1
|
Lorenz GM, Engel NM, Celotto M, Koçillari L, Curreli S, Fellin T, Panzeri S. MINT: A toolbox for the analysis of multivariate neural information coding and transmission. PLoS Comput Biol 2025; 21:e1012934. [PMID: 40233091 PMCID: PMC12043240 DOI: 10.1371/journal.pcbi.1012934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/30/2025] [Accepted: 03/06/2025] [Indexed: 04/17/2025] Open
Abstract
Information theory has deeply influenced the conceptualization of brain information processing and is a mainstream framework for analyzing how neural networks in the brain process information to generate behavior. Information theory tools have been initially conceived and used to study how information about sensory variables is encoded by the activity of small neural populations. However, recent multivariate information theoretic advances have enabled addressing how information is exchanged across areas and used to inform behavior. Moreover, its integration with dimensionality-reduction techniques has enabled addressing information encoding and communication by the activity of large neural populations or many brain areas, as recorded by multichannel activity measurements in functional imaging and electrophysiology. Here, we provide a Multivariate Information in Neuroscience Toolbox (MINT) that combines these new methods with statistical tools for robust estimation from limited-size empirical datasets. We demonstrate the capabilities of MINT by applying it to both simulated and real neural data recorded with electrophysiology or calcium imaging, but all MINT functions are equally applicable to other brain-activity measurement modalities. We highlight the synergistic opportunities that combining its methods afford for reverse engineering of specific information processing and flow between neural populations or areas, and for discovering how information processing functions emerge from interactions between neurons or areas. MINT works on Linux, Windows and macOS operating systems, is written in MATLAB (requires MATLAB version 2018b or newer) and depends on 4 native MATLAB toolboxes. The calculation of one possible way to compute information redundancy requires the installation and compilation of C files (made available by us also as pre-compiled files). MINT is freely available at https://github.com/panzerilab/MINT with DOI doi.org/10.5281/zenodo.13998526 and operates under a GNU GPLv3 license.
Collapse
Affiliation(s)
- Gabriel Matías Lorenz
- Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Nicola Marie Engel
- Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Marco Celotto
- Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Loren Koçillari
- Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sebastiano Curreli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Panzeri
- Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
2
|
Rodgers J, Hughes S, Ebrahimi AS, Allen AE, Storchi R, Lindner M, Peirson SN, Badea TC, Hankins MW, Lucas RJ. Enhanced restoration of visual code after targeting ON bipolar cells compared with retinal ganglion cells with optogenetic therapy. Mol Ther 2025; 33:1264-1281. [PMID: 39825567 PMCID: PMC11897768 DOI: 10.1016/j.ymthe.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/13/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Optogenetic therapy is a promising vision restoration method where light-sensitive opsins are introduced to the surviving inner retina following photoreceptor degeneration. The cell type targeted for opsin expression will likely influence the quality of restored vision. However, a like-for-like preclinical comparison of visual responses evoked following equivalent opsin expression in the two major targets, ON bipolar (ON BCs) or retinal ganglion cells (RGCs), is absent. We address this deficit by comparing stimulus-response characteristics at single-unit resolution in the retina and dorsal lateral geniculate nucleus of retinally degenerate mice genetically engineered to express the opsin ReaChR in Grm6- or Brn3c-expressing cells (ON BC vs. RGCs, respectively). For both targeting strategies, we find ReaChR-evoked responses have equivalent sensitivity and can encode contrast across different background irradiances. Compared with ON BCs, targeting RGCs decreased response reproducibility and resulted in more stereotyped responses with reduced diversity in response polarity, contrast sensitivity, and temporal frequency tuning. Recording ReaChR-driven responses in visually intact retinas confirmed that RGC-targeted ReaChR expression disrupts visual feature selectivity of individual RGCs. Our data show that, while both approaches restore visual responses with impressive fidelity, ON BC targeting produces a richer visual code closer to that of wild-type mice.
