1
|
Li Y, Jiang H, Zhang Y, Liu L, Wen H, Zheng Y, Zhu W. Linear Interplay Between Raman Shift and Laser Irradiation in Photothermal-Strained Monoclinic Vanadium Dioxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407777. [PMID: 39618011 DOI: 10.1002/smll.202407777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/30/2024] [Indexed: 02/26/2025]
Abstract
Vanadium dioxide as a strongly correlated electron material undergoes metal-insulator phase transitions and ferroelastic domain switching which highly couple to local strain distribution. Understanding the mechanisms and achieving the modulations require precise and high-resolution characterization of strain in vanadium dioxide. Micro-Raman spectroscopy is widely used to nondestructively characterize the strain on the surface of materials. However, vanadium dioxide is sensitive to multi-fields and with multiple physical properties correlated. It is vital and challenging to uncouple the multiple responses of vanadium dioxide to micro-Raman spectroscopy and achieve precise characterization of strain distribution. Herein, a linear relation between Raman shift and laser irradiation is revealed, which is originated from photothermal strain in monoclinic vanadium dioxide. By linear fitting and extrapolation, the strain-dependent coefficient is obtained for drifting of Raman shift and the intrinsic Raman shift without strain or laser irradiation, which enables to precisely characterize the strain distribution in vanadium dioxide.
Collapse
Affiliation(s)
- Yingbo Li
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - He Jiang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanqing Zhang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Linjie Liu
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Haohua Wen
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yue Zheng
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenpeng Zhu
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
2
|
Gavdush AA, Zhelnov VA, Dolganov KB, Bogutskii AA, Garnov SV, Burdanova MG, Ponomarev DS, Shi Q, Zaytsev KI, Komandin GA. Insulator-metal transition in VO 2 film on sapphire studied by broadband dielectric spectroscopy. Sci Rep 2025; 15:3500. [PMID: 39875446 PMCID: PMC11775290 DOI: 10.1038/s41598-025-87573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Vanadium dioxide ([Formula: see text]) is a favorable material platform of modern optoelectronics, since it manifests the reversible temperature-induced insulator-metal transition (IMT) with an abrupt and rapid changes in the conductivity and optical properties. It makes possible applications of such a phase-change material in the ultra-fast optoelectronics and terahertz (THz) technology. Despite the considerable interest to this material, data on its broadband electrodynamic response in different states are still missing in the literature. This hampers the design and implementation of the [Formula: see text]-based devices. In this paper, we combine the Fourier-transform infrared (FTIR) spectroscopy, THz pulsed spectroscopy (TPS), and four-contact probe method to study the [Formula: see text] films prepared by magnetron sputtering on a c-cut sapphire substrate. Considering different temperatures of a substrate and pressures of atmosphere, we reconstruct complex dielectric permittivity of [Formula: see text] film in the frequency range of 0.2-150 THz, along with its static conductivity. The dielectric response is modeled using Lorentz and Drude kernels, which make possible splitting contributions from vibrational modes and free charge carriers to the total dynamic conductivity. By studying [Formula: see text] at different substrate temperatures and atmosphere pressures, we show that IMT appears to be pressure-dependent, which we attribute to the different thermostatic conditions of a sample. Finally, we estimate somewhat optimal thickness and temperature of the [Formula: see text] film in metallic phase for the THz optoelectronic applications. Our finding should be useful for further developments of the [Formula: see text]-based devices and technologies.
Collapse
Affiliation(s)
- Arsenii A Gavdush
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Vladislav A Zhelnov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Kirill B Dolganov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander A Bogutskii
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Sergey V Garnov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Maria G Burdanova
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Dmitry S Ponomarev
- Institute of Ultra-High Frequency Semiconductor Electronics of the Russian Academy of Sciences, Moscow, 117105, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Qiwu Shi
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Kirill I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Gennadii A Komandin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
3
|
Guo FW, Liu WH, Wang Z, Li SS, Wang LW, Luo JW. Photoinduced hidden monoclinic metallic phase of VO 2 driven by local nucleation. Nat Commun 2025; 16:94. [PMID: 39747096 PMCID: PMC11696723 DOI: 10.1038/s41467-024-55760-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
The insulator-to-metal transition in VO2 has garnered extensive attention for its potential applications in ultrafast switches, neuronal network architectures, and storage technologies. However, the photoinduced insulator-to-metal transition remains controversial, especially whether a complete structural transformation from the monoclinic to rutile phase is necessary. Here we employ the real-time time-dependent density functional theory to track the dynamic evolution of atomic and electronic structures in photoexcited VO2, revealing the emergence of a long-lived monoclinic metal phase under low electronic excitation. The emergence of the metal phase in the monoclinic structure originates from the dissociation of the local V-V dimer, driven by the self-trapped and self-amplified dynamics of photoexcited holes, rather than by an electron-electron correction. On the other hand, the monoclinic-to-rutile phase transition does appear at higher electronic excitation. Our findings validate the existence of monoclinic metal phase and provide a comprehensive picture of the insulator-to-metal transition in photoexcited VO2.
Collapse
Affiliation(s)
- Feng-Wu Guo
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hao Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Zhi Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Shu-Shen Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Lin-Wang Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China.
| | - Jun-Wei Luo
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Park Y, Sim H, Lee S, Park WW, Hwang J, Hur P, Lee Y, Lee DK, Song K, Lee J, Kwon OH, Choi SY, Son J. Zero-Strain Metal-Insulator Transition by the Local Fluctuation of Cation Dimerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413546. [PMID: 39604314 DOI: 10.1002/adma.202413546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/10/2024] [Indexed: 11/29/2024]
Abstract
The coupled electronic and structural transitions in metal-insulator transition (MIT) hinder ultrafast switching and ultimate endurance. Decoupling these transitions and achieving a zero-strain electronic MIT can overcome the fundamental limitations of MIT in solid materials. Here, this study demonstrates that iso-valent Ti dopants in supercooled VO2 epitaxial films cause MIT with minimal hysteresis without changing unit-cell volume and crystal symmetry. The Ti dopants in the VO2 lattice locally alter the configuration of V-V pairs, where the long-range ordering in V-V pairs is disrupted, and the nano-domains of V-V dimers are formed. Strikingly, these local V-V dimers persist even above the electronic transition temperature (TMI), facilitating the zero-strain electronic MIT with nanoscale structural heterogeneity. The geometrically compatible interface between insulating and metallic phases drastically enhances switching speed and endurance during electrically and optically driven zero-strain MIT. This discovery offers a fresh perspective on the scientific understanding of MIT and the improved functionality in terms of device speed and reliability by decoupling electronic and structural transitions.
Collapse
Affiliation(s)
- Yunkyu Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37683, Republic of Korea
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Hyeji Sim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37683, Republic of Korea
| | - Sungwon Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won-Woo Park
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jaejin Hwang
- Department of Physics, Pusan National University, Busan, 46241, Republic of Korea
| | - Pyeongkang Hur
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37683, Republic of Korea
| | - Yujeong Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong Kyu Lee
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Song
- Materials Characterization Center, Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan, 46241, Republic of Korea
| | - Oh-Hoon Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37683, Republic of Korea
| | - Junwoo Son
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
5
|
Jung H, Dong S, Zahn D, Vasileiadis T, Seiler H, Schneider R, Michaelis de Vasconcellos S, Taylor VCA, Bratschitsch R, Ernstorfer R, Windsor YW. Element-Specific Ultrafast Lattice Dynamics in Monolayer WSe 2. NANO LETTERS 2024; 24:13671-13677. [PMID: 39431642 PMCID: PMC11528438 DOI: 10.1021/acs.nanolett.4c03611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
We study monolayer WSe2 using ultrafast electron diffraction. We introduce an approach to quantitatively extract atomic-site-specific information, providing an element-specific view of incoherent atomic vibrations following femtosecond excitation. Via differences between W and Se vibrations, we identify stages in the nonthermal evolution of the phonon population. Combined with a calculated phonon dispersion, this element specificity enables us to identify a long-lasting overpopulation of specific optical phonons and to interpret the stages as energy transfer processes between specific phonon groups. These results demonstrate the appeal of resolving element-specific vibrational information in the ultrafast time domain.
