1
|
Caigoy JC, Nariya H, Shimamoto T, Yan Z, Shimamoto T. ArcAB system promotes biofilm formation through direct repression of hapR transcription in Vibrio cholerae. Microbiol Res 2025; 297:128155. [PMID: 40185028 DOI: 10.1016/j.micres.2025.128155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Vibrio cholerae, the causative agent of cholera, can efficiently adapt its metabolic processes, including biofilm formation, in response to varying respiratory conditions- such as aerobic, microaerobic, and anaerobic- through the ArcAB system. In this study, we elucidate the activation mechanism of V. cholerae ArcB and ArcA and identify ArcB residues H292, D577, and H722, along with ArcA residue D54 as key phosphorylation sites. Furthermore, we demonstrate that the ArcAB system plays a crucial role in regulating biofilm formation under both aerobic and anaerobic conditions. Our findings reveal that the positive regulation of biofilm formation by the ArcAB systems involves the high cell density (HCD) quorum sensing (QS) regulator HapR. Specifically, phosphorylated ArcA represses hapR transcription, thereby promoting biofilm formation under anaerobic condition. This study also highlights an epistatic relationship between ArcA and HapR in biofilm regulation. Overall, our results underscore the critical role of the ArcAB system in the biofilm formation of pathogenic V. cholerae under oxygen-limiting conditions.
Collapse
Affiliation(s)
- Jant Cres Caigoy
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Hirofumi Nariya
- Graduate School of Human Life Sciences, Jumonji University, Japan
| | - Toshi Shimamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Zhiqun Yan
- Graduate School of Biosphere Science, Hiroshima University, Japan
| | - Tadashi Shimamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan.
| |
Collapse
|
2
|
Wang Q, Liu R, Niu Y, Wang Y, Qin J, Huang Y, Qian J, Zheng X, Wang M, Huang D, Liu Y. Regulatory mechanisms of two-component systems in Vibrio cholerae: Enhancing pathogenicity and environmental adaptation. Microbiol Res 2025; 298:128198. [PMID: 40318575 DOI: 10.1016/j.micres.2025.128198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Cholera, which is caused by the bacterium Vibrio cholerae, is a highly dangerous disease characterized by severe symptoms such as watery diarrhea, dehydration, and even death. V. cholerae can both colonize the host intestine and survive in environmental reservoirs. Two-component systems (TCSs) are essential regulatory mechanisms that allow bacteria to adapt to changing environments. This review focuses on the regulatory mechanisms of TCS-mediated gene expression in V. cholerae. We first summarize the composition and classification of TCSs in V. cholerae N16961. We then discuss the roles of TCSs in facilitating adaptation to diverse environmental stimuli and increasing pathogenicity. Furthermore, we analyze the distribution of TCSs in pandemic and nonpandemic-V. cholerae strains, demonstrating their indispensable role in promoting virulence and facilitating the widespread dissemination of pandemic strains. Elucidation of these mechanisms is crucial for devising new strategies to combat cholera and prevent future outbreaks, ultimately contributing to improved public health outcomes.
Collapse
Affiliation(s)
- Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yuanyuan Niu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yuchen Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Jingling Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yu Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Jiamin Qian
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Xiaoyu Zheng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Meng Wang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300457, PR China.
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Nankai University, Tianjin 300457, PR China.
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Tsai CE, Wang FQ, Yang CW, Yang LL, Nguyen TV, Chen YC, Chen PY, Hwang IS, Ting SY. Surface-mediated bacteriophage defense incurs fitness tradeoffs for interbacterial antagonism. EMBO J 2025; 44:2473-2500. [PMID: 40065098 PMCID: PMC12048535 DOI: 10.1038/s44318-025-00406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 05/04/2025] Open
Abstract
Bacteria in polymicrobial habitats are constantly exposed to biotic threats from bacteriophages (or "phages"), antagonistic bacteria, and predatory eukaryotes. These antagonistic interactions play crucial roles in shaping the evolution and physiology of bacteria. To survive, bacteria have evolved mechanisms to protect themselves from such attacks, but the fitness costs of resisting one threat and rendering bacteria susceptible to others remain unappreciated. Here, we examined the fitness consequences of phage resistance in Salmonella enterica, revealing that phage-resistant variants exhibited significant fitness loss upon co-culture with competitor bacteria. These phage-resistant strains display varying degrees of lipopolysaccharide (LPS) deficiency and increased susceptibility to contact-dependent interbacterial antagonism, such as the type VI secretion system (T6SS). Utilizing mutational analyses and atomic force microscopy, we show that the long-modal length O-antigen of LPS serves as a protective barrier against T6SS-mediated intoxication. Notably, this competitive disadvantage can also be triggered independently by phages possessing LPS-targeting endoglycosidase in their tail spike proteins, which actively cleave the O-antigen upon infection. Our findings reveal two distinct mechanisms of phage-mediated LPS modifications that modulate interbacterial competition, shedding light on the dynamic microbial interplay within mixed populations.
Collapse
Affiliation(s)
- Chia-En Tsai
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 11490, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Feng-Qi Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chih-Wen Yang
- Institute of Physics, Academia Sinica, Taipei, 115201, Taiwan
| | - Ling-Li Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Thao Vp Nguyen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yung-Chih Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Po-Yin Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 11490, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ing-Shouh Hwang
- Institute of Physics, Academia Sinica, Taipei, 115201, Taiwan
| | - See-Yeun Ting
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 11490, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 106319, Taiwan.
| |
Collapse
|
4
|
Cherrak Y, Younes AA, Perez-Molphe-Montoya E, Maurer L, Yilmaz K, Enz U, Zeder C, Kiefer P, Christen P, Gül E, Vorholt JA, von Mering C, Hardt WD. Neutrophil recruitment during intestinal inflammation primes Salmonella elimination by commensal E. coli in a context-dependent manner. Cell Host Microbe 2025; 33:358-372.e4. [PMID: 40023150 DOI: 10.1016/j.chom.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Abstract
Foodborne bacterial diarrhea involves complex pathogen-microbiota-host interactions. Pathogen-displacing probiotics are increasingly popular, but heterogeneous patient outcomes highlighted the need to understand individualized host-probiotic activity. Using the mouse gut commensal Escherichia coli 8178 and the human probiotic E. coli Nissle 1917, we found that the degree of protection against the enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm) varies across mice with distinct gut microbiotas. Pathogen clearance is linked to enteropathy severity and subsequent recruitment of intraluminal neutrophils, which differs in a microbiota-dependent manner. By combining mouse knockout and antibody-mediated depletion models with bacterial genetics, we show that neutrophils and host-derived reactive oxygen species directly influence E. coli-mediated S. Tm displacement by potentiating siderophore-bound toxin killing. Our work demonstrates how host immune factors shape pathogen-displacing probiotic efficiency while also revealing an unconventional antagonistic interaction where a gut commensal and the host synergize to displace an enteric pathogen.
Collapse
Affiliation(s)
- Yassine Cherrak
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Eugenio Perez-Molphe-Montoya
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Koray Yilmaz
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ursina Enz
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christophe Zeder
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Science and Technology, 8092 Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
5
|
Brinkley DM, Bertolli SK, Gallagher LA, Tan Y, de Silva MM, Brockman A, Zhang D, Peterson SB, Mougous JD. Pseudomonads coordinate innate defense against viruses and bacteria with a single regulatory system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640152. [PMID: 40060533 PMCID: PMC11888443 DOI: 10.1101/2025.02.26.640152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Bacterial cells live under the constant existential threats imposed by other bacteria and viruses. Their mechanisms for contending with these threats are well documented; however, the regulation of these diverse defense elements remains poorly understood. Here we show that bacteria can mount a genome-wide, coordinated, and highly effective immune response against bacterial and viral threats using a single regulatory pathway. Bioinformatic analyses revealed that Pseudomonas species broadly possess a specialized form of the Gac/Rsm regulatory pathway (GRP), which our prior work in Pseudomonas aeruginosa implicated in activating interbacterial antagonism defense mechanisms in response to neighbor cell death. Proteomic studies comparing GRP-activated and -inactivated strains derived from diverse Pseudomonas species showed that the pathway regulates a large and variable suite of factors implicated in defense against both bacterial and phage threats. Focusing on P. protegens, we identify profound phenotypic consequences of these factors against multiple forms of bacterial antagonism and several phage. Together, our results reveal that bacteria, like more complex organisms, couple danger sensing to the activation of an immune system with antibacterial and antiviral arms.
Collapse
Affiliation(s)
- David M Brinkley
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | | | - Larry A Gallagher
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Yongjun Tan
- Department of Biology, Saint Louis University, St. Louis, MO, USA
- Program of Bioinformatic and Computational Biology, Saint Louis University, St. Louis, MO USA
| | | | - Ainsley Brockman
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Dapeng Zhang
- Department of Biology, Saint Louis University, St. Louis, MO, USA
- Program of Bioinformatic and Computational Biology, Saint Louis University, St. Louis, MO USA
| | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Microbial Interactions and Microbiome Center, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Smith WPJ, Armstrong-Bond E, Coyte KZ, Knight CG, Basler M, Brockhurst MA. Multiplicity of type 6 secretion system toxins limits the evolution of resistance. Proc Natl Acad Sci U S A 2025; 122:e2416700122. [PMID: 39786933 PMCID: PMC11745330 DOI: 10.1073/pnas.2416700122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
The bacterial type 6 secretion system (T6SS) is a toxin-injecting nanoweapon that mediates competition in plant- and animal-associated microbial communities. Bacteria can evolve de novo resistance against T6SS attacks, but resistance is far from universal in natural communities, suggesting key features of T6SS weaponry may act to limit its evolution. Here, we combine ecoevolutionary modeling and experimental evolution to examine how toxin type and multiplicity in Acinetobacter baylyi attackers shape resistance evolution in susceptible Escherichia coli competitors. In both our models and experiments, we find that combinations of multiple distinct toxins limit resistance evolution by creating genetic bottlenecks, driving resistant lineages extinct before they can reach high frequency. We also show that, paradoxically, single-toxin attackers can drive the evolution of cross-resistance, protecting bacteria against unfamiliar toxin combinations, even though such evolutionary pathways were inaccessible against multitoxin attackers. Our findings indicate that, comparable to antimicrobial and anticancer combination therapies, multitoxin T6SS arsenals function to limit resistance evolution in competing microbes. This helps us to understand why T6SSs remain widespread and effective weapons in microbial communities, and why many T6SS-armed bacteria encode functionally diverse anticompetitor toxins.
