidis by culture. Confirmed N. meningitidis isolates underwent whole-genome sequencing for molecular characterization. Among 13 758 participants, 1035 (7.5 %) N. meningitidis isolates were recovered. Most isolates (934/1035; 90.2 %) were non-groupable and primarily belonged to clonal complex (CC) 192 (822/934; 88 %). Groupable isolates (101/1035; 9.8 %) primarily belonged to CCs associated with recent outbreaks in the region, such as CC11 (serogroup W) and CC10217 (serogroup C); carried serogroup A isolates were not detected. Phylogenetic analysis revealed several CC11 strains circulating within the country, several of which were closely related to invasive isolates. Three sequence types (STs) were identified among eleven CC10217 carriage isolates, two of which have caused recent outbreaks in the region (ST-10217 and ST-12446). Our results show the importance of carriage studies to track the outbreak-associated strains circulating within the population in order to inform future vaccination strategies and molecular surveillance programmes.
Collapse
Affiliation(s)
- Nadav Topaz
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS D11, Atlanta, GA 30329, USA
| | - Paul Arne Kristiansen
- Norwegian Institute of Public Health, Oslo, Norway
- Present address: Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Susanna Schmink
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS D11, Atlanta, GA 30329, USA
| | | | - Dinanibè Kambiré
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso
| | - Sarah Mbaeyi
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS D11, Atlanta, GA 30329, USA
| | - Marietou Paye
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS D11, Atlanta, GA 30329, USA
| | - Mahamoudou Sanou
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso
| | - Lassana Sangaré
- Centre Hospitalier Universitaire Yalgado Ouédraogo, Ouagadougou, Burkina Faso
| | - Rasmata Ouédraogo
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS D11, Atlanta, GA 30329, USA
| |
Collapse
|
18
|
Mbaeyi S, Sampo E, Dinanibè K, Yaméogo I, Congo-Ouédraogo M, Tamboura M, Sawadogo G, Ouattara K, Sanou M, Kiemtoré T, Dioma G, Sanon B, Somlaré H, Kyetega A, Ba AK, Aké F, Tarbangdo F, Aboua FA, Donnou Y, Kamaté I, Patel JC, Schmink S, Spiller MW, Topaz N, Novak R, Wang X, Bicaba B, Sangaré L, Ouédraogo-Traoré R, Kristiansen PA. Meningococcal carriage 7 years after introduction of a serogroup A meningococcal conjugate vaccine in Burkina Faso: results from four cross-sectional carriage surveys. THE LANCET. INFECTIOUS DISEASES 2020; 20:1418-1425. [PMID: 32653071 PMCID: PMC7689286 DOI: 10.1016/s1473-3099(20)30239-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/05/2020] [Accepted: 03/12/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND In the first 2 years after a nationwide mass vaccination campaign of 1-29-year-olds with a meningococcal serogroup A conjugate vaccine (MenAfriVac) in Burkina Faso, carriage and disease due to serogroup A Neisseria meningitidis were nearly eliminated. We aimed to assess the long-term effect of MenAfriVac vaccination on meningococcal carriage and herd immunity. METHODS We did four cross-sectional studies of meningococcal carriage in people aged 9 months to 36 years in two districts of Burkina Faso between May 2, 2016, and Nov 6, 2017. Demographic information and oropharyngeal swabs were collected. Meningococcal isolates were characterised using whole-genome sequencing. FINDINGS Of 14 295 eligible people, 13 758 consented and had specimens collected and laboratory results available, 1035 of whom were meningococcal carriers. Accounting for the complex survey design, prevalence of meningococcal carriage was 7·60% (95% CI 5·67-9·52), including 6·98% (4·86-9·11) non-groupable, 0·48% (0·01-0·95) serogroup W, 0·10% (0·01-0·18) serogroup C, 0·03% (0·00-0·80) serogroup E, and 0% serogroup A. Prevalence ranged from 5·44% (95% CI 4·18-6·69) to 9·14% (6·01-12·27) by district, from 4·67% (2·71-6·64) to 11·17% (6·75-15·59) by round, and from 3·39% (0·00-8·30) to 10·43% (8·08-12·79) by age group. By clonal complex, 822 (88%) of 934 non-groupable isolates were CC192, all 83 (100%) serogroup W isolates were CC11, and nine (69%) of 13 serogroup C isolates were CC10217. INTERPRETATION Our results show the continued effect of MenAfriVac on serogroup A meningococcal carriage, for at least 7 years, among vaccinated and unvaccinated cohorts. Carriage prevalence of epidemic-prone serogroup C CC10217 and serogroup W CC11 was low. Continued monitoring of N meningitidis carriage will be crucial to further assess the effect of MenAfriVac and inform the vaccination strategy for future multivalent meningococcal vaccines. FUNDING Bill & Melinda Gates Foundation and Gavi, the Vaccine Alliance.
Collapse
Affiliation(s)
- Sarah Mbaeyi
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | - Kambiré Dinanibè
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso
| | - Issaka Yaméogo
- Direction de la Protection de la Santé de la Population, Burkina Faso Ministry of Health, Ouagadougou, Burkina Faso
| | | | - Mamadou Tamboura
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso
| | - Guetawendé Sawadogo
- Direction de la Protection de la Santé de la Population, Burkina Faso Ministry of Health, Ouagadougou, Burkina Faso
| | - Kalifa Ouattara
- Centre Hospitalier Universitaire de Yalgado Ouédraogo, Ouagadougou, Burkina Faso
| | - Mahamadou Sanou
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso
| | - Tanga Kiemtoré
- Direction de la Protection de la Santé de la Population, Burkina Faso Ministry of Health, Ouagadougou, Burkina Faso
| | - Gerard Dioma
- Centre Hospitalier Universitaire de Yalgado Ouédraogo, Ouagadougou, Burkina Faso
| | - Barnabé Sanon
- Centre Hospitalier Régional de Kaya, Kaya, Burkina Faso
| | - Hermann Somlaré
- Centre Hospitalier Universitaire de Yalgado Ouédraogo, Ouagadougou, Burkina Faso
| | - Augustin Kyetega
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso
| | - Absatou Ky Ba
- Centre Hospitalier Universitaire du Bogodogo, Ouagadougou, Burkina Faso
| | - Flavien Aké
- Davycas International, Gounghin Petit-Paris, Ouagadougou, Burkina Faso
| | - Félix Tarbangdo
- Davycas International, Gounghin Petit-Paris, Ouagadougou, Burkina Faso
| | | | - Yvette Donnou
- Davycas International, Gounghin Petit-Paris, Ouagadougou, Burkina Faso
| | - Idrissa Kamaté
- World Health Organization, Intercountry Support Team, Ouagadougou, Burkina Faso
| | - Jaymin C Patel
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Susanna Schmink
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael W Spiller
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nadav Topaz
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ryan Novak
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xin Wang
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brice Bicaba
- Direction de la Protection de la Santé de la Population, Burkina Faso Ministry of Health, Ouagadougou, Burkina Faso
| | - Lassana Sangaré
- Centre Hospitalier Universitaire de Yalgado Ouédraogo, Ouagadougou, Burkina Faso
| | | | | |
Collapse
|
19
|
Itsko M, Retchless AC, Joseph SJ, Norris Turner A, Bazan JA, Sadji AY, Ouédraogo-Traoré R, Wang X. Full Molecular Typing of Neisseria meningitidis Directly from Clinical Specimens for Outbreak Investigation. J Clin Microbiol 2020; 58:e01780-20. [PMID: 32938738 PMCID: PMC7685892 DOI: 10.1128/jcm.01780-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/12/2020] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis worldwide and an occasional cause of meningococcal urethritis. When isolates are unavailable for surveillance or outbreak investigations, molecular characterization of pathogens needs to be performed directly from clinical specimens, such as cerebrospinal fluid (CSF), blood, or urine. However, genome sequencing of specimens is challenging because of low bacterial and high human DNA abundances. We developed selective whole-genome amplification (SWGA), an isothermal multiple-displacement amplification-based method, to efficiently enrich, sequence, and de novo assemble N. meningitidis DNA from clinical specimens with low bacterial loads. SWGA was validated with 12 CSF specimens from invasive meningococcal disease cases and 12 urine specimens from meningococcal urethritis cases. SWGA increased the mean proportion of N. meningitidis reads by 2 to 3 orders of magnitude, enabling identification of at least 90% of the 1,605 N. meningitidis core genome loci for 50% of the specimens. The validated method was used to investigate two meningitis outbreaks recently reported in Togo and Burkina Faso. Twenty-seven specimens with low bacterial loads were processed by SWGA before sequencing, and 12 of 27 were successfully assembled to obtain the full molecular typing and vaccine antigen profile of the N. meningitidis pathogen, thus enabling thorough characterization of outbreaks. This method is particularly important for enhancing molecular surveillance in regions with low culture rates. SWGA produces enough reads for phylogenetic and allelic analysis at a low cost. More importantly, the procedure can be extended to enrich other important human bacterial pathogens.
