1
|
Rezaeifar M, Shahbaz S, Peters AC, Gibson SB, Elahi S. Polyfunctional CD8 +CD226 +RUNX2 hi effector T cells are diminished in advanced stages of chronic lymphocytic leukemia. Mol Oncol 2025; 19:1347-1370. [PMID: 39777847 PMCID: PMC12077284 DOI: 10.1002/1878-0261.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
CD8+ T cells, a subset of T cells identified by the surface glycoprotein CD8, particularly those expressing the co-stimulatory molecule CD226, play a crucial role in the immune response to malignancies. However, their role in chronic lymphocytic leukemia (CLL), an immunosuppressive disease, has not yet been explored. We studied 64 CLL patients and 25 age- and sex-matched healthy controls (HCs). We analyzed the proportion of CD226-expressing cells among different CD8+ T cell subsets (including naïve, central memory, effector memory, and effectors) in CLL patients, stratified by Rai stage and immunoglobulin heavy-chain variable region gene (IgHV) mutation status. Additionally, we compared the effector functions of CD8+CD226+ cells and their CD226- counterparts. We also quantified cytokine and chemokine levels in the plasma of CLL and HCs. Furthermore, we reanalyzed the publicly available bulk RNA-seq on CD226+ and CD226-CD8+ T cells. Finally, we evaluated the impact of elevated cytokines/chemokines on CD226 expression. Our results showed that CD226-expressing cells were significantly decreased within the effector memory and effector CD8+ T cell subsets in CLL patients with advanced Rai stages and unmutated IgHV, a marker of poor prognosis. These cells displayed robust effector functions, including cytokine production, cytolytic activity, degranulation, proliferation, and migration capacity. In contrast, CD8+CD226- T cells displayed an exhausted phenotype with reduced Runt-related transcription factor 2 (RUNX2) expression. Elevated levels of interleukin-6 (IL-6) and macrophage inflammatory protein-1 beta (MIP-1β) were inversely correlated with the frequency of CD8+CD226+ T cells and may contribute to the downregulation of CD226, possibly leading to T cell dysfunction in CLL. Our findings highlight the critical role of CD8+CD226+RUNX2hi T cells in CLL and suggest that their reduction is associated with disease progression and poor clinical outcomes. This study also underscores the potential of targeting IL-6 and MIP-1β to preserve polyfunctional CD8+CD226+ T cells as a promising immunotherapy strategy.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Female
- Male
- Middle Aged
- Aged
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cytokines/blood
- Cytokines/metabolism
- T Lineage-Specific Activation Antigen 1
- Neoplasm Staging
- Case-Control Studies
Collapse
Affiliation(s)
- Maryam Rezaeifar
- Division of Foundational Sciences, Mike Petryk School of DentistryUniversity of AlbertaEdmontonCanada
| | - Shima Shahbaz
- Division of Foundational Sciences, Mike Petryk School of DentistryUniversity of AlbertaEdmontonCanada
| | - Anthea C. Peters
- Division of Medical Oncology, Department of OncologyUniversity of AlbertaEdmontonCanada
| | - Spencer B. Gibson
- Division of Medical Oncology, Department of OncologyUniversity of AlbertaEdmontonCanada
- Department of Biochemistry and Medical GeneticsUniversity of AlbertaEdmontonCanada
| | - Shokrollah Elahi
- Division of Foundational Sciences, Mike Petryk School of DentistryUniversity of AlbertaEdmontonCanada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmontonCanada
- Women and Children Health Research InstituteUniversity of AlbertaEdmontonCanada
- Cancer Research Institute of Northern Alberta, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
| |
Collapse
|
2
|
Wang B, Wang X, Wang T, Meng K, Yu T, Xi Y, Hu S, Xiong H, Qu R, Yuan Z, Wang X, Zeng C, Zou W, Tian Y, Cai Y, Fu S, Fu X, Li L. Targeting PD-1 and CD85j can restore intratumoral CD4 + GzmB + T-cell functions to combat MHC-II-expressing tumors. J Immunother Cancer 2025; 13:e010890. [PMID: 40169283 PMCID: PMC11962805 DOI: 10.1136/jitc-2024-010890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/16/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND A subset of CD4+ T cells with cytotoxic activity has been identified, and these cells exert their effects by expressing perforin and granzymes. Despite the progress made in characterizing cytotoxic CD4+ T cells in various diseases, the status of cytotoxic CD4+ T cells in non-small cell lung cancer (NSCLC) and the underlying mechanisms involved in promoting intratumoral cytotoxic CD4+ T-cell activation remain unclear. METHODS We used flow cytometry to examine the phenotypic and functional properties of CD4+GzmB+ T cells in the peripheral blood and tumor tissues of patients with NSCLC. Loss-of-function analyses and RNA sequencing were used to identify the underlying mechanisms involved in the effects of interleukin (IL)-15 on the restoration of CD4+GzmB+ T-cell function in vitro. A patient-derived lung cancer explant model and an animal model were used to verify the effects of immune checkpoint inhibitors on CD4+GzmB+ T-cell activation. RESULTS In patients with NSCLC, impaired cytolytic function of tumor-infiltrated granzyme B (GzmB)-expressing CD4+ T cells was restored by IL-15 through activation of the AKT-FOXO1-T-bet axis. Moreover, IL-15 stimulation increased solute carrier family 7 member 5 (SLC7A5) expression in CD4+GzmB+ T cells in an Protein Kinase B (AKT)-dependent manner, and inhibition of SLC7A5 abrogated the effect of IL-15 on CD4+GzmB+ T cells. Additionally, we showed that the immune checkpoint molecules programmed cell death-1 (PD-1) and CD85j were mutually exclusively expressed in CD4+GzmB+ T cells and that dual targeting of PD-1 and CD85j enhanced the effector function of CD4+GzmB+ T cells by activating the AKT pathway. Notably, tumor cells expressing major histocompatibility complex (MHC)-II and IL-15 determine the effectiveness of CD4+GzmB+ T-cell-mediated antitumor immunity in response to immunotherapy. CONCLUSIONS Our study demonstrated that tumor-infiltrating CD4+GzmB+ T cells fail to eliminate tumors. Dual blockade of PD-1 and CD85j alongside IL-15 restores the effector function of CD4+GzmB+ T cells and drives CD4+GzmB+ T-cell transformation in the tumor microenvironment to combat MHC-II-expressing tumors.