Collapse
Affiliation(s)
- William P. J. Smith
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Ewan Armstrong-Bond
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Katharine Z. Coyte
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Christopher G. Knight
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Marek Basler
- Biozentrum Center for Molecular Life Sciences, University of Basel, BaselCH-4056, Switzerland
| | - Michael A. Brockhurst
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| |
Collapse
|
7
|
Virgo M, Mostowy S, Ho BT. Emerging models to study competitive interactions within bacterial communities. Trends Microbiol 2025:S0966-842X(24)00325-1. [PMID: 39799088 DOI: 10.1016/j.tim.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/15/2025]
Abstract
Within both abiotic and host environments, bacteria typically exist as diverse, multispecies communities and have crucial roles in human health, agriculture, and industry. In these communities, bacteria compete for resources, and these competitive interactions can shape the overall population structure and community function. Studying bacterial community dynamics requires experimental model systems that capture the different interaction networks between bacteria and their surroundings. We examine the recent literature advancing such systems, including (i) in silico models establishing the theoretical basis for how cell-to-cell interactions can influence population level dynamics, (ii) in vitro models characterizing specific interbacterial interactions, (iii) organ-on-a-chip models revealing the physiologically relevant parameters, such as spatial structure and mechanical forces, that bacteria encounter within a host, and (iv) in vivo plant and animal models connecting the host responses to interbacterial interactions. Each of these systems has greatly contributed to our understanding of bacterial community dynamics and can be used synergistically to understand how bacterial competition influences population architecture.
Collapse
Affiliation(s)
- Mollie Virgo
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, UK; Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| | - Brian T Ho
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, UK; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
8
|
Flaugnatti N, Bader L, Croisier-Coeytaux M, Blokesch M. Capsular polysaccharide restrains type VI secretion in Acinetobacter baumannii. eLife 2025; 14:e101032. [PMID: 39749675 PMCID: PMC11731876 DOI: 10.7554/elife.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025] Open
Abstract
The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS's antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium's own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.
Collapse
Affiliation(s)
- Nicolas Flaugnatti
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Loriane Bader
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Mary Croisier-Coeytaux
- Bioelectron Microscopy Core Facility, School of Life Sciences, Station 19, EPFL-SV-PTBIOEM, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
9
|
Dumont B, Terradot L, Cascales E, Van Melderen L, Jurėnas D. Thioredoxin 1 moonlights as a chaperone for an interbacterial ADP-ribosyltransferase toxin. Nat Commun 2024; 15:10388. [PMID: 39613764 PMCID: PMC11606950 DOI: 10.1038/s41467-024-54892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
Formation and breakage of disulfide bridges strongly impacts folding and activity of proteins. Thioredoxin 1 (TrxA) is a small, conserved enzyme that reduces disulfide bonds in the bacterial cytosol. In this study, we provide an example of the emergence of a chaperone role for TrxA, which is independent of redox catalysis. We show that the activity of the secreted bacterial ADP-ribosyltransferase (ART) toxin TreX, which does not contain any cysteines, is dependent on TrxA. TreX binds to the reduced form of TrxA via its carboxy-terminal extension to form a soluble and active complex. Structural studies revealed that TreX-like toxins are homologous to Scabin-like ART toxins which possess cysteine residues and form disulfide bridges at the position that superimposes the TrxA binding site in TreX. Our study therefore suggests that thioredoxin 1 evolved alternative functions by maintaining the interaction with cysteine-free substrates.
Collapse
Affiliation(s)
- Baptiste Dumont
- Bacterial Genetics and Physiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Unité Biodiversité et Amélioration des Plantes et Forêts, Centre Wallon de Recherches Agronomiques (CRA-W), Bâtiment Emile Marchal, Gembloux, Belgium
| | - Laurent Terradot
- Laboratory of Molecular Microbiology and Structural Biochemistry, Institut de Biologie et Chimie des Protéines (IBCP), Université de Lyon, Lyon, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, Marseille, France
| | - Laurence Van Melderen
- Bacterial Genetics and Physiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| | - Dukas Jurėnas
- Bacterial Genetics and Physiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium.
- WEL Research Institute, Wavre, Belgique.
| |
Collapse
|
10
|
Mashruwala AA, Bassler BL. Quorum sensing orchestrates parallel cell death pathways in Vibrio cholerae via Type 6 secretion-dependent and -independent mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2412642121. [PMID: 39499633 PMCID: PMC11573629 DOI: 10.1073/pnas.2412642121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication process that enables bacteria to coordinate group behaviors. In Vibrio cholerae colonies, a program of spatial-temporal cell death is among the QS-controlled traits. Cell death occurs in two phases, first along the colony rim, and subsequently, at the colony center. Both cell death phases are driven by the type 6 secretion system (T6SS). Here, we show that HapR, the master QS regulator, does not control t6ss gene expression nor T6SS-mediated killing activity. Nonetheless, a ΔhapR strain displays no cell death at the colony rim. RNA-Sequencing (RNA-Seq) analyses reveal that HapR activates expression of an operon containing four genes of unknown function, vca0646-0649. Epistasis and overexpression studies show that two of the genes, vca0646 and vca0647, are required to drive cell death in both a ΔhapR and a ΔhapR Δt6ss strain. Thus, vca0646-0649 are regulated by HapR but act independently of the T6SS machinery to cause cell death, suggesting that a second, parallel pathway to cell death exists in V. cholerae.
Collapse
Affiliation(s)
- Ameya A. Mashruwala
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- HHMI, Chevy Chase, MD20815
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
11
|
Menendez-Gil P, Veleva D, Virgo M, Zhang J, Ramalhete R, Ho BT. Modulation of Vibrio cholerae gene expression through conjugative delivery of engineered regulatory small RNAs. J Bacteriol 2024; 206:e0014224. [PMID: 39292012 PMCID: PMC11500501 DOI: 10.1128/jb.00142-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
The increase in antibiotic resistance in bacteria has prompted the efforts in developing new alternative strategies for pathogenic bacteria. We explored the feasibility of targeting Vibrio cholerae by neutralizing bacterial cellular processes rather than outright killing the pathogen. We investigated the efficacy of delivering engineered regulatory small RNAs (sRNAs) to modulate gene expression through DNA conjugation. As a proof of concept, we engineered several sRNAs targeting the type VI secretion system (T6SS), several of which were able to successfully knockdown the T6SS activity at different degrees. Using the same strategy, we modulated exopolysaccharide production and motility. Lastly, we delivered an sRNA targeting T6SS into V. cholerae via conjugation and observed a rapid knockdown of the T6SS activity. Coupling conjugation with engineered sRNAs represents a novel way of modulating gene expression in V. cholerae opening the door for the development of novel prophylactic and therapeutic applications. IMPORTANCE Given the prevalence of antibiotic resistance, there is an increasing need to develop alternative approaches to managing pathogenic bacteria. In this work, we explore the feasibility of modulating the expression of various cellular systems in Vibrio cholerae using engineered regulatory sRNAs delivered into cells via DNA conjugation. These sRNAs are based on regulatory sRNAs found in V. cholerae and exploit its native regulatory machinery. By delivering these sRNAs conjugatively along with a real-time marker for DNA transfer, we found that complete knockdown of a targeted cellular system could be achieved within one cell division cycle after sRNA gene delivery. These results indicate that conjugative delivery of engineered regulatory sRNAs is a rapid and robust way of precisely targeting V. cholerae.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Diana Veleva
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Mollie Virgo
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Jige Zhang
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Rita Ramalhete
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Brian T. Ho
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
12
|
Mashruwala AA, Bassler BL. Quorum sensing orchestrates parallel cell death pathways in Vibrio cholerae via Type 6 secretion dependent and independent mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614608. [PMID: 39386452 PMCID: PMC11463680 DOI: 10.1101/2024.09.23.614608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Quorum sensing (QS) is a cell-to-cell communication process that enables bacteria to coordinate group behaviors. In Vibrio cholerae colonies, a program of spatial-temporal cell death is among the QS-controlled traits. Cell death occurs in two phases, first along the colony rim, and subsequently, at the colony center. Both cell death phases are driven by the type VI secretion system (T6SS). Here, we show that HapR, the master QS regulator, does not control t6ss gene expression nor T6SS-mediated killing activity. Nonetheless, a ΔhapR strain displays no cell death at the colony rim. RNA-Seq analyses reveal that HapR activates expression of an operon containing four genes of unknown function, vca0646-0649. Epistasis and overexpression studies show that two of the genes, vca0646 and vca0647, are required to drive cell death in both a ΔhapR and a ΔhapR Δt6ss strain. Thus, vca0646-0649 are regulated by HapR but act independently of the T6SS machinery to cause cell death, suggesting that a second, parallel pathway to cell death exists in V. cholerae.
Collapse
Affiliation(s)
- Ameya A. Mashruwala
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Current address: The Stowers Institute for Medical Research, Kansas City, MO, 64110
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
13
|
Bier SB, Toska J, Zhao W, Suthianthong P, Proespraiwong P, Robins WP, Mekalanos J. A coordinated attack by a bacterial secretion system and a small molecule drives prey specificity. Commun Biol 2024; 7:958. [PMID: 39117895 PMCID: PMC11310501 DOI: 10.1038/s42003-024-06637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Vibrio species are recognized for their role in food- and water-borne diseases in humans, fish, and aquatic invertebrates. We screened bacterial strains isolated from raw food shrimp for those that are bactericidal to Vibrio strains. Here we identify and characterize Aeromonas dhakensis strain A603 which shows robust bactericidal activity specifically towards Vibrio and related taxa but less potency toward other Gram-negative species. Using the A603 genome and genetic analysis, we show that two antibacterial mechanisms account for its vibriocidal activity -- a highly potent Type Six Secretion System (T6SS) and biosynthesis of a vibriocidal phenazine-like small molecule, named here as Ad-Phen. Further analysis indicates coregulation between Ad-Phen and a pore-forming T6SS effector TseC, which potentiates V. cholerae to killing by Ad-Phen.
