1
|
Thierry M, Dupont L, Legrand D, Jacob S. Phenotypic and dispersal plasticity are not alternative strategies for organisms to face thermal changes. Proc Biol Sci 2025; 292:20242796. [PMID: 40300624 PMCID: PMC12040457 DOI: 10.1098/rspb.2024.2796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 05/01/2025] Open
Abstract
To buffer the effects of local environmental changes, organisms may modify their phenotypic traits (i.e. phenotypic plasticity) or disperse towards other potential habitats (i.e. dispersal plasticity). Despite extensive work studying either 'local phenotypic plasticity' or 'dispersal plasticity' independently, little is known about their potential covariation and interplay. These strategies are classically viewed as alternatives. However, this expectation has been challenged by theoretical work suggesting that they may instead evolve together under some environmental contexts. Here, we experimentally quantified morphological, movement and dispersal plasticity in response to thermal changes in 12 strains of the ciliate Tetrahymena thermophila. We showed that phenotypic and dispersal plasticity are not alternative strategies, with half of the strains expressing simultaneously all dimensions of plasticity in response to thermal changes. Furthermore, the extent of morphological and movement plasticity weakly but significantly differed between residents and dispersers. Interestingly, we found no covariation between these different plasticity dimensions, suggesting that they may evolve independently, which pleads for studying which environmental contexts favour the evolution of each. The fact that phenotypic and dispersal plasticity are not alternative strategies and may affect the expression of one another opens interesting perspectives about their joint evolution and the potential consequences of their interplay.
Collapse
Affiliation(s)
- Mélanie Thierry
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 CNRS-IRD-TINP-UT3, CNRS, Toulouse, France
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Léonard Dupont
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| |
Collapse
|
2
|
Nethmini RT, Zhao H, Pan L, Qin X, Huang J, He Q, Shi X, Jiang G, Hou Q, Chen Q, Li X, Dong K, Xie L, Li N. Thermal sensitivity and niche plasticity of generalist and specialist leaf-endophytic bacteria in Mangrove Kandelia obovata. Commun Biol 2025; 8:5. [PMID: 39753754 PMCID: PMC11699152 DOI: 10.1038/s42003-024-07446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025] Open
Abstract
Leaf endospheres harbor diverse bacterial communities, comprising generalists and specialists, that profoundly affect ecosystem functions. However, the ecological dynamics of generalist and specialist leaf-endophytic bacteria and their responses to climate change remain poorly understood. We investigated the diversity and environmental responses of generalist and specialist bacteria within the leaf endosphere of mangroves across China. Our findings show a predominance of specialists in the mangrove leaf endosphere. Temperature is the key factor driving community dissimilarity in both groups, yet it negatively influences the alpha diversity. Soil nutritional factors, particularly phosphate for generalists and total organic carbon for specialists are critical in shaping the functional profiles. Interestingly, temperature has a limited impact on functional profiles. Stochastic processes govern community assembly in both bacterial groups, altering the β-nearest taxon indices as temperatures increase. Our findings indicate that the halophytic leaf endosphere favors microbial niche specialization, due to its unique microenvironment and discrete niches, showing thermal sensitivity in terms of the microbial community profile. This study provides insights into niche differentiation and environmental adaptation mechanisms of leaf endophytic microbes in woody halophytes in response to environmental perturbations.
Collapse
Affiliation(s)
- Rajapakshalage Thashikala Nethmini
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, China
| | - Lianghao Pan
- Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Sciences, Beihai, Guangxi, China
| | - Xinyi Qin
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, China
| | | | - Qing He
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Xiaofang Shi
- Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Sciences, Beihai, Guangxi, China
| | - Gonglingxia Jiang
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Qinghua Hou
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Qingxiang Chen
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Xiaolei Li
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16227, South Korea, Republic of Korea
| | - Lingling Xie
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Nan Li
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
3
|
Koné DCE, Jacob S, Huet M, Philippe H, Legrand D. The phenotypic and demographic response to the combination of copper and thermal stressors strongly varies within the ciliate species, Tetrahymena thermophila. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13307. [PMID: 39344497 PMCID: PMC11440147 DOI: 10.1111/1758-2229.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/08/2024] [Indexed: 10/01/2024]
Abstract
Copper pollution can alter biological and trophic functions. Organisms can utilise different tolerance strategies, including accumulation mechanisms (intracellular vacuoles, external chelation, etc.) to maintain themselves in copper-polluted environments. Accumulation mechanisms can influence the expression of other phenotypic traits, allowing organisms to deal with copper stress. Whether copper effects on accumulation strategies interact with other environmental stressors such as temperature and how this may differ within species are still unsolved questions. Here, we tested experimentally whether the combined effect of copper and temperature modulates traits linked to demography, morphology, movement and accumulation in six strains of the ciliate Tetrahymena thermophila. We also explored whether copper accumulation might modulate environmental copper concentration effects on phenotypic and demographic traits. Results showed high intraspecific variability in the phenotypic and demographic response to copper, with interactive effects between temperature and copper. In addition, they suggested an attenuation effect of copper accumulation on the sensitivity of traits to copper, but with great variation between strains, temperatures and copper concentrations. Diversity of responses among strains and their thermal dependencies pleads for the integration of intraspecific variability and multiple stressors approaches in ecotoxicological studies, thus improving the reliability of assessments of the effects of pollutants on biodiversity.