Collapse
Affiliation(s)
- Boyu Wang
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Xu Wang
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Tianlai Wang
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Kelin Meng
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Taiyan Yu
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Yu Xi
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Shaojie Hu
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Hui Xiong
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Rirong Qu
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Zhiwei Yuan
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Xue Wang
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Chenxi Zeng
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Wenbin Zou
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Yitao Tian
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Yixin Cai
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Shengling Fu
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Xiangning Fu
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Lequn Li
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| |
Collapse
|
3
|
Wheeler BD, Gagnon JD, Zhu WS, Muñoz-Sandoval P, Wong SK, Simeonov DS, Li Z, DeBarge R, Spitzer MH, Marson A, Ansel KM. The lncRNA Malat1 inhibits miR-15/16 to enhance cytotoxic T cell activation and memory cell formation. eLife 2023; 12:RP87900. [PMID: 38127070 PMCID: PMC10735224 DOI: 10.7554/elife.87900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Proper activation of cytotoxic T cells via the T cell receptor and the costimulatory receptor CD28 is essential for adaptive immunity against viruses, intracellular bacteria, and cancers. Through biochemical analysis of RNA:protein interactions, we uncovered a non-coding RNA circuit regulating activation and differentiation of cytotoxic T cells composed of the long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) and the microRNA family miR-15/16. miR-15/16 is a widely and highly expressed tumor suppressor miRNA family important for cell proliferation and survival. miR-15/16 play important roles in T cell responses to viral infection, including the regulation of antigen-specific T cell expansion and memory. Comparative Argonaute-2 high-throughput sequencing of crosslinking immunoprecipitation (AHC) combined with gene expression profiling in normal and miR-15/16-deficient mouse T cells revealed a large network of hundreds of direct miR-15/16 target mRNAs, many with functional relevance for T cell activation, survival and memory formation. Among these targets, Malat1 contained the largest absolute magnitude miR-15/16-dependent AHC peak. This binding site was among the strongest lncRNA:miRNA interactions detected in the T cell transcriptome. We used CRISPR targeting with homology directed repair to generate mice with a 5-nucleotide mutation in the miR-15/16-binding site in Malat1. This mutation interrupted Malat1:miR-15/16 interaction, and enhanced the repression of other miR-15/16 target genes, including CD28. Interrupting Malat1 interaction with miR-15/16 decreased cytotoxic T cell activation, including the expression of interleukin 2 (IL-2) and a broader CD28-responsive gene program. Accordingly, Malat1 mutation diminished memory cell persistence in mice following LCMV Armstrong and Listeria monocytogenes infection. This study marks a significant advance in the study of long non-coding RNAs in the immune system by ascribing cell-intrinsic, sequence-specific in vivo function to Malat1. These findings have implications for T cell-mediated autoimmune diseases, antiviral and anti-tumor immunity, as well as lung adenocarcinoma and other malignancies where Malat1 is overexpressed.
Collapse
Affiliation(s)
- Benjamin D Wheeler
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| | - John D Gagnon
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| | - Wandi S Zhu
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| | - Priscila Muñoz-Sandoval
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| | - Simon K Wong
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
| | - Dimitre S Simeonov
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
| | - Rachel DeBarge
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
- Department of Otolaryngology-Head and Neck Surgery, University of California San FranciscoSan FranciscoUnited States
| | - Matthew H Spitzer
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
- Department of Otolaryngology-Head and Neck Surgery, University of California San FranciscoSan FranciscoUnited States
- Parker Institute for Cancer Immunotherapy, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Alexander Marson
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
- Department of Medicine, University of California San FranciscoLexingtonUnited States
| | - K Mark Ansel
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
4
|
Thomson Z, He Z, Swanson E, Henderson K, Phalen C, Zaim SR, Pebworth MP, Okada LY, Heubeck AT, Roll CR, Hernandez V, Weiss M, Genge PC, Reading J, Giles JR, Manne S, Dougherty J, Jasen CJ, Greenplate AR, Becker LA, Graybuck LT, Vasaikar SV, Szeto GL, Savage AK, Speake C, Buckner JH, Li XJ, Bumol TF, Wherry EJ, Torgerson TR, Vella LA, Henrickson SE, Skene PJ, Gustafson CE. Trimodal single-cell profiling reveals a novel pediatric CD8αα + T cell subset and broad age-related molecular reprogramming across the T cell compartment. Nat Immunol 2023; 24:1947-1959. [PMID: 37845489 PMCID: PMC10602854 DOI: 10.1038/s41590-023-01641-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/07/2023] [Indexed: 10/18/2023]
Abstract
Age-associated changes in the T cell compartment are well described. However, limitations of current single-modal or bimodal single-cell assays, including flow cytometry, RNA-seq (RNA sequencing) and CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing), have restricted our ability to deconvolve more complex cellular and molecular changes. Here, we profile >300,000 single T cells from healthy children (aged 11-13 years) and older adults (aged 55-65 years) by using the trimodal assay TEA-seq (single-cell analysis of mRNA transcripts, surface protein epitopes and chromatin accessibility), which revealed that molecular programming of T cell subsets shifts toward a more activated basal state with age. Naive CD4+ T cells, considered relatively resistant to aging, exhibited pronounced transcriptional and epigenetic reprogramming. Moreover, we discovered a novel CD8αα+ T cell subset lost with age that is epigenetically poised for rapid effector responses and has distinct inhibitory, costimulatory and tissue-homing properties. Together, these data reveal new insights into age-associated changes in the T cell compartment that may contribute to differential immune responses.
