1
|
García-Giménez JL, Cánovas-Cervera I, Nacher-Sendra E, Dolz-Andrés E, Sánchez-Bernabéu Á, Agúndez AB, Hernández-Gil J, Mena-Mollá S, Pallardó FV. Oxidative stress and central metabolism pathways impact epigenetic modulation in inflammation and immune response. Free Radic Biol Med 2025; 233:378-399. [PMID: 40185167 DOI: 10.1016/j.freeradbiomed.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Oxidative stress, metabolism, and epigenetics are deeply interconnected processes that collectively influence cellular function, health status, and contribute to disease progression. This review highlights the critical role of metabolic intermediates in epigenetic regulation, focusing on lactate, glutathione (GSH), and S-adenosylmethionine (SAM). Beyond its traditional role in energy metabolism, lactate modulates epigenetic mechanisms, influencing gene expression and cellular adaptation. Meanwhile, GSH and SAM serve as key regulators of DNA methylation and histone post-translational modifications, maintaining epigenetic homeostasis. These processes are tightly controlled by redox balance and oxidative stress, underscoring the intricate interplay between metabolism and epigenetic regulation. GSH depletion disrupts methylation homeostasis, while oxidative post-translational modifications (oxPTMs) on histones-including S-glutathionylation, carbonylation, and nitrosylation-alter chromatin architecture and transcriptional regulation. Additionally, we focus on histone lactylation, particularly its role in regulating innate and adaptive immune responses. We also explore how GSH and oxidative stress influence lactate levels, potentially inducing histone lactylation or S-glutathionylation through S,D-lactoylglutathione (LGSH), thereby impacting epigenetic regulation. By integrating insights into metabolic-epigenetic crosstalk, this review underscores the role of oxidative stress and central metabolic pathways in regulating epigenetic mechanisms, a concept known as "redox epigenetics." Understanding these intricate interactions offers new perspectives for therapeutic strategies aimed at restoring redox homeostasis and metabolic integrity to counteract disturbances in the epigenetic landscape.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Irene Cánovas-Cervera
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Elena Nacher-Sendra
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Enric Dolz-Andrés
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Álvaro Sánchez-Bernabéu
- EpiDisease S.L. Parc Científic de la Universitat de València, Paterna, 46980, Valencia, Spain
| | - Ana Belén Agúndez
- EpiDisease S.L. Parc Científic de la Universitat de València, Paterna, 46980, Valencia, Spain
| | - Javier Hernández-Gil
- INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Salvador Mena-Mollá
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Federico V Pallardó
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Yuan TT, Feng YR, Cheng H, Cheng S, Lu YT. Bacteria suppress immune responses in Arabidopsis by inducing methylglyoxal accumulation and promoting H 2O 2 scavenging. Dev Cell 2025:S1534-5807(25)00208-4. [PMID: 40306285 DOI: 10.1016/j.devcel.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/29/2024] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
Various reactive small molecules, naturally produced via cellular metabolism, function in plant immunity. However, how pathogens use plant metabolites to promote their infection is poorly understood. Here, we identified that infection with a virulent bacterial strain represses glyoxalase I (GLYI) activity, leading to elevated levels of methylglyoxal (MG) in Arabidopsis. Genetic analysis of GLYIs further supports that MG promotes bacterial infection. Mechanistically, MG modifies TRIPHOSPHATE TUNNEL METALLOENZYME2 (TTM2) at Arg-351, facilitating its interaction with CATALASE2 (CAT2), resulting in higher CAT2 activity and lower hydrogen peroxide (H2O2) accumulation. Taken together, we demonstrate that the bacterial pathogen harnesses the plant metabolite MG to promote its infection by scavenging H2O2.
Collapse
Affiliation(s)
- Ting-Ting Yuan
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Rui Feng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China.
| | - Ying-Tang Lu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China.
| |
Collapse
|
3
|
Iozzo M, Pardella E, Giannoni E, Chiarugi P. The role of protein lactylation: A kaleidoscopic post-translational modification in cancer. Mol Cell 2025; 85:1263-1279. [PMID: 40073861 DOI: 10.1016/j.molcel.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/18/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
The recently discovered lysine lactylation represents a critical post-translational modification with widespread implications in epigenetics and cancer biology. Initially identified on histones, lysine lactylation has been also described on non-histone proteins, playing a pivotal role in transcriptional activation, protein function, and cellular processes. Two major sources of the lactyl moiety have been currently distinguished: L-lactyl-CoA (precursor of the L-lactyl moiety) and S-D-lactylglutathione (precursor of the D-lactyl moiety), which enable enzymatic and non-enzymatic mechanisms of lysine lactylation, respectively. Although the specific writers, erasers, and readers of this modification are still unclear, acetyltransferases and deacetylases have been proposed as crucial mediators of lysine lactylation. Remarkably, lactylation exerts significant influence on critical cancer-related pathways, thereby shaping cellular behavior during malignant transformation and the metastatic cascade. Hence, as recent insights into lysine lactylation underscore its growing potential in tumor biology, targeting this modification is emerging as a significant opportunity for cancer treatment.
Collapse
Affiliation(s)
- Marta Iozzo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
4
|
Trujillo MN, Jennings EQ, Farrera DO, Kitamura N, Anderson CC, Gehrke S, Reisz JA, Johannsen M, Roede JR, D'Alessandro A, Galligan JJ. Glyoxalase 2 Coordinates de Novo Serine Metabolism. Chembiochem 2025; 26:e202401086. [PMID: 39988553 DOI: 10.1002/cbic.202401086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Phosphoglycerate dehydrogenase (PHGDH) is the first enzyme in de novo Ser biosynthesis. Numerous metabolic pathways rely on Ser as a precursor, most notably one-carbon metabolism, glutathione biosynthesis, and de novo nucleotide biosynthesis. To facilitate proliferation, many cancer cells shunt glycolytic flux through this pathway, placing PHGDH as a metabolic liability and feasible therapeutic target for the treatment of cancer. Herein, we demonstrate the post-translational modification (PTM) of PHGDH by lactoylLys. These PTMs are generated through a non-enzymatic acyl transfer from the glyoxalase cycle intermediate, lactoylglutathione (LGSH). Knockout of the primary LGSH regulatory enzyme, glyoxalase 2 (GLO2), results in increased LGSH and resulting lactoylLys modification of PHGDH. These PTMs reduce enzymatic activity, resulting in a marked reduction in intracellular Ser. Using stable isotope tracing, we demonstrate reduced flux through the de novo Ser biosynthetic pathway. Collectively, these data identify PHGDH as a target for modification by lactoylLys, resulting in reduced enzymatic activity and reduced intracellular Ser.
Collapse
Affiliation(s)
- Marissa N Trujillo
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721, USA
| | - Erin Q Jennings
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721, USA
| | - Dominique O Farrera
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721, USA
| | - Naoya Kitamura
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721, USA
| | - Colin C Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, 80045, USA
| | - Sarah Gehrke
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, 80045, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, 80045, USA
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, 8200, Aarhus, Denmark
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, 80045, USA
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
5
|
Chen P, Wang L, Wang X, Sun J, Miao F, Wang Z, Yang F, Xiang M, Gu M, Li S, Zhang J, Yuan P, Lu X, Zhang ZM, Gao L, Yao SQ. Cell-Active, Arginine-Targeting Irreversible Covalent Inhibitors for Non-Kinases and Kinases. Angew Chem Int Ed Engl 2025; 64:e202422372. [PMID: 39778034 DOI: 10.1002/anie.202422372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Targeted covalent inhibitors (TCIs) play an essential role in the fields of kinase research and drug discovery. TCI strategies to target more common amino acid side-chains have yet to be demonstrated. Targeting other amino acids would also expand the pharmaceutical industry's toolbox for targeting other tough-to-drug proteins. We report herein a glyoxal-based, arginine-reactive strategy to generate potent and selective small-molecule TCIs of Mcl-1 (an important anti-apoptotic protein) by selectively targeting the conserved arginine (R263) in the protein. We further validated the generality of this strategy by developing glyoxal-based, irreversible covalent inhibitors of AURKA (a cancer-related kinase) that showed exclusive reactivity with a solvent-exposed arginine (R220) of this enzyme. We showed the resulting compounds were potent, selective and cell-active, capable of covalently engaging endogenous AURKA in MV-4-11 cells with long residence time. Finally, we showed the potential application of glyoxal-based TCIs in targeting an acquired drug-resistance mutant of ALK kinase (G1202R).
Collapse
Affiliation(s)
- Peng Chen
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lu Wang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Xuan Wang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of Pharmacy, Jinan University
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
- Department of Pharmacy, Linyi People's Hospital, Linyi, 276000, China
| | - Fengfei Miao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zuqin Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 510632, China
| | - Fang Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 510632, China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Mingxi Gu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shengrong Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 510632, China
| | - Jianzhong Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaoyun Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 510632, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
6
|
Gao J, Liu R, Huang K, Li Z, Sheng X, Chakraborty K, Han C, Zhang D, Becker L, Zhao Y. Dynamic investigation of hypoxia-induced L-lactylation. Proc Natl Acad Sci U S A 2025; 122:e2404899122. [PMID: 40030031 PMCID: PMC11912421 DOI: 10.1073/pnas.2404899122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 12/06/2024] [Indexed: 03/19/2025] Open
Abstract
The recently identified histone modification lysine lactylation can be stimulated by L-lactate and glycolysis. Although the chemical group added upon lysine lactylation was originally proposed to be the L-enantiomer of lactate (KL-la), two isomeric modifications, lysine D-lactylation (KD-la) and N-ε-(carboxyethyl) lysine (Kce), also exist in cells, with their precursors being metabolites of glycolysis. The dynamic regulation and differences among these three modifications in response to hypoxia remain poorly understood. In this study, we demonstrate that intracellular KL-la, but not KD-la or Kce, is up-regulated in response to hypoxia. Depletion of glyoxalase enzymes, GLO1 and GLO2, had minimal impact on KD-la, Kce, or hypoxia-induced KL-la. Conversely, blocking glycolytic flux to L-lactate under hypoxic conditions by knocking out lactate dehydrogenase A/B completely abolished the induction of KL-la but increased KD-la and Kce. We further observed a correlation between the level of KL-la and hypoxia-inducible factor 1 alpha (HIF-1α) expression under hypoxic conditions and when small molecules were used to stabilize HIF-1α in the normoxia condition. Our result demonstrated that there is a strong correlation between HIF-1α and KL-la in lung cancer tissues and that patient samples with higher grade tend to have higher KL-la levels. Using a proteomics approach, we quantified 66 KL-la sites that were up-regulated by hypoxia and demonstrated that p300/CBP contributes to hypoxia-induced KL-la. Collectively, our study demonstrates that KL-la, rather than KD-la or Kce, is the prevailing lysine lactylation in response to hypoxia. Our results therefore demonstrate a link between KL-la and the hypoxia-induced adaptation of tumor cells.