Collapse
Affiliation(s)
| | - Staffan Jacob
- Centre National de la Recherche ScientifiqueStation d'Ecologie Théorique et Expérimentale, UAR2029MoulisAriègeFrance
| | - Michèle Huet
- Centre National de la Recherche ScientifiqueStation d'Ecologie Théorique et Expérimentale, UAR2029MoulisAriègeFrance
| | - Hervé Philippe
- Centre National de la Recherche ScientifiqueStation d'Ecologie Théorique et Expérimentale, UAR2029MoulisAriègeFrance
| | - Delphine Legrand
- Centre National de la Recherche ScientifiqueStation d'Ecologie Théorique et Expérimentale, UAR2029MoulisAriègeFrance
| |
Collapse
|
4
|
Thierry M, Cote J, Bestion E, Legrand D, Clobert J, Jacob S. The interplay between abiotic and biotic factors in dispersal decisions in metacommunities. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230137. [PMID: 38913055 PMCID: PMC11391301 DOI: 10.1098/rstb.2023.0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 06/25/2024] Open
Abstract
Suitable conditions for species to survive and reproduce constitute their ecological niche, which is built by abiotic conditions and interactions with conspecifics and heterospecifics. Organisms should ideally assess and use information about all these environmental dimensions to adjust their dispersal decisions depending on their own internal conditions. Dispersal plasticity is often considered through its dependence on abiotic conditions or conspecific density and, to a lesser extent, with reference to the effects of interactions with heterospecifics, potentially leading to misinterpretation of dispersal drivers. Here, we first review the evidence for the effects of and the potential interplays between abiotic factors, biotic interactions with conspecifics and heterospecifics and phenotype on dispersal decisions. We then present an experimental test of these potential interplays, investigating the effects of density and interactions with conspecifics and heterospecifics on temperature-dependent dispersal in microcosms of Tetrahymena ciliates. We found significant differences in dispersal rates depending on the temperature, density and presence of another strain or species. However, the presence and density of conspecifics and heterospecifics had no effects on the thermal-dependency of dispersal. We discuss the causes and consequences of the (lack of) interplay between the different environmental dimensions and the phenotype for metacommunity assembly and dynamics. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Mélanie Thierry
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Julien Cote
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 CNRS-IRD-TINP-UT3 Université Toulouse III - Paul Sabatier, Bât. 4R1, 118 route de Narbonne , Toulouse Cedex 9 31062, France
| | - Elvire Bestion
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| |
Collapse
|
5
|
Jacob S, Dupont L, Haegeman B, Thierry M, Campana JLM, Legrand D, Cote J, Raffard A. Phenotypic plasticity and the effects of thermal fluctuations on specialists and generalists. Proc Biol Sci 2024; 291:20240256. [PMID: 38889786 DOI: 10.1098/rspb.2024.0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/17/2024] [Indexed: 06/20/2024] Open
Abstract
Classical theories predict that relatively constant environments should generally favour specialists, while fluctuating environments should be selected for generalists. However, theoretical and empirical results have pointed out that generalist organisms might, on the contrary, perform poorly under fluctuations. In particular, if generalism is underlaid by phenotypic plasticity, performance of generalists should be modulated by the temporal characteristics of environmental fluctuations. Here, we used experiments in microcosms of Tetrahymena thermophila ciliates and a mathematical model to test whether the period or autocorrelation of thermal fluctuations mediate links between the level of generalism and the performance of organisms under fluctuations. In the experiment, thermal fluctuations consistently impeded performance compared with constant conditions. However, the intensity of this effect depended on the level of generalism: while the more specialist strains performed better under fast or negatively autocorrelated fluctuations, plastic generalists performed better under slow or positively autocorrelated fluctuations. Our model suggests that these effects of fluctuations on organisms' performance may result from a time delay in the expression of plasticity, restricting its benefits to slow enough fluctuations. This study points out the need to further investigate the temporal dynamics of phenotypic plasticity to better predict its fitness consequences under environmental fluctuations.
Collapse
Affiliation(s)
- Staffan Jacob
- Station d'Écologie Théorique et Expérimentale, UAR2029, CNRS, Moulis 09200, France
| | - Léonard Dupont
- Station d'Écologie Théorique et Expérimentale, UAR2029, CNRS, Moulis 09200, France
| | - Bart Haegeman
- CNRS/Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls-sur-Mer, France
| | - Mélanie Thierry
- Station d'Écologie Théorique et Expérimentale, UAR2029, CNRS, Moulis 09200, France
| | - Julie L M Campana
- Station d'Écologie Théorique et Expérimentale, UAR2029, CNRS, Moulis 09200, France
| | - Delphine Legrand
- Station d'Écologie Théorique et Expérimentale, UAR2029, CNRS, Moulis 09200, France
| | - Julien Cote
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300, CNRS-IRD-TINP-UT3, Toulouse 31062 Cedex 9, France
| | - Allan Raffard
- Université catholique de Louvain, Earth and Life Institute, Biodiversity Research Centre, Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
Brans V, Manzi F, Jacob S, Schtickzelle N. Demography and movement patterns of a freshwater ciliate: The influence of oxygen availability. Ecol Evol 2024; 14:e11291. [PMID: 38660468 PMCID: PMC11040103 DOI: 10.1002/ece3.11291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
In freshwater habitats, aerobic animals and microorganisms can react to oxygen deprivation by a series of behavioural and physiological changes, either as a direct consequence of hindered performance or as adaptive responses towards hypoxic conditions. Since oxygen availability can vary throughout the water column, different strategies exist to avoid hypoxia, including that of active 'flight' from low-oxygen sites. Alternatively, some organisms may invest in slower movement, saving energy until conditions return to more favourable levels, which may be described as a 'sit-and-wait' strategy. Here, we aimed to determine which, if any, of these strategies could be used by the freshwater ciliate Tetrahymena thermophila when faced with decreasing levels of oxygen availability in the culture medium. We manipulated oxygen flux into clonal cultures of six strains (i.e. genotypes) and followed their growth kinetics for several weeks using automated image analysis, allowing to precisely quantify changes in density, morphology and movement patterns. Oxygen effects on demography and morphology were comparable across strains: reducing oxygen flux decreased the growth rate and maximal density of experimental cultures, while greatly expanding the duration of their stationary phase. Cells sampled during their exponential growth phase were larger and had a more elongated shape under hypoxic conditions, likely mirroring a shift in resource investment towards individual development rather than frequent divisions. In addition to these general patterns, we found evidence for intraspecific variability in movement responses to oxygen limitation. Some strains showed a reduction in swimming speed, potentially associated with a 'sit-and-wait' strategy; however, the frequent alteration of movement paths towards more linear trajectories also suggests the existence of an inducible 'flight response' in this species. Considering the inherent costs of turns associated with non-linear movement, such a strategy may allow ciliates to escape suboptimal environments at a low energetic cost.
Collapse
Affiliation(s)
- Victor Brans
- Biodiversity Research Centre, Earth and Life InstituteUniversité catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Florent Manzi
- Biodiversity Research Centre, Earth and Life InstituteUniversité catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Staffan Jacob
- Centre National de la Recherche Scientifique (CNRS)Station d'Ecologie Théorique et Expérimentale (UAR2029)MoulisFrance
| | - Nicolas Schtickzelle
- Biodiversity Research Centre, Earth and Life InstituteUniversité catholique de LouvainLouvain‐la‐NeuveBelgium
| |
Collapse
|
7
|
Comte L, Bertrand R, Diamond S, Lancaster LT, Pinsky ML, Scheffers BR, Baecher JA, Bandara RMWJ, Chen IC, Lawlor JA, Moore NA, Oliveira BF, Murienne J, Rolland J, Rubenstein MA, Sunday J, Thompson LM, Villalobos F, Weiskopf SR, Lenoir J. Bringing traits back into the equation: A roadmap to understand species redistribution. GLOBAL CHANGE BIOLOGY 2024; 30:e17271. [PMID: 38613240 DOI: 10.1111/gcb.17271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Ecological and evolutionary theories have proposed that species traits should be important in mediating species responses to contemporary climate change; yet, empirical evidence has so far provided mixed evidence for the role of behavioral, life history, or ecological characteristics in facilitating or hindering species range shifts. As such, the utility of trait-based approaches to predict species redistribution under climate change has been called into question. We develop the perspective, supported by evidence, that trait variation, if used carefully can have high potential utility, but that past analyses have in many cases failed to identify an explanatory value for traits by not fully embracing the complexity of species range shifts. First, we discuss the relevant theory linking species traits to range shift processes at the leading (expansion) and trailing (contraction) edges of species distributions and highlight the need to clarify the mechanistic basis of trait-based approaches. Second, we provide a brief overview of range shift-trait studies and identify new opportunities for trait integration that consider range-specific processes and intraspecific variability. Third, we explore the circumstances under which environmental and biotic context dependencies are likely to affect our ability to identify the contribution of species traits to range shift processes. Finally, we propose that revealing the role of traits in shaping species redistribution may likely require accounting for methodological variation arising from the range shift estimation process as well as addressing existing functional, geographical, and phylogenetic biases. We provide a series of considerations for more effectively integrating traits as well as extrinsic and methodological factors into species redistribution research. Together, these analytical approaches promise stronger mechanistic and predictive understanding that can help society mitigate and adapt to the effects of climate change on biodiversity.