Collapse
Affiliation(s)
| | - Ziyuan He
- Allen Institute for Immunology, Seattle, WA, USA
| | - Elliott Swanson
- Allen Institute for Immunology, Seattle, WA, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Cole Phalen
- Allen Institute for Immunology, Seattle, WA, USA
| | | | | | | | | | - Charles R Roll
- Allen Institute for Immunology, Seattle, WA, USA
- Microbiology, Immunology and Cancer Biology (MICaB) Program, University of Minnesota, Minneapolis, Minneapolis, MN, USA
| | | | - Morgan Weiss
- Allen Institute for Immunology, Seattle, WA, USA
| | | | | | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jeanette Dougherty
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - C J Jasen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Allison R Greenplate
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | - Suhas V Vasaikar
- Allen Institute for Immunology, Seattle, WA, USA
- Seagen, Bothell, WA, USA
| | - Gregory L Szeto
- Allen Institute for Immunology, Seattle, WA, USA
- Seagen, Bothell, WA, USA
| | | | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Xiao-Jun Li
- Allen Institute for Immunology, Seattle, WA, USA
| | | | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Laura A Vella
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah E Henrickson
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
5
|
Wheeler BD, Gagnon JD, Zhu WS, Muñoz-Sandoval P, Wong SK, Simeonov DR, Li Z, Debarge R, Spitzer MH, Marson A, Ansel KM. The lncRNA Malat1 Inhibits miR-15/16 to Enhance Cytotoxic T Cell Activation and Memory Cell Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.536843. [PMID: 37547023 PMCID: PMC10401941 DOI: 10.1101/2023.04.14.536843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Proper activation of cytotoxic T cells via the T cell receptor and the costimulatory receptor CD28 is essential for adaptive immunity against viruses, many intracellular bacteria and cancers. Through biochemical analysis of RNA:protein interactions, we uncovered a non-coding RNA circuit regulating activation and differentiation of cytotoxic T cells composed of the long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) and the microRNA family miR-15/16. miR-15/16 is a widely and highly expressed tumor suppressor miRNA family important for cell proliferation and survival. miR-15/16 also play important roles in T cell responses to viral infection, including the regulation of antigen-specific T cell expansion and T cell memory. Comparative Argonaute-2 high throughput sequencing of crosslinking immunoprecipitation (Ago2 HITS-CLIP, or AHC) combined with gene expression profiling in normal and miR-15/16-deficient T cells revealed a large network of several hundred direct miR-15/16 target mRNAs, many with functional relevance for T cell activation, survival and memory formation. Among these targets, the long non-coding RNA Malat1 contained the largest absolute magnitude miR-15/16-dependent AHC peak in T cells. This binding site was also among the strongest lncRNA:miRNA interactions detected in the T cell transcriptome. We used CRISPR targeting with homology directed repair to generate mice with a 5-nucleotide mutation in the miR-15/16 binding site in Malat1. This mutation interrupted Malat1:miR-15/16 interaction, and enhanced the repression of other miR-15/16 target genes, including CD28. Interrupting Malat1 interaction with miR-15/16 decreased cytotoxic T cell activation, including the expression of IL-2 and a broader CD28-responsive gene program. Accordingly, Malat1 mutation diminished memory cell persistence following LCMV Armstrong and Listeria monocytogenes infection. This study marks a significant advance in the study of long noncoding RNAs in the immune system by ascribing cell-intrinsic, sequence-specific in vivo function to Malat1. These findings have implications for T cell-mediated autoimmune diseases, antiviral and anti-tumor immunity, as well as lung adenocarcinoma and other malignancies where Malat1 is overexpressed.
Collapse
Affiliation(s)
- Benjamin D Wheeler
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| | - John D Gagnon
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| | - Wandi S Zhu
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| | - Priscila Muñoz-Sandoval
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| | - Simon K Wong
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Dimitre R Simeonov
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Rachel Debarge
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew H Spitzer
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Alexander Marson
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - K Mark Ansel
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Zeng X, Xiao J, Bai X, Liu Y, Zhang M, Liu J, Lin Z, Zhang Z. Research progress on the circRNA/lncRNA-miRNA-mRNA axis in gastric cancer. Pathol Res Pract 2022; 238:154030. [PMID: 36116329 DOI: 10.1016/j.prp.2022.154030] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 01/19/2023]
Abstract
Gastric cancer is one of the most common malignant tumours worldwide. Genetic and epigenetic alterations are key factors in gastric carcinogenesis and drug resistance to chemotherapy. Competing endogenous RNA (ceRNA) regulation models have defined circRNA/lncRNA as miRNA sponges that indirectly regulate miRNA downstream target genes. The ceRNA regulatory network is related to the malignant biological behaviour of gastric cancer. The circRNA/lncRNA-miRNA-mRNA axis may be a marker for the early diagnosis and prognosis of gastric cancer and a potential therapeutic target for gastric cancer. Exosomal ncRNAs play an important role in gastric cancer and are expected to be ideal biomarkers for the diagnosis, prognosis, and treatment of gastric cancer. This review summarizes the specific ceRNA regulatory network (circRNA/lncRNA-miRNA-mRNA) discovered in gastric cancer in recent years, which may provide new ideas or strategies for early clinical diagnosis, further development, and application.