Collapse
Affiliation(s)
- Hyein Jung
- Institute
for Optics and Atomic Physics, Technical
University Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Shuo Dong
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Daniela Zahn
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Thomas Vasileiadis
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Helene Seiler
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Robert Schneider
- Institute
of Physics and Center for Nanotechnology, University of Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | | | - Victoria C. A. Taylor
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Rudolf Bratschitsch
- Institute
of Physics and Center for Nanotechnology, University of Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - Ralph Ernstorfer
- Institute
for Optics and Atomic Physics, Technical
University Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Yoav William Windsor
- Institute
for Optics and Atomic Physics, Technical
University Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
6
|
Stoica VA, Yang T, Das S, Cao Y, Wang HH, Kubota Y, Dai C, Padma H, Sato Y, Mangu A, Nguyen QL, Zhang Z, Talreja D, Zajac ME, Walko DA, DiChiara AD, Owada S, Miyanishi K, Tamasaku K, Sato T, Glownia JM, Esposito V, Nelson S, Hoffmann MC, Schaller RD, Lindenberg AM, Martin LW, Ramesh R, Matsuda I, Zhu D, Chen LQ, Wen H, Gopalan V, Freeland JW. Non-equilibrium pathways to emergent polar supertextures. NATURE MATERIALS 2024; 23:1394-1401. [PMID: 39317816 DOI: 10.1038/s41563-024-01981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/26/2024] [Indexed: 09/26/2024]
Abstract
Ultrafast stimuli can stabilize metastable states of matter inaccessible by equilibrium means. Establishing the spatiotemporal link between ultrafast excitation and metastability is crucial to understand these phenomena. Here we utilize single-shot optical pump-X-ray probe measurements to capture snapshots of the emergence of a persistent polar vortex supercrystal in a heterostructure that hosts a fine balance between built-in electrostatic and elastic frustrations by design. By perturbing this balance with photoinduced charges, an initially heterogeneous mixture of polar phase disorders within a few picoseconds, leading to a state composed of disordered ferroelectric and suppressed vortex orders. On the picosecond-nanosecond timescales, transient labyrinthine fluctuations develop, accompanied by the recovery of the vortex order. On longer timescales, these fluctuations are progressively quenched by dynamical strain modulations, which drive the collective emergence of a single vortex supercrystal phase. Our results, corroborated by dynamical phase-field modelling, reveal non-equilibrium pathways following the ultrafast excitation of designer systems to persistent metastability.
Collapse
Affiliation(s)
- Vladimir A Stoica
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
| | - Tiannan Yang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
- Interdisciplinary Research Centre, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Sujit Das
- Materials Research Centre, Indian Institute of Science, Bangalore, India
| | - Yue Cao
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Huaiyu Hugo Wang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Yuya Kubota
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
- RIKEN SPring-8 Center, Sayo, Japan
| | - Cheng Dai
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Hari Padma
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Yusuke Sato
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Anudeep Mangu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Quynh L Nguyen
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory & Stanford University, Menlo Park, CA, USA
| | - Zhan Zhang
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Disha Talreja
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Marc E Zajac
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Donald A Walko
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | | | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
- RIKEN SPring-8 Center, Sayo, Japan
| | | | - Kenji Tamasaku
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
- RIKEN SPring-8 Center, Sayo, Japan
| | - Takahiro Sato
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Vincent Esposito
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Silke Nelson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Matthias C Hoffmann
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Aaron M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory & Stanford University, Menlo Park, CA, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Lane W Martin
- Department of Materials Science and Engineering & Department of Physics, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Rice University, Houston, TX, USA
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering & Department of Physics, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Rice University, Houston, TX, USA
| | - Iwao Matsuda
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Diling Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Long-Q Chen
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Haidan Wen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA.
| | - Venkatraman Gopalan
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.
| | - John W Freeland
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
| |
Collapse
|
7
|
Diaz FR, Mero M, Amini K. High-repetition-rate ultrafast electron diffraction with direct electron detection. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:054302. [PMID: 39346930 PMCID: PMC11438501 DOI: 10.1063/4.0000256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024]
Abstract
Ultrafast electron diffraction (UED) instruments typically operate at kHz or lower repetition rates and rely on indirect detection of electrons. However, these experiments encounter limitations because they are required to use electron beams containing a relatively large number of electrons (≫100 electrons/pulse), leading to severe space-charge effects. Consequently, electron pulses with long durations and large transverse diameters are used to interrogate the sample. Here, we introduce a novel UED instrument operating at a high repetition rate and employing direct electron detection. We operate significantly below the severe space-charge regime by using electron beams containing 1-140 electrons per pulse at 30 kHz. We demonstrate the ability to detect time-resolved signals from thin film solid samples with a difference contrast signal, Δ I / I 0 , and an instrument response function as low as 10-5 and 184-fs (FWHM), respectively, without temporal compression. Overall, our findings underscore the importance of increasing the repetition rate of UED experiments and adopting a direct electron detection scheme, which will be particularly impactful for gas-phase UED. Our newly developed scheme enables more efficient and sensitive investigations of ultrafast dynamics in photoexcited samples using ultrashort electron beams.
Collapse
Affiliation(s)
- F. R. Diaz
- Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - M. Mero
- Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - K. Amini
- Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany
| |
Collapse
|
8
|
Sternbach AJ, Slusar T, Ruta FL, Moore S, Chen X, Liu MK, Kim HT, Millis AJ, Averitt RD, Basov DN. Inhomogeneous Photosusceptibility of VO_{2} Films at the Nanoscale. PHYSICAL REVIEW LETTERS 2024; 132:186903. [PMID: 38759203 DOI: 10.1103/physrevlett.132.186903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024]
Abstract
Pump-probe nano-optical experiments were used to study the light-induced insulator to metal transition (IMT) in thin films of vanadium dioxide (VO_{2}), a prototypical correlated electron system. We show that inhomogeneous optical contrast is prompted by spatially uniform photoexcitation, indicating an inhomogeneous photosusceptibility of VO_{2}. We locally characterize temperature and time dependent variations of the photoexcitation threshold necessary to induce the IMT on picosecond timescales with hundred nanometer spatial resolution. We separately measure the critical temperature T_{L}, where the IMT onsets and the local transient electronic nano-optical contrast at the nanoscale. Our data reveal variations in the photosusceptibility of VO_{2} within nanoscopic regions characterized by the same critical temperature T_{L} where metallic domains can first nucleate.