Collapse
Affiliation(s)
- Lise Comte
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
- Conservation Science Partners, Inc., Truckee, California, USA
| | - Romain Bertrand
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE UMR5300), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
| | - Sarah Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Brett R Scheffers
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - J Alex Baecher
- School of Natural Resources and Environment, University of Florida, Gainesville, Florida, USA
| | - R M W J Bandara
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - I-Ching Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jake A Lawlor
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Nikki A Moore
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Brunno F Oliveira
- Fondation pour la Recherche sur la Biodiversité (FRB), Centre de Synthèse et d'Analyse sur la Biodiversité (CESAB), Montpellier, France
| | - Jerome Murienne
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE UMR5300), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
| | - Jonathan Rolland
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE UMR5300), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
| | - Madeleine A Rubenstein
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, Virginia, USA
| | - Jennifer Sunday
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Laura M Thompson
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, Virginia, USA
- School of Natural Resources, University of Tennessee, Knoxville, Tennessee, USA
| | - Fabricio Villalobos
- Red de Biología Evolutiva, Instituto de Ecología A.C. - INECOL, Veracruz, Mexico
| | - Sarah R Weiskopf
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, Virginia, USA
| | - Jonathan Lenoir
- UMR CNRS 7058, Ecologie et Dynamique Des Systèmes Anthropisés (EDYSAN), Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
8
|
Hällfors MH, Heikkinen RK, Kuussaari M, Lehikoinen A, Luoto M, Pöyry J, Virkkala R, Saastamoinen M, Kujala H. Recent range shifts of moths, butterflies, and birds are driven by the breadth of their climatic niche. Evol Lett 2024; 8:89-100. [PMID: 38370541 PMCID: PMC10872046 DOI: 10.1093/evlett/qrad004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2024] Open
Abstract
Species are altering their ranges as a response to climate change, but the magnitude and direction of observed range shifts vary considerably among species. The ability to persist in current areas and colonize new areas plays a crucial role in determining which species will thrive and which decline as climate change progresses. Several studies have sought to identify characteristics, such as morphological and life-history traits, that could explain differences in the capability of species to shift their ranges together with a changing climate. These characteristics have explained variation in range shifts only sporadically, thus offering an uncertain tool for discerning responses among species. As long-term selection to past climates have shaped species' tolerances, metrics describing species' contemporary climatic niches may provide an alternative means for understanding responses to on-going climate change. Species that occur in a broader range of climatic conditions may hold greater tolerance to climatic variability and could therefore more readily maintain their historical ranges, while species with more narrow tolerances may only persist if they are able to shift in space to track their climatic niche. Here, we provide a first-filter test of the effect of climatic niche dimensions on shifts in the leading range edges in three relatively well-dispersing species groups. Based on the realized changes in the northern range edges of 383 moth, butterfly, and bird species across a boreal 1,100 km latitudinal gradient over c. 20 years, we show that while most morphological or life-history traits were not strongly connected with range shifts, moths and birds occupying a narrower thermal niche and butterflies occupying a broader moisture niche across their European distribution show stronger shifts towards the north. Our results indicate that the climatic niche may be important for predicting responses under climate change and as such warrants further investigation of potential mechanistic underpinnings.
Collapse
Affiliation(s)
- Maria H Hällfors
- Research Centre for Environmental Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Nature solutions unit, Finnish Environment Institute (Syke), Helsinki, Finland
| | - Risto K Heikkinen
- Nature solutions unit, Finnish Environment Institute (Syke), Helsinki, Finland
| | - Mikko Kuussaari
- Nature solutions unit, Finnish Environment Institute (Syke), Helsinki, Finland
| | - Aleksi Lehikoinen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Miska Luoto
- Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Juha Pöyry
- Nature solutions unit, Finnish Environment Institute (Syke), Helsinki, Finland
| | - Raimo Virkkala
- Nature solutions unit, Finnish Environment Institute (Syke), Helsinki, Finland
| | - Marjo Saastamoinen
- Research Centre for Environmental Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Heini Kujala
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Derelle R, Verdonck R, Jacob S, Huet M, Akerman I, Philippe H, Legrand D. The macronuclear genomic landscape within Tetrahymena thermophila. Microb Genom 2024; 10:001175. [PMID: 38206129 PMCID: PMC10868616 DOI: 10.1099/mgen.0.001175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The extent of intraspecific genomic variation is key to understanding species evolutionary history, including recent adaptive shifts. Intraspecific genomic variation remains poorly explored in eukaryotic micro-organisms, especially in the nuclear dimorphic ciliates, despite their fundamental role as laboratory model systems and their ecological importance in many ecosystems. We sequenced the macronuclear genome of 22 laboratory strains of the oligohymenophoran Tetrahymena thermophila, a model species in both cellular biology and evolutionary ecology. We explored polymorphisms at the junctions of programmed eliminated sequences, and reveal their utility to barcode very closely related cells. As for other species of the genus Tetrahymena, we confirm micronuclear centromeres as gene diversification centres in T. thermophila, but also reveal a two-speed evolution in these regions. In the rest of the genome, we highlight recent diversification of genes coding for extracellular proteins and cell adhesion. We discuss all these findings in relation to this ciliate's ecology and cellular characteristics.
Collapse
Affiliation(s)
- Romain Derelle
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
- Present address: NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, UK
| | - Rik Verdonck
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
- Present address: Centre for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Staffan Jacob
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
| | - Michèle Huet
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
| | - Ildem Akerman
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Hervé Philippe
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
| | - Delphine Legrand
- Station d’Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
| |
Collapse
|
10
|
Anderson RO, Tingley R, Hoskin CJ, White CR, Chapple DG. Linking physiology and climate to infer species distributions in Australian skinks. J Anim Ecol 2023; 92:2094-2108. [PMID: 37661659 DOI: 10.1111/1365-2656.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Climate has a key impact on animal physiology, which in turn can have a profound influence on geographic distributions. Yet, the mechanisms linking climate, physiology and distribution are not fully resolved. Using an integrative framework, we tested the predictions of the climatic variability hypothesis (CVH), which states that species with broader distributions have broader physiological tolerance than range-restricted species, in a group of Lampropholis skinks (8 species, 196 individuals) along a latitudinal gradient in eastern Australia. We investigated several physiological aspects including metabolism, water balance, thermal physiology, thermoregulatory behaviour and ecological performance. Additionally, to test whether organismal information (e.g. behaviour and physiology) can enhance distribution models, hence providing evidence that physiology and climate interact to shape range sizes, we tested whether species distribution models incorporating physiology better predict the range sizes than models using solely climatic layers. In agreement with the CVH, our results confirm that widespread species can tolerate and perform better at broader temperature ranges than range-restricted species. We also found differences in field body temperatures, but not thermal preference, between widespread and range-restricted species. However, metabolism and water balance did not correlate with range size. Biophysical modelling revealed that the incorporation of physiological and behavioural data improves predictions of Lampropholis distributions compared with models based solely on macroclimatic inputs, but mainly for range-restricted species. By integrating several aspects of the physiology and niche modelling of a group of ectothermic animals, our study provides evidence that physiology correlates with species distributions. Physiological responses to climate are central in establishing geographic ranges of skinks, and the incorporation of processes occurring at local scales (e.g. behaviour) can improve species distribution models.