Collapse
Affiliation(s)
- S B Bier
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - J Toska
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - W Zhao
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease. The Sixth Affiliated Hospital, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - P Suthianthong
- Charoen Pokphand Foods PCL. Aquatic Animal Health Research Center, Samutsakorn, Thailand
| | - P Proespraiwong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - W P Robins
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - J Mekalanos
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Yu X, Yan Y, Zeng J, Liu Y, Sun X, Wang Z, Li L. T6SS nuclease effectors in Pseudomonas syringae act as potent antimicrobials in interbacterial competition. J Bacteriol 2024; 206:e0027323. [PMID: 38717111 PMCID: PMC11332151 DOI: 10.1128/jb.00273-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/09/2024] [Indexed: 06/21/2024] Open
Abstract
Type VI secretion system (T6SS) is a potent weapon employed by various Pseudomonas species to compete with neighboring microorganisms for limited nutrients and ecological niches. However, the involvement of T6SS effectors in interbacterial competition within the phytopathogen Pseudomonas syringae remains unknown. In this study, we examined two T6SS clusters in a wild-type P. syringae MB03 and verified the involvement of one cluster, namely, T6SS-1, in interbacterial competition. Additionally, our results showed that two T6SS DNase effectors, specifically Tde1 and Tde4, effectively outcompeted antagonistic bacteria, with Tde4 playing a prominent role. Furthermore, we found several cognate immunity proteins, including Tde1ia, Tde1ib, and Tde4i, which are located in the downstream loci of their corresponding effector protein genes and worked synergistically to protect MB03 cells from self-intoxication. Moreover, expression of either Tde1 or C-terminus of Tde4 in Escherichia coli cells induced DNA degradation and changes in cell morphology. Thus, our results provide new insights into the role of the T6SS effectors of P. syringae in the interbacterial competition in the natural environment. IMPORTANCE The phytopathogen Pseudomonas syringae employs an active type VI secretion system (T6SS) to outcompete other microorganisms in the natural environment, particularly during the epiphytic growth in the phyllosphere. By examining two T6SS clusters in P. syringae MB03, T6SS-1 is found to be effective in killing Escherichia coli cells. We highlight the excellent antibacterial effect of two T6SS DNase effectors, namely, Tde1 and Tde4. Both of them function as nuclease effectors, leading to DNA degradation and cell filamentation in prey cells, ultimately resulting in cell death. Our findings deepen our understanding of the T6SS effector repertoires used in P. syringae and will facilitate the development of effective antibacterial strategies.
Collapse
Affiliation(s)
- Xun Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Yubo Yan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jie Zeng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yongxuan Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiaowen Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Wang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Kennedy NW, Comstock LE. Mechanisms of bacterial immunity, protection, and survival during interbacterial warfare. Cell Host Microbe 2024; 32:794-803. [PMID: 38870897 PMCID: PMC11216714 DOI: 10.1016/j.chom.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024]
Abstract
Most bacteria live in communities, often with closely related strains and species with whom they must compete for space and resources. Consequently, bacteria have acquired or evolved mechanisms to antagonize competitors through the production of antibacterial toxins. Similar to bacterial systems that combat phage infection and mechanisms to thwart antibiotics, bacteria have also acquired and evolved features to protect themselves from antibacterial toxins. Just as there is a large body of research identifying and characterizing antibacterial proteins and toxin delivery systems, studies of bacterial mechanisms to resist and survive assault from competitors' weapons have also expanded tremendously. Emerging data are beginning to reveal protective processes and mechanisms that are as diverse as the toxins themselves. Protection against antibacterial toxins can be acquired by horizontal gene transfer, receptor or target alteration, induction of protective functions, physical barriers, and other diverse processes. Here, we review recent studies in this rapidly expanding field.
Collapse
Affiliation(s)
- Nolan W Kennedy
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Laurie E Comstock
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Otto SB, Servajean R, Lemopoulos A, Bitbol AF, Blokesch M. Interactions between pili affect the outcome of bacterial competition driven by the type VI secretion system. Curr Biol 2024; 34:2403-2417.e9. [PMID: 38749426 DOI: 10.1016/j.cub.2024.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
The bacterial type VI secretion system (T6SS) is a widespread, kin-discriminatory weapon capable of shaping microbial communities. Due to the system's dependency on contact, cellular interactions can lead to either competition or kin protection. Cell-to-cell contact is often accomplished via surface-exposed type IV pili (T4Ps). In Vibrio cholerae, these T4Ps facilitate specific interactions when the bacteria colonize natural chitinous surfaces. However, it has remained unclear whether and, if so, how these interactions affect the bacterium's T6SS-mediated killing. In this study, we demonstrate that pilus-mediated interactions can be harnessed by T6SS-equipped V. cholerae to kill non-kin cells under liquid growth conditions. We also show that the naturally occurring diversity of pili determines the likelihood of cell-to-cell contact and, consequently, the extent of T6SS-mediated competition. To determine the factors that enable or hinder the T6SS's targeted reduction of competitors carrying pili, we developed a physics-grounded computational model for autoaggregation. Collectively, our research demonstrates that T4Ps involved in cell-to-cell contact can impose a selective burden when V. cholerae encounters non-kin cells that possess an active T6SS. Additionally, our study underscores the significance of T4P diversity in protecting closely related individuals from T6SS attacks through autoaggregation and spatial segregation.
Collapse
Affiliation(s)
- Simon B Otto
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Richard Servajean
- Laboratory of Computational Biology and Theoretical Biophysics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anne-Florence Bitbol
- Laboratory of Computational Biology and Theoretical Biophysics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
17
|
Prentice JA, van de Weerd R, Bridges AA. Cell-lysis sensing drives biofilm formation in Vibrio cholerae. Nat Commun 2024; 15:2018. [PMID: 38443393 PMCID: PMC10914755 DOI: 10.1038/s41467-024-46399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Matrix-encapsulated communities of bacteria, called biofilms, are ubiquitous in the environment and are notoriously difficult to eliminate in clinical and industrial settings. Biofilm formation likely evolved as a mechanism to protect resident cells from environmental challenges, yet how bacteria undergo threat assessment to inform biofilm development remains unclear. Here we find that population-level cell lysis events induce the formation of biofilms by surviving Vibrio cholerae cells. Survivors detect threats by sensing a cellular component released through cell lysis, which we identify as norspermidine. Lysis sensing occurs via the MbaA receptor with genus-level specificity, and responsive biofilm cells are shielded from phage infection and attacks from other bacteria. Thus, our work uncovers a connection between bacterial lysis and biofilm formation that may be broadly conserved among microorganisms.
Collapse
Affiliation(s)
- Jojo A Prentice
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Robert van de Weerd
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andrew A Bridges
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Surekha S, Lamiyan AK, Gupta V. Antibiotic Resistant Biofilms and the Quest for Novel Therapeutic Strategies. Indian J Microbiol 2024; 64:20-35. [PMID: 38468748 PMCID: PMC10924852 DOI: 10.1007/s12088-023-01138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/03/2023] [Indexed: 03/13/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the major leading causes of death around the globe. Present treatment pipelines are insufficient to overcome the critical situation. Prominent biofilm forming human pathogens which can thrive in infection sites using adaptive features results in biofilm persistence. Considering the present scenario, prudential investigations into the mechanisms of resistance target them to improve antibiotic efficacy is required. Regarding this, developing newer and effective treatment options using edge cutting technologies in medical research is the need of time. The reasons underlying the adaptive features in biofilm persistence have been centred on different metabolic and physiological aspects. The high tolerance levels against antibiotics direct researchers to search for novel bioactive molecules that can help combat the problem. In view of this, the present review outlines the focuses on an opportunity of different strategies which are in testing pipeline can thus be developed into products ready to use.
Collapse
Affiliation(s)
- Saumya Surekha
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | - Varsha Gupta
- GMCH: Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
19
|
Dominguez SR, Doan PN, Rivera-Chávez F. The intersection between host-pathogen interactions and metabolism during Vibrio cholerae infection. Curr Opin Microbiol 2024; 77:102421. [PMID: 38215547 PMCID: PMC12077413 DOI: 10.1016/j.mib.2023.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Vibrio cholerae (V. cholerae), the etiological agent of cholera, uses cholera toxin (CT) to cause severe diarrheal disease. Cholera is still a significant cause of mortality worldwide with about half of all cholera cases and deaths occurring in children under five. Owing to the lack of cost-effective vaccination and poor vaccine efficacy in children, there is a need for alternative preventative and therapeutic strategies. Recent advances in our knowledge of the interplay between CT-induced disease and host-pathogen metabolism have opened the door for investigating how modulation of intestinal metabolism by V. cholerae during disease impacts host intestinal immunity, the gut microbiota, and pathogen-phage interactions. In this review article, we examine recent progress in our understanding of host-pathogen interactions during V. cholerae infection and discuss future work deciphering how modulation of gut metabolism during cholera intersects these processes to enable successful fecal-oral transmission of the pathogen.