Collapse
Affiliation(s)
| | - Adam C Retchless
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Abigail Norris Turner
- Division of Infectious Diseases, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jose A Bazan
- Division of Infectious Diseases, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Sexual Health Clinic, Columbus Public Health, Columbus, Ohio, USA
| | - Adodo Yao Sadji
- Ministère de la Santé et de la Protection Sociale du Togo, Lomé, Togo
| | | | - Xin Wang
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Kourna Hama M, Khan D, Laouali B, Okoi C, Yam A, Haladou M, Worwui A, Ndow PS, Nse Obama R, Mwenda JM, Biey J, Ntsama B, Kwambana-Adams BA, Antonio M. Pediatric Bacterial Meningitis Surveillance in Niger: Increased Importance of Neisseria meningitidis Serogroup C, and a Decrease in Streptococcus pneumoniae Following 13-Valent Pneumococcal Conjugate Vaccine Introduction. Clin Infect Dis 2020; 69:S133-S139. [PMID: 31505636 PMCID: PMC6761310 DOI: 10.1093/cid/ciz598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Meningitis is endemic in Niger. Haemophilus influenzae type b (Hib) vaccine and the 13-valent pneumococcal conjugate vaccine (PCV13) were introduced in 2008 and 2014, respectively. Vaccination campaign against Neisseria meningitidis serogroup A was carried out in 2010-2011. We evaluated changes in pathogen distribution using data from hospital-based surveillance in Niger from 2010 through 2016. METHODS Cerebrospinal fluid (CSF) specimens from children <5 years old with suspected meningitis were tested to detect vaccine-preventable bacterial pathogens. Confirmatory identification and serotyping/grouping of Streptococcus pneumoniae, N. meningitidis, and H. influenzae were done. Antimicrobial susceptibility testing and whole genome sequencing were performed on S. pneumoniae isolates. RESULTS The surveillance included 2580 patients with suspected meningitis, of whom 80.8% (2085/2580) had CSF collected. Bacterial meningitis was confirmed in 273 patients: 48% (131/273) was N. meningitidis, 45% (123/273) S. pneumoniae, and 7% (19/273) H. influenzae. Streptococcus pneumoniae meningitis decreased from 34 in 2014, to 16 in 2016. PCV13 serotypes made up 88% (7/8) of S. pneumoniae meningitis prevaccination and 20% (5/20) postvaccination. Neisseria meningitidis serogroup C (NmC) was responsible for 59% (10/17) of serogrouped N. meningitidis meningitis. Hib caused 67% (2/3) of the H. influenzae meningitis isolates serotyped. Penicillin resistance was found in 16% (4/25) of S. pneumoniae isolates. Sequence type 217 was the most common lineage among S. pneumoniae isolates. CONCLUSIONS Neisseria meningitidis and S. pneumoniae remain important causes of meningitis in children in Niger. The decline in the numbers of S. pneumoniae meningitis post-PCV13 is encouraging and should continue to be monitored. NmC is the predominant serogroup causing N. meningitidis meningitis.
Collapse
Affiliation(s)
| | - Dam Khan
- World Health Organization (WHO) Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, United Kingdom
| | | | - Catherine Okoi
- World Health Organization (WHO) Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, United Kingdom
| | | | | | - Archibald Worwui
- World Health Organization (WHO) Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, United Kingdom
| | - Peter Sylvanus Ndow
- World Health Organization (WHO) Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, United Kingdom
| | | | - Jason M Mwenda
- WHO Regional Office for Africa, Brazzaville, Republic of Congo
| | - Joseph Biey
- WHO Regional Office for Africa, Brazzaville, Republic of Congo
| | - Bernard Ntsama
- WHO Intercountry Support Team for West Africa, Ouagadougou, Burkina Faso
| | - Brenda A Kwambana-Adams
- World Health Organization (WHO) Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, United Kingdom
| | - Martin Antonio
- World Health Organization (WHO) Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, United Kingdom.,Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
21
|
Lung abscess due to Neisseria meningitidis serogroup X-unexpected virulence of a commensal resulting from putative serogroup B capsular switching. Eur J Clin Microbiol Infect Dis 2020; 39:2327-2334. [PMID: 32666483 DOI: 10.1007/s10096-020-03977-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022]
Abstract
To report the first case of a lung abscess caused by Neisseria meningitidis (Nm) and to genetically characterize the rare underlying capsule switching event. The strain (PT NmX) was subjected to whole genome sequencing, and a comparative gene-by-gene analysis was performed based on 1605 N. meningitidis core loci that constitute the MLST core-genome scheme (cgMLST) V1.0. All ~ 9,600 genomes available on Neisseria PubMLST (until 30th November 2019) from all serogroups were used to better identify the genome make-up of the PT NmX strain. This strain was found to be highly divergent from other NmX reported worldwide and to belong to a new sequence type (ST-14273), with the finetype X: P1.19,15-1:F5-2. Moreover, it revealed a closer genetic proximity to strains from serogroup B than to other serogroups, suggesting a genome backbone associated with serogroup B, while it presents a capsule synthesis region derived from a NmX strain. We describe a new hybrid NmB/X isolate from a noninvasive meningococcal infection, causing lung abscess. Despite capsular switching events involving serogroup X are rare, it may lead to the emergence of pathogenic potential. Studies should continue to better understand the molecular basis underlying Neisseria strains' ability to spread to body compartments other than the tissues for which their tropism is already known.