Collapse
Affiliation(s)
- Jessica Rodgers
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Aghileh S Ebrahimi
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Annette E Allen
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Riccardo Storchi
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Moritz Lindner
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037 Marburg, Germany; Department of Ophthalmology, University Hospitals of Giessen and Marburg, 35043 Marburg, Germany
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Tudor C Badea
- Neurogenetics Laboratory/ICDT, Transilvania University of Brasov, 500484 Brasov, Romania; National Brain Research Centre/ICIA, Romanian Academy, 050711 Bucharest, Romania
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK.
| | - Robert J Lucas
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
3
|
Arslan H, Yorgancilar N, Kose O, Aslan MG, Altin A, Bayrakdar SK, Yemenoglu H, Findik H, Yilmaz A. Periodontitis Provokes Retinal Neurodegenerative Effects of Metabolic Syndrome: A Cross-Sectional Study. Dent J (Basel) 2024; 12:351. [PMID: 39590401 PMCID: PMC11592826 DOI: 10.3390/dj12110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND This cross-sectional study aims to investigate the retino-choroidal degenerative effects of periodontitis, metabolic syndrome (Mets), and the combination of these diseases using optical coherence tomography (OCT) measurements. METHODS Ninety-two patients selected according to inclusion criteria were divided into four groups: systemically and periodontally healthy (control), systemically healthy periodontitis (PD), periodontally healthy metabolic syndrome (MetS), and periodontitis and metabolic syndrome combined (PD-MetS). The systemic inflammatory-oxidative effects of periodontitis and MetS were biochemically evaluated using the serum TNF-α level, IL-1β/IL-10 ratio, and oxidative stress index (OSI: TOS/TAS). Retinal (AMT, pRNFLT, and GCL + T) and choroidal (SFCT) morphometric measurements and vascular evaluations (foveal capillary density) were performed via OCT Angio with swept-source technology. RESULTS Both periodontitis and Mets cause systemic inflammatory stress characterized by significant increases in the IL-1β/IL-10 ratio and OSI (p < 0.05). Compared to the control group, the AMT was significantly thinner in the MetS group, the pRNFLT was significantly thinner in the PD-MetS group, and the SFCT was significantly thinner in both groups (p < 0.05). The GCL+ was slightly thicker in the Mets groups. (p > 0.05) Foveal capillary density did not differ significantly among the groups. (p > 0.05). CONCLUSIONS Periodontitis-related inflammatory stress alone causes changes in retinal and subfoveal choroidal thicknesses that are not statistically significant. On the other hand, when combined with Mets, it may significantly provoke the retinal neurodegenerative effects of this disease.
Collapse
Affiliation(s)
- Hatice Arslan
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize 53100, Turkey; (H.A.); (O.K.); (H.Y.)
| | - Nur Yorgancilar
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize 53100, Turkey; (H.A.); (O.K.); (H.Y.)
| | - Oguz Kose
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize 53100, Turkey; (H.A.); (O.K.); (H.Y.)
| | - Mehmet Gokhan Aslan
- Department of Ophthalmology, School of Medicine, Recep Tayyip Erdogan University, Rize 53100, Turkey; (M.G.A.); (H.F.)
| | - Ahmet Altin
- Department of Periodontology, School of Dentistry, Istanbul Kent University, Istanbul 34433, Turkey;
| | - Sevda Kurt Bayrakdar
- Department of Periodontology, School of Dentistry, Eskişehir Osmangazi University, Eskisehir 26040, Turkey;
| | - Hatice Yemenoglu
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize 53100, Turkey; (H.A.); (O.K.); (H.Y.)
| | - Huseyin Findik
- Department of Ophthalmology, School of Medicine, Recep Tayyip Erdogan University, Rize 53100, Turkey; (M.G.A.); (H.F.)
| | - Adnan Yilmaz
- Department of Biochemistry, School of Medicine, Recep Tayyip Erdogan University, Rize 53100, Turkey;
| |
Collapse
|
4
|
Han CY, Zhao S, Fang SL, Liu W, Tang WM, Lai PT, Li C, Ma YX, Song JQ, Li X, Wang XL, Ren WJ, Wang RL, Huang XD, Zhang GH, Geng L. A Flexible Artificial Spiking Photoreceptor Enabled by a Single VO 2 Mott Memristor for the Spike-Based Electronic Retina. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57404-57411. [PMID: 39380467 DOI: 10.1021/acsami.4c12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The neuromorphic vision system that utilizes spikes as information carriers is crucial for the formation of spiking neural networks. Here, we present a bioinspired flexible artificial spiking photoreceptor (ASP), which is realized by using a single VO2 Mott memristor that can simultaneously sense and encode the stimulus light into spikes. The ASP has high spike-encoded photosensitivity and ultrawide photosensing range (405-808 nm) with good endurance (>7 × 107) and high flexibility (bending radius ∼5 mm). Then, we put forward an all-spike electronic retina architecture that comprises one layer of ASPs and one layer of artificial optical nerves (AONs) to process the spike information. Each AON consists of a single Mott memristor connected in series with a neuro-transistor that is a multiple-input floating-gate MOS transistor. Simulation results demonstrate that the all-spike electronic retina can successfully segment images with high Shannon entropy, thus laying the foundation for the development of a spike-based neuromorphic vision system.