Collapse
Affiliation(s)
- Jinjun Gao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL60637
| | - Ruilong Liu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL60637
| | - Kevin Huang
- College of Agriculture and Life Science, Cornell University, Ithaca, NY14853
| | - Ziyuan Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Xinlei Sheng
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL60637
| | - Kasturi Chakraborty
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL60637
| | - Chang Han
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL60637
| | - Di Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Lev Becker
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL60637
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL60637
| |
Collapse
|
7
|
Berdowska I, Matusiewicz M, Fecka I. A Comprehensive Review of Metabolic Dysfunction-Associated Steatotic Liver Disease: Its Mechanistic Development Focusing on Methylglyoxal and Counterbalancing Treatment Strategies. Int J Mol Sci 2025; 26:2394. [PMID: 40141037 PMCID: PMC11942149 DOI: 10.3390/ijms26062394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multifactorial disorder characterized by excessive lipid accumulation in the liver which dysregulates the organ's function. The key contributor to MASLD development is insulin resistance (IR) which affects many organs (including adipose tissue, skeletal muscles, and the liver), whereas the molecular background is associated with oxidative, nitrosative, and carbonyl stress. Among molecules responsible for carbonyl stress effects, methylglyoxal (MGO) seems to play a major pathological function. MGO-a by-product of glycolysis, fructolysis, and lipolysis (from glycerol and fatty acids-derived ketone bodies)-is implicated in hyperglycemia, hyperlipidemia, obesity, type 2 diabetes, hypertension, and cardiovascular diseases. Its causative effect in the stimulation of prooxidative and proinflammatory pathways has been well documented. Since metabolic dysregulation leading to these pathologies promotes MASLD, the role of MGO in MASLD is addressed in this review. Potential MGO participation in the mechanism of MASLD development is discussed in regard to its role in different signaling routes leading to pathological events accelerating the disorder. Moreover, treatment strategies including approved and potential therapies in MASLD are overviewed and discussed in this review. Among them, medications aimed at attenuating MGO-induced pathological processes are addressed.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
| | - Małgorzata Matusiewicz
- Department of Medical Biochemistry, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| |
Collapse
|
8
|
Rho H, Hay N. Protein lactylation in cancer: mechanisms and potential therapeutic implications. Exp Mol Med 2025; 57:545-553. [PMID: 40128358 PMCID: PMC11958728 DOI: 10.1038/s12276-025-01410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 03/26/2025] Open
Abstract
Increased glycolysis, which leads to high lactate production, is a common feature of cancer cells. Recent evidence suggests that lactate plays a role in the post-translational modification of histone and nonhistone proteins via lactylation. In contrast to genetic mutations, lactylation in cancer cells is reversible. Thus, reversing lactylation can be exploited as a pharmacological intervention for various cancers. Here we discuss recent advances in histone and nonhistone lactylation in cancer, including L-, D- and S-lactylation, as well as alanyl-tRNA synthetase as a novel lactyltransferase. We also discuss potential approaches for targeting lactylation as a therapeutic opportunity in cancer treatment.
Collapse
Affiliation(s)
- Hyunsoo Rho
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
9
|
Martin MS, Jacob-Dolan JW, Pham VTT, Sjoblom NM, Scheck RA. The chemical language of protein glycation. Nat Chem Biol 2025; 21:324-336. [PMID: 38942948 PMCID: PMC12020258 DOI: 10.1038/s41589-024-01644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/10/2024] [Indexed: 06/30/2024]
Abstract
Glycation is a non-enzymatic post-translational modification (PTM) that is correlated with many diseases, including diabetes, cancer and age-related disorders. Although recent work points to the importance of glycation as a functional PTM, it remains an open question whether glycation has a causal role in cellular signaling and/or disease development. In this Review, we contextualize glycation as a specific mechanism of carbon stress and consolidate what is known about advanced glycation end-product (AGE) structures and mechanisms. We highlight the current understanding of glycation as a PTM, focusing on mechanisms for installing, removing or recognizing AGEs. Finally, we discuss challenges that have hampered a more complete understanding of the biological consequences of glycation. The development of tools for predicting, modulating, mimicking or capturing glycation will be essential for interpreting a post-translational glycation network. Therefore, continued insights into the chemistry of glycation will be necessary to advance understanding of glycation biology.
Collapse
|
10
|
Sahu V, Lu C. Metabolism-driven chromatin dynamics: Molecular principles and technological advances. Mol Cell 2025; 85:262-275. [PMID: 39824167 PMCID: PMC11750176 DOI: 10.1016/j.molcel.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
Cells integrate metabolic information into core molecular processes such as transcription to adapt to environmental changes. Chromatin, the physiological template of the eukaryotic genome, has emerged as a sensor and rheostat for fluctuating intracellular metabolites. In this review, we highlight the growing list of chromatin-associated metabolites that are derived from diverse sources. We discuss recent advances in our understanding of the mechanisms by which metabolic enzyme activities shape the chromatin structure and modifications, how specificity may emerge from their seemingly broad effects, and technologies that facilitate the study of epigenome-metabolome interplay. The recognition that metabolites are immanent components of the chromatin regulatory network has significant implications for the evolution, function, and therapeutic targeting of the epigenome.
Collapse
Affiliation(s)
- Varun Sahu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
11
|
Zhao W, Xin J, Yu X, Li Z, Li N. Recent advances of lysine lactylation in prokaryotes and eukaryotes. Front Mol Biosci 2025; 11:1510975. [PMID: 39850757 PMCID: PMC11754067 DOI: 10.3389/fmolb.2024.1510975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Lysine lactylation is a newly discovered protein post-translational modification that plays regulatory roles in cell metabolism, growth, reprogramming, and tumor progression. It utilizes lactate as the modification precursor, which is an end product of glycolysis while functioning as a signaling molecule in cells. Unlike previous reviews focused primarily on eukaryotes, this review aims to provide a comprehensive summary of recent knowledge about lysine lactylation in prokaryotes and eukaryotes. The current identification and enrichment strategies for lysine lactylation are introduced, and the known readers, writers, and erasers of this modification are summarized. In addition, the physiological and pathological implications of lysine lactylation are reviewed for different organisms, especially in prokaryotic cells. Finally, we end with a discussion of the limitations of the studies so far and propose future directions for lysine lactylation investigations.
Collapse
Affiliation(s)
- Wenjuan Zhao
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiayi Xin
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of life sciences, Henan University, Kaifeng, China
| | - Xin Yu
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhifang Li
- School of life sciences, Henan University, Kaifeng, China
| | - Nan Li
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
12
|
Zhang D, Gao J, Zhu Z, Mao Q, Xu Z, Singh PK, Rimayi CC, Moreno-Yruela C, Xu S, Li G, Sin YC, Chen Y, Olsen CA, Snyder NW, Dai L, Li L, Zhao Y. Lysine L-lactylation is the dominant lactylation isomer induced by glycolysis. Nat Chem Biol 2025; 21:91-99. [PMID: 39030363 PMCID: PMC11666458 DOI: 10.1038/s41589-024-01680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/13/2024] [Indexed: 07/21/2024]
Abstract
Lysine L-lactylation (Kl-la) is a novel protein posttranslational modification (PTM) driven by L-lactate. This PTM has three isomers: Kl-la, N-ε-(carboxyethyl)-lysine (Kce) and D-lactyl-lysine (Kd-la), which are often confused in the context of the Warburg effect and nuclear presence. Here we introduce two methods to differentiate these isomers: a chemical derivatization and high-performance liquid chromatography analysis for efficient separation, and isomer-specific antibodies for high-selectivity identification. We demonstrated that Kl-la is the primary lactylation isomer on histones and dynamically regulated by glycolysis, not Kd-la or Kce, which are observed when the glyoxalase system was incomplete. The study also reveals that lactyl-coenzyme A, a precursor in L-lactylation, correlates positively with Kl-la levels. This work not only provides a methodology for distinguishing other PTM isomers, but also highlights Kl-la as the primary responder to glycolysis and the Warburg effect.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Jinjun Gao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhijun Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Qianying Mao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhiqiang Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Pankaj K Singh
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Philadelphia, PA, USA
| | - Cornelius C Rimayi
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Philadelphia, PA, USA
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shuling Xu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Gongyu Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China
| | - Yi-Cheng Sin
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN, USA
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nathaniel W Snyder
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Philadelphia, PA, USA
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
13
|
Sun Y, Chen S, Grin IR, Zharkov DO, Yu B, Li H. The dual role of methylglyoxal in plant stress response and regulation of DJ-1 protein. PHYSIOLOGIA PLANTARUM 2024; 176:e14608. [PMID: 39508129 DOI: 10.1111/ppl.14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Methylglyoxal (MG) is a highly reactive metabolic intermediate that plays important roles in plant salt stress response. This review explores the sources of MG in plants, how salt stress promotes MG production, and the dual role of MG under salt stress conditions. Both the positive role of low concentrations of MG as a signalling molecule and the toxic effects of high concentrations of MG in plant response to salt stress are discussed. The MG detoxification pathways, especially the glyoxalase system, are described in detail. Special attention is given to the novel role of the DJ-1 protein in the glyoxalase system as glyoxalase III to remove MG, and as a deglycase to decrease glycation damage caused by MG on DNA, proteins, and other biomolecules. This review aims to provide readers with comprehensive perspectives on the functions of MG in plant salt stress response, the roles of the DJ-1 protein in MG detoxification and repair of glycation-damaged molecules, as well as the broader functional implications of MG in plant salt stress tolerance. New perspectives on maintaining plant genome stability, breeding for salt-tolerant crop varieties, and improving crop quality are discussed.