Collapse
Affiliation(s)
- Sedelia R Dominguez
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Phillip N Doan
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fabian Rivera-Chávez
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Lyng M, Jørgensen JPB, Schostag MD, Jarmusch SA, Aguilar DKC, Lozano-Andrade CN, Kovács ÁT. Competition for iron shapes metabolic antagonism between Bacillus subtilis and Pseudomonas marginalis. THE ISME JOURNAL 2024; 18:wrad001. [PMID: 38365234 PMCID: PMC10811728 DOI: 10.1093/ismejo/wrad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 02/18/2024]
Abstract
Siderophores have long been implicated in sociomicrobiology as determinants of bacterial interrelations. For plant-associated genera, like Bacillus and Pseudomonas, siderophores are well known for their biocontrol functions. Here, we explored the functional role of the Bacillus subtilis siderophore bacillibactin (BB) in an antagonistic interaction with Pseudomonas marginalis. The presence of BB strongly influenced the outcome of the interaction in an iron-dependent manner. The BB producer B. subtilis restricts colony spreading of P. marginalis by repressing the transcription of histidine kinase-encoding gene gacS, thereby abolishing production of secondary metabolites such as pyoverdine and viscosin. By contrast, lack of BB restricted B. subtilis colony growth. To explore the specificity of the antagonism, we cocultured B. subtilis with a collection of fluorescent Pseudomonas spp. and found that the Bacillus-Pseudomonas interaction is conserved, expanding our understanding of the interplay between two of the most well-studied genera of soil bacteria.
Collapse
Affiliation(s)
- Mark Lyng
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Johan P B Jørgensen
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Morten D Schostag
- Bacterial Ecophysiology & Biotechnology, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Scott A Jarmusch
- Natural Product Discovery, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Diana K C Aguilar
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Carlos N Lozano-Andrade
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| |
Collapse
|
21
|
Copeland R, Zhang C, Hammer BK, Yunker PJ. Spatial constraints and stochastic seeding subvert microbial arms race. PLoS Comput Biol 2024; 20:e1011807. [PMID: 38277405 PMCID: PMC10849242 DOI: 10.1371/journal.pcbi.1011807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/07/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
Surface attached communities of microbes grow in a wide variety of environments. Often, the size of these microbial community is constrained by their physical surroundings. However, little is known about how size constraints of a colony impact the outcome of microbial competitions. Here, we use individual-based models to simulate contact killing between two bacterial strains with different killing rates in a wide range of community sizes. We found that community size has a substantial impact on outcomes; in fact, in some competitions the identity of the most fit strain differs in large and small environments. Specifically, when at a numerical disadvantage, the strain with the slow killing rate is more successful in smaller environments than in large environments. The improved performance in small spaces comes from finite size effects; stochastic fluctuations in the initial relative abundance of each strain in small environments lead to dramatically different outcomes. However, when the slow killing strain has a numerical advantage, it performs better in large spaces than in small spaces, where stochastic fluctuations now aid the fast killing strain in small communities. Finally, we experimentally validate these results by confining contact killing strains of Vibrio cholerae in transmission electron microscopy grids. The outcomes of these experiments are consistent with our simulations. When rare, the slow killing strain does better in small environments; when common, the slow killing strain does better in large environments. Together, this work demonstrates that finite size effects can substantially modify antagonistic competitions, suggesting that colony size may, at least in part, subvert the microbial arms race.
Collapse
Affiliation(s)
- Raymond Copeland
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Christopher Zhang
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Brian K Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
22
|
MacGillivray KA, Ng SL, Wiesenfeld S, Guest RL, Jubery T, Silhavy TJ, Ratcliff WC, Hammer BK. Trade-offs constrain adaptive pathways to the type VI secretion system survival. iScience 2023; 26:108332. [PMID: 38025790 PMCID: PMC10679819 DOI: 10.1016/j.isci.2023.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/25/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
The Type VI Secretion System (T6SS) is a nano-harpoon used by many bacteria to inject toxins into neighboring cells. While much is understood about mechanisms of T6SS-mediated toxicity, less is known about the ways that competitors can defend themselves against this attack, especially in the absence of their own T6SS. Here we subjected eight replicate populations of Escherichia coli to T6SS attack by Vibrio cholerae. Over ∼500 generations of competition, isolates of the E. coli populations evolved to survive T6SS attack an average of 27-fold better, through two convergently evolved pathways: apaH was mutated in six of the eight replicate populations, while the other two populations each had mutations in both yejM and yjeP. However, the mutations we identified are pleiotropic, reducing cellular growth rates, and increasing susceptibility to antibiotics and elevated pH. These trade-offs help us understand how the T6SS shapes the evolution of bacterial interactions.
Collapse
Affiliation(s)
- Kathryn A. MacGillivray
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Siu Lung Ng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sophia Wiesenfeld
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Randi L. Guest
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Tahrima Jubery
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brian K. Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
23
|
Hespanhol JT, Nóbrega-Silva L, Bayer-Santos E. Regulation of type VI secretion systems at the transcriptional, posttranscriptional and posttranslational level. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001376. [PMID: 37552221 PMCID: PMC10482370 DOI: 10.1099/mic.0.001376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Bacteria live in complex polymicrobial communities and are constantly competing for resources. The type VI secretion system (T6SS) is a widespread antagonistic mechanism used by Gram-negative bacteria to gain an advantage over competitors. T6SSs translocate toxic effector proteins inside target prokaryotic cells in a contact-dependent manner. In addition, some T6SS effectors can be secreted extracellularly and contribute to the scavenging scarce metal ions. Bacteria deploy their T6SSs in different situations, categorizing these systems into offensive, defensive and exploitative. The great variety of bacterial species and environments occupied by such species reflect the complexity of regulatory signals and networks that control the expression and activation of the T6SSs. Such regulation is tightly controlled at the transcriptional, posttranscriptional and posttranslational level by abiotic (e.g. pH, iron) or biotic (e.g. quorum-sensing) cues. In this review, we provide an update on the current knowledge about the regulatory networks that modulate the expression and activity of T6SSs across several species, focusing on systems used for interbacterial competition.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Luize Nóbrega-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Ethel Bayer-Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| |
Collapse
|
24
|
Lin YL, Smith SN, Kanso E, Septer AN, Rycroft CH. A subcellular biochemical model for T6SS dynamics reveals winning competitive strategies. PNAS NEXUS 2023; 2:pgad195. [PMID: 37441614 PMCID: PMC10335733 DOI: 10.1093/pnasnexus/pgad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023]
Abstract
The type VI secretion system (T6SS) is a broadly distributed interbacterial weapon that can be used to eliminate competing bacterial populations. Although unarmed target populations are typically used to study T6SS function in vitro, bacteria most likely encounter other T6SS-armed competitors in nature. However, the connection between subcellular details of the T6SS and the outcomes of such mutually lethal battles is not well understood. Here, we incorporate biological data derived from natural competitors of Vibrio fischeri light organ symbionts to build a biochemical model for T6SS at the single-cell level, which we then integrate into an agent-based model (ABM). Using the ABM, we isolate and experiment with strain-specific physiological differences between competitors in ways not possible with biological samples to identify winning strategies for T6SS-armed populations. Through in vitro experiments, we discover that strain-specific differences exist in T6SS activation speed. ABM simulations corroborate that faster activation is dominant in determining survival during competition. Once competitors are fully activated, the energy required for T6SS creates a tipping point where increased weapon building and firing becomes too costly to be advantageous. Through ABM simulations, we identify the threshold where this transition occurs in the T6SS parameter space. We also find that competitive outcomes depend on the geometry of the battlefield: unarmed target cells survive at the edges of a range expansion where unlimited territory can be claimed. Alternatively, competitions within a confined space, much like the light organ crypts where natural V. fischeri compete, result in the rapid elimination of the unarmed population.
Collapse
Affiliation(s)
| | | | - Eva Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
25
|
Trotta KL, Hayes BM, Schneider JP, Wang J, Todor H, Rockefeller Grimes P, Zhao Z, Hatleberg WL, Silvis MR, Kim R, Koo BM, Basler M, Chou S. Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin. PLoS Pathog 2023; 19:e1011454. [PMID: 37363922 PMCID: PMC10328246 DOI: 10.1371/journal.ppat.1011454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/07/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Gram-negative bacteria can antagonize neighboring microbes using a type VI secretion system (T6SS) to deliver toxins that target different essential cellular features. Despite the conserved nature of these targets, T6SS potency can vary across recipient species. To understand the functional basis of intrinsic T6SS susceptibility, we screened for essential Escherichia coli (Eco) genes that affect its survival when antagonized by a cell wall-degrading T6SS toxin from Pseudomonas aeruginosa, Tae1. We revealed genes associated with both the cell wall and a separate layer of the cell envelope, lipopolysaccharide, that modulate Tae1 toxicity in vivo. Disruption of genes in early lipopolysaccharide biosynthesis provided Eco with novel resistance to Tae1, despite significant cell wall degradation. These data suggest that Tae1 toxicity is determined not only by direct substrate damage, but also by indirect cell envelope homeostasis activities. We also found that Tae1-resistant Eco exhibited reduced cell wall synthesis and overall slowed growth, suggesting that reactive cell envelope maintenance pathways could promote, not prevent, self-lysis. Together, our study reveals the complex functional underpinnings of susceptibility to Tae1 and T6SS which regulate the impact of toxin-substrate interactions in vivo.
Collapse
Affiliation(s)
- Kristine L. Trotta
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| | - Beth M. Hayes
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| | | | - Jing Wang
- Biozentrum, University of Basel, Basel, Switzerland
| | - Horia Todor
- Department of Cell and Tissue Biology, University of California–San Francisco, San Francisco, California, United States of America
| | - Patrick Rockefeller Grimes
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| | - Ziyi Zhao
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| | | | - Melanie R. Silvis
- Department of Cell and Tissue Biology, University of California–San Francisco, San Francisco, California, United States of America
| | - Rachel Kim
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| | - Byoung Mo Koo
- Department of Cell and Tissue Biology, University of California–San Francisco, San Francisco, California, United States of America
| | - Marek Basler
- Biozentrum, University of Basel, Basel, Switzerland
| | - Seemay Chou
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
26
|
Trotta KL, Hayes BM, Schneider JP, Wang J, Todor H, Grimes PR, Zhao Z, Hatleberg WL, Silvis MR, Kim R, Koo BM, Basler M, Chou S. Lipopolysaccharide integrity primes bacterial sensitivity to a cell wall-degrading intermicrobial toxin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524922. [PMID: 36747731 PMCID: PMC9900751 DOI: 10.1101/2023.01.20.524922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Gram-negative bacteria can antagonize neighboring microbes using a type VI secretion system (T6SS) to deliver toxins that target different essential cellular features. Despite the conserved nature of these targets, T6SS potency can vary across recipient species. To understand the molecular basis of intrinsic T6SS susceptibility, we screened for essential Escherichia coli genes that affect its survival when antagonized by a cell wall-degrading T6SS toxin from Pseudomonas aeruginosa , Tae1. We revealed genes associated with both the cell wall and a separate layer of the cell envelope, surface lipopolysaccharide, that modulate Tae1 toxicity in vivo . Disruption of lipopolysaccharide synthesis provided Escherichia coli (Eco) with novel resistance to Tae1, despite significant cell wall degradation. These data suggest that Tae1 toxicity is determined not only by direct substrate damage, but also by indirect cell envelope homeostasis activities. We also found that Tae1-resistant Eco exhibited reduced cell wall synthesis and overall slowed growth, suggesting that reactive cell envelope maintenance pathways could promote, not prevent, self-lysis. Together, our study highlights the consequences of co-regulating essential pathways on recipient fitness during interbacterial competition, and how antibacterial toxins leverage cellular vulnerabilities that are both direct and indirect to their specific targets in vivo .