Collapse
Affiliation(s)
- Chuan Yu Han
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Shujing Zhao
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Sheng Li Fang
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Weihua Liu
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Wing Man Tang
- The Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, P.R. China
| | - Peter To Lai
- The Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, P.R. China
| | - Can Li
- The Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, P.R. China
| | - Yuan Xiao Ma
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Jia Qi Song
- Physics Teaching and Experiment Center, Shenzhen Technology University, Shenzhen 518118, P.R. China
| | - Xin Li
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Xiao Li Wang
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Wen Jun Ren
- PE Department, Xi' an Jiaotong University, Xi'an 710049, China
| | - Rui Lin Wang
- PE Department, Xi' an Jiaotong University, Xi'an 710049, China
| | - Xiao Dong Huang
- Key Laboratory of MEMS of the Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 211189, China
| | - Guo He Zhang
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Li Geng
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
5
|
Saito M, Miyamoto K, Murakami I. Illumination by short-wavelength light inside the blind spot decreases light detectability. iScience 2024; 27:110612. [PMID: 39220265 PMCID: PMC11363485 DOI: 10.1016/j.isci.2024.110612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Although the optic disk corresponding to the blind spot contains no classical photoreceptors, it contains photopigment melanopsin. To clarify whether melanopsin is involved in light detection, we conducted detection tasks for light stimuli presented in the normal visual field, with and without another illumination inside the blind spot. We found that a blue blind-spot illumination decreased the light detectability on a dark background. This effect was replicable when it was determined immediately after the blind-spot illumination was turned off, suggesting the contribution of a sluggish system rather than scattering. Moreover, the aforementioned effect was not observed when the blind-spot illumination was in red, indicating wavelength specificity in favor of melanopsin's sensitivity profile. These findings suggest that melanopsin is activated by the blind-spot illumination and thereby interferes with light detection near the absolute threshold. Light detection originating from conventional photoreceptors is modulated by melanopsin-based computation presumably estimating a baseline noise level.
Collapse
Affiliation(s)
- Marina Saito
- Department of Psychology, the University of Tokyo, Tokyo 113-0033, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
- Faculty of Design and Architecture, Nagoya City University, Nagoya 467-8501, Japan
| | - Kentaro Miyamoto
- Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Ikuya Murakami
- Department of Psychology, the University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Yang TH, Kang EYC, Lin PH, Yu BBC, Wang JHH, Chen V, Wang NK. Mitochondria in Retinal Ganglion Cells: Unraveling the Metabolic Nexus and Oxidative Stress. Int J Mol Sci 2024; 25:8626. [PMID: 39201313 PMCID: PMC11354650 DOI: 10.3390/ijms25168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
This review explored the role of mitochondria in retinal ganglion cells (RGCs), which are essential for visual processing. Mitochondrial dysfunction is a key factor in the pathogenesis of various vision-related disorders, including glaucoma, hereditary optic neuropathy, and age-related macular degeneration. This review highlighted the critical role of mitochondria in RGCs, which provide metabolic support, regulate cellular health, and respond to cellular stress while also producing reactive oxygen species (ROS) that can damage cellular components. Maintaining mitochondrial function is essential for meeting RGCs' high metabolic demands and ensuring redox homeostasis, which is crucial for their proper function and visual health. Oxidative stress, exacerbated by factors like elevated intraocular pressure and environmental factors, contributes to diseases such as glaucoma and age-related vision loss by triggering cellular damage pathways. Strategies targeting mitochondrial function or bolstering antioxidant defenses include mitochondrial-based therapies, gene therapies, and mitochondrial transplantation. These advances can offer potential strategies for addressing mitochondrial dysfunction in the retina, with implications that extend beyond ocular diseases.