Collapse
Affiliation(s)
- A J Sternbach
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - T Slusar
- Electronics and Telecommunications Research Institute, Daejeon, 34129 Republic of Korea
| | - F L Ruta
- Department of Physics, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
| | - S Moore
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - X Chen
- Department of Physics, Columbia University, New York, New York 10027, USA
- Department of Physics, Stony Brook University, Stony Brook, New York 11790, USA
| | - M K Liu
- Department of Physics, Stony Brook University, Stony Brook, New York 11790, USA
| | - H T Kim
- Electronics and Telecommunications Research Institute, Daejeon, 34129 Republic of Korea
| | - A J Millis
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - R D Averitt
- Department of Physics, University of California San Diego, San Diego, California 92093, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, New York 10027, USA
| |
Collapse
|
9
|
Dringoli BJ, Sutton M, Luo Z, Kanatzidis MG, Cooke DG. Ultrafast Photoinduced Phase Change in SnSe. PHYSICAL REVIEW LETTERS 2024; 132:146901. [PMID: 38640370 DOI: 10.1103/physrevlett.132.146901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 04/21/2024]
Abstract
Time-resolved multiterahertz (THz) spectroscopy is used to observe an ultrafast, nonthermal electronic phase change in SnSe driven by interband photoexcitation with 1.55 eV pump photons. The transient THz photoconductivity spectrum is found to be Lorentzian-like, indicating charge localization and phase segregation. The rise of photoconductivity is bimodal in nature, with both a fast and slow component due to excitation into multiple bands and subsequent intervalley scattering. The THz conductivity magnitude, dynamics, and spectra show a drastic change in character at a critical excitation fluence of approximately 6 mJ/cm^{2} due to a photoinduced phase segregation and a macroscopic collapse of the band gap.
Collapse
Affiliation(s)
| | - Mark Sutton
- Department of Physics, McGill University, Montreal, Quebec H3A2T8, Canada
| | - Zhongzhen Luo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | | | - David G Cooke
- Department of Physics, McGill University, Montreal, Quebec H3A2T8, Canada
| |
Collapse
|
10
|
Siddiqui KM, Durham DB, Cropp F, Ji F, Paiagua S, Ophus C, Andresen NC, Jin L, Wu J, Wang S, Zhang X, You W, Murnane M, Centurion M, Wang X, Slaughter DS, Kaindl RA, Musumeci P, Minor AM, Filippetto D. Relativistic ultrafast electron diffraction at high repetition rates. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:064302. [PMID: 38058995 PMCID: PMC10697722 DOI: 10.1063/4.0000203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
The ability to resolve the dynamics of matter on its native temporal and spatial scales constitutes a key challenge and convergent theme across chemistry, biology, and materials science. The last couple of decades have witnessed ultrafast electron diffraction (UED) emerge as one of the forefront techniques with the sensitivity to resolve atomic motions. Increasingly sophisticated UED instruments are being developed that are aimed at increasing the beam brightness in order to observe structural signatures, but so far they have been limited to low average current beams. Here, we present the technical design and capabilities of the HiRES (High Repetition-rate Electron Scattering) instrument, which blends relativistic electrons and high repetition rates to achieve orders of magnitude improvement in average beam current compared to the existing state-of-the-art instruments. The setup utilizes a novel electron source to deliver femtosecond duration electron pulses at up to MHz repetition rates for UED experiments. Instrument response function of sub-500 fs is demonstrated with < 100 fs time resolution targeted in future. We provide example cases of diffraction measurements on solid-state and gas-phase samples, including both micro- and nanodiffraction (featuring 100 nm beam size) modes, which showcase the potential of the instrument for novel UED experiments.
Collapse
Affiliation(s)
- K. M. Siddiqui
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | - F. Ji
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - S. Paiagua
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - C. Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - N. C. Andresen
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - L. Jin
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - J. Wu
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - S. Wang
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720, USA
| | - X. Zhang
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - W. You
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - M. Murnane
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - M. Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - X. Wang
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - D. S. Slaughter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, USA
| | | | - P. Musumeci
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | - D. Filippetto
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
11
|
Liu W, Liu H, Wang Z, Li S, Wang L, Luo J. Inverse Design of Light Manipulating Structural Phase Transition in Solids. J Phys Chem Lett 2023; 14:6647-6657. [PMID: 37462525 DOI: 10.1021/acs.jpclett.3c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
This Perspective focuses on recent advances in understanding ultrafast processes involved in photoinduced structural phase transitions and proposes a strategy for precise manipulation of such transitions. It has been demonstrated that photoexcited carriers occupying empty antibonding or bonding states generate atomic driving forces that lead to either stretching or shortening of associated bonds, which in turn induce collective and coherent motions of atoms and yield structural transitions. For instance, phase transitions in IrTe2 and VO2, and nonthermal melting in Si, can be explained by the occupation of specific local bonding or antibonding states during laser excitation. These cases reveal the electronic-orbital-selective nature of laser-induced structural transitions. Based on this understanding, we propose an inverse design protocol for achieving or preventing a target structural transition by controlling the related electron occupations with orbital-selective photoexcitation. Overall, this Perspective provides a comprehensive overview of recent advancements in dynamical structural control in solid materials.
Collapse
Affiliation(s)
- Wenhao Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haowen Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Shushen Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linwang Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Junwei Luo
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Carbin T, Zhang X, Culver AB, Zhao H, Zong A, Acharya R, Abbamonte CJ, Roy R, Cao G, Kogar A. Evidence for Bootstrap Percolation Dynamics in a Photoinduced Phase Transition. PHYSICAL REVIEW LETTERS 2023; 130:186902. [PMID: 37204876 DOI: 10.1103/physrevlett.130.186902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/27/2023] [Accepted: 03/30/2023] [Indexed: 05/21/2023]
Abstract
Upon intense femtosecond photoexcitation, a many-body system can undergo a phase transition through a nonequilibrium route, but understanding these pathways remains an outstanding challenge. Here, we use time-resolved second harmonic generation to investigate a photoinduced phase transition in Ca_{3}Ru_{2}O_{7} and show that mesoscale inhomogeneity profoundly influences the transition dynamics. We observe a marked slowing down of the characteristic time τ that quantifies the transition between two structures. τ evolves nonmonotonically as a function of photoexcitation fluence, rising from below 200 fs to ∼1.4 ps, then falling again to below 200 fs. To account for the observed behavior, we perform a bootstrap percolation simulation that demonstrates how local structural interactions govern the transition kinetics. Our work highlights the importance of percolating mesoscale inhomogeneity in the dynamics of photoinduced phase transitions and provides a model that may be useful for understanding such transitions more broadly.
Collapse
Affiliation(s)
- Tyler Carbin
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
| | - Xinshu Zhang
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
| | - Adrian B Culver
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
- Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Hengdi Zhao
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Alfred Zong
- Department of Chemistry, University of California at Berkeley, Berkeley, California, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Rishi Acharya
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
| | - Cecilia J Abbamonte
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
| | - Rahul Roy
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
- Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Gang Cao
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Anshul Kogar
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
| |
Collapse
|
13
|
Zhang Z, Zhang L, Zhou Y, Cui Y, Chen Z, Liu Y, Li J, Long Y, Gao Y. Thermochromic Energy Efficient Windows: Fundamentals, Recent Advances, and Perspectives. Chem Rev 2023. [PMID: 37053573 DOI: 10.1021/acs.chemrev.2c00762] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Thermochromic energy efficient windows represent an important protocol technology for advanced architectural windows with energy-saving capabilities through the intelligent regulation of indoor solar irradiation and the modulation of window optical properties in response to real-time temperature stimuli. In this review, recent progress in some promising thermochromic systems is summarized from the aspects of structures, the micro-/mesoscale regulation of thermochromic properties, and integration with other emerging energy techniques. Furthermore, the challenges and opportunities in thermochromic energy-efficient windows are outlined to promote future scientific investigations and practical applications in building energy conservation.