Collapse
Affiliation(s)
- Rodolfo O Anderson
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Reid Tingley
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Craig R White
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Pilakouta N, Killen SS, Kristjánsson BK, Skúlason S, Lindström J, Metcalfe NB, Parsons KJ. Geothermal stickleback populations prefer cool water despite multigenerational exposure to a warm environment. Ecol Evol 2023; 13:e9654. [PMID: 36644700 PMCID: PMC9831902 DOI: 10.1002/ece3.9654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
Given the threat of climate change to biodiversity, a growing number of studies are investigating the potential for organisms to adapt to rising temperatures. Earlier work has predicted that physiological adaptation to climate change will be accompanied by a shift in temperature preferences, but empirical evidence for this is lacking. Here, we test whether exposure to different thermal environments has led to changes in preferred temperatures in the wild. Our study takes advantage of a "natural experiment" in Iceland, where freshwater populations of threespine sticklebacks (Gasterosteus aculeatus) are found in waters warmed by geothermal activity year-round (warm habitats), adjacent to populations in ambient-temperature lakes (cold habitats). We used a shuttle-box approach to measure temperature preferences of wild-caught sticklebacks from three warm-cold population pairs. Our prediction was that fish from warm habitats would prefer higher water temperatures than those from cold habitats. We found no support for this, as fish from both warm and cold habitats had an average preferred temperature of 13°C. Thus, our results challenge the assumption that there will be a shift in ectotherm temperature preferences in response to climate change. In addition, since warm-habitat fish can persist at relatively high temperatures despite a lower-temperature preference, we suggest that preferred temperature alone may be a poor indicator of a population's adaptive potential to a novel thermal environment.
Collapse
Affiliation(s)
- Natalie Pilakouta
- Institute of Biodiversity, One Health, and Veterinary MedicineUniversity of GlasgowGlasgowUK
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | - Shaun S. Killen
- Institute of Biodiversity, One Health, and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | | | - Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókurIceland
- Icelandic Museum of Natural HistoryReykjavíkIceland
| | - Jan Lindström
- Institute of Biodiversity, One Health, and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Neil B. Metcalfe
- Institute of Biodiversity, One Health, and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Kevin J. Parsons
- Institute of Biodiversity, One Health, and Veterinary MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
12
|
Campana JLM, Raffard A, Chaine AS, Huet M, Legrand D, Jacob S. Dispersal plasticity driven by variation in fitness across species and environmental gradients. Ecol Lett 2022; 25:2410-2421. [PMID: 36198081 PMCID: PMC9827879 DOI: 10.1111/ele.14101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 01/12/2023]
Abstract
Dispersal plasticity, when organisms adjust their dispersal decisions depending on their environment, can play a major role in ecological and evolutionary dynamics, but how it relates to fitness remains scarcely explored. Theory predicts that high dispersal plasticity should evolve when environmental gradients have a strong impact on fitness. Using microcosms, we tested in five species of the genus Tetrahymena whether dispersal plasticity relates to differences in fitness sensitivity along three environmental gradients. Dispersal plasticity was species- and environment-dependent. As expected, dispersal plasticity was generally related to fitness sensitivity, with higher dispersal plasticity when fitness is more affected by environmental gradients. Individuals often preferentially disperse out of low fitness environments, but leaving environments that should yield high fitness was also commonly observed. We provide empirical support for a fundamental, but largely untested, assumption in dispersal theory: the extent of dispersal plasticity correlates with fitness sensitivity to the environment.
Collapse
Affiliation(s)
| | - Allan Raffard
- Université catholique de Louvain, Earth and Life Institute, Biodiversity Research CentreLouvain‐la‐NeuveBelgium,Present address:
Univ. Savoie Mont Blanc, INRAE, CARRTELThonon‐les‐BainsFrance
| | - Alexis S. Chaine
- Station d'Ecologie Théorique et ExpérimentaleUAR CNRS 2029MoulisFrance
| | - Michèle Huet
- Station d'Ecologie Théorique et ExpérimentaleUAR CNRS 2029MoulisFrance
| | - Delphine Legrand
- Station d'Ecologie Théorique et ExpérimentaleUAR CNRS 2029MoulisFrance
| | - Staffan Jacob
- Station d'Ecologie Théorique et ExpérimentaleUAR CNRS 2029MoulisFrance
| |
Collapse
|
13
|
O'Brien EK, Walter GM, Bridle J. Environmental variation and biotic interactions limit adaptation at ecological margins: lessons from rainforest Drosophila and European butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210017. [PMID: 35184592 PMCID: PMC8859522 DOI: 10.1098/rstb.2021.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022] Open
Abstract
Models of local adaptation to spatially varying selection predict that maximum rates of evolution are determined by the interaction between increased adaptive potential owing to increased genetic variation, and the cost genetic variation brings by reducing population fitness. We discuss existing and new results from our laboratory assays and field transplants of rainforest Drosophila and UK butterflies along environmental gradients, which try to test these predictions in natural populations. Our data suggest that: (i) local adaptation along ecological gradients is not consistently observed in time and space, especially where biotic and abiotic interactions affect both gradient steepness and genetic variation in fitness; (ii) genetic variation in fitness observed in the laboratory is only sometimes visible to selection in the field, suggesting that demographic costs can remain high without increasing adaptive potential; and (iii) antagonistic interactions between species reduce local productivity, especially at ecological margins. Such antagonistic interactions steepen gradients and may increase the cost of adaptation by increasing its dimensionality. However, where biotic interactions do evolve, rapid range expansion can follow. Future research should test how the environmental sensitivity of genotypes determines their ecological exposure, and its effects on genetic variation in fitness, to predict the probability of evolutionary rescue at ecological margins. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Eleanor K. O'Brien
- School of Biological Sciences, University of Bristol, Bristol, UK
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Greg M. Walter
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
14
|
Montagnes DJS, Wang Q, Lyu Z, Shao C. Evaluating thermal performance of closely related taxa: Support for hotter is not better, but for unexpected reasons. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David J. S. Montagnes
- Department of Ecology Jinan University Guangzhou China
- Laboratory of Protozoological Biodiversity and Evolution in Wetland College of Life Sciences, Shaanxi Normal University Xi’an China
- Department of Evolution, Ecology and Behaviour University of Liverpool, BioSciences Building, Crown Street Liverpool UK
| | - Qing Wang
- Department of Ecology Jinan University Guangzhou China
| | - Zhao Lyu