Collapse
Affiliation(s)
- Tsai-Hsuan Yang
- Department of Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
| | - Pei-Hsuan Lin
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- National Taiwan University Hospital, Yunlin 640203, Taiwan
| | - Benjamin Ben-Chi Yu
- Fu Foundation School of Engineering & Applied Science, Columbia University, New York, NY 10027, USA;
| | - Jason Hung-Hsuan Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Vincent Chen
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Ding QA, Gu C, Li J, Li X, Hou B, Peng Y, Chen B, Yao Y. Mimicking the retinal neuron functions by a photoresponsive single transistor with a double gate. Biophys J 2024; 123:1804-1814. [PMID: 38783604 PMCID: PMC11267426 DOI: 10.1016/j.bpj.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
To realize a low-cost neuromorphic visual system, employing an artificial neuron capable of mimicking the retinal neuron functions is essential. A photoresponsive single transistor neuron composed of a vertical silicon nanowire is proposed. Similar to retinal neurons, various photoresponsive characteristics of the single transistor neuron can be modulated by light intensity as well as wavelength and have a high responsivity to green light like the human eye. The device is designed with a cylindrical surrounding double-gate structure, enclosed by an independently controlled outer gate and inner gate. The outer gate has the function of selectively inhibiting neuron activity, which can mimic lateral inhibition of amacrine cells to ganglion cells, and the inner gate can be utilized for the adjustment of the firing threshold voltage, which can be used to mimic the regulation of photoresponsivity by horizontal cells for adaptive visual perception. Furthermore, a myelination function that controls the speed of information transmission is obtained according to the inherent asymmetric source/drain structure of a vertical silicon nanowire. This work can enable photoresponsive neuronal function using only a single transistor, providing a promising hardware implementation for building miniaturized neuromorphic vision systems at low cost.
Collapse
Affiliation(s)
- Qing-An Ding
- School of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Chaoran Gu
- School of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Jianyu Li
- School of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Xiaoyuan Li
- School of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, China; Affiliated Hospital of Qingdao University, Qingdao, China.
| | - BingHui Hou
- Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yandong Peng
- School of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, China.
| | - Bing Chen
- School of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Youli Yao
- School of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Adhikari P, Uprety S, Feigl B, Zele AJ. Melanopsin-mediated amplification of cone signals in the human visual cortex. Proc Biol Sci 2024; 291:20232708. [PMID: 38808443 PMCID: PMC11285915 DOI: 10.1098/rspb.2023.2708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
The ambient daylight variation is coded by melanopsin photoreceptors and their luxotonic activity increases towards midday when colour temperatures are cooler, and irradiances are higher. Although melanopsin and cone photoresponses can be mediated via separate pathways, the connectivity of melanopsin cells across all levels of the retina enables them to modify cone signals. The downstream effects of melanopsin-cone interactions on human vision are however, incompletely understood. Here, we determined how the change in daytime melanopsin activation affects the human cone pathway signals in the visual cortex. A 5-primary silent-substitution method was developed to evaluate the dependence of cone-mediated signals on melanopsin activation by spectrally tuning the lights and stabilizing the rhodopsin activation under a constant cone photometric luminance. The retinal (white noise electroretinogram) and cortical responses (visual evoked potential) were simultaneously recorded with the photoreceptor-directed lights in 10 observers. By increasing the melanopsin activation, a reverse response pattern was observed with cone signals being supressed in the retina by 27% (p = 0.03) and subsequently amplified by 16% (p = 0.01) as they reach the cortex. We infer that melanopsin activity can amplify cone signals at sites distal to retinal bipolar cells to cause a decrease in the psychophysical Weber fraction for cone vision.