Collapse
Affiliation(s)
- Zongtao Zhang
- School of Materials Science and Engineering, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Liangmiao Zhang
- School of Materials Science and Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China
| | - Yang Zhou
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yuanyuan Cui
- School of Materials Science and Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China
| | - Zhang Chen
- School of Materials Science and Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China
| | - Yinping Liu
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jin Li
- School of Materials Science and Engineering, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Yi Long
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China
| |
Collapse
|
14
|
Zhang W, Wu X, Li L, Zou C, Chen Y. Fabrication of a VO 2-Based Tunable Metasurface by Electric-Field Scanning Probe Lithography with Precise Depth Control. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13517-13525. [PMID: 36856296 DOI: 10.1021/acsami.2c21935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Vanadium dioxide (VO2) is widely employed in developing tunable optoelectronic devices due to its significant changes in optical and electric properties upon phase transition. To fabricate the VO2-based functional devices down to the micro/nanoscale, a high-resolution processing technique is in demand. Scanning probe lithography (SPL) on the basis of a tip-induced electric field provides a promising approach for prototyping. Here, we demonstrated a precise VO2 etching strategy by direct writing on a VO2 film with a negative tip bias and subsequent sonication removal of the written area. The effects of bias voltage, sonication, and thermal treatment as well as the mechanical difference between the tip-modulated area and the pristine VO2 film were investigated systematically. The results show that VO2 can be etched layer by layer via alternately repeating tip modulation and sonication, and arbitrary patterns can be written. Based on this route, we designed a kind of metasurface by arranging VO2-gold nanoblocks with different sizes and heights for spectrally selective tunable reflectivity in near- and mid-infrared. This electric-field SPL method demonstrates the prominent advantages of high resolution down to several tens of nanometers, quasi-3D patterning, and resist-free maskless direct writing, which should be applicable for prototyping other micro/nanodevices.
Collapse
Affiliation(s)
- Wenhao Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230027, China
| | - Xiqi Wu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230027, China
| | - Liang Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Chongwen Zou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yuhang Chen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
15
|
Xu C, Jin C, Chen Z, Lu Q, Cheng Y, Zhang B, Qi F, Chen J, Yin X, Wang G, Xiang D, Qian D. Transient dynamics of the phase transition in VO 2 revealed by mega-electron-volt ultrafast electron diffraction. Nat Commun 2023; 14:1265. [PMID: 36882433 PMCID: PMC9992676 DOI: 10.1038/s41467-023-37000-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Vanadium dioxide (VO2) exhibits an insulator-to-metal transition accompanied by a structural transition near room temperature. This transition can be triggered by an ultrafast laser pulse. Exotic transient states, such as a metallic state without structural transition, were also proposed. These unique characteristics let VO2 have great potential in thermal switchable devices and photonic applications. Although great efforts have been made, the atomic pathway during the photoinduced phase transition is still not clear. Here, we synthesize freestanding quasi-single-crystal VO2 films and examine their photoinduced structural phase transition with mega-electron-volt ultrafast electron diffraction. Leveraging the high signal-to-noise ratio and high temporal resolution, we observe that the disappearance of vanadium dimers and zigzag chains does not coincide with the transformation of crystal symmetry. After photoexcitation, the initial structure is strongly modified within 200 femtoseconds, resulting in a transient monoclinic structure without vanadium dimers and zigzag chains. Then, it continues to evolve to the final tetragonal structure in approximately 5 picoseconds. In addition, only one laser fluence threshold instead of two thresholds suggested in polycrystalline samples is observed in our quasi-single-crystal samples. Our findings provide essential information for a comprehensive understanding of the photoinduced ultrafast phase transition in VO2.
Collapse
Affiliation(s)
- Chenhang Xu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng Jin
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zijing Chen
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Lu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun Cheng
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bo Zhang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fengfeng Qi
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiajun Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xunqing Yin
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guohua Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dao Xiang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dong Qian
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China.
| |
Collapse
|
16
|
Ghosh A, Strandell DP, Kambhampati P. A spectroscopic overview of the differences between the absorbing states and the emitting states in semiconductor perovskite nanocrystals. NANOSCALE 2023; 15:2470-2487. [PMID: 36691921 DOI: 10.1039/d2nr05698d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Semiconductor perovskites have been under intense investigation for their promise in optoelectronic applications and their novel and unique physical properties. There have been a variety of material implementations of perovskites from thin films to single crystals to nanocrystals. The nanocrystal form, in particular, is attractive as it enables solution processing and also spectroscopically probes both absorptive and emissive transitions. Broadly, the literature is comprised of experiments of either form, but the experiments are rarely performed in concert and are not discussed in a unified picture. For example, absorptive experiments are typically transient absorption measurements, which aim to measure carrier kinetics and dynamics. In contrast, the emissive experiments largely focus on excitonic fine structures and coupling to phonons. The time resolved emission experiments report on excited state lifetimes and their dependence on temperature. There are broad differences in the spectroscopy techniques and the questions asked in both classes of experiments. Yet there is one measure in common that suggests there are mysteries in our understanding of how the absorbing and emitting states are connected. The linewidth of emission spectra is always larger than the linewidth of absorption spectra. The question of the physics underlying linewidths is complex and is one of the central issues in perovskite nanocrystals. So why are the absorptive and emissive linewidths different? At present even this simple question has no clear answer. The more complex questions of the structure and dynamics of absorptive and emissive states are even more ambiguous. Hence there is a need to connect these experiments and the relevant states. Here, we provide an overview of the salient absorptive and emissive spectroscopy techniques in an effort to begin connecting these two disparate areas of inquiry.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada.
| | - Dallas P Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada.
| | | |
Collapse
|
17
|
Kim YJ, Nho HW, Ji S, Lee H, Ko H, Weissenrieder J, Kwon OH. Femtosecond-resolved imaging of a single-particle phase transition in energy-filtered ultrafast electron microscopy. SCIENCE ADVANCES 2023; 9:eadd5375. [PMID: 36706188 PMCID: PMC9882981 DOI: 10.1126/sciadv.add5375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Using an energy filter in transmission electron microscopy has enabled elemental mapping at the atomic scale and improved the precision of structural determination by gating inelastic and elastic imaging electrons, respectively. Here, we use an energy filter in ultrafast electron microscopy to enhance the temporal resolution toward the domain of atomic motion. Visualizing transient structures with femtosecond temporal precision was achieved by selecting imaging electrons in a narrow energy distribution from dense chirped photoelectron packets with broad longitudinal momentum distributions and thus typically exhibiting picosecond durations. In this study, the heterogeneous ultrafast phase transitions of vanadium dioxide (VO2) nanoparticles, a representative strongly correlated system, were filmed and attributed to the emergence of a transient, low-symmetry metallic phase caused by different local strains. Our approach enables electron microscopy to access the time scale of elementary nuclear motion to visualize the onset of the structural dynamics of matter at the nanoscale.