Collapse
Affiliation(s)
- Yutong Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, USA
| | - Inga R Grin
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Dmitry O Zharkov
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
14
|
Jensen SJ, Cuthbert BJ, Garza-Sánchez F, Helou CC, de Miranda R, Goulding CW, Hayes CS. Advanced glycation end-product crosslinking activates a type VI secretion system phospholipase effector protein. Nat Commun 2024; 15:8804. [PMID: 39394186 PMCID: PMC11470151 DOI: 10.1038/s41467-024-53075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Advanced glycation end-products (AGE) are a pervasive form of protein damage implicated in the pathogenesis of neurodegenerative disease, atherosclerosis and diabetes mellitus. Glycation is typically mediated by reactive dicarbonyl compounds that accumulate in all cells as toxic byproducts of glucose metabolism. Here, we show that AGE crosslinking is harnessed to activate an antibacterial phospholipase effector protein deployed by the type VI secretion system of Enterobacter cloacae. Endogenous methylglyoxal reacts with a specific arginine-lysine pair to tether the N- and C-terminal α-helices of the phospholipase domain. Substitutions at these positions abrogate both crosslinking and toxic phospholipase activity, but in vitro enzyme function can be restored with an engineered disulfide that covalently links the N- and C-termini. Thus, AGE crosslinking serves as a bona fide post-translation modification to stabilize phospholipase structure. Given the ubiquity of methylglyoxal in prokaryotic and eukaryotic cells, these findings suggest that glycation may be exploited more generally to stabilize other proteins. This alternative strategy to fortify tertiary structure could be particularly advantageous in the cytoplasm, where redox potentials preclude disulfide bond formation.
Collapse
Affiliation(s)
- Steven J Jensen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, USA
| | - Bonnie J Cuthbert
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, USA
| | - Colette C Helou
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
| | - Rodger de Miranda
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
| | - Celia W Goulding
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, 92697, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, USA.
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, 93106, USA.
| |
Collapse
|
15
|
Zhang X, Liang C, Wu C, Wan S, Xu L, Wang S, Wang J, Huang X, Xu L. A rising star involved in tumour immunity: Lactylation. J Cell Mol Med 2024; 28:e70146. [PMID: 39417674 PMCID: PMC11483924 DOI: 10.1111/jcmm.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
In recent years, continuous exploration worldwide has revealed that some metabolites produced during cellular and tissue metabolism can act as signalling molecules to exert different effects on the human body. These metabolites may act as cofactors for proteases or as post-translational modifications linked to proteins. Lactate, a traditional metabolite, is found at high levels in the tumour microenvironment (TME). Many studies have shown that lactate influences tumorigenesis and development via different mechanisms, not only through the metabolic reprogramming of tumours but also through its significant impact on tumour immunity. Previously, tumour cells were reported to use glucose and glutamine to fuel lactate metabolism; however, lactate serves not only as an energy source for tumour cells but also as a precursor substance needed for the post-translational modification of proteins. Recent studies identified a novel form of epigenetic modification, lactate-mediated histone lysine lactylation (Kla) and demonstrated that histone lactylation directly stimulates chromatin after gene transcription; consequently, lactylation has become a popular research topic in recent years. This article focuses on the research progress and application prospects of lactylation in the context of tumour immunity.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Changming Liang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Chengwei Wu
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Senlin Wan
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Lishuai Xu
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Song Wang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Jiawei Wang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Xiaoxu Huang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Li Xu
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| |
Collapse
|
16
|
Chu S, Li XH, Letcher RJ. Covalent adduct formation of histone with organophosphorus pesticides in vitro. Chem Biol Interact 2024; 398:111095. [PMID: 38844256 DOI: 10.1016/j.cbi.2024.111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
It is established that organophosphorus pesticide (OPP) toxicity results from modification of amino acids in active sites of target proteins. OPPs can also modify unrelated target proteins such as histones and such covalent histone modifications can alter DNA-binding properties and lead to aberrant gene expression. In the present study, we report on non-enzymatic covalent modifications of calf thymus histones adducted to selected OPPs and organophosphate flame retardants (OPFRs) in vitro using a bottom-up proteomics method approach. Histones were not found to form detectable adducts with the two tested OPFRs but were avidly modified by a few of the seven OPPs that were tested in vitro. Dimethyl phosphate (or diethyl phosphate) adducts were identified on Tyr, Lys and Ser residues. Most of the dialkyl phosphate adducts were identified on Tyr residues. Methyl and ethyl modified histones were also detected. Eleven amino residues in histones showed non-enzymatic covalent methylation by exposure of dichlorvos and malathion. Our bottom-up proteomics approach showing histone-OPP adduct formation warrants future studies on the underlying mechanism of chronic illness from exposure to OPPs.
Collapse
Affiliation(s)
- Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada.
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, PR China.
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada.
| |
Collapse
|
17
|
Zielinski KA, Dolamore C, Dalton KM, Smith N, Termini J, Henning R, Srajer V, Hekstra DR, Pollack L, Wilson MA. Resolving DJ-1 Glyoxalase Catalysis Using Mix-and-Inject Serial Crystallography at a Synchrotron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604369. [PMID: 39071394 PMCID: PMC11275809 DOI: 10.1101/2024.07.19.604369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
DJ-1 (PARK7) is an intensively studied protein whose cytoprotective activities are dysregulated in multiple diseases. DJ-1 has been reported as having two distinct enzymatic activities in defense against reactive carbonyl species that are difficult to distinguish in conventional biochemical experiments. Here, we establish the mechanism of DJ-1 using a synchrotron-compatible version of mix-and-inject-serial crystallography (MISC), which was previously performed only at XFELs, to directly observe DJ-1 catalysis. We designed and used new diffusive mixers to collect time-resolved Laue diffraction data of DJ-1 catalysis at a pink beam synchrotron beamline. Analysis of structurally similar methylglyoxal-derived intermediates formed through the DJ-1 catalytic cycle shows that the enzyme catalyzes nearly two turnovers in the crystal and defines key aspects of its glyoxalase mechanism. In addition, DJ-1 shows allosteric communication between a distal site at the dimer interface and the active site that changes during catalysis. Our results rule out the widely cited deglycase mechanism for DJ-1 action and provide an explanation for how DJ-1 produces L-lactate with high chiral purity.
Collapse
Affiliation(s)
- Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Cole Dolamore
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588
| | - Kevin M. Dalton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Department of Biology, New York University, New York, NY 10003
- Linac Coherent Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Nathan Smith
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA 91010
| | - Robert Henning
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Lemont, IL 60439
| | - Vukica Srajer
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Lemont, IL 60439
| | - Doeke R. Hekstra
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Mark A. Wilson
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588
| |
Collapse
|
18
|
Darmishonnejad Z, Zadeh VH, Tavalaee M, Kobarfard F, Hassani M, Gharagozloo P, Drevet JR, Nasr-Esfahani MH. Effect of Advanced Glycation end Products (AGEs) on Sperm Parameters and Function in C57Bl/6 Mice. Reprod Sci 2024; 31:2114-2122. [PMID: 38480649 DOI: 10.1007/s43032-024-01507-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/26/2024] [Indexed: 07/03/2024]
Abstract
This study investigated the deleterious impact of advanced glycation end products (AGEs), commonly present in metabolic disorders like diabetes, obesity, and infertility-related conditions, on sperm structure and function using a mouse model where AGE generation was heightened through dietary intervention. Five-week-old C57BL/6 mice were divided into two groups, one on a regular diet (control) and the other on an AGE-rich diet. After 13 weeks, various parameters were examined, including fasting blood glucose, body weight, food consumption, sperm parameters and function, testicular superoxide dismutase levels, malondialdehyde content, total antioxidant capacity, Johnson score, AGE receptor (RAGE) content, and carboxymethyl lysine (CML) content. The results showed that mice in the AGE group exhibited increased body weight and elevated fasting blood glucose levels. Furthermore, the AGE group displayed adverse effects on sperm, including reduced sperm counts, motility, increased morphological abnormalities, residual histone, protamine deficiency, sperm DNA fragmentation, reduced testicular antioxidant capacity, and higher levels of RAGE and CML proteins. These findings underscore the negative impact of AGEs on male reproductive health, particularly within the context of metabolic disorders, emphasizing the crucial role of the AGE/RAGE axis in male infertility, especially in the context of Western dietary patterns.
Collapse
Affiliation(s)
- Zahra Darmishonnejad
- Department of Biology, Kish International Campus, University of Tehran, Tehran, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Vahideh Hassan Zadeh
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farzad Kobarfard
- Department of Medical Chemistry, Shahid Beheshti School of Pharmacy, Tehran, Iran
| | - Mahsa Hassani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Joël R Drevet
- GReD Institute, Faculté de Médecine, CRBC, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
19
|
Hurben AK, Zhang Q, Galligan JJ, Tretyakova N, Erber L. Endogenous Cellular Metabolite Methylglyoxal Induces DNA-Protein Cross-Links in Living Cells. ACS Chem Biol 2024; 19:1291-1302. [PMID: 38752800 PMCID: PMC11353540 DOI: 10.1021/acschembio.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Methylglyoxal (MGO) is an electrophilic α-oxoaldehyde generated endogenously through metabolism of carbohydrates and exogenously due to autoxidation of sugars, degradation of lipids, and fermentation during food and drink processing. MGO can react with nucleophilic sites within proteins and DNA to form covalent adducts. MGO-induced advanced glycation end-products such as protein and DNA adducts are thought to be involved in oxidative stress, inflammation, diabetes, cancer, renal failure, and neurodegenerative diseases. Additionally, MGO has been hypothesized to form toxic DNA-protein cross-links (DPC), but the identities of proteins participating in such cross-linking in cells have not been determined. In the present work, we quantified DPC formation in human cells exposed to MGO and identified proteins trapped on DNA upon MGO exposure using mass spectrometry-based proteomics. A total of 265 proteins were found to participate in MGO-derived DPC formation including gene products engaged in telomere organization, nucleosome assembly, and gene expression. In vitro experiments confirmed DPC formation between DNA and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as well as histone proteins H3.1 and H4. Collectively, our study provides the first evidence for MGO-mediated DNA-protein cross-linking in living cells, prompting future studies regarding the relevance of these toxic lesions in cancer, diabetes, and other diseases linked to elevated MGO levels.