Collapse
Affiliation(s)
- Prakash Adhikari
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Samir Uprety
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Beatrix Feigl
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
- Queensland Eye Institute, Brisbane, Queensland 4101, Australia
| | - Andrew J Zele
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| |
Collapse
|
9
|
Soucy JR, Aguzzi EA, Cho J, Gilhooley MJ, Keuthan C, Luo Z, Monavarfeshani A, Saleem MA, Wang XW, Wohlschlegel J, Baranov P, Di Polo A, Fortune B, Gokoffski KK, Goldberg JL, Guido W, Kolodkin AL, Mason CA, Ou Y, Reh TA, Ross AG, Samuels BC, Welsbie D, Zack DJ, Johnson TV. Retinal ganglion cell repopulation for vision restoration in optic neuropathy: a roadmap from the RReSTORe Consortium. Mol Neurodegener 2023; 18:64. [PMID: 37735444 PMCID: PMC10514988 DOI: 10.1186/s13024-023-00655-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system's limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium's efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Erika A Aguzzi
- The Institute of Ophthalmology, University College London, London, England, UK
| | - Julie Cho
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael James Gilhooley
- The Institute of Ophthalmology, University College London, London, England, UK
- Moorfields Eye Hospital, London, England, UK
| | - Casey Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Aboozar Monavarfeshani
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Meher A Saleem
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, USA
| | - Xue-Wei Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Petr Baranov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Kimberly K Gokoffski
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Alex L Kolodkin
- The Solomon H Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carol A Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Ahmara G Ross
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, Callahan Eye Hospital, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Derek Welsbie
- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California, San Diego, CA, USA
| | - Donald J Zack
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas V Johnson
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular & Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA.
| |
Collapse
|
10
|
Wang G, Liu YF, Yang Z, Yu CX, Tong Q, Tang YL, Shao YQ, Wang LQ, Xu X, Cao H, Zhang YQ, Zhong YM, Weng SJ, Yang XL. Short-term acute bright light exposure induces a prolonged anxiogenic effect in mice via a retinal ipRGC-CeA circuit. SCIENCE ADVANCES 2023; 9:eadf4651. [PMID: 36947616 PMCID: PMC10032603 DOI: 10.1126/sciadv.adf4651] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Light modulates mood through various retina-brain pathways. We showed that mice treated with short-term acute bright light exposure displayed anxiety-related phenotypes in a prolonged manner even after the termination of the exposure. Such a postexposure anxiogenic effect depended upon melanopsin-based intrinsically photosensitive retinal ganglion cell (ipRGC) activities rather than rod/cone photoreceptor inputs. Chemogenetic manipulation of specific central nuclei demonstrated that the ipRGC-central amygdala (CeA) visual circuit played a key role in this effect. The corticosterone system was likely to be involved in this effect, as evidenced by enhanced expression of the glucocorticoid receptor (GR) protein in the CeA and the bed nucleus of the stria terminalis and by the absence of this effect in animals treated with the GR antagonist. Together, our findings reveal a non-image forming visual circuit specifically designed for "the delayed" extinction of anxiety against potential threats, thus conferring a survival advantage.
Collapse
Affiliation(s)
- Ge Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yun-Feng Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhe Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chen-Xi Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiuping Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Long Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Qi Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Li-Qin Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yong-Mei Zhong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
12
|
Raja S, Milosavljevic N, Allen AE, Cameron MA. Burning the candle at both ends: Intraretinal signaling of intrinsically photosensitive retinal ganglion cells. Front Cell Neurosci 2023; 16:1095787. [PMID: 36687522 PMCID: PMC9853061 DOI: 10.3389/fncel.2022.1095787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are photoreceptors located in the ganglion cell layer. They project to brain regions involved in predominately non-image-forming functions including entrainment of circadian rhythms, control of the pupil light reflex, and modulation of mood and behavior. In addition to possessing intrinsic photosensitivity via the photopigment melanopsin, these cells receive inputs originating in rods and cones. While most research in the last two decades has focused on the downstream influence of ipRGC signaling, recent studies have shown that ipRGCs also act retrogradely within the retina itself as intraretinal signaling neurons. In this article, we review studies examining intraretinal and, in addition, intraocular signaling pathways of ipRGCs. Through these pathways, ipRGCs regulate inner and outer retinal circuitry through both chemical and electrical synapses, modulate the outputs of ganglion cells (both ipRGCs and non-ipRGCs), and influence arrangement of the correct retinal circuitry and vasculature during development. These data suggest that ipRGC function plays a significant role in the processing of image-forming vision at its earliest stage, positioning these photoreceptors to exert a vital role in perceptual vision. This research will have important implications for lighting design to optimize the best chromatic lighting environments for humans, both in adults and potentially even during fetal and postnatal development. Further studies into these unique ipRGC signaling pathways could also lead to a better understanding of the development of ocular dysfunctions such as myopia.