Collapse
|
22
|
Rodgers E, Bentley SD, Borrow R, Bratcher HB, Brisse S, Brueggemann AB, Caugant DA, Findlow J, Fox L, Glennie L, Harrison LH, Harrison OB, Heyderman RS, van Rensburg MJ, Jolley KA, Kwambana-Adams B, Ladhani S, LaForce M, Levin M, Lucidarme J, MacAlasdair N, Maclennan J, Maiden MCJ, Maynard-Smith L, Muzzi A, Oster P, Rodrigues CMC, Ronveaux O, Serino L, Smith V, van der Ende A, Vázquez J, Wang X, Yezli S, Stuart JM. The global meningitis genome partnership. J Infect 2020; 81:510-520. [PMID: 32615197 DOI: 10.1016/j.jinf.2020.06.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 10/24/2022]
Abstract
Genomic surveillance of bacterial meningitis pathogens is essential for effective disease control globally, enabling identification of emerging and expanding strains and consequent public health interventions. While there has been a rise in the use of whole genome sequencing, this has been driven predominately by a subset of countries with adequate capacity and resources. Global capacity to participate in surveillance needs to be expanded, particularly in low and middle-income countries with high disease burdens. In light of this, the WHO-led collaboration, Defeating Meningitis by 2030 Global Roadmap, has called for the establishment of a Global Meningitis Genome Partnership that links resources for: N. meningitidis (Nm), S. pneumoniae (Sp), H. influenzae (Hi) and S. agalactiae (Sa) to improve worldwide co-ordination of strain identification and tracking. Existing platforms containing relevant genomes include: PubMLST: Nm (31,622), Sp (15,132), Hi (1935), Sa (9026); The Wellcome Sanger Institute: Nm (13,711), Sp (> 24,000), Sa (6200), Hi (1738); and BMGAP: Nm (8785), Hi (2030). A steering group is being established to coordinate the initiative and encourage high-quality data curation. Next steps include: developing guidelines on open-access sharing of genomic data; defining a core set of metadata; and facilitating development of user-friendly interfaces that represent publicly available data.
Collapse
Affiliation(s)
- Elizabeth Rodgers
- Meningitis Research Foundation, Newminster House, 27-29 Newminster House, Baldwin Street, Bristol BS1 1LT, UK.
| | - Stephen D Bentley
- Wellcome Sanger Institute, Parasites and microbes, Hinxton CB10 1SA, UK
| | - Ray Borrow
- Public Health England, Meningococcal Reference Unit, Manchester Royal Infirmary, Manchester M13 9WZ, UK
| | | | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Angela B Brueggemann
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jamie Findlow
- Pfizer Limited, Walton Oaks, Dorking Road, Tadworth, Surrey KT20 7NS, UK
| | - LeAnne Fox
- Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, United States
| | - Linda Glennie
- Meningitis Research Foundation, Newminster House, 27-29 Newminster House, Baldwin Street, Bristol BS1 1LT, UK
| | - Lee H Harrison
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Robert S Heyderman
- NIHR Global Health Mucosal Pathogens Research Unit, Division of Infection & Immunity, University College London, London, UK
| | | | - Keith A Jolley
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - Brenda Kwambana-Adams
- NIHR Global Health Mucosal Pathogens Research Unit, Division of Infection & Immunity, University College London, London, UK
| | - Shamez Ladhani
- Public Health England, Immunisation and Countermeasures Division, 61 Colindale Avenue, London NW9 5EQ, UK; Paediatric Infectious Diseases Research Group (PIDRG), St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | | | | | - Jay Lucidarme
- Public Health England, Meningococcal Reference Unit, Manchester Royal Infirmary, Manchester M13 9WZ, UK
| | - Neil MacAlasdair
- Wellcome Sanger Institute, Parasites and microbes, Hinxton CB10 1SA, UK
| | - Jenny Maclennan
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | | | | | | | | | | | | | | | - Vinny Smith
- Meningitis Research Foundation, Newminster House, 27-29 Newminster House, Baldwin Street, Bristol BS1 1LT, UK
| | - Arie van der Ende
- Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam UMC and, the Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, the Netherlands
| | | | - Xin Wang
- Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, United States
| | - Saber Yezli
- Ministry of Health, The Global Centre for Mass Gatherings Medicine, Riyadh, Saudi Arabia
| | | |
Collapse
|
23
|
Sanogo YO, Guindo I, Diarra S, Retchless AC, Abdou M, Coulibaly S, Maiga MF, Coumaré M, Diarra B, Chen A, Chang HY, Vuong JT, Acosta AM, Sow S, Novak RT, Wang X. A New Sequence Type of Neisseria meningitidis Serogroup C Associated With a 2016 Meningitis Outbreak in Mali. J Infect Dis 2020; 220:S190-S197. [PMID: 31671437 DOI: 10.1093/infdis/jiz272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In 2016, Mali reported a bacterial meningitis outbreak consisting of 39 suspected cases between epidemiologic weeks 9 and 17 with 15% case fatality ratio in the health district of Ouéléssebougou, 80 kilometers from the capital Bamako. Cerebrospinal fluid specimens from 29 cases were tested by culture and real-time polymerase chain reaction; 22 (76%) were positive for bacterial meningitis pathogens, 16 (73%) of which were Neisseria meningitidis (Nm). Of the Nm-positive specimens, 14 (88%) were N meningitidis serogroup C (NmC), 1 was NmW, and 1 was nongroupable. Eight NmC isolates recovered by culture from the outbreak were characterized using whole genome sequencing. Genomics analysis revealed that all 8 isolates belonged to a new sequence type (ST) 12446 of clonal complex 10217 that formed a distinct clade genetically similar to ST-10217, a NmC strain that recently caused large epidemics of meningitis in Niger and Nigeria. The emergence of a new ST of NmC associated with an outbreak in the African meningitis belt further highlights the need for continued molecular surveillance in the region.