Collapse
Affiliation(s)
- Alexander K. Hurben
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Present Address: Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Qi Zhang
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James J. Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Luke Erber
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Darmishonnejad Z, Hassan-Zadeh V, Tavalaee M, Kobarfard F, Gharagozloo P, Drevet JR, Nasr-Esfahani MH. Effects of Acute Exposure to Methylglyoxal or/and A Diet Rich in Advanced Glycation End Products on Sperm Parameters in Mice. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2024; 18:263-270. [PMID: 38973280 PMCID: PMC11245577 DOI: 10.22074/ijfs.2023.2005832.1485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Indexed: 07/09/2024]
Abstract
BACKGROUND Advanced glycation end products (AGEs) that accompany many metabolic disorders including diabetes, obesity, and a wide range of dyslipidemia conditions, are strongly associated with adverse effects on cell and tissue homeostasis. Accordingly, our objective was to investigate the impact of AGE-promoting diets on mouse models, considering both scenarios with and without methylglyoxal (MGO) as a primary precursor of AGEs. MATERIALS AND METHODS In this experimental study, 5-week-old C57BL/6 mice were split into four groups as a control group (n=5), AGE (n=5), MGO (n=8), and AGE-MGO-diets (n=8). After five weeks the level of fasting blood sugar (FBS), body weight, food intake, sperm parameters, and functional tests were evaluated. Furthermore, testicular superoxide dismutase (SOD) activity, malondialdehyde, and total antioxidant capacity (TAC) were assessed. RESULTS After five weeks, AGE, AGE-MGO, and MGO groups showed the highest level of body weight and FBS in comparison to the control group. Mean sperm concentration, sperm malondialdehyde, testicular lipid peroxidation, and TAC did not differ significantly among the study groups. While, AGE, MGO, and AGE-MGO groups showed a significant reduction in sperm motility and progressive motility compared to the control group (P<0.05). The greatest increases in abnormal sperm morphology and intracytoplasmic reactive oxygen species (ROS) were observed in the MGO and AGE-MGO groups than in the control group (P<0.05). Sperm protamine deficiency and residual histone were significantly increased in the three treatment groups compared to the control group (P<0.05). Regarding the DNA damage, the AGE and AGE-MGO groups showed the most severe damage. The lowest amount of testicular superoxide dismutases (SOD, P<0.001) was observed in the AGE-MGO group. CONCLUSION AGEs and MGO have a negative influence on sperm function and reproductive potential. These effects could be possibly attributed to both increased oxidative stress (OS) and inflammation.
Collapse
Affiliation(s)
- Zahra Darmishonnejad
- Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Vahideh Hassan-Zadeh
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farzad Kobarfard
- Department of Medical Chemistry, Shahid Beheshti School of Pharmacy, Tehran, Iran
| | | | - Joel R Drevet
- GReD Institute, CNRS UMR6293-INSERM U1103-Université Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
21
|
Zheng L, Boeren S, Liu C, Bakker W, Wang H, Rietjens IMCM, Saccenti E. Proteomics-based identification of biomarkers reflecting endogenous and exogenous exposure to the advanced glycation end product precursor methylglyoxal in SH-SY5Y human neuroblastoma cells. Int J Biol Macromol 2024; 272:132859. [PMID: 38838889 DOI: 10.1016/j.ijbiomac.2024.132859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products, is endogenously produced and prevalent in various food products. This study aimed to characterize protein modifications in SH-SY5Y human neuroblastoma cells induced by MGO and identify potential biomarkers for its exposure and toxicity. A shot-gun proteomic analysis was applied to characterize protein modifications in cells incubated with and without exogenous MGO. Seventy-seven proteins were identified as highly susceptible to MGO modification, among which eight, including vimentin and histone H2B type 2-F, showing concentration-dependent modifications by externally added MGO, were defined as biomarkers for exogenous MGO exposure. Remarkably, up to 10 modification sites were identified on vimentin. Myosin light polypeptide 6 emerged as a biomarker for MGO toxicity, with modifications exclusively observed under cytotoxic MGO levels. Additionally, proteins like serine/threonine-protein kinase SIK2 and calcyphosin, exhibiting comparable or even higher modification levels in control compared to exogenous MGO-treated cells, were defined as biomarkers for endogenous exposure. Bioinformatics analysis revealed that motor proteins, cytoskeleton components, and glycolysis proteins were overrepresented among those highly susceptible to MGO modification. These results identify biomarkers for both endogenous and exogenous MGO exposure and provide insights into the cellular effects of endogenously formed versus externally added MGO.
Collapse
Affiliation(s)
- Liang Zheng
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands.
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Chen Liu
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands; Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Haomiao Wang
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
22
|
Khan H, Rafi Z, Khan MY, Maarfi F, Rehman S, Kaur K, Ahmad MK, Shahab U, Ahmad N, Ahmad S. Epigenetic contributions to cancer: Exploring the role of glycation reactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:143-193. [PMID: 39179346 DOI: 10.1016/bs.ircmb.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Advanced Glycation End-products (AGEs), with their prolonged half-life in the human body, are emerging as potent diagnostic indicators. Early intervention studies, focusing on AGE cross-link breakers, have shown encouraging results in heart failure patients, paving the way for disease progression monitoring and therapy effectiveness evaluation. AGEs are the byproducts of a non-enzymatic reaction where sugars interact with proteins, lipids, and nucleic acids. These compounds possess the power to alter numerous biological processes, ranging from disrupting molecular conformation and promoting cross-linking to modifying enzyme activity, reducing clearance, and impairing receptor recognition. The damage inflicted by AGEs through the stimulation of intracellular signaling pathways is associated with the onset of chronic diseases across various organ systems. This review consolidates the characteristics of AGEs and the challenges posed by their expression in diverse physiological and pathological states. Furthermore, it highlights the clinical relevance of AGEs and the latest research breakthroughs aimed at reducing AGE accumulation.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Zeeshan Rafi
- Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Yasir Khan
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | - Farah Maarfi
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | | | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | | | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| | - Naved Ahmad
- Department of Computer Science and Information System, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia.
| |
Collapse
|
23
|
Trujillo MN, Jennings EQ, Hoffman EA, Zhang H, Phoebe AM, Mastin GE, Kitamura N, Reisz JA, Megill E, Kantner D, Marcinkiewicz MM, Twardy SM, Lebario F, Chapman E, McCullough RL, D'Alessandro A, Snyder NW, Cusanovich DA, Galligan JJ. Lactoylglutathione promotes inflammatory signaling in macrophages through histone lactoylation. Mol Metab 2024; 81:101888. [PMID: 38307385 PMCID: PMC10869261 DOI: 10.1016/j.molmet.2024.101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
Chronic, systemic inflammation is a pathophysiological manifestation of metabolic disorders. Inflammatory signaling leads to elevated glycolytic flux and a metabolic shift towards aerobic glycolysis and lactate generation. This rise in lactate corresponds with increased generation of lactoylLys modifications on histones, mediating transcriptional responses to inflammatory stimuli. Lactoylation is also generated through a non-enzymatic S-to-N acyltransfer from the glyoxalase cycle intermediate, lactoylglutathione (LGSH). Here, we report a regulatory role for LGSH in mediating histone lactoylation and inflammatory signaling. In the absence of the primary LGSH hydrolase, glyoxalase 2 (GLO2), RAW264.7 macrophages display significant elevations in LGSH and histone lactoylation with a corresponding potentiation of the inflammatory response when exposed to lipopolysaccharides. An analysis of chromatin accessibility shows that lactoylation is associated with more compacted chromatin than acetylation in an unstimulated state; upon stimulation, however, regions of the genome associated with lactoylation become markedly more accessible. Lastly, we demonstrate a spontaneous S-to-S acyltransfer of lactate from LGSH to CoA, yielding lactoyl-CoA. This represents the first known mechanism for the generation of this metabolite. Collectively, these data suggest that LGSH, and not intracellular lactate, is the primary driving factor facilitating histone lactoylation and a major contributor to inflammatory signaling.
Collapse
Affiliation(s)
- Marissa N Trujillo
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Erin Q Jennings
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Emely A Hoffman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Hao Zhang
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Aiden M Phoebe
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Grace E Mastin
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Naoya Kitamura
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily Megill
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Daniel Kantner
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Mariola M Marcinkiewicz
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Shannon M Twardy
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Felicidad Lebario
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Rebecca L McCullough
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Darren A Cusanovich
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
24
|
Fu ZW, Li JH, Gao X, Wang SJ, Yuan TT, Lu YT. Pathogen-induced methylglyoxal negatively regulates rice bacterial blight resistance by inhibiting OsCDR1 protease activity. MOLECULAR PLANT 2024; 17:325-341. [PMID: 38178576 DOI: 10.1016/j.molp.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB), a globally devastating disease of rice (Oryza sativa) that is responsible for significant crop loss. Sugars and sugar metabolites are important for pathogen infection, providing energy and regulating events associated with defense responses; however, the mechanisms by which they regulate such events in BB are unclear. As an inevitable sugar metabolite, methylglyoxal (MG) is involved in plant growth and responses to various abiotic stresses, but the underlying mechanisms remain enigmatic. Whether and how MG functions in plant biotic stress responses is almost completely unknown. Here, we report that the Xoo strain PXO99 induces OsWRKY62.1 to repress transcription of OsGLY II genes by directly binding to their promoters, resulting in overaccumulation of MG. MG negatively regulates rice resistance against PXO99: osglyII2 mutants with higher MG levels are more susceptible to the pathogen, whereas OsGLYII2-overexpressing plants with lower MG content show greater resistance than the wild type. Overexpression of OsGLYII2 to prevent excessive MG accumulation confers broad-spectrum resistance against the biotrophic bacterial pathogens Xoo and Xanthomonas oryzae pv. oryzicola and the necrotrophic fungal pathogen Rhizoctonia solani, which causes rice sheath blight. Further evidence shows that MG reduces rice resistance against PXO99 through CONSTITUTIVE DISEASE RESISTANCE 1 (OsCDR1). MG modifies the Arg97 residue of OsCDR1 to inhibit its aspartic protease activity, which is essential for OsCDR1-enhanced immunity. Taken together, these findings illustrate how Xoo promotes infection by hijacking a sugar metabolite in the host plant.
Collapse
Affiliation(s)
- Zheng-Wei Fu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jian-Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Shi-Jia Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
25
|
Fu ZW, Fan SH, Liu HF, Hua W. Proteome-wide identification of methylglyoxalated proteins in rapeseed (Brassica napus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108319. [PMID: 38183900 DOI: 10.1016/j.plaphy.2023.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Methylglyoxal (MG), a highly reactive cellular metabolite, is crucial for plant growth and environmental responses. MG may function by modifying its target proteins, but little is known about MG-modified proteins in plants. Here, MG-modified proteins were pulled down by an antibody against methylglyoxalated proteins and detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. We identified 543 candidate proteins which are involved in multiple enzymatic activities and metabolic processes. A great number of candidate proteins were predicted to localize to cytoplasm, chloroplast, and nucleus, consistent with the known subcellular compartmentalization of MG. By further analyzing the raw LC-MS/MS data, we obtained 42 methylglyoxalated peptides in 35 proteins and identified 10 methylglyoxalated lysine residues in a myrosinase-binding protein (BnaC06G0061400ZS). In addition, we demonstrated that MG modifies the glycolate oxidase and β-glucosidase to enhance and inhibit the enzymatic activity, respectively. Together, our study contributes to the investigation of the MG-modified proteins and their potential roles in rapeseed.