Collapse
Affiliation(s)
- Sushmitha Raja
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Nina Milosavljevic
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Morven A. Cameron
- School of Medicine, Western Sydney University, Sydney, NSW, Australia,*Correspondence: Morven A. Cameron,
| |
Collapse
|
13
|
Optimizing Light Flash Sequence Duration to Shift Human Circadian Phase. BIOLOGY 2022; 11:biology11121807. [PMID: 36552316 PMCID: PMC9775356 DOI: 10.3390/biology11121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Unlike light input for forming images, non-image-forming retinal pathways are optimized to convey information about the total light environment, integrating this information over time and space. In a variety of species, discontinuous light sequences (flashes) can be effective stimuli, notably impacting circadian entrainment. In this study, we examined the extent to which this temporal integration can occur. A group of healthy, young (n = 20) individuals took part in a series of 16-day protocols in which we examined the impact of different lengths of light flash sequences on circadian timing. We find a significant phase change of -0.70 h in response to flashes that did not differ by duration; a 15-min sequence could engender as much change in circadian timing as 3.5-h sequences. Acute suppression of melatonin was also observed during short (15-min) exposures, but not in exposures over one hour in length. Our data are consistent with the theory that responses to light flashes are mediated by the extrinsic, rod/cone pathway, and saturate the response of this pathway within 15 min. Further excitation leads to no greater change in circadian timing and an inability to acutely suppress melatonin, indicating that this pathway may be in a refractory state following this brief light stimulation.
Collapse
|
14
|
Liu AL, Liu YF, Wang G, Shao YQ, Yu CX, Yang Z, Zhou ZR, Han X, Gong X, Qian KW, Wang LQ, Ma YY, Zhong YM, Weng SJ, Yang XL. The role of ipRGCs in ocular growth and myopia development. SCIENCE ADVANCES 2022; 8:eabm9027. [PMID: 35675393 PMCID: PMC9176740 DOI: 10.1126/sciadv.abm9027] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The increasing global prevalence of myopia calls for elaboration of the pathogenesis of this disease. Here, we show that selective ablation and activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) in developing mice induced myopic and hyperopic refractive shifts by modulating the corneal radius of curvature (CRC) and axial length (AL) in an opposite way. Melanopsin- and rod/cone-driven signals of ipRGCs were found to influence refractive development by affecting the AL and CRC, respectively. The role of ipRGCs in myopia progression is evidenced by attenuated form-deprivation myopia magnitudes in ipRGC-ablated and melanopsin-deficient animals and by enhanced melanopsin expression/photoresponses in form-deprived eyes. Cell subtype-specific ablation showed that M1 subtype cells, and probably M2/M3 subtype cells, are involved in ocular development. Thus, ipRGCs contribute substantially to mouse eye growth and myopia development, which may inspire novel strategies for myopia intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Shi-Jun Weng
- Corresponding author. (X.-L.Y.); (S.-J.W.); (Y.-M.Z.)
| | - Xiong-Li Yang
- Corresponding author. (X.-L.Y.); (S.-J.W.); (Y.-M.Z.)
| |
Collapse
|
15
|
Kang EYC, Liu PK, Wen YT, Quinn PMJ, Levi SR, Wang NK, Tsai RK. Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration. Antioxidants (Basel) 2021; 10:1948. [PMID: 34943051 PMCID: PMC8750806 DOI: 10.3390/antiox10121948] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Ocular diseases associated with retinal ganglion cell (RGC) degeneration is the most common neurodegenerative disorder that causes irreversible blindness worldwide. It is characterized by visual field defects and progressive optic nerve atrophy. The underlying pathophysiology and mechanisms of RGC degeneration in several ocular diseases remain largely unknown. RGCs are a population of central nervous system neurons, with their soma located in the retina and long axons that extend through the optic nerve to form distal terminals and connections in the brain. Because of this unique cytoarchitecture and highly compartmentalized energy demand, RGCs are highly mitochondrial-dependent for adenosine triphosphate (ATP) production. Recently, oxidative stress and mitochondrial dysfunction have been found to be the principal mechanisms in RGC degeneration as well as in other neurodegenerative disorders. Here, we review the role of oxidative stress in several ocular diseases associated with RGC degenerations, including glaucoma, hereditary optic atrophy, inflammatory optic neuritis, ischemic optic neuropathy, traumatic optic neuropathy, and drug toxicity. We also review experimental approaches using cell and animal models for research on the underlying mechanisms of RGC degeneration. Lastly, we discuss the application of antioxidants as a potential future therapy for the ocular diseases associated with RGC degenerations.