Collapse
Affiliation(s)
- Yibayiri Osee Sanogo
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ibréhima Guindo
- Institut National de Recherche en Santé Publique, Bamako, Mali
| | - Seydou Diarra
- Institut National de Recherche en Santé Publique, Bamako, Mali
| | - Adam C Retchless
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mahamadou Abdou
- Institut National de Recherche en Santé Publique, Bamako, Mali
| | | | | | | | | | - Alexander Chen
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - How-Yi Chang
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jeni T Vuong
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Anna M Acosta
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Samba Sow
- Ministère de la Santé, Mali.,Centre National d'Appui et de Lutte contre les Maladies/Centre des Vaccins en Dévelopement, Mali
| | - Ryan T Novak
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
24
|
Retchless AC, Fox LM, Maiden MCJ, Smith V, Harrison LH, Glennie L, Harrison OB, Wang X. Toward a Global Genomic Epidemiology of Meningococcal Disease. J Infect Dis 2020; 220:S266-S273. [PMID: 31671445 DOI: 10.1093/infdis/jiz279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Whole-genome sequencing (WGS) is invaluable for studying the epidemiology of meningococcal disease. Here we provide a perspective on the use of WGS for meningococcal molecular surveillance and outbreak investigation, where it helps to characterize pathogens, predict pathogen traits, identify emerging pathogens, and investigate pathogen transmission during outbreaks. Standardization of WGS workflows has facilitated their implementation by clinical and public health laboratories (PHLs), but further development is required for metagenomic shotgun sequencing and targeted sequencing to be widely available for culture-free characterization of bacterial meningitis pathogens. Internet-accessible servers are being established to support bioinformatics analysis, data management, and data sharing among PHLs. However, establishing WGS capacity requires investments in laboratory infrastructure and technical knowledge, which is particularly challenging in resource-limited regions, including the African meningitis belt. Strategic WGS implementation is necessary to monitor the molecular epidemiology of meningococcal disease in these regions and construct a global view of meningococcal disease epidemiology.
Collapse
Affiliation(s)
- Adam C Retchless
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - LeAnne M Fox
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Vincent Smith
- Meningitis Research Foundation, Bristol, United Kingdom
| | - Lee H Harrison
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Linda Glennie
- Meningitis Research Foundation, Bristol, United Kingdom
| | - Odile B Harrison
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Xin Wang
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
25
|
Kwambana-Adams BA, Liu J, Okoi C, Mwenda JM, Mohammed NI, Tsolenyanu E, Renner LA, Ansong D, Tagbo BN, Bashir MF, Hama MK, Sonko MA, Gratz J, Worwui A, Ndow P, Cohen AL, Serhan F, Mihigo R, Antonio M, Houpt E, On Behalf Of The Paediatric Bacterial Meningitis Surveillance Network In West Africa. Etiology of Pediatric Meningitis in West Africa Using Molecular Methods in the Era of Conjugate Vaccines against Pneumococcus, Meningococcus, and Haemophilus influenzae Type b. Am J Trop Med Hyg 2020; 103:696-703. [PMID: 32458777 PMCID: PMC7410464 DOI: 10.4269/ajtmh.19-0566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite the implementation of effective conjugate vaccines against the three main bacterial pathogens that cause meningitis, Streptococcus pneumoniae, Haemophilus influenzae type b (Hib), and Neisseria meningitidis serogroup A, the burden of meningitis in West Africa remains high. The relative importance of other bacterial, viral, and parasitic pathogens in central nervous system infections is poorly characterized. Cerebrospinal fluid (CSF) specimens were collected from children younger than 5 years with suspected meningitis, presenting at pediatric teaching hospitals across West Africa in five countries including Senegal, Ghana, Togo, Nigeria, and Niger. Cerebrospinal fluid specimens were initially tested using bacteriologic culture and a triplex real-time polymerase chain reaction (PCR) assay for N. meningitidis, S. pneumoniae, and H. influenzae used in routine meningitis surveillance. A custom TaqMan Array Card (TAC) assay was later used to detect 35 pathogens including 15 bacteria, 17 viruses, one fungus, and two protozoans. Among 711 CSF specimens tested, the pathogen positivity rates were 2% and 20% by the triplex real-time PCR (three pathogens) and TAC (35 pathogens), respectively. TAC detected 10 bacterial pathogens, eight viral pathogens, and Plasmodium. Overall, Escherichia coli was the most prevalent (4.8%), followed by S. pneumoniae (3.5%) and Plasmodium (3.5%). Multiple pathogens were detected in 4.4% of the specimens. Children with human immunodeficiency virus (HIV) and Plasmodium detected in CSF had high mortality. Among 220 neonates, 17% had at least one pathogen detected, dominated by gram-negative bacteria. The meningitis TAC enhanced the detection of pathogens in children with meningitis and may be useful for case-based meningitis surveillance.
Collapse
Affiliation(s)
- Brenda A Kwambana-Adams
- Division of Infection and Immunity, NIHR Global Health Research Unit on Mucosal Pathogens, University College London, London, United Kingdom.,WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Jie Liu
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Catherine Okoi
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Jason M Mwenda
- World Health Organization (WHO), Regional Office for Africa, Brazzaville, Congo
| | - Nuredin I Mohammed
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Enyonam Tsolenyanu
- Department of Paediatrics, Sylvanus Olympio Teaching Hospital, Lomé, Togo
| | - Lorna Awo Renner
- University of Ghana School of Medicine and Dentistry, Accra, Ghana
| | | | - Beckie N Tagbo
- Department of Paediatrics, University of Nigeria Teaching Hospital Ituku-Ozalla, Enug, Nigeria.,Institute of Child Health, University of Nigeria Teaching Hospital, Enug, Nigeria
| | - Muhammad F Bashir
- Department of Paediatrics, Abubakar Tafawa Balewa University Teaching Hospital, Bauchi, Nigeria
| | | | | | - Jean Gratz
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Archibald Worwui
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Peter Ndow
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | | | - Richard Mihigo
- World Health Organization (WHO), Regional Office for Africa, Brazzaville, Congo
| | - Martin Antonio
- Division of Microbiology and Immunity, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia.,Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eric Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | | |
Collapse
|
26
|
Brynildsrud OB, Eldholm V, Rakhimova A, Kristiansen PA, Caugant DA. Gauging the epidemic potential of a widely circulating non-invasive meningococcal strain in Africa. Microb Genom 2020; 5. [PMID: 31454306 PMCID: PMC6755499 DOI: 10.1099/mgen.0.000290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neisseria meningitidis colonizes the human oropharynx and transmits mainly via asymptomatic carriage. Actual outbreaks of meningococcal meningitis are comparatively rare and occur when susceptible populations are exposed to hypervirulent clones, genetically distinct from the main carriage isolates. However, carriage isolates can evolve into pathogens through a limited number of recombination events. The present study examines the potential for the sequence type (ST)-192, by far the dominant clone recovered in recent meningococcal carriage studies in sub-Saharan Africa, to evolve into a pathogen. We used whole-genome sequencing on a collection of 478 meningococcal isolates sampled from 1- to 29- year-old healthy individuals in Arba Minch, southern Ethiopia in 2014. The ST-192 clone was identified in nearly 60 % of the carriers. Using complementary short- and long-read techniques for whole-genome sequencing, we were able to completely resolve genomes and thereby identify genomic differences between the ST-192 carriage strain and known pathogenic clones with the highest possible resolution. We conclude that it is possible, but unlikely, that ST-192 could evolve into a significant pathogen, thus, becoming the major invasive meningococcus clone in the meningitis belt of Africa following upcoming mass vaccination with a polyvalent conjugate vaccine that targets the A, C, W, Y and X capsules.