Collapse
Affiliation(s)
- Kristine L Trotta
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| | - Beth M Hayes
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| | - Johannes P Schneider
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH - 4056 Basel, Switzerland
| | - Jing Wang
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH - 4056 Basel, Switzerland
| | - Horia Todor
- Department of Cell and Tissue Biology, University of California – San Francisco, San Francisco, CA, USA
| | - Patrick Rockefeller Grimes
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| | - Ziyi Zhao
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| | | | - Melanie R Silvis
- Department of Cell and Tissue Biology, University of California – San Francisco, San Francisco, CA, USA
| | - Rachel Kim
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| | - Byoung Mo Koo
- Department of Cell and Tissue Biology, University of California – San Francisco, San Francisco, CA, USA
| | - Marek Basler
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH - 4056 Basel, Switzerland
| | - Seemay Chou
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| |
Collapse
|
27
|
Granato ET, Smith WPJ, Foster KR. Collective protection against the type VI secretion system in bacteria. THE ISME JOURNAL 2023:10.1038/s41396-023-01401-4. [PMID: 37095301 DOI: 10.1038/s41396-023-01401-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Bacteria commonly face attacks from other strains using the type VI secretion system (T6SS), which acts like a molecular speargun to stab and intoxicate competitors. Here we show how bacteria can work together to collectively defend themselves against these attacks. This project began with an outreach activity: while developing an online computer game of bacterial warfare, we noticed that one strategist ("Slimy") that made extracellular polymeric substances (EPS) was able to resist attacks from another strategist that employed the T6SS ("Stabby"). This observation motivated us to model this scenario more formally, using dedicated agent-based simulations. The model predicts that EPS production can serve as a collective defence mechanism, which protects both producing cells and neighbouring cells that do not make EPS. We then tested our model with a synthetic community that contains a T6SS-wielding attacker (Acinetobacter baylyi), and two T6SS-sensitive target strains (Escherichia coli) that either secrete EPS, or not. As predicted by our modelling, we find that the production of EPS leads to collective protection against T6SS attacks, where EPS producers protect each other and nearby non-producers. We identify two processes that explain this protection: EPS sharing between cells and a second general mechanism whereby groups of resistant cells shield susceptible cells, which we call "flank protection". Our work shows how EPS-producing bacteria can work together to defend themselves from the type VI secretion system.
Collapse
Affiliation(s)
- Elisa T Granato
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - William P J Smith
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
28
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
29
|
Liang X, Zheng HY, Zhao YJ, Zhang YQ, Pei TT, Cui Y, Tang MX, Xu P, Dong T. VgrG Spike Dictates PAAR Requirement for the Assembly of the Type VI Secretion System. J Bacteriol 2023; 205:e0035622. [PMID: 36655996 PMCID: PMC9945574 DOI: 10.1128/jb.00356-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
Widely employed by Gram-negative pathogens for competition and pathogenesis, the type six protein secretion system (T6SS) can inject toxic effectors into neighboring cells through the penetration of a spear-like structure comprising a long Hcp tube and a VgrG-PAAR spike complex. The cone-shaped PAAR is believed to sharpen the T6SS spear for penetration but it remains unclear why PAAR is required for T6SS functions in some bacteria but dispensable in others. Here, we report the conditional requirement of PAAR for T6SS functions in Aeromonas dhakensis, an emerging human pathogen that may cause severe bacteremia. By deleting the two PAAR paralogs, we show that PAAR is not required for T6SS secretion, bacterial killing, or specific effector delivery in A. dhakensis. By constructing combinatorial PAAR and vgrG deletions, we demonstrate that deletion of individual PAAR moderately reduced T6SS functions but double or triple deletions of PAAR in the vgrG deletion mutants severely impaired T6SS functions. Notably, the auxiliary-cluster-encoded PAAR2 and VgrG3 are less critical than the main-cluster-encoded PAAR1 and VgrG1&2 proteins to T6SS functions. In addition, PAAR1 but not PAAR2 contributes to antieukaryotic virulence in amoeba. Our data suggest that, for a multi-PAAR T6SS, the variable role of PAAR paralogs correlates with the VgrG-spike composition that collectively dictates T6SS assembly. IMPORTANCE Gram-negative bacteria often encode multiple paralogs of the cone-shaped PAAR that sits atop the VgrG-spike and is thought to sharpen the spear-like T6SS puncturing device. However, it is unclear why PAAR is required for the assembly of some but not all T6SSs and why there are multiple PAARs if they are not required. Our data delineate a VgrG-mediated conditional requirement for PAAR and suggest a core-auxiliary relationship among different PAAR-VgrG modules that may have been acquired sequentially by the T6SS during evolution.
Collapse
Affiliation(s)
- Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Yu Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Jie Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Qiu Zhang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Xuan Tang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
30
|
Wu LL, Yan S, Pei TT, Tang MX, Li H, Liang X, Sun S, Dong T. A Dueling-Competent Signal-Sensing Module Guides Precise Delivery of Cargo Proteins into Target Cells by Engineered Pseudomonas aeruginosa. ACS Synth Biol 2023; 12:360-368. [PMID: 36662232 DOI: 10.1021/acssynbio.2c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To recognize and manipulate a specific microbe of a crowded community is a highly challenging task in synthetic biology. Here we introduce a highly selective protein delivery platform, termed DUEC, which responds to direct contact of attacking cells by engineering the tit-for-tat/dueling response of H1-T6SS (type VI secretion system) in Pseudomonas aeruginosa. Using a Cre-recombinase-dependent reporter, we screened H1-T6SS-secreted substrates and developed Tse6N as the most effective secretion tag for Cre delivery. DUEC cells can discriminately deliver the Tse6N-Cre cargo into the cytosol of T6SS+ but not T6SS- Vibrio cholerae cells. DUEC could also deliver a nuclease cargo, Tse6N-NucSe1, to selectively kill provoking cells in a mixed community. These data demonstrate that the DUEC cell not only is a prototypical physical-contact sensor and delivery platform but also may be coupled with recombination-based circuits with the potential for complex tasks in mixed microbial communities.
Collapse
Affiliation(s)
- Li-Li Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangquan Yan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Xuan Tang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuyang Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
31
|
Type VI Secretion Systems: Environmental and Intra-host Competition of Vibrio cholerae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:41-63. [PMID: 36792870 DOI: 10.1007/978-3-031-22997-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The Vibrio Type VI Secretion System (T6SS) is a harpoon-like nanomachine that serves as a defense system and is encoded by approximately 25% of all gram-negative bacteria. In this chapter, we describe the structure of the T6SS in different Vibrio species and outline how the use of different T6SS effector and immunity proteins control kin selection. We summarize the genetic loci that encode the structural elements that make up the Vibrio T6SSs and how these gene clusters are regulated. Finally, we provide insights into T6SS-based competitive dynamics, the role of T6SS genetic exchange in those competitive dynamics, and roles for the Vibrio T6SS in virulence.
Collapse
|
32
|
Ren A, Jia M, Liu J, Zhou T, Wu L, Dong T, Cai Z, Qu J, Liu Y, Yang L, Zhang Y. Acquisition of T6SS Effector TseL Contributes to the Emerging of Novel Epidemic Strains of Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0330822. [PMID: 36546869 PMCID: PMC9927574 DOI: 10.1128/spectrum.03308-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with multiple strategies to interact with other microbes and host cells, gaining fitness in complicated infection sites. The contact-dependent type VI secretion system (T6SS) is one critical secretion apparatus involved in both interbacterial competition and pathogenesis. To date, only limited numbers of T6SS-effectors have been clearly characterized in P. aeruginosa laboratory strains, and the importance of T6SS diversity in the evolution of clinical P. aeruginosa remains unclear. Recently, we characterized a P. aeruginosa clinical strain LYSZa7 from a COVID-19 patient, which adopted complex genetic adaptations toward chronic infections. Bioinformatic analysis has revealed a putative type VI secretion system (T6SS) dependent lipase effector in LYSZa7, which is a homologue of TseL in Vibrio cholerae and is widely distributed in pathogens. We experimentally validated that this TseL homologue belongs to the Tle2, a subfamily of T6SS-lipase effectors; thereby, we name this effector TseL (TseLPA in this work). Further, we showed the lipase-dependent bacterial toxicity of TseLPA, which primarily targets bacterial periplasm. The toxicity of TseLPA can be neutralized by two immunity proteins, TsiP1 and TsiP2, which are encoded upstream of tseL. In addition, we proved this TseLPA contributes to bacterial pathogenesis by promoting bacterial internalization into host cells. Our study suggests that clinical bacterial strains employ a diversified group of T6SS effectors for interbacterial competition and might contribute to emerging of new epidemic clonal lineages. IMPORTANCE Pseudomonas aeruginosa is one predominant pathogen that causes hospital-acquired infections and is one of the commonest coinfecting bacteria in immunocompromised patients and chronic wounds. This bacterium harbors a diverse accessory genome with a high frequency of gene recombination, rendering its population highly heterogeneous. Numerous Pa lineages coexist in the biofilm, where successful epidemic clonal lineage or strain-specific type commonly acquires genes to increase its fitness over the other organisms. Current studies of Pa genomic diversity commonly focused on antibiotic resistant genes and novel phages, overlooking the contribution of type VI secretion system (T6SS). We characterized a Pa clinical strain LYSZa7 from a COVID-19 patient, which adopted complex genetic adaptations toward chronic infections. We report, in this study, a novel T6SS-lipase effector that is broadly distributed in Pa clinical isolates and other predominant pathogens. The study suggests that hospital transmission may raise the emergence of new epidemic clonal lineages with specified T6SS effectors.