Collapse
Affiliation(s)
- Zheng-Wei Fu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shi-Hang Fan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Hong-Fang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
26
|
Garai S, Bhowal B, Gupta M, Sopory SK, Singla-Pareek SL, Pareek A, Kaur C. Role of methylglyoxal and redox homeostasis in microbe-mediated stress mitigation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111922. [PMID: 37952767 DOI: 10.1016/j.plantsci.2023.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
One of the general consequences of stress in plants is the accumulation of reactive oxygen (ROS) and carbonyl species (like methylglyoxal) to levels that are detrimental for plant growth. These reactive species are inherently produced in all organisms and serve different physiological functions but their excessive accumulation results in cellular toxicity. It is, therefore, essential to restore equilibrium between their synthesis and breakdown to ensure normal cellular functioning. Detoxification mechanisms that scavenge these reactive species are considered important for stress mitigation as they maintain redox balance by restricting the levels of ROS, methylglyoxal and other reactive species in the cellular milieu. Stress tolerance imparted to plants by root-associated microbes involves a multitude of mechanisms, including maintenance of redox homeostasis. By improving the overall antioxidant response in plants, microbes can strengthen defense pathways and hence, the adaptive abilities of plants to sustain growth under stress. Hence, through this review we wish to highlight the contribution of root microbiota in modulating the levels of reactive species and thereby, maintaining redox homeostasis in plants as one of the important mechanisms of stress alleviation. Further, we also examine the microbial mechanisms of resistance to oxidative stress and their role in combating plant stress.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mayank Gupta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhir K Sopory
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India
| | - Charanpreet Kaur
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India.
| |
Collapse
|
27
|
Sung E, Sim H, Cho YC, Lee W, Bae JS, Tan M, Lee S. Global Profiling of Lysine Acetylation and Lactylation in Kupffer Cells. J Proteome Res 2023; 22:3683-3691. [PMID: 37897433 DOI: 10.1021/acs.jproteome.3c00156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Among the various cell types that constitute the liver, Kupffer cells (KCs) are responsible for the elimination of gut-derived foreign products. Protein lysine acetylation (Kac) and lactylation (Kla) are dynamic and reversible post-translational modifications, and various global acylome studies have been conducted for liver and liver-derived cells. However, no such studies have been conducted on KCs. In this study, we identified 2198 Kac sites in 925 acetylated proteins and 289 Kla sites in 181 lactylated proteins in immortalized mouse KCs using global acylome technology. The subcellular distributions of proteins with Kac and Kla site modifications differed. Similarly, the specific sequence motifs surrounding acetylated or lactylated lysine residues also showed differences. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to better understand the differentially expressed proteins in the studies by Kac and Kla. In the newly identified Kla, we found K82 lactylation in the high-mobility group box-1 protein in the neutrophil extracellular trap formation category using KEGG enrichment analyses. Here, we report the first proteomic survey of Kac and Kla in KCs.
Collapse
Affiliation(s)
- Eunji Sung
- College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyunchae Sim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minjia Tan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
28
|
Berdowska I, Matusiewicz M, Fecka I. Methylglyoxal in Cardiometabolic Disorders: Routes Leading to Pathology Counterbalanced by Treatment Strategies. Molecules 2023; 28:7742. [PMID: 38067472 PMCID: PMC10708463 DOI: 10.3390/molecules28237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
29
|
Coukos JS, Lee CW, Pillai KS, Shah H, Moellering RE. PARK7 Catalyzes Stereospecific Detoxification of Methylglyoxal Consistent with Glyoxalase and Not Deglycase Function. Biochemistry 2023; 62:3126-3133. [PMID: 37884446 PMCID: PMC10634309 DOI: 10.1021/acs.biochem.3c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
The protein PARK7 (also known as DJ-1) has been implicated in several diseases, with the most notable being Parkinson's disease. While several molecular and cellular roles have been ascribed to DJ-1, there is no real consensus on what its true cellular functions are and how the loss of DJ-1 function may contribute to the pathogenesis of Parkinson's disease. Recent reports have implicated DJ-1 in the detoxification of several reactive metabolites that are produced during glycolytic metabolism, with the most notable being the α-oxoaldehyde species methylglyoxal. While it is generally agreed that DJ-1 is able to metabolize methylglyoxal to lactate, the mechanism by which it does so is hotly debated with potential implications for cellular function. In this work, we provide definitive evidence that recombinant DJ-1 produced in human cells prevents the stable glycation of other proteins through the conversion of methylglyoxal or a related alkynyl dicarbonyl probe to their corresponding α-hydroxy carboxylic acid products. This protective action of DJ-1 does not require a physical interaction with a target protein, providing direct evidence for a glutathione-free glyoxalase and not a deglycase mechanism of methylglyoxal detoxification. Stereospecific liquid chromatography-mass spectrometry (LC-MS) measurements further uncovered the existence of nonenzymatic production of racemic lactate from MGO under physiological buffer conditions, whereas incubation with DJ-1 predominantly produces l-lactate. Collectively, these studies provide direct support for the stereospecific conversion of MGO to l-lactate by DJ-1 in solution with negligible or no contribution of direct protein deglycation.
Collapse
Affiliation(s)
- John S. Coukos
- Department
of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Chris W. Lee
- Department
of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Kavya S. Pillai
- Department
of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Hardik Shah
- University
of Chicago Medicine Comprehensive Cancer Center Metabolomics Platform, The University of Chicago, 900 E. 57th Street, Chicago, Illinois 60637, United States
| | - Raymond E. Moellering
- Department
of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
- University
of Chicago Medicine Comprehensive Cancer Center Metabolomics Platform, The University of Chicago, 900 E. 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
30
|
Senavirathna L, Pan S, Chen R. Protein Advanced Glycation End Products and Their Implications in Pancreatic Cancer. Cancer Prev Res (Phila) 2023; 16:601-610. [PMID: 37578815 PMCID: PMC10843555 DOI: 10.1158/1940-6207.capr-23-0162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Protein advanced glycation end products (AGE) formed by nonenzymatic glycation can disrupt the normal structure and function of proteins, and stimulate the receptor for AGEs (RAGE), triggering intricate mechanisms that are etiologically related to various chronic diseases, including pancreatic cancer. Many common risk factors of pancreatic cancer are the major sources for the formation of protein AGEs and glycative stress in the human body. Abnormal accumulation of protein AGEs can impair the cellular proteome and promote AGE-RAGE driven pro-inflammatory signaling cascades, leading to increased oxidative stress, protease resistance, protein dysregulation, transcription activity of STAT, NF-κB, and AP-1, aberrant status in ubiquitin-proteasome system and autophagy, as well as other molecular events that are susceptible for the carcinogenic transformation towards the development of neoplasms. Here, we review studies to highlight our understanding in the orchestrated molecular events in bridging the impaired proteome, dysregulated functional networks, and cancer hallmarks initiated upon protein AGE formation and accumulation in pancreatic cancer.
Collapse
Affiliation(s)
- Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ru Chen
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
31
|
Trujillo MN, Jennings EQ, Hoffman EA, Zhang H, Phoebe AM, Mastin GE, Kitamura N, Reisz JA, Megill E, Kantner D, Marcinkiewicz MM, Twardy SM, Lebario F, Chapman E, McCullough RL, D'Alessandro A, Snyder NW, Cusanovich DA, Galligan JJ. Lactoylglutathione promotes inflammatory signaling in macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561739. [PMID: 37873172 PMCID: PMC10592727 DOI: 10.1101/2023.10.10.561739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chronic, systemic inflammation is a pathophysiological manifestation of metabolic disorders. Inflammatory signaling leads to elevated glycolytic flux and a metabolic shift towards aerobic glycolysis and lactate generation. This rise in lactate corresponds with increased generation of lactoylLys modifications on histones, mediating transcriptional responses to inflammatory stimuli. Lactoylation is also generated through a non-enzymatic S-to-N acyltransfer from the glyoxalase cycle intermediate, lactoylglutathione (LGSH). Here, we report a regulatory role for LGSH in inflammatory signaling. In the absence of the primary LGSH hydrolase, glyoxalase 2 (GLO2), RAW264.7 macrophages display significant elevations in LGSH, while demonstrating a potentiated inflammatory response when exposed to lipopolysaccharides, corresponding with a rise in histone lactoylation. Interestingly, our data demonstrate that lactoylation is associated with more compacted chromatin than acetylation in an unstimulated state, however, upon stimulation, regions of the genome associated with lactoylation become markedly more accessible. Lastly, we demonstrate a spontaneous S-to-S acyltransfer of lactate from LGSH to CoA, yielding lactoyl-CoA. This represents the first known mechanism for the generation of this metabolite. Collectively, these data suggest that LGSH, and not intracellular lactate, is a primary contributing factor facilitating the inflammatory response.