- College of Life Sciences Northwest University Xi'an China
| | - Chen Shao
- Laboratory of Protozoological Biodiversity and Evolution in Wetland College of Life Sciences, Shaanxi Normal University Xi’an China
| |
Collapse
|
15
|
Banks-Leite C, Betts MG, Ewers RM, Orme CDL, Pigot AL. The macroecology of landscape ecology. Trends Ecol Evol 2022; 37:480-487. [DOI: 10.1016/j.tree.2022.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/28/2022]
|
16
|
Cayuela H, Jacob S, Schtickzelle N, Verdonck R, Philippe H, Laporte M, Huet M, Bernatchez L, Legrand D. Transgenerational plasticity of dispersal‐related traits in a ciliate: genotype‐dependency and fitness consequences. OIKOS 2022. [DOI: 10.1111/oik.08846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hugo Cayuela
- Dépt de Biologie, Inst. de Biologie Intégrative et des Systèmes (IBIS), Univ. Laval, Pavillon Charles‐Eugène‐Marchand Québec QC Canada
- Dept of Ecology and Evolution, Univ. of Lausanne Lausanne Switzerland
| | - Staffan Jacob
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
| | - Nicolas Schtickzelle
- Univ. Catholique de Louvain, Earth and Life Inst., Biodiversity Research Centre Louvain‐la‐Neuve Belgium
| | - Rik Verdonck
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
| | - Hervé Philippe
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
- Dépt de Biochimie, Centre Robert‐Cedergren, Univ. de Montréal Montréal QC Canada
| | - Martin Laporte
- Ministère des Forêts, de la Faune et des Parc (MFFP) du Québec Québec QC Canada
| | - Michèle Huet
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
| | - Louis Bernatchez
- Dépt de Biologie, Inst. de Biologie Intégrative et des Systèmes (IBIS), Univ. Laval, Pavillon Charles‐Eugène‐Marchand Québec QC Canada
| | - Delphine Legrand
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
| |
Collapse
|
17
|
Moinet GYK, Dhami MK, Hunt JE, Podolyan A, Liáng LL, Schipper LA, Whitehead D, Nuñez J, Nascente A, Millard P. Soil microbial sensitivity to temperature remains unchanged despite community compositional shifts along geothermal gradients. GLOBAL CHANGE BIOLOGY 2021; 27:6217-6231. [PMID: 34585498 PMCID: PMC9293425 DOI: 10.1111/gcb.15878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/24/2021] [Indexed: 05/29/2023]
Abstract
Climate warming may be exacerbated if rising temperatures stimulate losses of soil carbon to the atmosphere. The direction and magnitude of this carbon-climate feedback are uncertain, largely due to lack of knowledge of the thermal adaptation of the physiology and composition of soil microbial communities. Here, we applied the macromolecular rate theory (MMRT) to describe the temperature response of the microbial decomposition of soil organic matter (SOM) in a natural long-term warming experiment in a geothermally active area in New Zealand. Our objective was to test whether microbial communities adapt to long-term warming with a shift in their composition and their temperature response that are consistent with evolutionary theory of trade-offs between enzyme structure and function. We characterized the microbial community composition (using metabarcoding) and the temperature response of microbial decomposition of SOM (using MMRT) of soils sampled along transects of increasing distance from a geothermally active zone comprising two biomes (a shrubland and a grassland) and sampled at two depths (0-50 and 50-100 mm), such that ambient soil temperature and soil carbon concentration varied widely and independently. We found that the different environments were hosting microbial communities with distinct compositions, with thermophile and thermotolerant genera increasing in relative abundance with increasing ambient temperature. However, the ambient temperature had no detectable influence on the MMRT parameters or the relative temperature sensitivity of decomposition (Q10 ). MMRT parameters were, however, strongly correlated with soil carbon concentration and carbon:nitrogen ratio. Our findings suggest that, while long-term warming selects for warm-adapted taxa, substrate quality and quantity exert a stronger influence than temperature in selecting for distinct thermal traits. The results have major implications for our understanding of the role of soil microbial processes in the long-term effects of climate warming on soil carbon dynamics and will help increase confidence in carbon-climate feedback projections.
Collapse
Affiliation(s)
- Gabriel Y. K. Moinet
- Soil Biology GroupWageningen University and ResearchWageningenThe Netherlands
- Manaaki Whenua – Landcare ResearchLincolnNew Zealand
| | | | - John E. Hunt
- Manaaki Whenua – Landcare ResearchLincolnNew Zealand
| | | | - Liyĭn L. Liáng
- Manaaki Whenua – Landcare ResearchPalmerston NorthNew Zealand
| | | | | | | | | | - Peter Millard
- Manaaki Whenua – Landcare ResearchLincolnNew Zealand
| |
Collapse
|
18
|
Scheiner SM, Barfield M, Holt RD. Do I build or do I move? Adaptation by habitat construction versus habitat choice. Evolution 2021; 76:414-428. [PMID: 34534361 DOI: 10.1111/evo.14355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/30/2021] [Accepted: 09/10/2021] [Indexed: 01/20/2023]
Abstract
Trait adaptation to a heterogeneous environment can occur through six modes: genetic differentiation of those traits, a jack-of-all-trades phenotypic uniformity, diversified bet-hedging, phenotypic plasticity, habitat choice, and habitat construction. A key question is what circumstances favor one mode over another, and how they might interact if a system can express more than one mode at a time. We examined the joint evolution of habitat choice and habitat construction using individual-based simulations. We manipulated when during the life cycle construction occurred and the fitness value of construction. We found that for our model habitat construction was nearly always favored over habitat choice, especially if construction happened after dispersal. Because of the ways that the various modes of adaptation interact with each other, there is no simple answer as to which will be favored; it depends on details of the biology and ecology of a given system.
Collapse
Affiliation(s)
- Samuel M Scheiner
- Division of Environmental Biology, National Science Foundation, Arlington, Virginia, 22230
| | - Michael Barfield
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| |
Collapse
|
19
|
Plastic cell morphology changes during dispersal. iScience 2021; 24:102915. [PMID: 34430806 PMCID: PMC8367785 DOI: 10.1016/j.isci.2021.102915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022] Open
Abstract
Dispersal is the movement of organisms from one habitat to another that potentially results in gene flow. It is often plastic, allowing organisms to adjust dispersal movements depending on environmental conditions. A fundamental aim in ecology is to understand the determinants underlying dispersal and its plasticity. We utilized 22 strains of the ciliate Tetrahymena thermophila to determine if different phenotypic dispersal strategies co-exist within a species and which mechanisms underlie this variability. We quantified the cell morphologies impacting cell motility and dispersal. Distinct differences in innate cellular morphology and dispersal rates were detected, but no universally utilized combinations of morphological parameters correlate with dispersal. Rather, multiple distinct and plastic morphological changes impact cilia-dependent motility during dispersal, especially in proficient dispersing strains facing challenging environmental conditions. Combining ecology and cell biology experiments, we show that dispersal can be promoted through plastic motility-associated changes to cell morphology and motile cilia.