Collapse
Affiliation(s)
- Anmin Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Minlu Jia
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Jihong Liu
- Medical Research Center, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Tian Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Liwen Wu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Tao Dong
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Zhao Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Jiuxin Qu
- Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Yang Liu
- Medical Research Center, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
- Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Shenzhen, Guangdong, People’s Republic of China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Yingdan Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
33
|
Mashruwala AA, Qin B, Bassler BL. Quorum-sensing- and type VI secretion-mediated spatiotemporal cell death drives genetic diversity in Vibrio cholerae. Cell 2022; 185:3966-3979.e13. [PMID: 36167071 PMCID: PMC9623500 DOI: 10.1016/j.cell.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/03/2022] [Accepted: 08/31/2022] [Indexed: 01/26/2023]
Abstract
Bacterial colonies composed of genetically identical individuals can diversify to yield variant cells with distinct genotypes. Variant outgrowth manifests as sectors. Here, we show that Type VI secretion system (T6SS)-driven cell death in Vibrio cholerae colonies imposes a selective pressure for the emergence of variant strains that can evade T6SS-mediated killing. T6SS-mediated cell death occurs in two distinct spatiotemporal phases, and each phase is driven by a particular T6SS toxin. The first phase is regulated by quorum sensing and drives sectoring. The second phase does not require the T6SS-injection machinery. Variant V. cholerae strains isolated from colony sectors encode mutated quorum-sensing components that confer growth advantages by suppressing T6SS-killing activity while simultaneously boosting T6SS-killing defenses. Our findings show that the T6SS can eliminate sibling cells, suggesting a role in intra-specific antagonism. We propose that quorum-sensing-controlled T6SS-driven killing promotes V. cholerae genetic diversity, including in natural habitats and during disease.
Collapse
Affiliation(s)
- Ameya A. Mashruwala
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Boyang Qin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA,Lead Contact,Correspondence:
| |
Collapse
|
34
|
VxrB Influences Antagonism within Biofilms by Controlling Competition through Extracellular Matrix Production and Type 6 Secretion. mBio 2022; 13:e0188522. [PMID: 35880882 PMCID: PMC9426512 DOI: 10.1128/mbio.01885-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human pathogen Vibrio cholerae grows as biofilms, communities of cells encased in an extracellular matrix. When growing in biofilms, cells compete for resources and space. One common competitive mechanism among Gram-negative bacteria is the type six secretion system (T6SS), which can deliver toxic effector proteins into a diverse group of target cells, including other bacteria, phagocytic amoebas, and human macrophages. The response regulator VxrB positively regulates both biofilm matrix and T6SS gene expression. Here, we directly observe T6SS activity within biofilms, which results in improved competition with strains lacking the T6SS. VxrB significantly contributes to both attack and defense via T6SS, while also influencing competition via regulation of biofilm matrix production. We further determined that both Vibrio polysaccharide (VPS) and the biofilm matrix protein RbmA can protect cells from T6SS attack within mature biofilms. By varying the spatial mixing of predator and prey cells in biofilms, we show that a high degree of mixing favors T6SS predator strains and that the presence of extracellular DNA in V. cholerae biofilms is a signature of T6SS killing. VxrB therefore regulates both T6SS attack and matrix-based T6SS defense, to control antagonistic interactions and competition outcomes during mixed-strain biofilm formation.
Collapse
|
35
|
Tang MX, Pei TT, Xiang Q, Wang ZH, Luo H, Wang XY, Fu Y, Dong T. Abiotic factors modulate interspecies competition mediated by the type VI secretion system effectors in Vibrio cholerae. THE ISME JOURNAL 2022; 16:1765-1775. [PMID: 35354946 PMCID: PMC9213406 DOI: 10.1038/s41396-022-01228-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 05/06/2023]
Abstract
Vibrio cholerae, the etiological pathogen of cholera, employs its type VI secretion system (T6SS) as an effective weapon to survive in highly competitive communities. Antibacterial and anti-eukaryotic functions of the T6SS depend on its secreted effectors that target multiple cellular processes. However, the mechanisms that account for effector diversity and different effectiveness during interspecies competition remain elusive. Here we report that environmental cations and temperature play a key role in dictating cellular response and effector effectiveness during interspecies competition mediated by the T6SS of V. cholerae. We found that V. cholerae could employ its cell-wall-targeting effector TseH to outcompete the otherwise resistant Escherichia coli and the V. cholerae immunity deletion mutant ∆tsiH when Mg2+ or Ca2+ was supplemented. Transcriptome and genetic analyses demonstrate that the metal-sensing PhoPQ two-component system is important for Mg2+-dependent sensitivity. Competition analysis in infant mice shows that TseH was active under in vivo conditions. Using a panel of V. cholerae single-effector active mutants, we further show that E. coli also exhibited variable susceptibilities to other T6SS effectors depending on cations and temperatures, respectively. Lastly, V. cholerae effector VasX could sensitize Pseudomonas aeruginosa to its intrinsically resistant antibiotic irgasan in a temperature-dependent manner. Collectively, these findings suggest that abiotic factors, that V. cholerae frequently encounters in natural and host environments, could modulate cellular responses and dictate the competitive fitness conferred by the T6SS effectors in complex multispecies communities.
Collapse
Affiliation(s)
- Ming-Xuan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Xiang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zeng-Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Yu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Tao Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
36
|
Teschler JK, Nadell CD, Drescher K, Yildiz FH. Mechanisms Underlying Vibrio cholerae Biofilm Formation and Dispersion. Annu Rev Microbiol 2022; 76:503-532. [PMID: 35671532 DOI: 10.1146/annurev-micro-111021-053553] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium Vibrio cholerae and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, V. cholerae weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer K Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| |
Collapse
|
37
|
Unni R, Pintor KL, Diepold A, Unterweger D. Presence and absence of type VI secretion systems in bacteria. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35467500 DOI: 10.1099/mic.0.001151] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The type VI secretion system (T6SS) is a molecular puncturing device that enables Gram-negative bacteria to kill competitors, manipulate host cells and take up nutrients. Who would want to miss such superpowers? Indeed, many studies show how widespread the secretion apparatus is among microbes. However, it is becoming evident that, on multiple taxonomic levels, from phyla to species and strains, some bacteria lack a T6SS. Here, we review who does and does not have a type VI secretion apparatus and speculate on the dynamic process of gaining and losing the secretion system to better understand its spread and distribution across the microbial world.
Collapse
Affiliation(s)
- Rahul Unni
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel, Germany
| | - Katherine L Pintor
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Daniel Unterweger
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel, Germany
| |
Collapse
|
38
|
A Putative Lipoprotein Mediates Cell-Cell Contact for Type VI Secretion System-Dependent Killing of Specific Competitors. mBio 2022; 13:e0308521. [PMID: 35404117 PMCID: PMC9040878 DOI: 10.1128/mbio.03085-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Interbacterial competition is prevalent in host-associated microbiota, where it can shape community structure and function, impacting host health in both positive and negative ways. However, the factors that permit bacteria to discriminate among their various neighbors for targeted elimination of competitors remain elusive. We identified a putative lipoprotein (TasL) in Vibrio species that mediates cell-cell attachment with a subset of target strains, allowing inhibitors to target specific competitors for elimination. Here, we describe this putative lipoprotein, which is associated with the broadly distributed type VI secretion system (T6SS), by studying symbiotic Vibrio fischeri, which uses the T6SS to compete for colonization sites in their squid host. We demonstrate that TasL allows V. fischeri cells to restrict T6SS-dependent killing to certain genotypes by selectively integrating competitor cells into aggregates while excluding other cell types. TasL is also required for T6SS-dependent competition within juvenile squid, indicating that the adhesion factor is active in the host. Because TasL homologs are found in other host-associated bacterial species, this newly described cell-cell attachment mechanism has the potential to impact microbiome structure within diverse hosts. IMPORTANCE T6SSs are broadly distributed interbacterial weapons that share an evolutionary history with bacteriophage. Because the T6SS can be used to kill neighboring cells, it can impact the spatial distribution and biological function of both free-living and host-associated microbial communities. Like their phage relatives, T6SS+ cells must sufficiently bind competitor cells to deliver their toxic effector proteins through the syringe-like apparatus. Although phage use receptor-binding proteins (RBPs) and tail fibers to selectively bind prey cells, the biophysical properties that mediate this cell-cell contact for T6SS-mediated killing remain unknown. Here, we identified a large, predicted lipoprotein that is coordinately expressed with T6SS proteins and facilitates the contact that is necessary for the T6SS-dependent elimination of competitors in a natural host. Similar to phage RBPs and tail fibers, this lipoprotein is required for T6SS+ cells to discriminate between prey and nonprey cell types, revealing new insight into prey selection during T6SS-mediated competition.