Collapse
Affiliation(s)
- Eugene Yu-Chuan Kang
- Department of Ophthalmology, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pei-Kang Liu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 80424, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80424, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97403, Taiwan;
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (P.M.J.Q.); (S.R.L.)
| | - Sarah R. Levi
- Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (P.M.J.Q.); (S.R.L.)
| | - Nan-Kai Wang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97403, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97403, Taiwan
| |
Collapse
|
16
|
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) signal not only anterogradely to drive behavioral responses, but also retrogradely to some amacrine interneurons to modulate retinal physiology. We previously found that all displaced amacrine cells with spiking, tonic excitatory photoresponses receive gap-junction input from ipRGCs, but the connectivity patterns and functional roles of ipRGC-amacrine coupling remained largely unknown. Here, we injected PoPro1 fluorescent tracer into all six types of mouse ipRGCs to identify coupled amacrine cells, and analyzed the latter's morphological and electrophysiological properties. We also examined how genetically disrupting ipRGC-amacrine coupling affected ipRGC photoresponses. Results showed that ipRGCs couple with not just ON- and ON/OFF-stratified amacrine cells in the ganglion-cell layer as previously reported, but also OFF-stratified amacrine cells in both ganglion-cell and inner nuclear layers. M1- and M3-type ipRGCs couple mainly with ON/OFF-stratified amacrine cells, whereas the other ipRGC types couple almost exclusively with ON-stratified ones. ipRGCs transmit melanopsin-based light responses to at least 93% of the coupled amacrine cells. Some of the ON-stratifying ipRGC-coupled amacrine cells exhibit transient hyperpolarizing light responses. We detected bidirectional electrical transmission between an ipRGC and a coupled amacrine cell, although transmission was asymmetric for this particular cell pair, favoring the ipRGC-to-amacrine direction. We also observed electrical transmission between two amacrine cells coupled to the same ipRGC. In both scenarios of coupling, the coupled cells often spiked synchronously. While ipRGC-amacrine coupling somewhat reduces the peak firing rates of ipRGCs' intrinsic melanopsin-based photoresponses, it renders these responses more sustained and longer-lasting. In summary, ipRGCs' gap junctional network involves more amacrine cell types and plays more roles than previously appreciated.
Collapse
|
17
|
Evangelisti S, La Morgia C, Testa C, Manners DN, Brizi L, Bianchini C, Carbonelli M, Barboni P, Sadun AA, Tonon C, Carelli V, Vandewalle G, Lodi R. Brain functional MRI responses to blue light stimulation in Leber’s hereditary optic neuropathy. Biochem Pharmacol 2021; 191:114488. [DOI: 10.1016/j.bcp.2021.114488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
|
18
|
[Intrinsically photosensitive retinal ganglion cells]. Ophthalmologe 2021; 119:358-366. [PMID: 34350494 PMCID: PMC9005408 DOI: 10.1007/s00347-021-01476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/04/2022]
Abstract
Hintergrund Melanopsin exprimierende, intrinsisch-photosensitive retinale Ganglienzellen (ipRGCs) bilden neben Stäbchen und Zapfen die dritte Klasse von retinalen Photorezeptoren. Diese kleine, heterogene Zellfamilie vermittelt ein weites Spektrum an Aufgaben überwiegend des nicht-bildformenden Sehens. Fragestellung Diese Arbeit soll einen Einblick in das aktuelle Verständnis der Funktion und der funktionellen Diversität der ipRGCs geben sowie klinisch und translational relevante Aspekte beleuchten. Material und Methoden Narrative Übersichtsarbeit. Ergebnisse ipRGCs machen etwa 1–2 % aller retinalen Ganglienzellen aus und bilden dabei 6 spezialisierte Subtypen. Mit ihrem Photopigment Melanopsin sind sie in der Lage, unabhängig von synaptischem Input Lichtinformationen an das Gehirn weiterzuleiten oder lichtabhängig zu modifizieren. Je nach Subtyp vermitteln sie so nichtvisuelle Aufgaben wie die Synchronisation der inneren Uhr oder den Pupillenreflex, greifen aber auch in das bildformende System ein. ipRGCs weisen eine differenzielle Widerstandskraft gegenüber Optikusschädigung auf, was sie zu einem attraktiven Studienobjekt für die Entwicklung neuroprotektiver Therapieansätze macht. Melanopsin rückt zudem als optogenetisches Werkzeug, etwa in der prosthetischen Gentherapie, in den Fokus. Schlussfolgerungen Häufige klinische Beobachtungen lassen sich nur mit Kenntnis des ipRGC-Systems verstehen. Ihre neuronale Vernetzung und die intrazelluläre Signalverarbeitung sind Gegenstand aktiver Forschung, die neue translationale Ansätze hervorbringt.