Collapse
|
32
|
Miranda ER, Haus JM. Glyoxalase I is a novel target for the prevention of metabolic derangement. Pharmacol Ther 2023; 250:108524. [PMID: 37722607 DOI: 10.1016/j.pharmthera.2023.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023]
Abstract
Obesity prevalence in the US has nearly tripled since 1975 and a parallel increase in prevalence of type 2 diabetes (T2D). Obesity promotes a myriad of metabolic derangements with insulin resistance (IR) being perhaps the most responsible for the development of T2D and other related diseases such as cardiovascular disease. The precarious nature of IR development is such that it provides a valuable target for the prevention of further disease development. However, the mechanisms driving IR are numerous and complex making the development of viable interventions difficult. The development of metabolic derangement in the context of obesity promotes accumulation of reactive metabolites such as the reactive alpha-dicarbonyl methylglyoxal (MG). MG accumulation has long been appreciated as a marker of disease progression in patients with T2D as well as the development of diabetic complications. However, recent evidence suggests that the accumulation of MG occurs with obesity prior to T2D onset and may be a primary driving factor for the development of IR and T2D. Further, emerging evidence also suggests that this accumulation of MG with obesity may be a result in a loss of MG detoxifying capacity of glyoxalase I. In this review, we will discuss the evidence that posits MG accumulation because of GLO1 attenuation is a novel target mechanism of the development of metabolic derangement. In addition, we will also explore the regulation of GLO1 and the strategies that have been investigated so far to target GLO1 regulation for the prevention and treatment of metabolic derangement.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States of America
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
33
|
Palanissami G, Paul SF. AGEs and RAGE: metabolic and molecular signatures of the glycation-inflammation axis in malignant or metastatic cancers. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:812-849. [PMID: 37970208 PMCID: PMC10645465 DOI: 10.37349/etat.2023.00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/12/2023] [Indexed: 11/17/2023] Open
Abstract
From attributing mutations to cancers with the advent of cutting-edge genetic technology in recent decades, to re-searching the age-old theory of intrinsic metabolic shift of cancers (Warburg's glycolysis), the quest for a precise panacea for mainly the metastatic cancers, remains incessant. This review delineates the advanced glycation end product (AGE)-receptor for AGE (RAGE) pathway driven intricate oncogenic cues, budding from the metabolic (glycolytic) reliance of tumour cells, branching into metastatic emergence of malignancies. Strong AGE-RAGE concomitance in metastasis, chemo-resistance and cancer resurgence adversely incite disease progression and patient mortality. At the conjunction of metabolic and metastatic shift of cancers, are the "glycolytically" generated AGEs and AGE-activated RAGE, instigating aberrant molecular pathways, culminating in aggressive malignancies. AGEs as by-products of metabolic insurgence, modify the metabolome, epigenome and microbiome, besides coercing the inter-, intra- and extra-cellular micro-milieu conducive for oncogenic events like epithelial-mesenchymal transition (EMT). AGE-RAGE synergistically elicit ATP surge for surplus energy, autophagy for apoptotic evasion and chemo-resistance, insulin-like growth factor 1 (IGF-1) for meta-inflammation and angiogenesis, high mobility group box-1 (HMGB1) for immune tolerance, S100 proteins for metastasis, and p53 protein attenuation for tumour suppression. AGEs are pronouncedly reported in invasive forms of breast, prostate, colon and pancreatic cancers, higher in patients with cancer than healthy counterparts, and higher in advanced stage than localized phase. Hence, the investigation of person-specific presence of AGEs, soluble RAGE and AGE-activated RAGE can be advocated as impending bio-markers for diagnostic, prognostic and therapeutic purposes, to predict cancer risk in patients with diabetes, obesity, metabolic syndrome as well as general population, to monitor prognosis and metastasis in patients with cancer, and to reckon complications in cancer survivors. Furthermore, clinical reports of exogenous (dietary) and endogenous (internally formed) AGEs in cancer patients, and contemporary clinical trials involving AGE-RAGE axis in cancer are underlined with theranostic implications.
Collapse
Affiliation(s)
- Gowri Palanissami
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600 116, Tamil Nadu, India
| | - Solomon F.D. Paul
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600 116, Tamil Nadu, India
| |
Collapse
|
34
|
Scumaci D, Zheng Q. Epigenetic meets metabolism: novel vulnerabilities to fight cancer. Cell Commun Signal 2023; 21:249. [PMID: 37735413 PMCID: PMC10512595 DOI: 10.1186/s12964-023-01253-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023] Open
Abstract
Histones undergo a plethora of post-translational modifications (PTMs) that regulate nucleosome and chromatin dynamics and thus dictate cell fate. Several evidences suggest that the accumulation of epigenetic alterations is one of the key driving forces triggering aberrant cellular proliferation, invasion, metastasis and chemoresistance pathways. Recently a novel class of histone "non-enzymatic covalent modifications" (NECMs), correlating epigenome landscape and metabolic rewiring, have been described. These modifications are tightly related to cell metabolic fitness and are able to impair chromatin architecture. During metabolic reprogramming, the high metabolic flux induces the accumulation of metabolic intermediate and/or by-products able to react with histone tails altering epigenome homeostasis. The accumulation of histone NECMs is a damaging condition that cancer cells counteracts by overexpressing peculiar "eraser" enzymes capable of removing these modifications preserving histones architecture. In this review we explored the well-established NECMs, emphasizing the role of their corresponding eraser enzymes. Additionally, we provide a parterre of drugs aiming to target those eraser enzymes with the intent to propose novel routes of personalized medicine based on the identification of epi-biomarkers which might be selectively targeted for therapy. Video Abstract.
Collapse
Affiliation(s)
- Domenica Scumaci
- Research Center On Advanced Biochemistry and Molecular Biology, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy.
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
35
|
Wei SL, Yang Y, Si WY, Zhou Y, Li T, Du T, Zhang P, Li XL, Duan RN, Duan RS, Yang CL. Methylglyoxal suppresses microglia inflammatory response through NRF2-IκBζ pathway. Redox Biol 2023; 65:102843. [PMID: 37573838 PMCID: PMC10440576 DOI: 10.1016/j.redox.2023.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023] Open
Abstract
Methylglyoxal (MGO) is a highly reactive metabolite generated by glycolysis. Although abnormal accumulation of MGO has been reported in several autoimmune diseases such as multiple sclerosis and rheumatoid arthritis, the role of MGO in autoimmune diseases has not yet been fully investigated. In this study, we found that the intracellular MGO levels increased in activated immune cells, such as microglia and lymphocytes. Treatment with MGO inhibited inflammatory cell accumulation in the spinal cord and ameliorated the clinical symptoms in EAE mice. Further analysis indicated that MGO suppressed M1-polarization of microglia cells and diminished their inflammatory cytokine production. MGO also inhibited the ability of microglial cells to recruit and activate lymphocytes by decreasing chemokine secretion and expression of co-stimulatory molecules. Furthermore, MGO negatively regulated glycolysis by suppressing glucose transporter 1 expression. Mechanically, we found that MGO could activate nuclear factor erythroid 2-related factor 2 (NRF2) pathway and NRF2 could bind to the promoter of IκBζ gene and suppressed its transcription and subsequently pro-inflammatory cytokine production. In conclusion, our results showed that MGO acts as an immunosuppressive metabolite by activating the NRF2-IκBζ.
Collapse
Affiliation(s)
- Shu-Li Wei
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250011, PR China
| | - Ying Yang
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wei-Yue Si
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250011, PR China
| | - Yang Zhou
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, PR China
| | - Tao Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, PR China
| | - Tong Du
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, PR China; Shandong Institute of Neuroimmunology, Jinan 250014, PR China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, PR China; Shandong Institute of Neuroimmunology, Jinan 250014, PR China
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, PR China; Shandong Institute of Neuroimmunology, Jinan 250014, PR China
| | - Ruo-Nan Duan
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250011, PR China; Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, PR China; Shandong Institute of Neuroimmunology, Jinan 250014, PR China.
| | - Chun-Lin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, PR China; Shandong Institute of Neuroimmunology, Jinan 250014, PR China.
| |
Collapse
|
36
|
Kitamura N, Galligan JJ. A global view of the human post-translational modification landscape. Biochem J 2023; 480:1241-1265. [PMID: 37610048 PMCID: PMC10586784 DOI: 10.1042/bcj20220251] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Post-translational modifications (PTMs) provide a rapid response to stimuli, finely tuning metabolism and gene expression and maintain homeostasis. Advances in mass spectrometry over the past two decades have significantly expanded the list of known PTMs in biology and as instrumentation continues to improve, this list will surely grow. While many PTMs have been studied in detail (e.g. phosphorylation, acetylation), the vast majority lack defined mechanisms for their regulation and impact on cell fate. In this review, we will highlight the field of PTM research as it currently stands, discussing the mechanisms that dictate site specificity, analytical methods for their detection and study, and the chemical tools that can be leveraged to define PTM regulation. In addition, we will highlight the approaches needed to discover and validate novel PTMs. Lastly, this review will provide a starting point for those interested in PTM biology, providing a comprehensive list of PTMs and what is known regarding their regulation and metabolic origins.
Collapse
Affiliation(s)
- Naoya Kitamura
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona 85721, U.S.A
| | - James J. Galligan
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona 85721, U.S.A
| |
Collapse
|
37
|
Susarla G, Kataria P, Kundu A, D'Silva P. Saccharomyces cerevisiae DJ-1 paralogs maintain genome integrity through glycation repair of nucleic acids and proteins. eLife 2023; 12:e88875. [PMID: 37548361 PMCID: PMC10431920 DOI: 10.7554/elife.88875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023] Open
Abstract
Reactive carbonyl species (RCS) such as methylglyoxal and glyoxal are potent glycolytic intermediates that extensively damage cellular biomolecules leading to genetic aberration and protein misfolding. Hence, RCS levels are crucial indicators in the progression of various pathological diseases. Besides the glyoxalase system, emerging studies report highly conserved DJ-1 superfamily proteins as critical regulators of RCS. DJ-1 superfamily proteins, including the human DJ-1, a genetic determinant of Parkinson's disease, possess diverse physiological functions paramount for combating multiple stressors. Although S. cerevisiae retains four DJ-1 orthologs (Hsp31, Hsp32, Hsp33, and Hsp34), their physiological relevance and collective requirement remain obscure. Here, we report for the first time that the yeast DJ-1 orthologs function as novel enzymes involved in the preferential scavenge of glyoxal and methylglyoxal, toxic metabolites, and genotoxic agents. Their collective loss stimulates chronic glycation of the proteome, and nucleic acids, inducing spectrum of genetic mutations and reduced mRNA translational efficiency. Furthermore, the Hsp31 paralogs efficiently repair severely glycated macromolecules derived from carbonyl modifications. Also, their absence elevates DNA damage response, making cells vulnerable to various genotoxins. Interestingly, yeast DJ-1 orthologs preserve functional mitochondrial content, maintain ATP levels, and redistribute into mitochondria to alleviate the glycation damage of macromolecules. Together, our study uncovers a novel glycation repair pathway in S. cerevisiae and a possible neuroprotective mechanism of how hDJ-1 confers mitochondrial health during glycation toxicity.
Collapse
Affiliation(s)
- Gautam Susarla
- Department of Biochemistry, Indian Institute of ScienceBangaloreIndia
| | - Priyanka Kataria
- Department of Biochemistry, Indian Institute of ScienceBangaloreIndia
| | - Amrita Kundu
- Department of Biochemistry, Indian Institute of ScienceBangaloreIndia
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
38
|
Trujillo MN, Galligan JJ. Reconsidering the role of protein glycation in disease. Nat Chem Biol 2023; 19:922-927. [PMID: 37430113 PMCID: PMC10807257 DOI: 10.1038/s41589-023-01382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Protein glycation has long-been considered a toxic consequence of carbohydrate metabolism. Yet recent evidence demonstrates tight regulation for these non-enzymatic post-translational modifications, pointing to a broader role in cell biology rather than simply serving as a biomarker for toxicity.