Collapse
Affiliation(s)
- Ye-Jin Kim
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hak-Won Nho
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Shaozheng Ji
- Materials and Nano Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Hyejin Lee
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jonas Weissenrieder
- Materials and Nano Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Oh-Hoon Kwon
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
18
|
Birkhölzer YA, Sotthewes K, Gauquelin N, Riekehr L, Jannis D, van der Minne E, Bu Y, Verbeeck J, Zandvliet HJW, Koster G, Rijnders G. High-Strain-Induced Local Modification of the Electronic Properties of VO 2 Thin Films. ACS APPLIED ELECTRONIC MATERIALS 2022; 4:6020-6028. [PMID: 36588623 PMCID: PMC9798830 DOI: 10.1021/acsaelm.2c01176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Vanadium dioxide (VO2) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains. In this work, we show that we can manipulate and monitor the reversible semiconductor-to-metal transition of VO2 while applying a controlled amount of mechanical pressure by a nanosized metallic probe using an atomic force microscope. At a critical pressure, we can reversibly actuate the phase transition with a large modulation of the conductivity. Direct tunneling through the VO2-metal contact is observed as the main charge carrier injection mechanism before and after the phase transition of VO2. The tunneling barrier is formed by a very thin but persistently insulating surface layer of the VO2. The necessary pressure to induce the transition decreases with temperature. In addition, we measured the phase coexistence line in a hitherto unexplored regime. Our study provides valuable information on pressure-induced electronic modifications of the VO2 properties, as well as on nanoscale metal-oxide contacts, which can help in the future design of oxide electronics.
Collapse
Affiliation(s)
- Yorick A. Birkhölzer
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Kai Sotthewes
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Nicolas Gauquelin
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Lars Riekehr
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Daen Jannis
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Emma van der Minne
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Yibin Bu
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Johan Verbeeck
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Harold J. W. Zandvliet
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Gertjan Koster
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Guus Rijnders
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| |
Collapse
|
19
|
Xu J, Chen D, Meng S. Decoupled ultrafast electronic and structural phase transitions in photoexcited monoclinic VO 2. SCIENCE ADVANCES 2022; 8:eadd2392. [PMID: 36332024 PMCID: PMC9635820 DOI: 10.1126/sciadv.add2392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Photoexcitation has emerged as an efficient way to trigger phase transitions in strongly correlated materials. There are great controversies about the atomistic mechanisms of structural phase transitions (SPTs) from monoclinic (M1-) to rutile (R-) VO2 and its association with electronic insulator-metal transitions (IMTs). Here, we illustrate the underlying atomistic processes and decoupling nature of photoinduced SPT and IMT in nonequilibrium states. The photoinduced SPT proceeds in the order of dilation of V-V pairs and increase of twisting angles after a small delay of ~40 fs. Dynamic simulations with hybrid functionals confirm the existence of isostructural IMT. The photoinduced SPT and IMT exhibit the same thresholds of electronic excitations, indicating similar fluence thresholds in experiments. The IMT is quasi-instantaneously (<10 fs) generated, while the SPT takes place with time a constant of 100 to 300 fs. These findings clarify some key controversies in the literature and provide insights into nonequilibrium phase transitions in correlated materials.
Collapse
Affiliation(s)
- Jiyu Xu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Daqiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People’s Republic of China
| |
Collapse
|
20
|
Saida Y, Shikata R, En-Ya K, Ohmura S, Nishina Y, Hada M. Development of a Multitimescale Time-Resolved Electron Diffraction Setup: Photoinduced Dynamics of Oxygen Radicals on Graphene Oxide. J Phys Chem A 2022; 126:6301-6308. [PMID: 36063425 DOI: 10.1021/acs.jpca.2c04075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We developed a multitimescale time-resolved electron diffraction setup by electrically synchronizing a nanosecond laser with our table-top picosecond time-resolved electron diffractometer. The setup covers the photoinduced structural dynamics of target materials at timescales ranging from picoseconds to submilliseconds. Using this setup, we sequentially observed the ultraviolet (UV) photoinduced bond dissociation, radical formation, and relaxation dynamics of the oxygen atoms in the epoxy functional group on the basal plane of graphene oxide (GO). The results show that oxygen radicals formed via UV photoexcitation on the basal plane of GO in several tens of picoseconds and then relaxed back to the initial state on the microsecond timescale. The results of first-principles calculations also support the formation of oxygen radicals in the excited state on an early timescale. These results are essential for the further discussion of the reactivities on the basal plane of GO, such as catalytic reactions and antibacterial and antiviral activities. The results also suggest that the multitimescale time-resolved electron diffraction system is a promising tool for laboratory-based molecular dynamics studies of materials and chemical systems.
Collapse
Affiliation(s)
- Yuri Saida
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Ryo Shikata
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Kaito En-Ya
- College of Engineering Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Satoshi Ohmura
- Faculty of Engineering, Hiroshima Institute of Technology, Hiroshima 731-5193, Japan
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama 700-8530, Japan
| | - Masaki Hada
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8573, Japan.,Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba 305-8573, Japan
| |
Collapse
|
21
|
Gao FY, Zhang Z, Sun Z, Ye L, Cheng YH, Liu ZJ, Checkelsky JG, Baldini E, Nelson KA. Snapshots of a light-induced metastable hidden phase driven by the collapse of charge order. SCIENCE ADVANCES 2022; 8:eabp9076. [PMID: 35867789 PMCID: PMC9307249 DOI: 10.1126/sciadv.abp9076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Nonequilibrium hidden states provide a unique window into thermally inaccessible regimes of strong coupling between microscopic degrees of freedom in quantum materials. Understanding the origin of these states allows the exploration of far-from-equilibrium thermodynamics and the development of optoelectronic devices with on-demand photoresponses. However, mapping the ultrafast formation of a long-lived hidden phase remains a longstanding challenge since the initial state is not recovered rapidly. Here, using state-of-the-art single-shot spectroscopy techniques, we present a direct ultrafast visualization of the photoinduced phase transition to both transient and long-lived hidden states in an electronic crystal, 1T-TaS2, and demonstrate a commonality in their microscopic pathways, driven by the collapse of charge order. We present a theory of fluctuation-dominated process that helps explain the nature of the metastable state. Our results shed light on the origin of this elusive state and pave the way for the discovery of other exotic phases of matter.
Collapse
Affiliation(s)
- Frank Y. Gao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhuquan Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhiyuan Sun
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Linda Ye
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yu-Hsiang Cheng
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zi-Jie Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joseph G. Checkelsky
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Edoardo Baldini
- Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Keith A. Nelson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Abstract
Photoinduced phase transition (PIPT) is always treated as a coherent process, but ultrafast disordering in PIPT is observed in recent experiments. Utilizing the real-time time-dependent density functional theory method, here we track the motion of individual vanadium (V) ions during PIPT in VO2 and uncover that their coherent or disordered dynamics can be manipulated by tuning the laser fluence. We find that the photoexcited holes generate a force on each V-V dimer to drive their collective coherent motion, in competing with the thermal-induced vibrations. If the laser fluence is so weak that the photoexcited hole density is too low to drive the phase transition alone, the PIPT is a disordered process due to the interference of thermal phonons. We also reveal that the photoexcited holes populated by the V-V dimerized bonding states will become saturated if the laser fluence is too strong, limiting the timescale of photoinduced phase transition.