Collapse
Affiliation(s)
- Xuemei Zeng
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Juan Xiao
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang 421001, China
| | - Xue Bai
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Yiwen Liu
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Meilan Zhang
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Jiangrong Liu
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Zixuan Lin
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China.
| |
Collapse
|
7
|
Zhou Y, Wang P, Chen XY, Yan BX, Landeck L, Wang ZY, Xu F, Zheng M, Man XY. Sprouty1 exerts a preventive effect on the initiation of psoriasis by inhibiting innate immune antimicrobial peptide cathelicidin and immunocytes. Cell Prolif 2022; 55:e13290. [PMID: 35716036 PMCID: PMC9528767 DOI: 10.1111/cpr.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives Psoriasis is an immune‐mediated skin disease dominated by the cutaneous immune system. Keratinocytes have been considered important triggers that initiate psoriasis. The key molecules and events of keratinocytes that link the innate immune system in psoriasis must be investigated in more detail. Human psoriasis skin and primary human keratinocyte were detected in vitro. Epidermis specific transgenic mouse strain (Krt14‐Sprouty1 tg) was used to further investigate psoriasis‐like skin inflammation in vivo. Materials and Methods Bulk RNA sequencing of primary human keratinocyte screened differentially expressed genes, which was confirmed by quantitative real time PCR and Western Blot (WB). Moreover, we concomitantly reviewed open‐accessed published RNAseq datasets of human psoriatic skin from GEO database. Immunohistochemical staining and immunofluorescence were used to detect Sprouty1 (SPRY1) expression in human psoriatic skin with and without anti‐psoriasis treatments. Krt14‐Sprouty1 tg was used to further investigate psoriasis‐like skin inflammation, and followed by Hematoxylin and Eosin (HE) Staining, enzyme linked immunosorbent assay (ELISA), Western Blot and flow cytometry. Results Our data showed that Sprouty1 was decreased in psoriatic skin and keratinocytes. In imiquimod‐induced psoriasis‐like skin inflammation, the production of cathelicidin (camp/LL37) was inhibited by suppressing signal transducer and activator of transcription3 (Stat3) activation when Sprouty1 overexpressed in mouse epidermal keratinocytes. Moreover, CD11b+CCR2+ dendritic cells, IL‐17A+ γδT cells, and Ly6C+ CD11c+ monocyte‐derived dendritic cells were decreased in Krt14‐Sprouty1 tg (STG) imiquimod‐induced cutaneous inflammation. Conclusions These findings indicate that Sprouty1 expressed in keratinocytes has a suppressive role in imiquimod‐induced skin inflammation mediated by inhibiting the production of cathelicidin. Collectively, Sprouty1 plays a preventive role in psoriatic skin. Our data provide new evidence for the pathogenesis of psoriatic keratinocytes, and the link cutaneous innate immunity, that indicated Sprouty1 is a potential novel therapeutic target.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Wang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue-Yan Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xi Yan
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lilla Landeck
- Department of Dermatology, Ernst von Bergmann General Hospital, Potsdam, Germany
| | - Zhao-Yuan Wang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Xu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Koppensteiner L, Mathieson L, O’Connor RA, Akram AR. Cancer Associated Fibroblasts - An Impediment to Effective Anti-Cancer T Cell Immunity. Front Immunol 2022; 13:887380. [PMID: 35479076 PMCID: PMC9035846 DOI: 10.3389/fimmu.2022.887380] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
The presence of functionally efficient cytotoxic T lymphocytes (CTL) in the Tumour nest is crucial in mediating a successful immune response to cancer. The detection and elimination of cancer cells by CTL can be impaired by cancer-mediated immune evasion. In recent years, it has become increasingly clear that not only neoplastic cells themselves, but also cells of the tumour microenvironment (TME) exert immunosuppressive functions and thereby play an integral part in the immune escape of cancer. The most abundant stromal cells of the TME, cancer associated fibroblasts (CAFs), promote tumour progression via multiple pathways and play a role in dampening the immune response to cancer. Recent research indicates that T cells react to CAF signalling and establish bidirectional crosstalk that plays a significant role in the tumour immune response. This review discusses the various mechanisms by which the CAF/T cell crosstalk may impede anti-cancer immunity.
Collapse
Affiliation(s)
- Lilian Koppensteiner
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Layla Mathieson
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. O’Connor
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ahsan R. Akram
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Lau P, Shen M, Ma F, Chen Y, Zhang J, Su J, Chen X, Liu H. A Bayesian network meta-analysis of comparison of cancer therapeutic vaccines for melanoma. J Eur Acad Dermatol Venereol 2021; 35:1976-1986. [PMID: 34077578 PMCID: PMC8518424 DOI: 10.1111/jdv.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/30/2021] [Indexed: 12/01/2022]
Abstract
Several approaches to active immunotherapy for melanoma, including peptide-based vaccines (PVs), autologous tumour cell vaccines (TCVs), allogeneic TCVs and autologous dendritic cell vaccines (DCVs), have been investigated in clinical trials. However, comprehensive evidence comparing these interventions remains unavailable. The objective of this study was to expand previous work to compare and rank the immunotherapeutic strategies for melanoma in terms of overall survival and toxic effects with a Bayesian network meta-analysis. Methodologically, we performed a network meta-analysis of head-to-head randomized controlled trials comparing and ranking cancer vaccine approaches for patients with melanoma. PubMed, MEDLINE, Embase, the Cochrane Central Register of Controlled Trials, the WHO International Clinical Trials Registry Platform and ClinicalTrials.gov were searched up to 31 July 2020. We estimated summary hazard ratios for death and risk ratios for toxicity. The effects of the underlying prognostic variable on survival benefits were examined by meta-regression. We performed subgroup analysis for the outcomes based on metastatic categories. Overall, we identified 4776 citations, of which 15 head-to-head randomized controlled trials (3162 participants) were included in the analysis. In terms of efficacy, allogeneic tumour cell vaccines plus immunotherapy adjuvants, peptide-based vaccines plus immunotherapy adjuvants and standard therapy were more effective than peptide vaccines. The proportion of women was inversely associated with mortality risk. For safety, all treatments were inferior to allogeneic tumour cell vaccines except for allogeneic tumour cell vaccines plus chemotherapy. Peptide vaccines plus immunotherapy adjuvants led to an increased risk of adverse events compared to allogeneic tumour cell vaccines plus immunotherapy adjuvants. These results suggest that allogeneic TCV and autologous DCV are better than standard therapy. PV plus immune modulators are the most effective strategy among all comparable strategies but is associated with increased toxicity. Any combination regimens for cancer therapeutic vaccines need to be balanced between risk and benefit profiles.