Collapse
Affiliation(s)
- Ola Brønstad Brynildsrud
- Department of Food Safety and Infection Biology, Faculty of Veterinary Science, Norwegian University of Life Science, Oslo, Norway.,Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Eldholm
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Adelina Rakhimova
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,WHO Collaborating Centre for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway.,Department of Community Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Davey L, Valdivia RH. Bacterial genetics and molecular pathogenesis in the age of high throughput DNA sequencing. Curr Opin Microbiol 2020; 54:59-66. [PMID: 32044689 PMCID: PMC8765803 DOI: 10.1016/j.mib.2020.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/12/2020] [Indexed: 12/17/2022]
Abstract
When Stanley Falkow introduced Molecular Koch's Postulates (Falkow, 1988) as a conceptual framework to identify microbial factors that contributed to disease, he reaffirmed the prominent role that the basic principles of genetic analysis should play in defining genotype-phenotype associations in microbial pathogens. In classical bacterial genetics the nature of mutations is inferred through cis-trans complementation and by indirectly mapping their relative position and physical distance through recombination frequencies - all of which were made possible by the genetic tools of the day: natural transformations, conjugation and transduction. Unfortunately, many of these genetic tools are not always available to study pathogenic bacteria. The recombinant DNA revolution in the 1980s launched the field of molecular pathogenesis as genes could be treated as physical units that could be cut, spliced and transplanted from one microbe to another and thus not only 'prove' that an individual gene complemented a virulence defect in a mutant strain but also could impart pathogenic properties to otherwise benign microbes. The recombinant DNA revolution also enabled the generation of newer versions of genetic tools to generate mutations and engineer microbial genomes. The last decade has ushered in next generation sequencing technologies as a new powerful tool for bacterial genetics. The routine and inexpensive sequencing of microbial genomes has increased the number and phylogenetic scope of microbes that are amenable to functional characterization and experimentation. In this review, we highlight some salient advances in this rapidly evolving area.
Collapse
Affiliation(s)
- Lauren Davey
- Duke University School of Medicine, Molecular Genetics and Microbiology, 272 Jones Bldg DUMC 3580, Durham, NC 27710, United States
| | - Raphael H Valdivia
- Duke University School of Medicine, Molecular Genetics and Microbiology, 272 Jones Bldg DUMC 3580, Durham, NC 27710, United States.
| |
Collapse
|
28
|
|
29
|
Caugant DA, Brynildsrud OB. Neisseria meningitidis: using genomics to understand diversity, evolution and pathogenesis. Nat Rev Microbiol 2019; 18:84-96. [PMID: 31705134 DOI: 10.1038/s41579-019-0282-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2019] [Indexed: 01/30/2023]
Abstract
Meningococcal disease remains an important cause of morbidity and death worldwide despite the development and increasing implementation of effective vaccines. Elimination of the disease is hampered by the enormous diversity and antigenic variability of the causative agent, Neisseria meningitidis, one of the most variable bacteria in nature. These features are attained mainly through high rates of horizontal gene transfer and alteration of protein expression through phase variation. The recent availability of whole-genome sequencing (WGS) of large-scale collections of N. meningitidis isolates from various origins, databases to facilitate storage and sharing of WGS data and the concomitant development of effective bioinformatics tools have led to a much more thorough understanding of the diversity of the species, its evolution and population structure and how virulent traits may emerge. Implementation of WGS is already contributing to enhanced epidemiological surveillance and is essential to ascertain the impact of vaccination strategies. This Review summarizes the recent advances provided by WGS studies in our understanding of the biology of N. meningitidis and the epidemiology of meningococcal disease.
Collapse
Affiliation(s)
- Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway. .,Department of Community Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ola B Brynildsrud
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Food Safety and Infection Biology, Faculty of Veterinary Science, Norwegian University of Life Science, Oslo, Norway
| |
Collapse
|
30
|
Sidikou F, Potts CC, Zaneidou M, Mbaeyi S, Kadadé G, Paye MF, Ousmane S, Issaka B, Chen A, Chang HY, Issifou D, Lingani C, Sakande S, Bienvenu B, Mahamane AE, Diallo AO, Moussa A, Seidou I, Abdou M, Sidiki A, Garba O, Haladou S, Testa J, Obama Nse R, Mainassara HB, Wang X. Epidemiology of Bacterial Meningitis in the Nine Years Since Meningococcal Serogroup A Conjugate Vaccine Introduction, Niger, 2010-2018. J Infect Dis 2019; 220:S206-S215. [PMID: 31671439 DOI: 10.1093/infdis/jiz296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In 2010, Niger and other meningitis belt countries introduced a meningococcal serogroup A conjugate vaccine (MACV). We describe the epidemiology of bacterial meningitis in Niger from 2010 to 2018. METHODS Suspected and confirmed meningitis cases from January 1, 2010 to July 15, 2018 were obtained from national aggregate and laboratory surveillance. Cerebrospinal fluid specimens were analyzed by culture and/or polymerase chain reaction. Annual incidence was calculated as cases per 100 000 population. Selected isolates obtained during 2016-2017 were characterized by whole-genome sequencing. RESULTS Of the 21 142 suspected cases of meningitis, 5590 were confirmed: Neisseria meningitidis ([Nm] 85%), Streptococcus pneumoniae ([Sp] 13%), and Haemophilus influenzae ([Hi] 2%). No NmA cases occurred after 2011. Annual incidence per 100 000 population was more dynamic for Nm (0.06-7.71) than for Sp (0.18-0.70) and Hi (0.01-0.23). The predominant Nm serogroups varied over time (NmW in 2010-2011, NmC in 2015-2018, and both NmC and NmX in 2017-2018). Meningococcal meningitis incidence was highest in the regions of Niamey, Tillabery, Dosso, Tahoua, and Maradi. The NmW isolates were clonal complex (CC)11, NmX were CC181, and NmC were CC10217. CONCLUSIONS After MACV introduction, we observed an absence of NmA, the emergence and continuing burden of NmC, and an increase in NmX. Niger's dynamic Nm serogroup distribution highlights the need for strong surveillance programs to inform vaccine policy.