Collapse
|
20
|
Jacob S, Legrand D. Phenotypic plasticity can reverse the relative extent of intra- and interspecific variability across a thermal gradient. Proc Biol Sci 2021; 288:20210428. [PMID: 34187192 DOI: 10.1098/rspb.2021.0428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Intra- and interspecific variability can both ensure ecosystem functions. Generalizing the effects of individual and species assemblages requires understanding how much within and between species trait variation is genetically based or results from phenotypic plasticity. Phenotypic plasticity can indeed lead to rapid and important changes of trait distributions, and in turn community functionality, depending on environmental conditions, which raises a crucial question: could phenotypic plasticity modify the relative importance of intra- and interspecific variability along environmental gradients? We quantified the fundamental niche of five genotypes in monocultures for each of five ciliate species along a wide thermal gradient in standardized conditions to assess the importance of phenotypic plasticity for the level of intraspecific variability compared to differences between species. We showed that phenotypic plasticity strongly influences trait variability and reverses the relative extent of intra- and interspecific variability along the thermal gradient. Our results show that phenotypic plasticity may lead to either increase or decrease of functional trait variability along environmental gradients, making intra- and interspecific variability highly dynamic components of ecological systems.
Collapse
Affiliation(s)
- Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale du CNRS UAR5321, 2 route du CNRS, 09200, Moulis, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale du CNRS UAR5321, 2 route du CNRS, 09200, Moulis, France
| |
Collapse
|
21
|
Huang S, Tucker MA, Hertel AG, Eyres A, Albrecht J. Scale-dependent effects of niche specialisation: The disconnect between individual and species ranges. Ecol Lett 2021; 24:1408-1419. [PMID: 33960589 DOI: 10.1111/ele.13759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 01/28/2023]
Abstract
One of the most general expectations of species range dynamics is that widespread species tend to have broader niches. However, it remains unclear how this relationship is expressed at different levels of biological organisation, which involve potentially distinctive processes operating at different spatial and temporal scales. Here, we show that range sizes of terrestrial non-volant mammals at the individual and species level show contrasting relationships with two ecological niche dimensions: diet and habitat breadth. While average individual home range size appears to be mainly shaped by the interplay of diet niche breadth and body mass, species geographical range size is primarily related to habitat niche breadth but not to diet niche breadth. Our findings suggest that individual home range size is shaped by the trade-off between energetic requirements, movement capacity and trophic specialisation, whereas species geographical range size is related to the ability to persist under various environmental conditions.
Collapse
Affiliation(s)
- Shan Huang
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Marlee A Tucker
- Department of Environmental Science, Radboud University, Nijmegen, Netherlands
| | - Anne G Hertel
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany.,Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Alison Eyres
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany.,Department of Biological Sciences, Goethe-University Frankfurt, Frankfurt, Germany.,RSPB Centre for Conservation Science, Cambridge, UK
| | - Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| |
Collapse
|
22
|
Czuppon P, Blanquart F, Uecker H, Débarre F. The Effect of Habitat Choice on Evolutionary Rescue in Subdivided Populations. Am Nat 2021; 197:625-643. [PMID: 33989144 DOI: 10.1086/714034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractEvolutionary rescue is the process by which a population, in response to an environmental change, successfully avoids extinction through adaptation. In spatially structured environments, dispersal can affect the probability of rescue. Here, we model an environment consisting of patches that degrade one after another, and we investigate the probability of rescue by a mutant adapted to the degraded habitat. We focus on the effects of dispersal and of immigration biases. We identify up to three regions delimiting the effect of dispersal on the probability of evolutionary rescue: (i) starting from low dispersal rates, the probability of rescue increases with dispersal; (ii) at intermediate dispersal rates, it decreases; and (iii) at large dispersal rates, it increases again with dispersal, except if mutants are too counterselected in not-yet-degraded patches. The probability of rescue is generally highest when mutant and wild-type individuals preferentially immigrate into patches that have already undergone environmental change. Additionally, we find that mutants that will eventually rescue the population most likely first appear in nondegraded patches. Overall, our results show that habitat choice, compared with the often-studied unbiased immigration scheme, can substantially alter the dynamics of population survival and adaptation to new environments.
Collapse
|
23
|
Abrun P, Ashouri A, Duplouy A, Farahani HK. Wolbachia impairs post-eclosion host preference in a parasitoid wasp. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2021; 108:13. [PMID: 33760987 DOI: 10.1007/s00114-021-01727-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 11/28/2022]
Abstract
Host preference behavior can result in adaptive advantages with important consequences for the fitness of individuals. Hopkin's host-selection principle (HHSP) suggests that organisms at higher trophic levels demonstrate a preference for the host species on which they developed during their own larval stage. Although investigated in many herbivorous and predatory insects, the HHSP has, to our knowledge, never been tested in the context of insects hosting selfish endosymbiotic passengers. Here, we investigated the effect of infection with the facultative bacterial symbiont Wolbachia on post-eclosion host preference in the parasitoid wasp Trichogramma brassicae (Hymenoptera: Trichogrammatidae). We compared host preference in Wolbachia-infected individuals and uninfected adult female parasitoids after rearing them on two different Lepidopteran hosts, namely the flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) or the grain moth Sitotroga cerealella (Lepidoptera: Gelechiidae) in choice and no choice experimental design (n = 120 wasps per each choice/no choice experiments). We showed that in T. brassicae, Wolbachia affects the post-eclosion host preference of female wasps. Wolbachia-infected wasps did not show any host preference and more frequently switched hosts in the laboratory, while uninfected wasps significantly preferred to lay eggs on the host species they developed on. Additionally, Wolbachia significantly improved the emergence rate of infected wasps when reared on new hosts. Altogether, our results revealed that the wasp's infection with Wolbachia may lead to impairment of post-eclosion host preference and facilitates growing up on different host species. The impairment of host preference by Wolbachia may allow T. brassicae to shift between hosts, a behavior that might have important evolutionary consequences for the wasp and its symbiont.