Collapse
Affiliation(s)
- P. Lau
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaHunanChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaHunanChina
| | - M. Shen
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaHunanChina
| | - F. Ma
- Department of Health Management CenterXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Y. Chen
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - J. Zhang
- Department of DermatologyShenzhen People’s HospitalThe Second Clinical Medical CollegeThe First Affiliated HospitalJinan UniversitySouthern University of Science and TechnologyShenzhenGuangdongChina
| | - J. Su
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaHunanChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaHunanChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
- Research Center of Molecular MetabolomicsXiangya HospitalCentral South UniversityChangshaChina
| | - X. Chen
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaHunanChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
- Research Center of Molecular MetabolomicsXiangya HospitalCentral South UniversityChangshaChina
| | - H. Liu
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaHunanChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaHunanChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
- Research Center of Molecular MetabolomicsXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
10
|
Sripada A, Sirohi K, Michalec L, Guo L, McKay JT, Yadav S, Verma M, Good J, Rollins D, Gorska MM, Alam R. Sprouty2 positively regulates T cell function and airway inflammation through regulation of CSK and LCK kinases. PLoS Biol 2021; 19:e3001063. [PMID: 33684096 PMCID: PMC7971865 DOI: 10.1371/journal.pbio.3001063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/18/2021] [Accepted: 02/12/2021] [Indexed: 11/19/2022] Open
Abstract
The function of Sprouty2 (Spry2) in T cells is unknown. Using 2 different (inducible and T cell-targeted) knockout mouse strains, we found that Spry2 positively regulated extracellular signal-regulated kinase 1/2 (ERK1/2) signaling by modulating the activity of LCK. Spry2-/- CD4+ T cells were unable to activate LCK, proliferate, differentiate into T helper cells, or produce cytokines. Spry2 deficiency abrogated type 2 inflammation and airway hyperreactivity in a murine model of asthma. Spry2 expression was higher in blood and airway CD4+ T cells from patients with asthma, and Spry2 knockdown impaired human T cell proliferation and cytokine production. Spry2 deficiency up-regulated the lipid raft protein caveolin-1, enhanced its interaction with CSK, and increased CSK interaction with LCK, culminating in augmented inhibitory phosphorylation of LCK. Knockdown of CSK or dislodgment of caveolin-1-bound CSK restored ERK1/2 activation in Spry2-/- T cells, suggesting an essential role for Spry2 in LCK activation and T cell function.
Collapse
Affiliation(s)
- Anand Sripada
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Kapil Sirohi
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Lidia Michalec
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Lei Guo
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Jerome T McKay
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Sangya Yadav
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Mukesh Verma
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - James Good
- Division of Pulmonary and Critical Care, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Donald Rollins
- Division of Pulmonary and Critical Care, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Magdalena M Gorska
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rafeul Alam
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
11
|
Jakic B, Olson WJ, Siegmund K, Klepsch V, Kimpel J, Labi V, Zehn D, Baier G, Hermann-Kleiter N. Loss of the orphan nuclear receptor NR2F6 enhances CD8 + T-cell memory via IFN-γ. Cell Death Dis 2021; 12:187. [PMID: 33589606 PMCID: PMC7884426 DOI: 10.1038/s41419-021-03470-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Memory formation is a hallmark of T cell-mediated immunity, but how differentiation into either short-lived effector cells (SLECs, CD127−KLRG1+) or memory precursors cells (MPECs, CD127+KLRG1−) and subsequent regulation of long-term memory is adjusted is incompletely understood. Here, we show that loss of the nuclear orphan receptor NR2F6 in germ-line Nr2f6-deficient mice enhances antigen-specific CD8+ memory formation up to 70 days after bacterial infection with Listeria monocytogenes (LmOVA) and boosts inflammatory IFN-γ, TNFα, and IL-2 cytokine recall responses. Adoptive transfer experiments using Nr2f6−/− OT-I T-cells showed that the augmented memory formation is CD8+ T-cell intrinsic. Although the relative difference between the Nr2f6+/+ and Nr2f6−/− OT-I memory compartment declines over time, Nr2f6-deficient OT-I memory T cells mount significantly enhanced IFN-γ responses upon reinfection with increased clonal expansion and improved host antigen-specific CD8+ T-cell responses. Following a secondary adoptive transfer into naïve congenic mice, Nr2f6-deficient OT-I memory T cells are superior in clearing LmOVA infection. Finally, we show that the commitment to enhanced memory within Nr2f6-deficient OT-I T cells is established in the early phases of the antibacterial immune response and is IFN-γ mediated. IFN-γ blocking normalized MPEC formation of Nr2f6-deficient OT-I T cells. Thus, deletion or pharmacological inhibition of NR2F6 in antigen-specific CD8+ T cells may have therapeutic potential for enhancing early IFN-γ production and consequently the functionality of memory CD8+ T cells in vivo.