Collapse
|
23
|
Nanoscale self-organization and metastable non-thermal metallicity in Mott insulators. Nat Commun 2022; 13:3730. [PMID: 35764628 PMCID: PMC9240065 DOI: 10.1038/s41467-022-31298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 06/10/2022] [Indexed: 11/08/2022] Open
Abstract
Mott transitions in real materials are first order and almost always associated with lattice distortions, both features promoting the emergence of nanotextured phases. This nanoscale self-organization creates spatially inhomogeneous regions, which can host and protect transient non-thermal electronic and lattice states triggered by light excitation. Here, we combine time-resolved X-ray microscopy with a Landau-Ginzburg functional approach for calculating the strain and electronic real-space configurations. We investigate V2O3, the archetypal Mott insulator in which nanoscale self-organization already exists in the low-temperature monoclinic phase and strongly affects the transition towards the high-temperature corundum metallic phase. Our joint experimental-theoretical approach uncovers a remarkable out-of-equilibrium phenomenon: the photo-induced stabilisation of the long sought monoclinic metal phase, which is absent at equilibrium and in homogeneous materials, but emerges as a metastable state solely when light excitation is combined with the underlying nanotexture of the monoclinic lattice.
Collapse
|
24
|
Ahn Y, Cherukara MJ, Cai Z, Bartlein M, Zhou T, DiChiara A, Walko DA, Holt M, Fullerton EE, Evans PG, Wen H. X-ray nanodiffraction imaging reveals distinct nanoscopic dynamics of an ultrafast phase transition. Proc Natl Acad Sci U S A 2022; 119:e2118597119. [PMID: 35522708 PMCID: PMC9171639 DOI: 10.1073/pnas.2118597119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
SignificancePhase transitions, the changes between states of matter with distinct electronic, magnetic, or structural properties, are at the center of condensed matter physics and underlie valuable technologies. First-order phase transitions are intrinsically heterogeneous. When driven by ultrashort excitation, nanoscale phase regions evolve rapidly, which has posed a significant experimental challenge to characterize. The newly developed laser-pumped X-ray nanodiffraction imaging technique reported here has simultaneous 100-ps temporal and 25-nm spatial resolutions. This approach reveals pathways of the nanoscale structural rearrangement upon ultrafast optical excitation, different from those transitions under slowly varying parameters. The spatiotemporally resolved structural characterization provides crucial nanoscopic insights into ultrafast phase transitions and opens opportunities for controlling nanoscale phases on ultrafast time scales.
Collapse
Affiliation(s)
- Youngjun Ahn
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706
| | - Mathew J. Cherukara
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439
| | - Zhonghou Cai
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439
| | - Michael Bartlein
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439
| | - Tao Zhou
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439
| | - Anthony DiChiara
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439
| | - Donald A. Walko
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439
| | - Martin Holt
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439
| | - Eric E. Fullerton
- Center for Magnetic Recording Research, University of California San Diego, La Jolla, CA 92903
| | - Paul G. Evans
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706
| | - Haidan Wen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439
| |
Collapse
|
25
|
Zheng Z, Luo Y, Yang H, Yi Z, Zhang J, Song Q, Yang W, Liu C, Wu X, Wu P. Thermal tuning of terahertz metamaterial absorber properties based on VO 2. Phys Chem Chem Phys 2022; 24:8846-8853. [PMID: 35356962 DOI: 10.1039/d2cp01070d] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present a novel, structurally simple, multifunctional broadband absorber. It consists of a patterned vanadium dioxide film and a metal plate spaced by a dielectric layer. Temperature control allows flexible adjustment of the absorption intensity from 0 to 0.999. The modulation mechanism of the absorber stems from the thermogenic phase change properties of the vanadium dioxide material. The absorber achieves total reflection properties in the terahertz band when the vanadium dioxide is in the insulated state. When the vanadium dioxide is in its metallic state, the absorber achieves near-perfect absorption in the ultra-broadband range of 3.7 THz-9.7 THz. Impedance matching theory and the analysis of electric field are also used to illustrate the mechanism of operation. Compared to previous reports, our structure utilizes just a single cell structure (3 layers only), and it is easy to process and manufacture. The absorption rate and operating bandwidth of the absorber are also optimised. In addition, the absorber is not only insensitive to polarization, but also very tolerant to the angle of incidence. Such a design would have great potential in wide-ranging applications, including photochemical energy harvesting, stealth devices, thermal emitters, etc.
Collapse
Affiliation(s)
- Zhipeng Zheng
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yao Luo
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Hua Yang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Jianguo Zhang
- Department of Physics, Jinzhong University, Jinzhong 030619, China.
| | - Qianjv Song
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenxing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China
| | - Chao Liu
- School of Physics and Electronics Engineering, Northeast Petroleum University, Daqing 163318, P. R. China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, China.
| |
Collapse
|
26
|
Andrade X, Pemmaraju CD, Kartsev A, Xiao J, Lindenberg A, Rajpurohit S, Tan LZ, Ogitsu T, Correa AA. Inq, a Modern GPU-Accelerated Computational Framework for (Time-Dependent) Density Functional Theory. J Chem Theory Comput 2021; 17:7447-7467. [PMID: 34726888 DOI: 10.1021/acs.jctc.1c00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present inq, a new implementation of density functional theory (DFT) and time-dependent DFT (TDDFT) written from scratch to work on graphic processing units (GPUs). Besides GPU support, inq makes use of modern code design features and takes advantage of newly available hardware. By designing the code around algorithms, rather than against specific implementations and numerical libraries, we aim to provide a concise and modular code. The result is a fairly complete DFT/TDDFT implementation in roughly 12 000 lines of open-source C++ code representing a modular platform for community-driven application development on emerging high-performance computing architectures.
Collapse
Affiliation(s)
- Xavier Andrade
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| | - Chaitanya Das Pemmaraju
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Alexey Kartsev
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jun Xiao
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Aaron Lindenberg
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Sangeeta Rajpurohit
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liang Z Tan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tadashi Ogitsu
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| | - Alfredo A Correa
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| |
Collapse
|
27
|
Sternbach AJ, Ruta FL, Shi Y, Slusar T, Schalch J, Duan G, McLeod AS, Zhang X, Liu M, Millis AJ, Kim HT, Chen LQ, Averitt RD, Basov DN. Nanotextured Dynamics of a Light-Induced Phase Transition in VO 2. NANO LETTERS 2021; 21:9052-9060. [PMID: 34724612 DOI: 10.1021/acs.nanolett.1c02638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigate transient nanotextured heterogeneity in vanadium dioxide (VO2) thin films during a light-induced insulator-to-metal transition (IMT). Time-resolved scanning near-field optical microscopy (Tr-SNOM) is used to study VO2 across a wide parameter space of infrared frequencies, picosecond time scales, and elevated steady-state temperatures with nanoscale spatial resolution. Room temperature, steady-state, phonon enhanced nano-optical contrast reveals preexisting "hidden" disorder. The observed contrast is associated with inequivalent twin domain structures. Upon thermal or optical initiation of the IMT, coexisting metallic and insulating regions are observed. Correlations between the transient and steady-state nano-optical textures reveal that heterogeneous nucleation is partially anchored to twin domain interfaces and grain boundaries. Ultrafast nanoscopic dynamics enable quantification of the growth rate and bound the nucleation rate. Finally, we deterministically anchor photoinduced nucleation to predefined nanoscopic regions by locally enhancing the electric field of pump radiation using nanoantennas and monitor the on-demand emergent metallicity in space and time.