Collapse
Affiliation(s)
- Marissa N Trujillo
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
39
|
Knörlein A, Xiao Y, David Y. Leveraging histone glycation for cancer diagnostics and therapeutics. Trends Cancer 2023; 9:410-420. [PMID: 36804508 PMCID: PMC10121827 DOI: 10.1016/j.trecan.2023.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/22/2023]
Abstract
Cancer cells undergo metabolic reprogramming to rely mostly on aerobic glycolysis (the Warburg effect). The increased glycolytic intake enhances the intracellular levels of reactive sugars and sugar metabolites. These reactive species can covalently modify macromolecules in a process termed glycation. Histones are particularly susceptible to glycation, resulting in substantial alterations to chromatin structure, function, and transcriptional output. Growing evidence suggests a link between dysregulated metabolism of tumors and cancer proliferation through epigenetic changes. This review discusses recent advances in the understanding of histone glycation, its impact on the epigenetic landscape and cellular fate, and its role in cancer. In addition, we investigate the possibility of using histone glycation as biomarkers and targets for anticancer therapeutics.
Collapse
Affiliation(s)
- Anna Knörlein
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yang Xiao
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
40
|
Jacinto MP, Greenberg MM. Histone Deacetylase 1 Inhibition by Peptides Containing a DNA Damage-Induced, Nonenzymatic, Histone Covalent Modification. Biochemistry 2023; 62:1388-1393. [PMID: 36972223 PMCID: PMC10124317 DOI: 10.1021/acs.biochem.3c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Treatment of HeLa cells with the DNA damaging agent, bleomycin (BLM), results in the formation of a nonenzymatic 5-methylene-2-pyrrolone histone covalent modification on lysine residues (KMP). KMP is much more electrophilic than other N-acyllysine covalent modifications and post-translational modifications, including N-acetyllysine (KAc). Using histone peptides containing KMP, we show that this modification inhibits the class I histone deacetylase, HDAC1, by reacting with a conserved cysteine (C261) located near the active site. HDAC1 is inhibited by histone peptides whose corresponding N-acetylated sequences are known deacetylation substrates, but not one containing a scrambled sequence. The HDAC1 inhibitor, trichostatin A, competes with covalent modification by the KMP-containing peptides. HDAC1 is also covalently modified by a KMP-containing peptide in a complex milieu. These data indicate that peptides containing KMP are recognized by HDAC1 and are bound in the active site. The effects on HDAC1 indicate that KMP formation in cells may contribute to the biological effects of DNA damaging agents, such as BLM, that form this nonenzymatic covalent modification.
Collapse
Affiliation(s)
- Marco Paolo Jacinto
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
41
|
Sun ME, Zheng Q. The Tale of DJ-1 (PARK7): A Swiss Army Knife in Biomedical and Psychological Research. Int J Mol Sci 2023; 24:ijms24087409. [PMID: 37108572 PMCID: PMC10138432 DOI: 10.3390/ijms24087409] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
DJ-1 (also known as PARK7) is a multifunctional enzyme in human beings that is highly conserved and that has also been discovered in diverse species (ranging from prokaryotes to eukaryotes). Its complex enzymatic and non-enzymatic activities (such as anti-oxidation, anti-glycation, and protein quality control), as well as its role as a transcriptional coactivator, enable DJ-1 to serve as an essential regulator in multiple cellular processes (e.g., epigenetic regulations) and make it a promising therapeutic target for diverse diseases (especially cancer and Parkinson's disease). Due to its nature as a Swiss army knife enzyme with various functions, DJ-1 has attracted a large amount of research interest, from different perspectives. In this review, we give a brief summary of the recent advances with respect to DJ-1 research in biomedicine and psychology, as well as the progress made in attempts to develop DJ-1 into a druggable target for therapy.
Collapse
Affiliation(s)
- Mo E Sun
- Department of Psychology, Duquesne University, Pittsburgh, PA 15282, USA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
42
|
Dube G, Tiamiou A, Bizet M, Boumahd Y, Gasmi I, Crake R, Bellier J, Nokin MJ, Calonne E, Deplus R, Wissocq T, Peulen O, Castronovo V, Fuks F, Bellahcène A. Methylglyoxal: a novel upstream regulator of DNA methylation. J Exp Clin Cancer Res 2023; 42:78. [PMID: 36998085 PMCID: PMC10064647 DOI: 10.1186/s13046-023-02637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/02/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Aerobic glycolysis, also known as the Warburg effect, is predominantly upregulated in a variety of solid tumors, including breast cancer. We have previously reported that methylglyoxal (MG), a very reactive by-product of glycolysis, unexpectedly enhanced the metastatic potential in triple negative breast cancer (TNBC) cells. MG and MG-derived glycation products have been associated with various diseases, such as diabetes, neurodegenerative disorders, and cancer. Glyoxalase 1 (GLO1) exerts an anti-glycation defense by detoxifying MG to D-lactate. METHODS Here, we used our validated model consisting of stable GLO1 depletion to induce MG stress in TNBC cells. Using genome-scale DNA methylation analysis, we report that this condition resulted in DNA hypermethylation in TNBC cells and xenografts. RESULTS GLO1-depleted breast cancer cells showed elevated expression of DNMT3B methyltransferase and significant loss of metastasis-related tumor suppressor genes, as assessed using integrated analysis of methylome and transcriptome data. Interestingly, MG scavengers revealed to be as potent as typical DNA demethylating agents at triggering the re-expression of representative silenced genes. Importantly, we delineated an epigenomic MG signature that effectively stratified TNBC patients based on survival. CONCLUSION This study emphasizes the importance of MG oncometabolite, occurring downstream of the Warburg effect, as a novel epigenetic regulator and proposes MG scavengers to reverse altered patterns of gene expression in TNBC.
Collapse
Affiliation(s)
- Gaurav Dube
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Assia Tiamiou
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yasmine Boumahd
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Imène Gasmi
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Rebekah Crake
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Justine Bellier
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Marie-Julie Nokin
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rachel Deplus
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tom Wissocq
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO (Walloon Excellence in Lifesciences & Biotechnology), Brussels, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium.
| |
Collapse
|
43
|
Gao Q, Jacob-Dolan JW, Scheck RA. Parkinsonism-Associated Protein DJ-1 Is an Antagonist, Not an Eraser, for Protein Glycation. Biochemistry 2023; 62:1181-1190. [PMID: 36820886 PMCID: PMC10035033 DOI: 10.1021/acs.biochem.3c00028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Advanced glycation end-products (AGEs) are irreversible protein modifications that are strongly associated with aging and disease. Recently, the Parkinsonism-associated protein DJ-1 has been reported to exhibit deglycase activity that erases early glycation intermediates and stable AGEs from proteins. In this work, we use mass spectrometry and western blot to demonstrate that DJ-1 is not a deglycase and cannot remove AGEs from protein or peptide substrates. Instead, our studies revealed that DJ-1 antagonizes glycation through glyoxalase activity that detoxifies the potent glycating agent methylglyoxal (MGO) to lactate. We further show that attenuated glycation in the presence of DJ-1 can be attributed solely to its ability to decrease the available concentration of MGO. Our studies also provide evidence that DJ-1 is allosterically activated by glutathione. Together, this work reveals that although DJ-1 is not a genuine deglycase, it still harbors the ability to prevent AGE formation and can be used as a valuable tool to investigate metabolic stress.
Collapse
Affiliation(s)
- Qingzeng Gao
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Jeremiah W Jacob-Dolan
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Rebecca A Scheck
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| |
Collapse
|
44
|
Mathas N, Poncet G, Laurent C, Larigot L, Le-Grand B, Gonis E, Birman S, Galardon E, Sari MA, Tiouaini M, Nioche P, Barouki R, Coumoul X, Mansuy D, Dairou J. Inhibition by pesticides of the DJ-1/Park7 protein related to Parkinson disease. Toxicology 2023; 487:153467. [PMID: 36842454 DOI: 10.1016/j.tox.2023.153467] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
Parkinson's disease is a severe neurodegenerative disease. Several environmental contaminants such as pesticides have been suspected to favor the appearance of this pathology. The protein DJ-1 (or Park7) protects against the development of Parkinson's disease. Thus, the possible inhibitory effects of about a hundred pesticides on human DJ-1 have been studied. We identified fifteen of them as strong inhibitors of DJ-1 with IC50 values between 0.02 and 30 µM. Thiocarbamates are particularly good inhibitors, as shown by thiram that acts as an irreversible inhibitor of an esterase activity of DJ-1 with an IC50 value of 0.02 µM. Thiram was also found as a good inhibitor of the protective activity of DJ-1 against glycation. Such inhibitory effects could be one of the various biological effects of these pesticides that may explain their involvement in the development of Parkinson's disease.
Collapse
Affiliation(s)
- Nicolas Mathas
- Université Paris cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 45 rue des Saints Pères, F-75006 Paris, France
| | - Gabrielle Poncet
- Université Paris cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 45 rue des Saints Pères, F-75006 Paris, France
| | - Catherine Laurent
- Université Paris cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 45 rue des Saints Pères, F-75006 Paris, France
| | - Lucie Larigot
- Université Paris Cité, 45 rue des Saints Pères, F-75006 Paris, France; INSERM, UMR-S1124, T3S, 45 rue des Saints Pères, F-75006 Paris, France
| | - Béatrice Le-Grand
- Université Paris Cité, 45 rue des Saints Pères, F-75006 Paris, France; INSERM, UMR-S1124, T3S, 45 rue des Saints Pères, F-75006 Paris, France
| | - Elodie Gonis
- Université Paris cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 45 rue des Saints Pères, F-75006 Paris, France; Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Erwan Galardon
- Université Paris cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 45 rue des Saints Pères, F-75006 Paris, France
| | - Marie-Agnès Sari
- Université Paris cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 45 rue des Saints Pères, F-75006 Paris, France
| | - Mounira Tiouaini
- Université Paris Cité, 45 rue des Saints Pères, F-75006 Paris, France; INSERM, UMR-S1124, T3S, 45 rue des Saints Pères, F-75006 Paris, France; Structural and Molecular Analysis Platform, BioMedTech Facilities INSERM US36-CNRS UMS2009, Université Paris Cité, Paris, France
| | - Pierre Nioche
- Université Paris Cité, 45 rue des Saints Pères, F-75006 Paris, France; INSERM, UMR-S1124, T3S, 45 rue des Saints Pères, F-75006 Paris, France; Structural and Molecular Analysis Platform, BioMedTech Facilities INSERM US36-CNRS UMS2009, Université Paris Cité, Paris, France
| | - Robert Barouki
- Université Paris Cité, 45 rue des Saints Pères, F-75006 Paris, France; INSERM, UMR-S1124, T3S, 45 rue des Saints Pères, F-75006 Paris, France
| | - Xavier Coumoul
- Université Paris Cité, 45 rue des Saints Pères, F-75006 Paris, France; INSERM, UMR-S1124, T3S, 45 rue des Saints Pères, F-75006 Paris, France
| | - Daniel Mansuy
- Université Paris cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 45 rue des Saints Pères, F-75006 Paris, France
| | - Julien Dairou
- Université Paris cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 45 rue des Saints Pères, F-75006 Paris, France.