Collapse
Affiliation(s)
- Fati Sidikou
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Caelin C Potts
- Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Maman Zaneidou
- Direction de la Surveillance et Riposte aux Epidémies, Ministry of Health, Niamey, Niger
| | - Sarah Mbaeyi
- Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Goumbi Kadadé
- Direction de la Surveillance et Riposte aux Epidémies, Ministry of Health, Niamey, Niger
| | - Marietou F Paye
- Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sani Ousmane
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Bassira Issaka
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Alexander Chen
- Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - How-Yi Chang
- Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Djibo Issifou
- Direction de la Surveillance et Riposte aux Epidémies, Ministry of Health, Niamey, Niger
| | - Clement Lingani
- World Health Organization-Intercountry Support Team, Ouagadougou, Burkina Faso
| | | | | | - Ali Elhadji Mahamane
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Alpha Oumar Diallo
- Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Amadou Moussa
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Issaka Seidou
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Moussa Abdou
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Ali Sidiki
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Omar Garba
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Sani Haladou
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Jean Testa
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | | | - Halima Boubacar Mainassara
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
31
|
|
32
|
Arifin SMN, Zimmer C, Trotter C, Colombini A, Sidikou F, LaForce FM, Cohen T, Yaesoubi R. Cost-Effectiveness of Alternative Uses of Polyvalent Meningococcal Vaccines in Niger: An Agent-Based Transmission Modeling Study. Med Decis Making 2019; 39:553-567. [PMID: 31268405 PMCID: PMC6786941 DOI: 10.1177/0272989x19859899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background. Despite the introduction of an effective serogroup A conjugate vaccine (MenAfriVac™), sporadic epidemics of other Neisseria meningitidis serogroups remain a concern in Africa. Polyvalent meningococcal conjugate (PMC) vaccines may offer alternatives to current strategies that rely on routine infant vaccination with MenAfriVac plus, in the event of an epidemic, district-specific reactive campaigns using polyvalent meningococcal polysaccharide (PMP) vaccines. Methods. We developed an agent-based transmission model of N. meningitidis in Niger to compare the health effects and costs of current vaccination practice and 3 alternatives. Each alternative replaces MenAfriVac in the infant vaccination series with PMC and either replaces PMP with PMC for reactive campaigns or implements a one-time catch up campaign with PMC for children and young adults. Results. Over a 28-year period, replacement of MenAfriVac with PMC in the infant immunization series and of PMP in reactive campaigns would avert 63% of expected cases (95% prediction interval 49%-75%) if elimination of serogroup A is not followed by serogroup replacement. At a PMC price of $4/dose, this would cost $1412 ($81-$3510) per disability-adjusted life-year (DALY) averted. If serogroup replacement occurs, the cost-effectiveness of this strategy improves to $662 (cost-saving, $2473) per DALY averted. Sensitivity analyses accounting for incomplete laboratory confirmation suggest that a catch-up PMC campaign would also meet standard cost-effectiveness thresholds. Limitations. The assumption that polyvalent vaccines offer similar protection against all serogroups is simplifying. Conclusions. The use of PMC vaccines to replace MenAfriVac in routine infant immunization and in district-specific reactive campaigns would have important health benefits and is likely to be cost-effective in Niger. An additional PMC catch-up campaign would also be cost-effective if we account for incomplete laboratory reporting.
Collapse
Affiliation(s)
- S M Niaz Arifin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Christoph Zimmer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Caroline Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Fati Sidikou
- Centre de Recherche Medicale et Sanitaire (CERMES), Niamey, NE, Niger
| | | | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Reza Yaesoubi
- Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
33
|
Shi X, Shao C, Luo C, Chu Y, Wang J, Meng Q, Yu J, Gao Z, Kang Y. Microfluidics-Based Enrichment and Whole-Genome Amplification Enable Strain-Level Resolution for Airway Metagenomics. mSystems 2019; 4:e00198-19. [PMID: 31117025 PMCID: PMC6589435 DOI: 10.1128/msystems.00198-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/04/2019] [Indexed: 01/13/2023] Open
Abstract
Dysbiosis of airway microbiomes has been found in various respiratory diseases, but its molecular details in terms of taxonomic profile, metabolic characteristics, defensive function, and inhabit adaption are far from clear. Shotgun metagenome sequencing provides detailed information for microbes, whereas its application is rather limited in airways due to host DNA contaminants that overwhelm a minute amount of microbial content. Here, we describe a microfluidics-based enrichment device and an emulsion-based whole-genome amplification procedure (MEEA) for the preparation of DNA from sputa for shotgun sequencing in a metagenomics study. The two protocols coupled in MEEA are first separately assayed with mock samples and are both promising in efficiency and bias. The efficiency and consistency of MEEA are further evaluated in six clinical sputum samples against direct sequencing without enrichment, and MEEA enables 2 to 14 times enrichment for microbial reads, which take 14.68% to 33.52% of total reads. The dominant pathogens detected in MEEA are in excellent agreement with those from clinical etiological tests. Meanwhile, MEEA presents much more microbiome complexity and genome information at a strain level than direct sequencing, exhibiting high sensitivity for identifying prophages and DNA viruses. MEEA provides better microbiome profiling than direct sequencing without a preference for specific microorganisms. The more detailed functional and taxonomic characterization of their species constituents, including both bacterium and virus, facilitates metagenomics studies on the pathogenesis of respiratory microbiomes.IMPORTANCE The airway microbial community, which takes important pathogenic roles for respiratory diseases, is far from clear in terms of taxonomy and gene functions. One of the critical reasons is the heavy contamination of host cell/DNA in airway samples, which hinders the subsequent sequencing of the whole genomic contents of the microbial community-the metagenome. Here, we describe a protocol for airway sample preparation which couples a microbe enrichment microfluidic device and a DNA amplification method performed in numerous droplets. When evaluated with mock and clinical sputum samples, the microfluidics-based enrichment device and emulsion-based whole-genome amplification (MEEA) procedure efficiently removes host cells, amplifies the microbial genome, and shows no obvious bias among microbes. The efficiency of MEEA makes it a promising method in research of respiratory microbial communities and their roles in diseases.
Collapse
Affiliation(s)
- Xing Shi
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| | - Changjun Shao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chunxiong Luo
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, People's Republic of China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Yanan Chu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qingren Meng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
34
|
Mueller JE. Meningococcal strain evolution, dusty dry air and respiratory tract infections: An explosive relationship. EBioMedicine 2019; 42:34-35. [PMID: 30935890 PMCID: PMC6491798 DOI: 10.1016/j.ebiom.2019.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 11/26/2022] Open
|
35
|
Topaz N, Caugant DA, Taha MK, Brynildsrud OB, Debech N, Hong E, Deghmane AE, Ouédraogo R, Ousmane S, Gamougame K, Njanpop-Lafourcade BM, Diarra S, Fox LM, Wang X. Phylogenetic relationships and regional spread of meningococcal strains in the meningitis belt, 2011-2016. EBioMedicine 2019; 41:488-496. [PMID: 30846392 PMCID: PMC6443582 DOI: 10.1016/j.ebiom.2019.02.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Historically, the major cause of meningococcal epidemics in the meningitis belt of sub-Saharan Africa has been Neisseria meningitidis serogroup A (NmA), but the incidence has been substantially reduced since the introduction of a serogroup A conjugate vaccine starting in 2010. We performed whole-genome sequencing on isolates collected post-2010 to assess their phylogenetic relationships and inter-country transmission. METHODS A total of 716 invasive meningococcal isolates collected between 2011 and 2016 from 11 meningitis belt countries were whole-genome sequenced for molecular characterization by the three WHO Collaborating Centers for Meningitis. FINDINGS We identified three previously-reported clonal complexes (CC): CC11 (n = 434), CC181 (n = 62) and CC5 (n = 90) primarily associated with NmW, NmX, and NmA, respectively, and an emerging CC10217 (n = 126) associated with NmC. CC11 expanded throughout the meningitis belt independent of the 2000 Hajj outbreak strain, with isolates from Central African countries forming a distinct sub-lineage within this expansion. Two major sub-lineages were identified for CC181 isolates, one mainly expanding in West African countries and the other found in Chad. CC10217 isolates from the large outbreaks in Nigeria and Niger were more closely related than those from the few cases in Mali and Burkina Faso. INTERPRETATIONS Whole-genome based phylogenies revealed geographically distinct strain circulation as well as inter-country transmission events. Our results stress the importance of continued meningococcal molecular surveillance in the region, as well as the development of an affordable vaccine targeting these strains. FUND: Meningitis Research Foundation; CDC's Office of Advanced Molecular Detection; GAVI, the Vaccine Alliance.