Collapse
Affiliation(s)
- Aaron J Sternbach
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Francesco L Ruta
- Department of Physics, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Yin Shi
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, Pennsylvania 16801,United States
| | - Tetiana Slusar
- Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
| | - Jacob Schalch
- Department of Physics, University of California San Diego, San Diego, California 92093, United States
| | - Guangwu Duan
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Alexander S McLeod
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Xin Zhang
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Mengkun Liu
- Department of Physics, Stony Brook University, Stony Brook, New York 11790, United States
| | - Andrew J Millis
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Hyun-Tak Kim
- Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
| | - Long-Qing Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, Pennsylvania 16801,United States
| | - Richard D Averitt
- Department of Physics, University of California San Diego, San Diego, California 92093, United States
| | - D N Basov
- Department of Physics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
28
|
Johnson AS, Conesa JV, Vidas L, Perez-Salinas D, Günther CM, Pfau B, Hallman KA, Haglund RF, Eisebitt S, Wall S. Quantitative hyperspectral coherent diffractive imaging spectroscopy of a solid-state phase transition in vanadium dioxide. SCIENCE ADVANCES 2021; 7:eabf1386. [PMID: 34380611 PMCID: PMC8357230 DOI: 10.1126/sciadv.abf1386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Solid-state systems can host a variety of thermodynamic phases that can be controlled with magnetic fields, strain, or laser excitation. Many phases that are believed to exhibit exotic properties only exist on the nanoscale, coexisting with other phases that make them challenging to study, as measurements require both nanometer spatial resolution and spectroscopic information, which are not easily accessible with traditional x-ray spectromicroscopy techniques. Here, we use coherent diffractive imaging spectroscopy (CDIS) to acquire quantitative hyperspectral images of the prototypical quantum material vanadium oxide across the vanadium L 2,3 and oxygen K x-ray absorption edges with nanometer-scale resolution. We extract the full complex refractive indices of the monoclinic insulating and rutile conducting phases of VO2 from a single sample and find no evidence for correlation-driven phase transitions. CDIS will enable quantitative full-field x-ray spectromicroscopy for studying phase separation in time-resolved experiments and other extreme sample environments where other methods cannot operate.
Collapse
Affiliation(s)
- Allan S Johnson
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Jordi Valls Conesa
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciana Vidas
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel Perez-Salinas
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christian M Günther
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Kent A Hallman
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235-1807, USA
| | - Richard F Haglund
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235-1807, USA
| | - Stefan Eisebitt
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
- Max-Born-Institut, 12489 Berlin, Germany
| | - Simon Wall
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| |
Collapse
|
29
|
Sood A, Shen X, Shi Y, Kumar S, Park SJ, Zajac M, Sun Y, Chen LQ, Ramanathan S, Wang X, Chueh WC, Lindenberg AM. Universal phase dynamics in VO 2 switches revealed by ultrafast operando diffraction. Science 2021; 373:352-355. [PMID: 34437156 DOI: 10.1126/science.abc0652] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/07/2021] [Indexed: 11/02/2022]
Abstract
Understanding the pathways and time scales underlying electrically driven insulator-metal transitions is crucial for uncovering the fundamental limits of device operation. Using stroboscopic electron diffraction, we perform synchronized time-resolved measurements of atomic motions and electronic transport in operating vanadium dioxide (VO2) switches. We discover an electrically triggered, isostructural state that forms transiently on microsecond time scales, which is shown by phase-field simulations to be stabilized by local heterogeneities and interfacial interactions between the equilibrium phases. This metastable phase is similar to that formed under photoexcitation within picoseconds, suggesting a universal transformation pathway. Our results establish electrical excitation as a route for uncovering nonequilibrium and metastable phases in correlated materials, opening avenues for engineering dynamical behavior in nanoelectronics.
Collapse
Affiliation(s)
- Aditya Sood
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA. .,Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Yin Shi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Suhas Kumar
- Hewlett Packard Labs, Palo Alto, CA 94304, USA
| | - Su Ji Park
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Marc Zajac
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yifei Sun
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Long-Qing Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shriram Ramanathan
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - William C Chueh
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Aaron M Lindenberg
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA. .,Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.,SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
30
|
Liu QM, Wu D, Li ZA, Shi LY, Wang ZX, Zhang SJ, Lin T, Hu TC, Tian HF, Li JQ, Dong T, Wang NL. Photoinduced multistage phase transitions in Ta 2NiSe 5. Nat Commun 2021; 12:2050. [PMID: 33824351 PMCID: PMC8024274 DOI: 10.1038/s41467-021-22345-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
Ultrafast control of material physical properties represents a rapidly developing field in condensed matter physics. Yet, accessing the long-lived photoinduced electronic states is still in its early stages, especially with respect to an insulator to metal phase transition. Here, by combining transport measurement with ultrashort photoexcitation and coherent phonon spectroscopy, we report on photoinduced multistage phase transitions in Ta2NiSe5. Upon excitation by weak pulse intensity, the system is triggered to a short-lived state accompanied by a structural change. Further increasing the excitation intensity beyond a threshold, a photoinduced steady new state is achieved where the resistivity drops by more than four orders at temperature 50 K. This new state is thermally stable up to at least 350 K and exhibits a lattice structure different from any of the thermally accessible equilibrium states. Transmission electron microscopy reveals an in-chain Ta atom displacement in the photoinduced new structure phase. We also found that nano-sheet samples with the thickness less than the optical penetration depth are required for attaining a complete transition.
Collapse
Affiliation(s)
- Q M Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - D Wu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China.
| | - Z A Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - L Y Shi
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Z X Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - S J Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - T Lin
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - T C Hu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - H F Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - J Q Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - T Dong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - N L Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
| |
Collapse
|
31
|
Ji Y, Cheng L, Li N, Yuan Y, Liang W, Yang H. Decoupling between metal-insulator transition and structural phase transition in an interface-engineered VO 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:105603. [PMID: 33285540 DOI: 10.1088/1361-648x/abd117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The coupling between the metal-insulator transition (MIT) and the structural phase transition (SPT) in VO2 has been at the center of discussion for several decades, while the underlying mechanisms of electron-lattice or electron-electron interactions remain an open question. Until recently, the equilibrium state VO2 is believed to be a non-standard Mott-Hubbard system, i.e., both of the two interactions cooperatively work on MIT, indicating the association between MIT and SPT. However, due to the pronounced contribution of strain in strongly correlated systems, it is desirable to explore the correspondence in an interface-engineered VO2. Herein, we investigate the carrier dynamics in the VO2 films with anomalous MIT on the basis of time-resolved transient differential reflectivity measurements. Unexpectedly, MIT is decoupled from SPT, in sharp contrast with the case of strain-free VO2 films: MIT is triggered by bandgap recombination below 75 °C during heating, while intense SPT-induced signal appears separately between 70 °C and 100 °C. The decoupling between MIT and SPT provides insights into the interfacial interactions in VO2 thin films.
Collapse
Affiliation(s)
- Yanda Ji
- Department of Applied Physics, College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, People's Republic of China
| | - Lei Cheng
- Department of Applied Physics, College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, People's Republic of China
| | - Ning Li
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, People's Republic of China
| | - Ye Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, People's Republic of China
| | - Weizheng Liang
- The Peac Institute of Multiscale Sciences, Chengdu, 610031, Sichuan, People's Republic of China
| | - Hao Yang
- Department of Applied Physics, College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, People's Republic of China
| |
Collapse
|
32
|
Wu G, Jiao X, Wang Y, Zhao Z, Wang Y, Liu J. Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide. OPTICS EXPRESS 2021; 29:2703-2711. [PMID: 33726461 DOI: 10.1364/oe.416227] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
A dynamically adjustable ultra-wideband metamaterial perfect absorber (MPA) is proposed which consists of three resonance rings based on vanadium dioxide (VO2) and a metal ground layer separated by a dielectric spacer. The simulation results show that the terahertz (THz) absorption bandwidth of more than 90% absorptance reaches 3.30 THz, which covers from 2.34 to 5.64 THz, under different incident polarization angles. The range is better than that of previous VO2-based reports. Moreover, when the conductivity of VO2 changes from 200 S/m to 2×105 S/m, the absorption peak intensity can be adjusted continuously from 4% to 100%. The key is to optimize the geometric structure through interference cancellation and impedance matching theory, to achieve better absorption bandwidth and efficiency. Besides, the terahertz absorber has a wide-angle absorption effect both in TE and TM waves. Thus, the designed absorber may have many potential applications in modulating, sensing and imaging technology.