Collapse
Affiliation(s)
- Bojana Jakic
- Translational Cell Genetics, Institute of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - William J Olson
- Translational Cell Genetics, Institute of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria.,Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Kerstin Siegmund
- Translational Cell Genetics, Institute of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Victoria Klepsch
- Translational Cell Genetics, Institute of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Labi
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Gottfried Baier
- Translational Cell Genetics, Institute of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Institute of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
12
|
Chen QY, Li YN, Wang XY, Zhang X, Hu Y, Li L, Suo DQ, Ni K, Li Z, Zhan JR, Zeng TT, Zhu YH, Li Y, Ma LJ, Guan XY. Tumor Fibroblast-Derived FGF2 Regulates Expression of SPRY1 in Esophageal Tumor-Infiltrating T Cells and Plays a Role in T-cell Exhaustion. Cancer Res 2020; 80:5583-5596. [PMID: 33093168 DOI: 10.1158/0008-5472.can-20-1542] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
T-cell exhaustion was initially identified in chronic infection in mice and was subsequently described in humans with cancer. Although the distinct signature of exhausted T (TEX) cells in cancer has been well investigated, the molecular mechanism of T-cell exhaustion in cancer is not fully understood. Using single-cell RNA sequencing, we report here that TEX cells in esophageal cancer are more heterogeneous than previously clarified. Sprouty RTK signaling antagonist 1 (SPRY1) was notably enriched in two subsets of exhausted CD8+ T cells. When overexpressed, SPRY1 impaired T-cell activation by interacting with CBL, a negative regulator of ZAP-70 tyrosine phosphorylation. Data from the Tumor Immune Estimation Resource revealed a strong correlation between FGF2 and SPRY1 expression in esophageal cancer. High expression of FGF2 was evident in fibroblasts from esophageal cancer tissue and correlated with poor overall survival. In vitro administration of FGF2 significantly upregulated expression of SPRY1 in CD8+ T cells and attenuated T-cell receptor-triggered CD8+ T-cell activation. A mouse tumor model confirmed that overexpression of FGF2 in fibroblasts significantly upregulated SPRY1 expression in TEX cells, impaired T-cell cytotoxic activity, and promoted tumor growth. Thus, these findings identify FGF2 as an important regulator of SPRY1 expression involved in establishing the dysfunctional state of CD8+ T cells in esophageal cancer. SIGNIFICANCE: These findings reveal FGF2 as an important regulator of SPRY1 expression involved in establishing the dysfunctional state of CD8+ T cells and suggest that inhibition of FGF2 has potential clinical value in ESCC. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5583/F1.large.jpg.
Collapse
Affiliation(s)
- Qing-Yun Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Yi-Ni Li
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P.R. China
| | - Xin-Yue Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Xu Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Yi Hu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Lei Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Da-Qin Suo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Ke Ni
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P.R. China
| | - Zhuo Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Jia-Rong Zhan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Ting-Ting Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Ying-Hui Zhu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Li-Jia Ma
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P.R. China.
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China. .,Department of Clinical Oncology, The University of Hong Kong, Hong Kong, P.R. China
| |
Collapse
|
13
|
Jiang C, Liu J, Guo M, Gao X, Wu X, Bai N, Guo W, Li N, Yi F, Cheng R, Xu H, Zhou T, Jiang B, Sun T, Wei S, Cao L. The NAD-dependent deacetylase SIRT2 regulates T cell differentiation involved in tumor immune response. Int J Biol Sci 2020; 16:3075-3084. [PMID: 33061819 PMCID: PMC7545715 DOI: 10.7150/ijbs.49735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Sirtuin 2 (SIRT2), an NAD+-dependent deacetylase, regulates multiple biologic and pathologic processes including mitosis, genomic integrity, cell homeostasis and tumorigenesis. However, the role of SIRT2 in the immune response to cancer remains largely elusive. In this study, we found significantly lower expression of SIRT2 in peripheral T lymphocytes from breast cancer patients when compared to normal individuals. Moreover, SIRT2 levels positively correlated with CD8+ effector memory T (TEM) cells in breast cancer patients. In keeping with these findings, altered T cells differentiation manifested as decreased TEM cells and increased naive T cells were observed in Sirt2 deficient mice. The upregulation of CD8+ TEM by SIRT2 might attribute to the activation of aerobic oxidation as well as the inhibition of GSK3β acetylation in CD8+ T cells. Taken together, these results suggest that SIRT2 participate in tumor immune response by regulating T cell differentiation, which may provide novel insight for tumor prevention and immune therapy.
Collapse
Affiliation(s)
- Cui Jiang
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis, Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110042, Liaoning, China.,Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning, China
| | - Jingwei Liu
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis, Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110042, Liaoning, China
| | - Min Guo
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis, Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110042, Liaoning, China
| | - Xiaoxin Gao
- Central laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning, China
| | - Xuan Wu
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis, Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110042, Liaoning, China
| | - Ning Bai
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis, Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110042, Liaoning, China
| | - Wendong Guo
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis, Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110042, Liaoning, China
| | - Na Li
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis, Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110042, Liaoning, China
| | - Fei Yi
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis, Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110042, Liaoning, China
| | - Rong Cheng
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis, Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110042, Liaoning, China
| | - Hongde Xu
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis, Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110042, Liaoning, China
| | - Tingting Zhou
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis, Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110042, Liaoning, China
| | - Bo Jiang
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis, Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110042, Liaoning, China
| | - Tao Sun
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning, China
| | - Shi Wei
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35249-7331, USA
| | - Liu Cao
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis, Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110042, Liaoning, China
| |
Collapse
|
14
|
Gagnon JD, Kageyama R, Shehata HM, Fassett MS, Mar DJ, Wigton EJ, Johansson K, Litterman AJ, Odorizzi P, Simeonov D, Laidlaw BJ, Panduro M, Patel S, Jeker LT, Feeney ME, McManus MT, Marson A, Matloubian M, Sanjabi S, Ansel KM. miR-15/16 Restrain Memory T Cell Differentiation, Cell Cycle, and Survival. Cell Rep 2020; 28:2169-2181.e4. [PMID: 31433990 PMCID: PMC6715152 DOI: 10.1016/j.celrep.2019.07.064] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/03/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
Coordinate control of T cell proliferation, survival, and differentiation are essential for host protection from pathogens and cancer. Long-lived memory cells, whose precursors are formed during the initial immunological insult, provide protection from future encounters, and their generation is the goal of many vaccination strategies. microRNAs (miRNAs) are key nodes in regulatory networks that shape effective T cell responses through the fine-tuning of thousands of genes. Here, using compound conditional mutant mice to eliminate miR-15/16 family miRNAs in T cells, we show that miR-15/16 restrict T cell cycle, survival, and memory T cell differentiation. High throughput sequencing of RNA isolated by cross-linking immunoprecipitation of AGO2 combined with gene expression analysis in miR-15/16-deficient T cells indicates that these effects are mediated through the direct inhibition of an extensive network of target genes within pathways critical to cell cycle, survival, and memory.