| |
Collapse
|
45
|
Zhang N, Kandalai S, Zhou X, Hossain F, Zheng Q. Applying multi-omics toward tumor microbiome research. IMETA 2023; 2:e73. [PMID: 38868335 PMCID: PMC10989946 DOI: 10.1002/imt2.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 06/14/2024]
Abstract
Rather than a "short-term tenant," the tumor microbiome has been shown to play a vital role as a "permanent resident," affecting carcinogenesis, cancer development, metastasis, and cancer therapies. As the tumor microbiome has great potential to become a target for the early diagnosis and treatment of cancer, recent research on the relevance of the tumor microbiota has attracted a wide range of attention from various scientific fields, resulting in remarkable progress that benefits from the development of interdisciplinary technologies. However, there are still a great variety of challenges in this emerging area, such as the low biomass of intratumoral bacteria and unculturable character of some microbial species. Due to the complexity of tumor microbiome research (e.g., the heterogeneity of tumor microenvironment), new methods with high spatial and temporal resolution are urgently needed. Among these developing methods, multi-omics technologies (combinations of genomics, transcriptomics, proteomics, and metabolomics) are powerful approaches that can facilitate the understanding of the tumor microbiome on different levels of the central dogma. Therefore, multi-omics (especially single-cell omics) will make enormous impacts on the future studies of the interplay between microbes and tumor microenvironment. In this review, we have systematically summarized the advances in multi-omics and their existing and potential applications in tumor microbiome research, thus providing an omics toolbox for investigators to reference in the future.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Shruthi Kandalai
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Xiaozhuang Zhou
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Farzana Hossain
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
- Department of Biological Chemistry and Pharmacology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
46
|
Macchiarella G, Cornacchione V, Cojean C, Riker J, Wang Y, Te H, Ceci M, Gudjonsson JE, Gaulis S, Goetschy JF, Wollschlegel A, Gass SK, Oetliker-Contin S, Wettstein-Ling B, Schaefer DJ, Meschberger P, de Roche R, Osinga R, Wieczorek G, Naumann U, Lehmann JCU, Schubart A, Hofmann A, Roth L, Florencia EF, Loesche C, Traggiai E, Avrameas A, Prens EP, Röhn TA, Roediger B. Disease Association of Anti‒Carboxyethyl Lysine Autoantibodies in Hidradenitis Suppurativa. J Invest Dermatol 2023; 143:273-283.e12. [PMID: 36116506 DOI: 10.1016/j.jid.2022.08.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/25/2023]
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease characterized by recurring suppurating lesions of the intertriginous areas, resulting in a substantial impact on patients' QOL. HS pathogenesis remains poorly understood. An autoimmune component has been proposed, but disease-specific autoantibodies, autoantigens, or autoreactive T cells have yet to be described. In this study, we identify a high prevalence of IgM, IgG, and IgA antibodies directed against Nε-carboxyethyl lysine (CEL), a methylglyoxal-induced advanced glycation end-product, in the sera of patients with HS. Titers of anti-CEL IgG and IgA antibodies were highly elevated in HS compared with those in healthy controls and individuals with other inflammatory skin diseases. Strikingly, the majority of anti-CEL IgG was of the IgG2 subclass and correlated independently with both disease severity and duration. Both CEL and anti-CEL‒producing plasmablasts could be isolated directly from HS skin lesions, further confirming the disease relevance of this autoimmune response. Our data point to an aberration of the methylglyoxal pathway in HS and support an autoimmune axis in the pathogenesis of this debilitating disease.
Collapse
Affiliation(s)
- Giulio Macchiarella
- Biomarker Development (BMD), Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland; Biozentrum, Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Cornacchione
- NIBR Biologics Center (NBC), Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Celine Cojean
- Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Julia Riker
- Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Yichen Wang
- Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Helene Te
- Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Melanie Ceci
- Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Swann Gaulis
- Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Jean François Goetschy
- Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Audrey Wollschlegel
- Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Stephanie K Gass
- Department of Plastic, Reconstructive & Aesthetic Surgery and Hand Surgery, University Hospital, University of Basel, Switzerland
| | - Sofia Oetliker-Contin
- Department of Plastic, Reconstructive & Aesthetic Surgery and Hand Surgery, University Hospital, University of Basel, Switzerland
| | - Barbara Wettstein-Ling
- Department of Plastic, Reconstructive & Aesthetic Surgery and Hand Surgery, University Hospital, University of Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive & Aesthetic Surgery and Hand Surgery, University Hospital, University of Basel, Switzerland
| | | | | | - Rik Osinga
- Department of Plastic, Reconstructive & Aesthetic Surgery and Hand Surgery, University Hospital, University of Basel, Switzerland; Praxis beim Merian Iselin, Basel, Switzerland
| | - Grazyna Wieczorek
- Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Ulrike Naumann
- Chemical Biology and Therapeutics (CBT), Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Joachim C U Lehmann
- Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Anna Schubart
- Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Andreas Hofmann
- Biotherapeutic and Analytical Technologies, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Lukas Roth
- Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Edwin F Florencia
- Department of Dermatology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Christian Loesche
- Translational Medicine, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Elisabetta Traggiai
- NIBR Biologics Center (NBC), Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Alexandre Avrameas
- Biomarker Development (BMD), Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Errol P Prens
- Department of Dermatology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Till A Röhn
- Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Ben Roediger
- Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
47
|
Beyond metabolic waste: lysine lactylation and its potential roles in cancer progression and cell fate determination. Cell Oncol (Dordr) 2023; 46:465-480. [PMID: 36656507 DOI: 10.1007/s13402-023-00775-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/21/2022] [Accepted: 11/26/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Lactate is an important metabolite derived from glycolysis under physiological and pathological conditions. The Warburg effect reveals the vital role of lactate in cancer progression. Numerous studies have reported crucial roles for lactate in cancer progression and cell fate determination. Lactylation, a novel posttranslational modification (PTM), has provided a new opportunity to investigate metabolic epigenetic regulation, and studies of this process have been initiated in a wide range of cancer cells, cancer-associated immune cells, and embryonic stem cells. CONCLUSION Lactylation is a novel and interesting mechanism of lactate metabolism linked to metabolic rewiring and epigenetic remodeling. It is a potential and hopeful target for cancer therapy. Here, we summarize the discovery of lactylation, the mechanisms of site modification, and progress in research on nonhistone lactylation. We focus on the potential roles of lactylation in cancer progression and cell fate determination and the possible therapeutic strategies for targeting lysine lactylation. Finally, we suggest some future research topics on lactylation to inspire some interesting ideas.
Collapse
|
48
|
Duncan RS, Keightley A, Lopez AA, Hall CW, Koulen P. Proteome changes in a human retinal pigment epithelial cell line during oxidative stress and following antioxidant treatment. Front Immunol 2023; 14:1138519. [PMID: 37153596 PMCID: PMC10154683 DOI: 10.3389/fimmu.2023.1138519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Age related macular degeneration (AMD) is the most common cause of blindness in the elderly. Oxidative stress contributes to retinal pigment epithelium (RPE) dysfunction and cell death thereby leading to AMD. Using improved RPE cell model systems, such as human telomerase transcriptase-overexpressing (hTERT) RPE cells (hTERT-RPE), pathophysiological changes in RPE during oxidative stress can be better understood. Using this model system, we identified changes in the expression of proteins involved in the cellular antioxidant responses after induction of oxidative stress. Some antioxidants such as vitamin E (tocopherols and tocotrienols) are powerful antioxidants that can reduce oxidative damage in cells. Alpha-tocopherol (α-Toc or αT) and gamma-tocopherol (γ-Toc or γT) are well-studied tocopherols, but signaling mechanisms underlying their respective cytoprotective properties may be distinct. Here, we determined what effect oxidative stress, induced by extracellularly applied tBHP in the presence and absence of αT and/or γT, has on the expression of antioxidant proteins and related signaling networks. Using proteomics approaches, we identified differential protein expression in cellular antioxidant response pathways during oxidative stress and after tocopherol treatment. We identified three groups of proteins based on biochemical function: glutathione metabolism/transfer, peroxidases and redox-sensitive proteins involved in cytoprotective signaling. We found that oxidative stress and tocopherol treatment resulted in unique changes in these three groups of antioxidant proteins indicate that αT and γT independently and by themselves can induce the expression of antioxidant proteins in RPE cells. These results provide novel rationales for potential therapeutic strategies to protect RPE cells from oxidative stress.
Collapse
Affiliation(s)
- R. Scott Duncan
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Andrew Keightley
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Adam A. Lopez
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Conner W. Hall
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
- Department of Biomedical Sciences, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
49
|
Schalkwijk CG, Micali LR, Wouters K. Advanced glycation endproducts in diabetes-related macrovascular complications: focus on methylglyoxal. Trends Endocrinol Metab 2023; 34:49-60. [PMID: 36446668 DOI: 10.1016/j.tem.2022.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022]
Abstract
Diabetes is associated with vascular injury and the onset of macrovascular complications. Advanced glycation endproducts (AGEs) and the AGE precursor methylglyoxal (MGO) have been identified as key players in establishing the relationship between diabetes and vascular injury. While most research has focused on the link between AGEs and vascular injury, less is known about the effects of MGO on vasculature. In this review, we focus on the mechanisms linking AGEs and MGO to the development of atherosclerosis. AGEs and MGO are involved in many stages of atherosclerosis progression. However, more research is needed to determine the exact mechanisms underlying these effects. Nevertheless, AGEs and MGO could represent valid therapeutic targets for the macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, MUMC+, Maastricht, The Netherlands
| | | | - Kristiaan Wouters
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, MUMC+, Maastricht, The Netherlands.
| |
Collapse
|
50
|
Secreted immune metabolites that mediate immune cell communication and function. Trends Immunol 2022; 43:990-1005. [PMID: 36347788 DOI: 10.1016/j.it.2022.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Metabolites are emerging as essential factors for the immune system that are involved in both metabolic circuits and signaling cascades. Accumulated evidence suggests that altered metabolic programs initiated by the activation and maturation of immune cell types are accompanied by the delivery of various metabolites into the local environment. We propose that, in addition to protein/peptide ligands, secreted immune metabolites (SIMets) are essential components of immune communication networks that fine-tune immune responses under homeostatic and pathological conditions. We summarize recent advances in our understanding of SIMets and discuss the potential mechanisms by which some metabolites engage in immunological responses through receptor-, transporter-, and post-translational-mediated regulation. These insights may contribute to understanding physiology and developing effective therapeutics for inflammatory and immune-mediated diseases.
Collapse
|