Collapse
|
33
|
Lu C, Lu Q, Gao M, Lin Y. Dynamic Manipulation of THz Waves Enabled by Phase-Transition VO 2 Thin Film. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E114. [PMID: 33419046 PMCID: PMC7825355 DOI: 10.3390/nano11010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 11/26/2022]
Abstract
The reversible and multi-stimuli responsive insulator-metal transition of VO2, which enables dynamic modulation over the terahertz (THz) regime, has attracted plenty of attention for its potential applications in versatile active THz devices. Moreover, the investigation into the growth mechanism of VO2 films has led to improved film processing, more capable modulation and enhanced device compatibility into diverse THz applications. THz devices with VO2 as the key components exhibit remarkable response to external stimuli, which is not only applicable in THz modulators but also in rewritable optical memories by virtue of the intrinsic hysteresis behaviour of VO2. Depending on the predesigned device structure, the insulator-metal transition (IMT) of VO2 component can be controlled through thermal, electrical or optical methods. Recent research has paid special attention to the ultrafast modulation phenomenon observed in the photoinduced IMT, enabled by an intense femtosecond laser (fs laser) which supports "quasi-simultaneous" IMT within 1 ps. This progress report reviews the current state of the field, focusing on the material nature that gives rise to the modulation-allowed IMT for THz applications. An overview is presented of numerous IMT stimuli approaches with special emphasis on the underlying physical mechanisms. Subsequently, active manipulation of THz waves through pure VO2 film and VO2 hybrid metamaterials is surveyed, highlighting that VO2 can provide active modulation for a wide variety of applications. Finally, the common characteristics and future development directions of VO2-based tuneable THz devices are discussed.
Collapse
Affiliation(s)
- Chang Lu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.L.); (Q.L.)
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qingjian Lu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.L.); (Q.L.)
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.L.); (Q.L.)
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.L.); (Q.L.)
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
34
|
Ren Z, Cheng L, Hu L, Liu C, Jiang C, Yang S, Ma Z, Zhou C, Wang H, Zhu X, Sun Y, Sheng Z. Photoinduced Broad-band Tunable Terahertz Absorber Based on a VO 2 Thin Film. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48811-48819. [PMID: 32975107 DOI: 10.1021/acsami.0c15297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The demand for terahertz (THz) communication and detection fuels continuous research for high performance of THz absorption materials. In addition to varying the materials and their structure passively, an alternative approach is to modulate a THz wave actively by tuning an external stimulus. Correlated oxides are ideal materials for this because the effects of a small external control parameter can be amplified by inner electronic correlations. Here, by utilizing an unpatterned strongly correlated electron oxide VO2 thin film, a photoinduced broad-band tunable THz absorber is realized first. The absorption, transmission, reflection, and phase of THz waves can all be actively controlled by an external pump laser above room temperature. By varying the laser fluence, the average broad-band absorption can be tuned from 18.9 to 74.7% and the average transmission can be tuned from 9.2 to 69.2%. Meanwhile, a broad-band antireflection is obtained at 5.6 mJ/cm2, and a π-phase shift of a reflected THz wave is achieved when the fluence increases greater than 5.7 mJ/cm2. Apart from other modulators, the photoexcitation-assisted dual-phase competition is identified as the origin of this active THz multifunctional modulation. Our work suggests that advantages of controllable phase separation in strongly correlated electron systems could provide viable routes in the creation of active optical components for THz waves.
Collapse
Affiliation(s)
- Zhuang Ren
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Long Cheng
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Ling Hu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Caixing Liu
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chengxin Jiang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shige Yang
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zongwei Ma
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
| | - Chun Zhou
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
| | - Haomin Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Xuebin Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuping Sun
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhigao Sheng
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
35
|
Abstract
Time-resolved electron microscopy is based on the excitation of a sample by pulsed laser radiation and its probing by synchronized photoelectron bunches in the electron microscope column. With femtosecond lasers, if probing pulses with a small number of electrons—in the limit, single-electron wave packets—are used, the stroboscopic regime enables ultrahigh spatiotemporal resolution to be obtained, which is not restricted by the Coulomb repulsion of electrons. This review article presents the current state of the ultrafast electron microscopy (UEM) method for detecting the structural dynamics of matter in the time range from picoseconds to attoseconds. Moreover, in the imaging mode, the spatial resolution lies, at best, in the subnanometer range, which limits the range of observation of structural changes in the sample. The ultrafast electron diffraction (UED), which created the methodological basis for the development of UEM, has opened the possibility of creating molecular movies that show the behavior of the investigated quantum system in the space-time continuum with details of sub-Å spatial resolution. Therefore, this review on the development of UEM begins with a description of the main achievements of UED, which formed the basis for the creation and further development of the UEM method. A number of recent experiments are presented to illustrate the potential of the UEM method.
Collapse
|
36
|
Galicia-Hernandez JM, Turkowski V, Hernandez-Cocoletzi G, Rahman TS. Electron correlations and memory effects in ultrafast electron and hole dynamics in VO 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:20LT01. [PMID: 31978897 DOI: 10.1088/1361-648x/ab6f85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
By applying an approach based on time-dependent density functional theory and dynamical mean-field theory (TDDFT+DMFT) we examine the role of electron correlations in the ultrafast breakdown of the insulating M1 phase in bulk VO2. We consider the case of a spatially homogeneous ultrafast (femtosecond) laser pulse perturbation and present the dynamics of the melting of the insulating state, in particular the time-dependence of the excited charge density. The time-dependence of the chemical potential of the excited electron and hole subsystems shows that even for such short times the dynamics of the system is significantly affected by memory effects-the time-resolved electron-electron interactions. The results pave the way for obtaining a microscopic understanding of the ultrafast dynamics of strongly-correlated materials.
Collapse
Affiliation(s)
- Jose Mario Galicia-Hernandez
- Department of Physics, University of Central Florida, Orlando, FL 32816, United States of America. Instituto de Fisica Ing. Luis Rivera Terrazas, Benemerita Universidad Autonoma de Puebla, Puebla 72550, Mexico
| | | | | | | |
Collapse
|
37
|
Lan Y, Tao X, Kong X, He Y, Zheng X, Sutton M, Kanatzidis MG, Guo H, Cooke DG. Coherent charge-phonon correlations and exciton dynamics in orthorhombic CH3NH3PbI3 measured by ultrafast multi-THz spectroscopy. J Chem Phys 2019; 151:214201. [DOI: 10.1063/1.5127992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yang Lan
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Xixi Tao
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xianghua Kong
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Yihui He
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Xiaohong Zheng
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Mark Sutton
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | | | - Hong Guo
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - David G. Cooke
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| |
Collapse
|