Collapse
Affiliation(s)
- John D Gagnon
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robin Kageyama
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hesham M Shehata
- Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Marlys S Fassett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Darryl J Mar
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eric J Wigton
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kristina Johansson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adam J Litterman
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pamela Odorizzi
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dimitre Simeonov
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian J Laidlaw
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marisella Panduro
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sana Patel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lukas T Jeker
- Diabetes Center and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Margaret E Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mehrdad Matloubian
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shomyseh Sanjabi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - K Mark Ansel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Transcriptome Analysis Reveals Inhibitory Effects of Lentogenic Newcastle Disease Virus on Cell Survival and Immune Function in Spleen of Commercial Layer Chicks. Genes (Basel) 2020; 11:genes11091003. [PMID: 32859030 PMCID: PMC7565929 DOI: 10.3390/genes11091003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
As a major infectious disease in chickens, Newcastle disease virus (NDV) causes considerable economic losses in the poultry industry, especially in developing countries where there is limited access to effective vaccination. Therefore, enhancing resistance to the virus in commercial chickens through breeding is a promising way to promote poultry production. In this study, we investigated gene expression changes at 2 and 6 days post inoculation (dpi) at day 21 with a lentogenic NDV in a commercial egg-laying chicken hybrid using RNA sequencing analysis. By comparing NDV-challenged and non-challenged groups, 526 differentially expressed genes (DEGs) (false discovery rate (FDR) < 0.05) were identified at 2 dpi, and only 36 at 6 dpi. For the DEGs at 2 dpi, Ingenuity Pathway Analysis predicted inhibition of multiple signaling pathways in response to NDV that regulate immune cell development and activity, neurogenesis, and angiogenesis. Up-regulation of interferon induced protein with tetratricopeptide repeats 5 (IFIT5) in response to NDV was consistent between the current and most previous studies. Sprouty RTK signaling antagonist 1 (SPRY1), a DEG in the current study, is in a significant quantitative trait locus associated with virus load at 6 dpi in the same population. These identified pathways and DEGs provide potential targets to further study breeding strategy to enhance NDV resistance in chickens.
Collapse
|
16
|
Pham TN, Spaulding C, Munshi HG. Controlling TIME: How MNK Kinases Function to Shape Tumor Immunity. Cancers (Basel) 2020; 12:cancers12082096. [PMID: 32731503 PMCID: PMC7465005 DOI: 10.3390/cancers12082096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
A number of studies have clearly established the oncogenic role for MAPK-interacting protein kinases (MNK) in human malignancies. Modulation of MNK activity affects translation of mRNAs involved in cancer development, progression, and resistance to therapies. As a result, there are ongoing efforts to develop and evaluate MNK inhibitors for cancer treatment. However, it is important to recognize that MNK activity also plays an important role in regulating the innate and adaptive immune systems. A better understanding of the role of MNK kinases and MNK-mediated signals in regulating the immune system could help mitigate undesired side effects while maximizing therapeutic efficacy of MNK inhibitors. Here, we provide a systematic review on the function of MNK kinases and their substrates in immune cells.
Collapse
Affiliation(s)
- Thao N.D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence: (T.N.D.P.); (H.G.M.); Tel.: +312-503-0312 (T.N.D.P.); +312-503-2301 (H.G.M.)
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
- Correspondence: (T.N.D.P.); (H.G.M.); Tel.: +312-503-0312 (T.N.D.P.); +312-503-2301 (H.G.M.)
| |
Collapse
|
17
|
Workel HH, van Rooij N, Plat A, Spierings DC, Fehrmann RSN, Nijman HW, de Bruyn M. Transcriptional Activity and Stability of CD39+CD103+CD8+ T Cells in Human High-Grade Endometrial Cancer. Int J Mol Sci 2020; 21:E3770. [PMID: 32471032 PMCID: PMC7312498 DOI: 10.3390/ijms21113770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor-infiltrating CD8+ T cells (TIL) are of the utmost importance in anti-tumor immunity. CD103 defines tumor-resident memory T cells (TRM cells) associated with improved survival and response to immune checkpoint blockade (ICB) across human tumors. Co-expression of CD39 and CD103 marks tumor-specific TRM with enhanced cytolytic potential, suggesting that CD39+CD103+ TRM could be a suitable biomarker for immunotherapy. However, little is known about the transcriptional activity of TRM cells in situ. We analyzed CD39+CD103+ TRM cells sorted from human high-grade endometrial cancers (n = 3) using mRNA sequencing. Cells remained untreated or were incubated with PMA/ionomycin (activation), actinomycin D (a platinum-like chemotherapeutic that inhibits transcription), or a combination of the two. Resting CD39+CD103+ TRM cells were transcriptionally active and expressed a characteristic TRM signature. Activated CD39+CD103+ TRM cells differentially expressed PLEK, TWNK, and FOS, and cytokine genes IFNG, TNF, IL2, CSF2 (GM-CSF), and IL21. Findings were confirmed using qPCR and cytokine production was validated by flow cytometry of cytotoxic TIL. We studied transcript stability and found that PMA-responsive genes and mitochondrial genes were particularly stable. In conclusion, CD39+CD103+ TRM cells are transcriptionally active TRM cells with a polyfunctional, reactivation-responsive repertoire. Secondly, we hypothesize that differential regulation of transcript stability potentiates rapid responses upon TRM reactivation in tumors.