Collapse
Affiliation(s)
- Nadav Topaz
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Community Medicine and Global Health, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Muhamed-Kheir Taha
- Institut Pasteur, Invasive Bacterial Infections Unit and WHO collaborating Centre for meningitis, Paris, France
| | - Ola Brønstad Brynildsrud
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Nadia Debech
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Eva Hong
- Institut Pasteur, Invasive Bacterial Infections Unit and WHO collaborating Centre for meningitis, Paris, France
| | - Ala-Eddine Deghmane
- Institut Pasteur, Invasive Bacterial Infections Unit and WHO collaborating Centre for meningitis, Paris, France
| | - Rasmata Ouédraogo
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou 01, Burkina Faso
| | - Sani Ousmane
- Centre de Recherche Médicale et Sanitaire, CERMES, Niamey, Niger
| | | | | | - Seydou Diarra
- Institut National de Recherche en Santé Publique, Bamako 00223, Mali
| | - LeAnne M Fox
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States.
| |
Collapse
|
36
|
Junges R, Salvadori G, Chen T, Morrison DA, Petersen FC. Hidden Gems in the Transcriptome Maps of Competent Streptococci. Front Mol Biosci 2019; 5:116. [PMID: 30662898 PMCID: PMC6328492 DOI: 10.3389/fmolb.2018.00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/11/2018] [Indexed: 11/22/2022] Open
Abstract
Natural transformation is regarded as an important mechanism in bacteria that allows for adaptation to different environmental stressors by ensuring genome plasticity. Since the discovery of this phenomenon in Streptococcus pneumoniae, remarkable progress has been made in the understanding of the molecular mechanisms and pathways coordinating this process. Recently, the advent of high-throughput sequencing allows the posing of questions that address the system at a larger scale but also allow for the creation of high-resolution maps of transcription. Thus, while much is already known about genetic competence in streptococci, recent studies continue to reveal intricate novel regulation pathways and components. In this perspective article, we highlight the use of transcriptional profiling and mapping as a valuable resource in the identification and characterization of “hidden gems” pertinent to the natural transformation system. Such strategies have recently been employed in a variety of different species. In S. mutans, for example, genome editing combined with the power of promoter mapping and RNA-Seq allowed for the identification of a link between the ComCDE and the ComRS systems, a ComR positive feedback loop mediated by SigX, and the XrpA peptide, encoded within sigX, which inhibits competence. In S. pneumoniae, a novel member of the competence regulon termed BriC was found to be directly under control of ComE and to promote biofilm formation and nasopharyngeal colonization but not competence. Together these new technologies enable us to discover new links and to revisit old pathways in the compelling study of natural genetic transformation.
Collapse
Affiliation(s)
- Roger Junges
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Gabriela Salvadori
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, United States
| | - Donald A Morrison
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Fernanda C Petersen
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
37
|
Acevedo R, Bai X, Borrow R, Caugant DA, Carlos J, Ceyhan M, Christensen H, Climent Y, De Wals P, Dinleyici EC, Echaniz-Aviles G, Hakawi A, Kamiya H, Karachaliou A, Lucidarme J, Meiring S, Mironov K, Sáfadi MAP, Shao Z, Smith V, Steffen R, Stenmark B, Taha MK, Trotter C, Vázquez JA, Zhu B. The Global Meningococcal Initiative meeting on prevention of meningococcal disease worldwide: Epidemiology, surveillance, hypervirulent strains, antibiotic resistance and high-risk populations. Expert Rev Vaccines 2018; 18:15-30. [PMID: 30526162 DOI: 10.1080/14760584.2019.1557520] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The 2018 Global Meningococcal Initiative (GMI) meeting focused on evolving invasive meningococcal disease (IMD) epidemiology, surveillance, and protection strategies worldwide, with emphasis on emerging antibiotic resistance and protection of high-risk populations. The GMI is comprised of a multidisciplinary group of scientists and clinicians representing institutions from several continents. AREAS COVERED Given that the incidence and prevalence of IMD continually varies both geographically and temporally, and surveillance systems differ worldwide, the true burden of IMD remains unknown. Genomic alterations may increase the epidemic potential of meningococcal strains. Vaccination and (to a lesser extent) antimicrobial prophylaxis are the mainstays of IMD prevention. Experiences from across the globe advocate the use of conjugate vaccines, with promising evidence growing for protein vaccines. Multivalent vaccines can broaden protection against IMD. Application of protection strategies to high-risk groups, including individuals with asplenia, complement deficiencies and human immunodeficiency virus, laboratory workers, persons receiving eculizumab, and men who have sex with men, as well as attendees at mass gatherings, may prevent outbreaks. There was, however, evidence that reduced susceptibility to antibiotics was increasing worldwide. EXPERT COMMENTARY The current GMI global recommendations were reinforced, with several other global initiatives underway to support IMD protection and prevention.