Collapse
|
39
|
Pei T, Kan Y, Wang Z, Tang M, Li H, Yan S, Cui Y, Zheng H, Luo H, Liang X, Dong T. Delivery of an Rhs-family nuclease effector reveals direct penetration of the gram-positive cell envelope by a type VI secretion system in Acidovorax citrulli. MLIFE 2022; 1:66-78. [PMID: 38818323 PMCID: PMC10989746 DOI: 10.1002/mlf2.12007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/16/2021] [Indexed: 06/01/2024]
Abstract
The type VI secretion system (T6SS) is a double-tubular nanomachine widely found in gram-negative bacteria. Its spear-like Hcp tube is capable of penetrating a neighboring cell for cytosol-to-cytosol protein delivery. However, gram-positive bacteria have been considered impenetrable to such T6SS action. Here we report that the T6SS of a plant pathogen, Acidovorax citrulli (AC), could deliver an Rhs-family nuclease effector RhsB to kill not only gram-negative but also gram-positive bacteria. Using bioinformatic, biochemical, and genetic assays, we systematically identified T6SS-secreted effectors and determined that RhsB is a crucial antibacterial effector. RhsB contains an N-terminal PAAR domain, a middle Rhs domain, and an unknown C-terminal domain. RhsB is subject to self-cleavage at both its N- and C-terminal domains and its secretion requires the upstream-encoded chaperone EagT2 and VgrG3. The toxic C-terminus of RhsB exhibits DNase activities and such toxicity is neutralized by either of the two downstream immunity proteins, RimB1 and RimB2. Deletion of rhsB significantly impairs the ability of killing Bacillus subtilis while ectopic expression of immunity proteins RimB1 or RimB2 confers protection. We demonstrate that the AC T6SS not only can effectively outcompete Escherichia coli and B. subtilis in planta but also is highly potent in killing other bacterial and fungal species. Collectively, these findings highlight the greatly expanded capabilities of T6SS in modulating microbiome compositions in complex environments.
Collapse
Affiliation(s)
- Tong‐Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yumin Kan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zeng‐Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ming‐Xuan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shuangquan Yan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yang Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hao‐Yu Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Han Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Tao Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Department of Immunology and MicrobiologySchool of Life Sciences, Southern University of Science and TechnologyGuangdongChina
| |
Collapse
|
40
|
A Polysaccharide Biosynthesis Locus in Vibrio parahaemolyticus Important for Biofilm Formation Has Homologs Widely Distributed in Aquatic Bacteria Mainly from Gammaproteobacteria. mSystems 2022; 7:e0122621. [PMID: 35229647 PMCID: PMC8941931 DOI: 10.1128/msystems.01226-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a seafood-borne pathogen that poses a great threat to public health worldwide. It is found in either a planktonic cell or a biofilm form in the natural environment. The cps locus has been the only extensively studied polysaccharide biosynthesis gene cluster involved in biofilm formation for this bacterium. In this study, we found that an additional polysaccharide biosynthesis locus, scv, is also necessary for biofilm maturation. The scv locus is composed of two operons, and a loss of their expression leads to a defective biofilm phenotype. The transcription of the scv locus is under the control of a sigma 54-dependent response regulator, ScvE. In contrast, the quorum-sensing regulator AphA stimulates the expression of the cps locus and the scvABCD operon found in the scv locus. Bioinformatic analyses demonstrated that scv loci are divergent and widely distributed among 28 genera, including 26 belonging to the Gammaproteobacteria and 2 within the Alphaproteobacteria. We also determined that all scv locus-positive species are water-dwelling. Some strains of Aeromonas, Aliivibrio salmonicida, Pseudomonas anguilliseptica, Vibrio breoganii, and Vibrio scophthalmi probably acquired scv loci through insertion sequences and/or integrase-mediated horizontal gene transfer. Gene duplication and fusion were also detected in some scv homologs. Together, our results suggest that the genome of V. parahaemolyticus harbors two distinct polysaccharide biosynthesis loci, which may play a role in fine-tuning biofilm development, and that scv loci likely evolved by horizontal gene transfer, gene loss, gene duplication, and fragment fusion. IMPORTANCE Polysaccharides are the major component of biofilms, which provide survival advantages for bacteria in aquatic environments. The seafood-borne pathogen V. parahaemolyticus possesses a functionally uncharacterized polysaccharide biosynthesis locus, scv. We demonstrated that the scv locus is important for biofilm maturation and that scv expression is positively regulated by ScvE. Strains from 148 aquatic bacterial species possess scv homolog loci. These bacterial species belong to 28 genera, most of which belong to the Gammaproteobacteria class. The evolution and diversification of scv loci are likely driven by horizontal gene transfer, gene loss, gene duplication, and fragment fusion. Our results provide new insights into the function and evolution of this widespread polysaccharide biosynthesis locus.
Collapse
|
41
|
Maharajan AD, Hjerde E, Hansen H, Willassen NP. Quorum Sensing Controls the CRISPR and Type VI Secretion Systems in Aliivibrio wodanis 06/09/139. Front Vet Sci 2022; 9:799414. [PMID: 35211539 PMCID: PMC8861277 DOI: 10.3389/fvets.2022.799414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/12/2022] [Indexed: 12/26/2022] Open
Abstract
For bacteria to thrive in an environment with competitors, phages and environmental cues, they use different strategies, including Type VI Secretion Systems (T6SSs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to compete for space. Bacteria often use quorum sensing (QS), to coordinate their behavior as the cell density increases. Like other aliivibrios, Aliivibrio wodanis 06/09/139 harbors two QS systems, the main LuxS/LuxPQ system and an N-acyl homoserine lactone (AHL)-mediated AinS/AinR system and a master QS regulator, LitR. To explore the QS and survival strategies, we performed genome analysis and gene expression profiling on A. wodanis and two QS mutants (ΔainS and ΔlitR) at two cell densities (OD600 2.0 and 6.0) and temperatures (6 and 12°C). Genome analysis of A. wodanis revealed two CRISPR systems, one without a cas loci (CRISPR system 1) and a type I-F CRISPR system (CRISPR system 2). Our analysis also identified three main T6SS clusters (T6SS1, T6SS2, and T6SS3) and four auxiliary clusters, as well about 80 potential Type VI secretion effectors (T6SEs). When comparing the wildtype transcriptome data at different cell densities and temperatures, 13-18% of the genes were differentially expressed. The CRISPR system 2 was cell density and temperature-independent, whereas the CRISPR system 1 was temperature-dependent and cell density-independent. The primary and auxiliary clusters of T6SSs were both cell density and temperature-dependent. In the ΔlitR and ΔainS mutants, several CRISPR and T6SS related genes were differentially expressed. Deletion of litR resulted in decreased expression of CRISPR system 1 and increased expression of CRISPR system 2. The T6SS1 and T6SS2 gene clusters were less expressed while the T6SS3 cluster was highly expressed in ΔlitR. Moreover, in ΔlitR, the hcp1 gene was strongly activated at 6°C compared to 12°C. AinS positively affected the csy genes in the CRISPR system 2 but did not affect the CRISPR arrays. Although AinS did not significantly affect the expression of T6SSs, the hallmark genes of T6SS (hcp and vgrG) were AinS-dependent. The work demonstrates that T6SSs and CRISPR systems in A. wodanis are QS dependent and may play an essential role in survival in its natural environment.
Collapse
Affiliation(s)
- Amudha Deepalakshmi Maharajan
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Erik Hjerde
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
- Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hilde Hansen
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nils Peder Willassen
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
- Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
42
|
Antimicrobial Weapons of Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:223-256. [DOI: 10.1007/978-3-031-08491-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Ting SY, LaCourse KD, Ledvina HE, Zhang R, Radey MC, Kulasekara HD, Somavanshi R, Bertolli SK, Gallagher LA, Kim J, Penewit KM, Salipante SJ, Xu L, Peterson SB, Mougous JD. Discovery of coordinately regulated pathways that provide innate protection against interbacterial antagonism. eLife 2022; 11:74658. [PMID: 35175195 PMCID: PMC8926400 DOI: 10.7554/elife.74658] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial survival is fraught with antagonism, including that deriving from viruses and competing bacterial cells. It is now appreciated that bacteria mount complex antiviral responses; however, whether a coordinated defense against bacterial threats is undertaken is not well understood. Previously, we showed that Pseudomonas aeruginosa possess a danger-sensing pathway that is a critical fitness determinant during competition against other bacteria. Here, we conducted genome-wide screens in P. aeruginosa that reveal three conserved and widespread interbacterial antagonism resistance clusters (arc1-3). We find that although arc1-3 are coordinately activated by the Gac/Rsm danger-sensing system, they function independently and provide idiosyncratic defense capabilities, distinguishing them from general stress response pathways. Our findings demonstrate that Arc3 family proteins provide specific protection against phospholipase toxins by preventing the accumulation of lysophospholipids in a manner distinct from previously characterized membrane repair systems. These findings liken the response of P. aeruginosa to bacterial threats to that of eukaryotic innate immunity, wherein threat detection leads to the activation of specialized defense systems.
Collapse
Affiliation(s)
- See-Yeun Ting
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Kaitlyn D LaCourse
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Hannah E Ledvina
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Rutan Zhang
- Department of Medicinal Chemistry, University of Washington School of PharmacySeattleUnited States
| | - Matthew C Radey
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Hemantha D Kulasekara
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Rahul Somavanshi
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Savannah K Bertolli
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Larry A Gallagher
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Jennifer Kim
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Kelsi M Penewit
- Department of Laboratory Medicine and Pathology, University of Washington School of MedicineSeattleUnited States
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of MedicineSeattleUnited States
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington School of PharmacySeattleUnited States
| | - S Brook Peterson
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of MedicineSeattleUnited States,Department of Biochemistry, University of Washington School of MedicineSeattleUnited States,Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| |
Collapse
|
44
|
Liang X, Pei TT, Li H, Zheng HY, Luo H, Cui Y, Tang MX, Zhao YJ, Xu P, Dong T. VgrG-dependent effectors and chaperones modulate the assembly of the type VI secretion system. PLoS Pathog 2021; 17:e1010116. [PMID: 34852023 PMCID: PMC8668125 DOI: 10.1371/journal.ppat.1010116] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/13/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022] Open
Abstract
The type VI secretion system (T6SS) is a spear-like nanomachine found in gram-negative pathogens for delivery of toxic effectors to neighboring bacterial and host cells. Its assembly requires a tip spike complex consisting of a VgrG-trimer, a PAAR protein, and the interacting effectors. However, how the spike controls T6SS assembly remains elusive. Here we investigated the role of three VgrG-effector pairs in Aeromonas dhakensis strain SSU, a clinical isolate with a constitutively active T6SS. By swapping VgrG tail sequences, we demonstrate that the C-terminal ~30 amino-acid tail dictates effector specificity. Double deletion of vgrG1&2 genes (VgrG3+) abolished T6SS secretion, which can be rescued by ectopically expressing chimeric VgrG3 with a VgrG1/2-tail but not the wild type VgrG3. In addition, deletion of effector-specific chaperones also severely impaired T6SS secretion, despite the presence of intact VgrG and effector proteins, in both SSU and Vibrio cholerae V52. We further show that SSU could deliver a V. cholerae effector VasX when expressing a plasmid-borne chimeric VgrG with VasX-specific VgrG tail and chaperone sequences. Pull-down analyses show that two SSU effectors, TseP and TseC, could interact with their cognate VgrGs, the baseplate protein TssK, and the key assembly chaperone TssA. Effectors TseL and VasX could interact with TssF, TssK and TssA in V. cholerae. Collectively, we demonstrate that chimeric VgrG-effector pairs could bypass the requirement of heterologous VgrG complex and propose that effector-stuffing inside the baseplate complex, facilitated by chaperones and the interaction with structural proteins, serves as a crucial structural determinant for T6SS assembly. Effectors of bacterial secretion systems are generally considered as secreted proteins for interspecies interactions rather than components of the secretion apparatus. Our results reveal the complex interactions of effectors, chaperones, and structural proteins are crucial for T6SS assembly, suggesting an integral role of effectors as parts of the apparatus and distinctive from other secretion systems.