Collapse
Affiliation(s)
- Hagma H. Workel
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.H.W.); (N.v.R.); (A.P.); (H.W.N.)
| | - Nienke van Rooij
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.H.W.); (N.v.R.); (A.P.); (H.W.N.)
| | - Annechien Plat
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.H.W.); (N.v.R.); (A.P.); (H.W.N.)
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Rudolf S. N. Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Hans W. Nijman
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.H.W.); (N.v.R.); (A.P.); (H.W.N.)
| | - Marco de Bruyn
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.H.W.); (N.v.R.); (A.P.); (H.W.N.)
| |
Collapse
|
18
|
Quantitative Phosphoproteomics Reveals System-Wide Phosphorylation Network Altered by Spry in Mouse Mammary Stromal Fibroblasts. Int J Mol Sci 2019; 20:ijms20215400. [PMID: 31671542 PMCID: PMC6862705 DOI: 10.3390/ijms20215400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding the fundamental role of the stroma in normal development and cancer progression has been an emerging focus in recent years. The receptor tyrosine kinase (RTK) signaling pathway has been reported playing critical roles in regulating the normal and cancer microenvironment, but the underlying mechanism is still not very clear. By applying the quantitative phosphoproteomic analysis of Sprouty proteins (SPRYs), generic modulators of RTK signaling and deleted mouse mammary fibroblasts, we quantified a total of 11,215 unique phosphorylation sites. By contrast, 554 phosphorylation sites on 425 proteins had SPRY-responsive perturbations. Of these, 554 phosphosites, 362 sites on 277 proteins, were significantly increased, whereas 192 sites on 167 proteins were decreased. Among the regulated proteins, we identified 31 kinases, 7 phosphatases, and one phosphatase inhibitor that were not systematically characterized before. Furthermore, we reconstructed a phosphorylation network centered on RTK signaling regulated by SPRY. Collectively, this study uncovered a system-wide phosphorylation network regulated by SPRY, providing an additional insight into the complicated RTK signaling pathways involved in the mammary gland microenvironment.
Collapse
|
19
|
Dittmer J, Stütz A, Vanas V, Salhi J, Reisecker JM, Kral RM, Sutterlüty-Fall H. Spatial signal repression as an additional role of Sprouty2 protein variants. Cell Signal 2019; 62:109332. [PMID: 31154002 DOI: 10.1016/j.cellsig.2019.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022]
Abstract
Sprouty2 (Spry2) is a prominent member of a protein family with crucial functions in the modulation of signal transduction. One of its main actions is the repression of mitogen-activated protein kinase (MAPK) pathway in response to growth factor-induced signalling. A common single nucleotide polymorphism within the Spry2 gene creates two protein variants where a proline adjacent to the serine rich domain is converted to an additional serine. Both protein variants perform similar functions although their efficiency in fulfilling these tasks varies. In this report, we used biochemical fractionation methods as well as confocal microscopy to analyse quantitative and qualitative differences in the distribution of Spry2 variants. We found that Spry2 proteins localize not solely to the plasma membrane, but also to other membrane engulfed compartments like for example the Golgi apparatus. In these less dense organelles, predominantly slower migrating forms reside indicating that posttranslational modification contributes to the distribution profile of Spry2. However there is no significant difference in the distribution of the two variants. Additionally, we found that Spry2 could be found exclusively in membrane fractions irrespective of the mitogen availability and the phosphorylation status. Considering the interference of extracellular signal-regulated kinase (ERK) activation in the cytoplasm, both Spry2 variants inhibited the levels of phosphorylated ERK (pERK) significantly to a similar extent. In contrast, the induction profiles of pERK levels were completely different in the nuclei. Again, both Spry2 variants diminished the levels of pERK. While the proline variant lowered the activation throughout the observation period, the serine variant failed to interfere with immediate accumulation of nuclear pERK levels, but the signal duration was shortened. Since the extent of the pERK inhibition in the nuclei was drastically more pronounced than in the cytoplasm, we conclude that Spry2 - in addition to its known functions as a repressor of general ERK phosphorylation - functions as a spatial repressor of nucleic ERK activation. Accordingly, a dominant negative version of Spry2 was only able to enhance the pERK levels of serum-deprived cells in the cytosol, while in the nucleus the intensity of the pERK signal in response to serum addition was significantly increased.
Collapse
Affiliation(s)
- Jakob Dittmer
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Astrid Stütz
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Vanita Vanas
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Jihen Salhi
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Johannes Manfred Reisecker
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Rosana Maria Kral
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Hedwig Sutterlüty-Fall
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Kawazoe T, Taniguchi K. The Sprouty/Spred family as tumor suppressors: Coming of age. Cancer Sci 2019; 110:1525-1535. [PMID: 30874331 PMCID: PMC6501019 DOI: 10.1111/cas.13999] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/04/2023] Open
Abstract
The Ras/Raf/ERK pathway is one of the most frequently dysregulated signaling pathways in various cancers. In some such cancers, Ras and Raf are hotspots for mutations, which cause continuous activation of this pathway. However, in some other cancers, it is known that negative regulators of the Ras/Raf/ERK pathway are responsible for uncontrolled activation. The Sprouty/Spred family is broadly recognized as important negative regulators of the Ras/Raf/ERK pathway, and its expression is downregulated in many malignancies, leading to hyperactivation of the Ras/Raf/ERK pathway. After the discovery of this family, intensive research investigated the mechanism by which it suppresses the Ras/Raf/ERK pathway and its roles in developmental and pathophysiological processes. In this review, we discuss the complicated roles of the Sprouty/Spred family in tumor initiation, promotion, and progression and its future therapeutic potential.
Collapse
Affiliation(s)
- Tetsuro Kawazoe
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Taniguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
|