Collapse
Affiliation(s)
- Pouria Abrun
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad Ashouri
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Anne Duplouy
- Department of Biology, Lund University, Lund, Sweden.,Organismal and Evolutionary Biology Research Program, The University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
24
|
Morel‐Journel T, Thuillier V, Pennekamp F, Laurent E, Legrand D, Chaine AS, Schtickzelle N. A multidimensional approach to the expression of phenotypic plasticity. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thibaut Morel‐Journel
- Earth and Life Institute Biodiversity Research Centre Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | - Virginie Thuillier
- Earth and Life Institute Biodiversity Research Centre Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | - Frank Pennekamp
- Earth and Life Institute Biodiversity Research Centre Université catholique de Louvain Louvain‐la‐Neuve Belgium
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Estelle Laurent
- Earth and Life Institute Biodiversity Research Centre Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | - Delphine Legrand
- Earth and Life Institute Biodiversity Research Centre Université catholique de Louvain Louvain‐la‐Neuve Belgium
- Station d'Ecologie Théorique et Expérimentale du CNRS UMR5321 Moulis France
| | - Alexis S. Chaine
- Station d'Ecologie Théorique et Expérimentale du CNRS UMR5321 Moulis France
- Toulouse School of Economics Institute for Advanced Studies in Toulouse Toulouse France
| | - Nicolas Schtickzelle
- Earth and Life Institute Biodiversity Research Centre Université catholique de Louvain Louvain‐la‐Neuve Belgium
| |
Collapse
|
25
|
Sieger CS, Hovestadt T. The degree of spatial variation relative to temporal variation influences evolution of dispersal. OIKOS 2020. [DOI: 10.1111/oik.07567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charlotte Sophie Sieger
- Dept. Animal Ecology and Tropical Biology, Biozentrum, Universität Würzburg Emil‐Fischer‐Str. 32 DE‐97074 Würzburg Germany
| | - Thomas Hovestadt
- Dept. Animal Ecology and Tropical Biology, Biozentrum, Universität Würzburg Emil‐Fischer‐Str. 32 DE‐97074 Würzburg Germany
| |
Collapse
|
26
|
Taylor EN, Diele‐Viegas LM, Gangloff EJ, Hall JM, Halpern B, Massey MD, Rödder D, Rollinson N, Spears S, Sun B, Telemeco RS. The thermal ecology and physiology of reptiles and amphibians: A user's guide. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:13-44. [DOI: 10.1002/jez.2396] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Emily N. Taylor
- Biological Sciences Department California Polytechnic State University San Luis Obispo California
| | | | | | - Joshua M. Hall
- Department of Biological Sciences Auburn University Auburn Alabama
| | | | - Melanie D. Massey
- Department of Biology Dalhousie University Halifax Nova Scotia Canada
| | - Dennis Rödder
- Zoologisches Forschungsmuseum Alexander Koenig Bonn Germany
| | - Njal Rollinson
- Department of Ecology and Evolutionary Biology University of Toronto St. Toronto Ontario Canada
- School of the Environment University of Toronto Toronto Ontario Canada
| | - Sierra Spears
- Department of Zoology Ohio Wesleyan University Delaware Ohio
| | - Bao‐jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Rory S. Telemeco
- Department of Biology California State University Fresno California
| |
Collapse
|
27
|
Affiliation(s)
- Carlos Camacho
- Dept of Evolutionary Ecology, Estación Biológica de Doñana – CSIC Seville Spain
- Dept of Biology, Centre for Animal Movement Research (CAnMove). Lund Univ. Ecology Building SE‐223 62 Lund Sweden
| | - Andrew P. Hendry
- Redpath Museum and Dept of Biology, McGill Univ. Montréal QC Canada
| |
Collapse
|
28
|
Laurent E, Schtickzelle N, Jacob S. Fragmentation mediates thermal habitat choice in ciliate microcosms. Proc Biol Sci 2020; 287:20192818. [PMID: 31992166 DOI: 10.1098/rspb.2019.2818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Habitat fragmentation is expected to reduce dispersal movements among patches as a result of increased inter-patch distances. Furthermore, since habitat fragmentation is expected to raise the costs of moving among patches in the landscape, it should hamper the ability or tendency of organisms to perform informed dispersal decisions. Here, we used microcosms of the ciliate Tetrahymena thermophila to test experimentally whether habitat fragmentation, manipulated through the length of corridors connecting patches differing in temperature, affects habitat choice. We showed that a twofold increase of inter-patch distance can as expected hamper the ability of organisms to choose their habitat at immigration. Interestingly, it also increased their habitat choice at emigration, suggesting that organisms become choosier in their decision to either stay or leave their patch when obtaining information about neighbouring patches gets harder. This study points out that habitat fragmentation might affect not only dispersal rate but also the level of non-randomness of dispersal, with emigration and immigration decisions differently affected. These consequences of fragmentation might considerably modify ecological and evolutionary dynamics of populations facing environmental changes.
Collapse
Affiliation(s)
- Estelle Laurent
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Croix du Sud 4, L7-07-04, 1348 Louvain-la-Neuve, Belgium
| | - Nicolas Schtickzelle
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Croix du Sud 4, L7-07-04, 1348 Louvain-la-Neuve, Belgium
| | - Staffan Jacob
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Croix du Sud 4, L7-07-04, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
29
|
Pennekamp F, Clobert J, Schtickzelle N. The interplay between movement, morphology and dispersal in Tetrahymena ciliates. PeerJ 2019; 7:e8197. [PMID: 31871838 PMCID: PMC6924321 DOI: 10.7717/peerj.8197] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 11/12/2019] [Indexed: 11/29/2022] Open
Abstract
Understanding how and why individual movement translates into dispersal between populations is a long-term goal in ecology. Movement is broadly defined as ‘any change in the spatial location of an individual’, whereas dispersal is more narrowly defined as a movement that may lead to gene flow. Because the former may create the condition for the latter, behavioural decisions that lead to dispersal may be detectable in underlying movement behaviour. In addition, dispersing individuals also have specific sets of morphological and behavioural traits that help them coping with the costs of movement and dispersal, and traits that mitigate costs should be under selection and evolve if they have a genetic basis. Here, we experimentally study the relationships between movement behaviour, morphology and dispersal across 44 genotypes of the actively dispersing unicellular, aquatic model organism Tetrahymena thermophila. We used two-patch populations to quantify individual movement trajectories, as well as activity, morphology and dispersal rate. First, we studied variation in movement behaviour among and within genotypes (i.e. between dispersers and residents) and tested whether this variation can be explained by morphology. Then, we addressed how much the dispersal rate is driven by differences in the underlying movement behaviour. Genotypes revealed clear differences in terms of movement speed and linearity. We also detected marked movement differences between resident and dispersing individuals, mediated by the genotype. Movement variation was partly explained by morphological properties such as cell size and shape, with larger cells consistently showing higher movement speed and higher linearity. Genetic differences in activity and movement were positively related to the observed dispersal and jointly explained 47% of the variation in dispersal rate. Our study shows that a detailed understanding of the interplay between morphology, movement and dispersal may have potential to improve dispersal predictions over broader spatio-temporal scales.