Collapse
Affiliation(s)
- Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Yu Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Xuan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Jie Zhao
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- * E-mail:
| |
Collapse
|
45
|
Gallegos-Monterrosa R, Coulthurst SJ. The ecological impact of a bacterial weapon: microbial interactions and the Type VI secretion system. FEMS Microbiol Rev 2021; 45:fuab033. [PMID: 34156081 PMCID: PMC8632748 DOI: 10.1093/femsre/fuab033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022] Open
Abstract
Bacteria inhabit all known ecological niches and establish interactions with organisms from all kingdoms of life. These interactions are mediated by a wide variety of mechanisms and very often involve the secretion of diverse molecules from the bacterial cells. The Type VI secretion system (T6SS) is a bacterial protein secretion system that uses a bacteriophage-like machinery to secrete a diverse array of effectors, usually translocating them directly into neighbouring cells. These effectors display toxic activity in the recipient cell, making the T6SS an effective weapon during inter-bacterial competition and interactions with eukaryotic cells. Over the last two decades, microbiology research has experienced a shift towards using systems-based approaches to study the interactions between diverse organisms and their communities in an ecological context. Here, we focus on this aspect of the T6SS. We consider how our perspective of the T6SS has developed and examine what is currently known about the impact that bacteria deploying the T6SS can have in diverse environments, including niches associated with plants, insects and mammals. We consider how T6SS-mediated interactions can affect host organisms by shaping their microbiota, as well as the diverse interactions that can be established between different microorganisms through the deployment of this versatile secretion system.
Collapse
Affiliation(s)
| | - Sarah J Coulthurst
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
46
|
Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity protein-independent mechanisms. Nat Commun 2021; 12:5751. [PMID: 34599171 PMCID: PMC8486750 DOI: 10.1038/s41467-021-26041-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
While the major virulence factors for Vibrio cholerae, the cause of the devastating diarrheal disease cholera, have been extensively studied, the initial intestinal colonization of the bacterium is not well understood because non-human adult animals are refractory to its colonization. Recent studies suggest the involvement of an interbacterial killing device known as the type VI secretion system (T6SS). Here, we tested the T6SS-dependent interaction of V. cholerae with a selection of human gut commensal isolates. We show that the pathogen efficiently depleted representative genera of the Proteobacteria in vitro, while members of the Enterobacter cloacae complex and several Klebsiella species remained unaffected. We demonstrate that this resistance against T6SS assaults was mediated by the production of superior T6SS machinery or a barrier exerted by group I capsules. Collectively, our data provide new insights into immunity protein-independent T6SS resistance employed by the human microbiota and colonization resistance in general.
Collapse
|
47
|
Singh S, Datta S, Narayanan KB, Rajnish KN. Bacterial exo-polysaccharides in biofilms: role in antimicrobial resistance and treatments. J Genet Eng Biotechnol 2021; 19:140. [PMID: 34557983 PMCID: PMC8460681 DOI: 10.1186/s43141-021-00242-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/04/2021] [Indexed: 12/18/2022]
Abstract
Background Bacterial biofilms are aggregation or collection of different bacterial cells which are covered by self-produced extracellular matrix and are attached to a substratum. Generally, under stress or in unfavorable conditions, free planktonic bacteria transform themselves into bacterial biofilms and become sessile. Main body Various mechanisms involving interaction between antimicrobial and biofilm matrix components, reduced growth rates, and genes conferring antibiotic resistance have been described to contribute to enhanced resistance. Quorum sensing and multi-drug resistance efflux pumps are known to regulate the internal environment within the biofilm as well as biofilm formation; they also protect cells from antibiotic attack or immune attacks. This review summarizes data supporting the importance of exopolysaccharides during biofilm formation and its role in antibiotic resistance. Conclusions Involvement of quorum sensing and efflux pumps in antibiotic resistance in association with exopolysaccharides. Also, strategies to overcome or attack biofilms are provided.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Saptashwa Datta
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280, Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - K Narayanan Rajnish
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
48
|
Defending against the Type Six Secretion System: beyond Immunity Genes. Cell Rep 2021; 33:108259. [PMID: 33053336 DOI: 10.1016/j.celrep.2020.108259] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
The bacterial type six secretion system (T6SS) delivers toxic effector proteins into neighboring cells, but bacteria must protect themselves against their own T6SS. Immunity genes are the best-characterized defenses, protecting against specific cognate effectors. However, the prevalence of the T6SS and the coexistence of species with heterologous T6SSs suggest evolutionary pressure selecting for additional defenses against it. Here we review defenses against the T6SS beyond self-associated immunity genes, such as diverse stress responses that can recognize T6SS-inflicted damage and coordinate induction of molecular armor, repair pathways, and overall survival. Some of these stress responses are required for full survival even in the presence of immunity genes. Finally, we propose that immunity gene-independent protection is, mechanistically, bacterial innate immunity and that such defenses and the T6SS have co-evolved and continue to shape one another in polymicrobial communities.
Collapse
|
49
|
Formylglycine-generating enzyme-like proteins constitute a novel family of widespread type VI secretion system immunity proteins. J Bacteriol 2021; 203:e0028121. [PMID: 34398661 DOI: 10.1128/jb.00281-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Competition is a critical aspect of bacterial life, as it enables niche establishment and facilitates the acquisition of essential nutrients. Warfare between Gram-negative bacteria is largely mediated by the type VI secretion system (T6SS), a dynamic nanoweapon that delivers toxic effector proteins from an attacking cell to adjacent bacteria in a contact-dependent manner. Effector-encoding bacteria prevent self-intoxication and kin cell killing by the expression of immunity proteins, which prevent effector toxicity by specifically binding their cognate effector and either occluding its active site or preventing structural rearrangements necessary for effector activation. In this study, we investigate Tsi3, a previously uncharacterized T6SS immunity protein present in multiple strains of the human pathogen Acinetobacter baumannii. We show that Tsi3 is the cognate immunity protein of the antibacterial effector of unknown function Tse3. Our bioinformatic analyses indicate that Tsi3 homologs are widespread among Gram-negative bacteria, often encoded within T6SS effector-immunity modules. Surprisingly, we found that Tsi3 homologs are predicted to possess a characteristic formylglycine-generating enzyme (FGE) domain, which is present in various enzymatic proteins. Our data shows that Tsi3-mediated immunity is dependent on Tse3-Tsi3 protein-protein interactions and that Tsi3 homologs from various bacteria do not provide immunity against non-kin Tse3. Thus, we conclude that Tsi3 homologs are unlikely to be functional enzymes. Collectively, our work identifies FGE domain-containing proteins as important mediators of immunity against T6SS attacks and indicates that the FGE domain can be co-opted as a scaffold in multiple proteins to carry out diverse functions. Importance Despite the wealth of knowledge on the diversity of biochemical activities carried out by T6SS effectors, comparably little is known about the various strategies bacteria employ to prevent susceptibility to T6SS-dependent bacterial killing. Our work establishes a novel family of T6SS immunity proteins with a characteristic FGE domain. This domain is present in enzymatic proteins with various catalytic activities. Our characterization of Tsi3 expands the known functions carried out by FGE-like proteins to include defense during T6SS-mediated bacterial warfare. Moreover, it highlights the evolution of FGE domain-containing proteins to carry out diverse biological functions.
Collapse
|
50
|
Abstract
Genetic editing has revolutionized biotechnology, but delivery of endonuclease genes as DNA can lead to aberrant integration or overexpression, leading to off-target effects. Here, we develop a mechanism to deliver Cre recombinase as a protein by engineering the bacterial type six secretion system (T6SS). Using multiple T6SS fusion proteins, Aeromonas dhakensis or attenuated Vibrio cholerae donor strains, and a gain-of-function cassette for detecting Cre recombination, we demonstrate successful delivery of active Cre directly into recipient cells. The most efficient transfer was achieved using a truncated version of PAAR2 from V. cholerae, resulting in a relatively small (118-amino-acid) delivery tag. We further demonstrate the versatility of this system by delivering an exogenous effector, TseC, enabling V. cholerae to kill Pseudomonas aeruginosa. This implies that P. aeruginosa is naturally resistant to all native effectors of V. cholerae and that the TseC chaperone protein is not required for its activity. Moreover, it demonstrates that the engineered system can improve T6SS efficacy against specific pathogens, proposing future application in microbiome manipulation or as a next-generation antimicrobial. Inexpensive and easy to produce, this protein delivery system has many potential applications, ranging from studying T6SS effectors to genetic editing.
Collapse
|