Collapse
Affiliation(s)
- Reinaldo Acevedo
- a Biologic Evaluation Department , Finlay Institute of Vaccines , Havana , Cuba
| | - Xilian Bai
- b Meningococcal Reference Unit , Public Health England , Manchester , UK
| | - Ray Borrow
- b Meningococcal Reference Unit , Public Health England , Manchester , UK
| | - Dominique A Caugant
- c Division of Infection Control and Environmental Health , Norwegian Institute of Public Health , Oslo , Norway
| | - Josefina Carlos
- d Department of Pediatrics, College of Medicine , University of the East - Ramon Magsaysay Memorial Medical Center , Quezon City , Philippines
| | - Mehmet Ceyhan
- e Faculty of Medicine, Department of Pediatric Infectious Diseases , Hacettepe University , Ankara , Turkey
| | - Hannah Christensen
- f Population Health Sciences, Bristol Medical School , University of Bristol , Bristol , UK
| | - Yanet Climent
- a Biologic Evaluation Department , Finlay Institute of Vaccines , Havana , Cuba
| | - Philippe De Wals
- g Department of Social and Preventive Medicine , Laval University , Quebec City , QC , Canada
| | - Ener Cagri Dinleyici
- h Department of Paediatrics , Eskisehir Osmangazi University Faculty of Medicine , Eskisehir , Turkey
| | - Gabriela Echaniz-Aviles
- i Center for Research on Infectious Diseases , Instituto Nacional de Salud Pública , Cuernavaca , México
| | - Ahmed Hakawi
- j Infectious Diseases Control , Ministry of Health , Riyadh , Saudi Arabia
| | - Hajime Kamiya
- k Infectious Disease Surveillance Center , National Institute of Infectious Diseases , Tokyo , Japan
| | | | - Jay Lucidarme
- b Meningococcal Reference Unit , Public Health England , Manchester , UK
| | - Susan Meiring
- m Division of Public Health Surveillance and Response , National Institute for Communicable Diseases , Johannesburg , South Africa
| | - Konstantin Mironov
- n Central Research Institute of Epidemiology , Moscow , Russian Federation
| | - Marco A P Sáfadi
- o Department of Pediatrics , FCM Santa Casa de São Paulo School of Medical Sciences , São Paulo , Brazil
| | - Zhujun Shao
- p National Institute for Communicable Disease Control and Prevention , Chinese Centre for Disease Control and Prevention , Beijing , China
| | - Vinny Smith
- q Meningitis Research Foundation , Bristol , UK
| | - Robert Steffen
- r Department of Epidemiology and Prevention of Infectious Diseases , WHO Collaborating Centre for Travellers' Health, University of Zurich , Zurich , Switzerland
| | - Bianca Stenmark
- s Department of Laboratory Medicine , Örebro University Hospital , Örebro , Sweden
| | - Muhamed-Kheir Taha
- t Institut Pasteur , National Reference Centre for Meningococci , Paris , France
| | - Caroline Trotter
- l Department of Veterinary Medicine , University of Cambridge , Cambridge , UK
| | - Julio A Vázquez
- u National Centre of Microbiology , Institute of Health Carlos III , Madrid , Spain
| | - Bingqing Zhu
- p National Institute for Communicable Disease Control and Prevention , Chinese Centre for Disease Control and Prevention , Beijing , China
| |
Collapse
|
38
|
Caugant DA. Metagenomics for investigation of an unusual meningococcal outbreak. THE LANCET. INFECTIOUS DISEASES 2018; 18:1295-1296. [PMID: 30337261 DOI: 10.1016/s1473-3099(18)30499-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Dominique A Caugant
- WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo N-0213, Norway.
| |
Collapse
|
39
|
Preziosi MP, Greenwood B. NmCV-5 meningococcal vaccine: Neisseria meningitidis' nemesis? THE LANCET. INFECTIOUS DISEASES 2018; 18:1049-1050. [PMID: 30120070 DOI: 10.1016/s1473-3099(18)30430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
|
40
|
Kwambana-Adams BA, Amaza RC, Okoi C, Rabiu M, Worwui A, Foster-Nyarko E, Ebruke B, Sesay AK, Senghore M, Umar AS, Usman R, Atiku A, Abdullahi G, Buhari Y, Sani R, Bako HU, Abdullahi B, Yarima AI, Sikiru B, Moses AO, Popoola MO, Ekeng E, Olayinka A, Mba N, Kankia A, Mamadu IN, Okudo I, Stephen M, Ronveaux O, Busuttil J, Mwenda JM, Abdulaziz M, Gummi SA, Adedeji A, Bita A, Omar L, Djingarey MH, Alemu W, D'Alessandro U, Ihekweazu C, Antonio M. Meningococcus serogroup C clonal complex ST-10217 outbreak in Zamfara State, Northern Nigeria. Sci Rep 2018; 8:14194. [PMID: 30242204 PMCID: PMC6155016 DOI: 10.1038/s41598-018-32475-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/10/2018] [Indexed: 12/03/2022] Open
Abstract
After the successful roll out of MenAfriVac, Nigeria has experienced sequential meningitis outbreaks attributed to meningococcus serogroup C (NmC). Zamfara State in North-western Nigeria recently was at the epicentre of the largest NmC outbreak in the 21st Century with 7,140 suspected meningitis cases and 553 deaths reported between December 2016 and May 2017. The overall attack rate was 155 per 100,000 population and children 5–14 years accounted for 47% (3,369/7,140) of suspected cases. The case fatality rate (CFR) among children 5–9 years was 10%, double that reported among adults ≥ 30 years (5%). NmC and pneumococcus accounted for 94% (172/184) and 5% (9/184) of the laboratory-confirmed cases, respectively. The sequenced NmC belonged to the ST-10217 clonal complex (CC). All serotyped pneumococci were PCV10 serotypes. The emergence of NmC ST-10217 CC outbreaks threatens the public health gains made by MenAfriVac, which calls for an urgent strategic action against meningitis outbreaks.
Collapse
Affiliation(s)
- Brenda A Kwambana-Adams
- World Health Organization, Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | | | - Catherine Okoi
- World Health Organization, Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Murtala Rabiu
- Ahmad Sani Yariman Bakura Specialist Hospital Gusau, Zamfara State, Gusau, Nigeria
| | - Archibald Worwui
- World Health Organization, Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Ebenezer Foster-Nyarko
- World Health Organization, Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Bernard Ebruke
- World Health Organization, Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Abdul K Sesay
- World Health Organization, Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Madikay Senghore
- World Health Organization, Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | | | - Rabi Usman
- Zamfara State Ministry of Health, Gusau, Nigeria
| | - Adamu Atiku
- Zamfara State Ministry of Health, Gusau, Nigeria
| | | | - Yahaya Buhari
- Ahmad Sani Yariman Bakura Specialist Hospital Gusau, Zamfara State, Gusau, Nigeria
| | - Rabiu Sani
- Ahmad Sani Yariman Bakura Specialist Hospital Gusau, Zamfara State, Gusau, Nigeria
| | - Husaini U Bako
- Ahmad Sani Yariman Bakura Specialist Hospital Gusau, Zamfara State, Gusau, Nigeria
| | - Bashir Abdullahi
- Ahmad Sani Yariman Bakura Specialist Hospital Gusau, Zamfara State, Gusau, Nigeria
| | - Alliyu I Yarima
- Ahmad Sani Yariman Bakura Specialist Hospital Gusau, Zamfara State, Gusau, Nigeria
| | | | | | | | - Eme Ekeng
- Nigeria Center for Disease Control, Abuja, Nigeria
| | | | - Nwando Mba
- Nigeria Center for Disease Control, Abuja, Nigeria
| | - Adamu Kankia
- World Health Organization, Country Office Nigeria, Abuja, Nigeria
| | - Ibrahim N Mamadu
- World Health Organization, Country Office Nigeria, Abuja, Nigeria
| | - Ifeanyi Okudo
- World Health Organization, Country Office Nigeria, Abuja, Nigeria
| | - Mary Stephen
- World Health Organization, Country Office Nigeria, Abuja, Nigeria
| | | | - Jason Busuttil
- UK-Public Health Rapid Support Team, Public Health England, Salisbury, UK
| | - Jason M Mwenda
- World Health Organization, Regional office for Africa, Brazzaville, Congo
| | - Mohammed Abdulaziz
- Africa Centres for Diseases Control and Prevention, Addis Ababa, Ethiopia
| | | | | | - Andre Bita
- World Health Organization Inter-Country Support Teams for West Africa, Ouagadougou, Burkina Faso
| | - Linda Omar
- World Health Organization, Regional office for Africa, Brazzaville, Congo
| | | | | | - Umberto D'Alessandro
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | | | - Martin Antonio
- World Health Organization, Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia. .,Division of Microbiology & Immunity, Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|