Collapse
Affiliation(s)
- Frank Pennekamp
- Earth and Life Institute & Biodiversity Research Centre, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Nicolas Schtickzelle
- Earth and Life Institute & Biodiversity Research Centre, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
30
|
Jacob S, Laurent E, Morel‐Journel T, Schtickzelle N. Fragmentation and the context‐dependence of dispersal syndromes: matrix harshness modifies resident‐disperser phenotypic differences in microcosms. OIKOS 2019. [DOI: 10.1111/oik.06857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Staffan Jacob
- Earth and Life Institute, Biodiversity Research Centre, Univ. catholique de Louvain Croix du Sud 4, L7‐07‐04 BE‐1348 Louvain‐la‐Neuve Belgium
- Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS/UPS 2 route du CNRS FR‐09200 Moulis France
| | - Estelle Laurent
- Earth and Life Institute, Biodiversity Research Centre, Univ. catholique de Louvain Croix du Sud 4, L7‐07‐04 BE‐1348 Louvain‐la‐Neuve Belgium
| | - Thibaut Morel‐Journel
- Earth and Life Institute, Biodiversity Research Centre, Univ. catholique de Louvain Croix du Sud 4, L7‐07‐04 BE‐1348 Louvain‐la‐Neuve Belgium
| | - Nicolas Schtickzelle
- Earth and Life Institute, Biodiversity Research Centre, Univ. catholique de Louvain Croix du Sud 4, L7‐07‐04 BE‐1348 Louvain‐la‐Neuve Belgium
| |
Collapse
|
31
|
Jacob S, Chaine AS, Huet M, Clobert J, Legrand D. Variability in Dispersal Syndromes Is a Key Driver of Metapopulation Dynamics in Experimental Microcosms. Am Nat 2019; 194:613-626. [PMID: 31613674 DOI: 10.1086/705410] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Evolutionary ecology studies have increasingly focused on the impact of intraspecific variability on population processes. However, the role such variation plays in the dynamics of spatially structured populations and how it interacts with environmental changes remains unclear. Here we experimentally quantify the relative importance of intraspecific variability in dispersal-related traits and spatiotemporal variability of environmental conditions for the dynamics of two-patch metapopulations using clonal genotypes of a ciliate in connected microcosms. We demonstrate that in our simple two-patch microcosms, differences among genotypes are at least as important as spatiotemporal variability of resources for metapopulation dynamics. Furthermore, we show that an important proportion of this effect results from variability of dispersal syndromes. These syndromes can therefore be as important for metapopulation dynamics as spatiotemporal variability of environmental conditions. This study demonstrates that intraspecific variability in dispersal syndromes can be key in the functioning of metapopulations facing environmental changes.
Collapse
|
32
|
Refsnider JM, Carter SE, Kramer GR, Siefker AD, Streby HM. Is dietary or microhabitat specialization associated with environmental heterogeneity in horned lizards ( Phrynosoma)? Ecol Evol 2019; 9:5542-5550. [PMID: 31160981 PMCID: PMC6540669 DOI: 10.1002/ece3.5109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/03/2023] Open
Abstract
Niche breadth is predicted to correlate with environmental heterogeneity, such that generalists will evolve in heterogeneous environments and specialists will evolve in environments that vary less over space and time. We tested the hypothesis that lizards in a heterogeneous environment were generalists compared to lizards in a homogeneous environment. We compared niche breadths of greater short-horned lizards by quantifying resource selection in terms of two different niche axes, diet (prey items and trophic level), and microhabitat (ground cover and shade cover) between two populations occurring at different elevations. We assessed the heterogeneity of dietary and microhabitat resources within each population's environment by quantifying the availability of prey items, ground cover, and shade cover in each environment. Overall, our results demonstrate that despite differences in resource heterogeneity between elevations, resource selection did not consistently differ between populations. Moreover, environmental heterogeneity was not associated with generalization of resource use. The low-elevation site had a broader range of available prey items, yet lizards at the high-elevation site demonstrated more generalization in diet. In contrast, the high-elevation site had a broader range of available microhabitats, but the lizard populations at both sites were similarly generalized for shade cover selection and were similarly specialized for ground cover selection. Our results demonstrate that environmental heterogeneity of a particular resource does not necessarily predict the degree to which organisms specialize on that resource.
Collapse
Affiliation(s)
| | - Sarah E. Carter
- Department of Environmental SciencesUniversity of ToledoToledoOhio
| | - Gunnar R. Kramer
- Department of Environmental SciencesUniversity of ToledoToledoOhio
| | - Adam D. Siefker
- Department of Environmental SciencesUniversity of ToledoToledoOhio
| | - Henry M. Streby
- Department of Environmental SciencesUniversity of ToledoToledoOhio
| |
Collapse
|
33
|
Giezendanner J, Bertuzzo E, Pasetto D, Guisan A, Rinaldo A. A minimalist model of extinction and range dynamics of virtual mountain species driven by warming temperatures. PLoS One 2019; 14:e0213775. [PMID: 30883574 PMCID: PMC6422262 DOI: 10.1371/journal.pone.0213775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/28/2019] [Indexed: 11/19/2022] Open
Abstract
A longstanding question in ecology concerns the prediction of the fate of mountain species under climate change, where climatic and geomorphic factors but also endogenous species characteristics are jointly expected to control species distributions. A significant step forward would single out reliably landscape effects, given their constraining role and relative ease of theoretical manipulation. Here, we address population dynamics in ecosystems where the substrates for ecological interactions are mountain landscapes subject to climate warming. We use a minimalist model of metapopulation dynamics based on virtual species (i.e. a suitable assemblage of focus species) where dispersal processes interact with the spatial structure of the landscape. Climate warming is subsumed by an upward shift of species habitat altering the metapopulation capacity of the landscape and hence species viability. We find that the landscape structure is a powerful determinant of species survival, owing to the specific role of the predictably evolving connectivity of the various habitats. Range shifts and lags in tracking suitable habitat experienced by virtual species under warming conditions are singled out in different landscapes. The range of parameters is identified for which these virtual species (characterized by comparable viability thus restricting their possible fitnesses and niche widths) prove unable to cope with environmental change. The statistics of the proportion of species bound to survive is identified for each landscape, providing the temporal evolution of species range shifts and the related expected occupation patterns. A baseline dynamic model for predicting species fates in evolving habitats is thus provided.
Collapse
Affiliation(s)
- Jonathan Giezendanner
- Laboratory of Ecohydrology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Enrico Bertuzzo
- Laboratory of Ecohydrology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Department of Environmental Sciences, Informatics and Statistics, University of Venice Ca’ Foscari, 30123 Venezia Mestre, Italy
| | - Damiano Pasetto
- Laboratory of Ecohydrology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Andrea Rinaldo
- Laboratory of Ecohydrology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Dipartimento ICEA, Università di Padova, 35131 Padova, Italy
| |
Collapse
|
34
|
Mortier F, Jacob S, Vandegehuchte ML, Bonte D. Habitat choice stabilizes metapopulation dynamics by enabling ecological specialization. OIKOS 2018. [DOI: 10.1111/oik.05885] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Frederik Mortier
- Terrestrial Ecology Unit, Dept of Biology, Ghent Univ Karel Lodewijk Ledeganckstraat 35 BE‐9000 Ghent Belgium
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, CNRS UMR5321 Moulis France
- Earth and Life Inst., Biodiversity Research Centre, Univ. Catholique de Louvain Louvain‐la‐Neuve Belgium
| | - Martijn L. Vandegehuchte
- Terrestrial Ecology Unit, Dept of Biology, Ghent Univ Karel Lodewijk Ledeganckstraat 35 BE‐9000 Ghent Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit, Dept of Biology, Ghent Univ Karel Lodewijk Ledeganckstraat 35 BE‐9000 Ghent Belgium
| |
Collapse
|