Collapse
|
19
|
A Measure of Concurrent Neural Firing Activity Based on Mutual Information. Neuroinformatics 2021; 19:719-735. [PMID: 33852134 DOI: 10.1007/s12021-021-09515-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 10/21/2022]
Abstract
Multiple methods have been developed in an attempt to quantify stimulus-induced neural coordination and to understand internal coordination of neuronal responses by examining the synchronization phenomena in neural discharge patterns. In this work we propose a novel approach to estimate the degree of concomitant firing between two neural units, based on a modified form of mutual information (MI) applied to a two-state representation of the firing activity. The binary profile of each single unit unfolds its discharge activity in time by decomposition into the state of neural quiescence/low activity and state of moderate firing/bursting. Then, the MI computed between the two binary streams is normalized by their minimum entropy and is taken as positive or negative depending on the prevalence of identical or opposite concomitant states. The resulting measure, denoted as Concurrent Firing Index based on MI (CFIMI), relies on a single input parameter and is otherwise assumption-free and symmetric. Exhaustive validation was carried out through controlled experiments in three simulation scenarios, showing that CFIMI is independent on firing rate and recording duration, and is sensitive to correlated and anti-correlated firing patterns. Its ability to detect non-correlated activity was assessed using ad-hoc surrogate data. Moreover, the evaluation of CFIMI on experimental recordings of spiking activity in retinal ganglion cells brought insights into the changes of neural synchrony over time. The proposed measure offers a novel perspective on the estimation of neural synchrony, providing information on the co-occurrence of firing states in the two analyzed trains over longer temporal scales compared to existing measures.
Collapse
|
20
|
Nilsson DE, Smolka J. Quantifying biologically essential aspects of environmental light. J R Soc Interface 2021; 18:20210184. [PMID: 33906390 PMCID: PMC8086911 DOI: 10.1098/rsif.2021.0184] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Quantifying and comparing light environments are crucial for interior lighting, architecture and visual ergonomics. Yet, current methods only catch a small subset of the parameters that constitute a light environment, and rarely account for the light that reaches the eye. Here, we describe a new method, the environmental light field (ELF) method, which quantifies all essential features that characterize a light environment, including important aspects that have previously been overlooked. The ELF method uses a calibrated digital image sensor with wide-angle optics to record the radiances that would reach the eyes of people in the environment. As a function of elevation angle, it quantifies the absolute photon flux, its spectral composition in red-green-blue resolution as well as its variation (contrast-span). Together these values provide a complete description of the factors that characterize a light environment. The ELF method thus offers a powerful and convenient tool for the assessment and comparison of light environments. We also present a graphic standard for easy comparison of light environments, and show that different natural and artificial environments have characteristic distributions of light.
Collapse
Affiliation(s)
- Dan-E. Nilsson
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Jochen Smolka
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| |
Collapse
|
21
|
Pottackal J, Walsh HL, Rahmani P, Zhang K, Justice NJ, Demb JB. Photoreceptive Ganglion Cells Drive Circuits for Local Inhibition in the Mouse Retina. J Neurosci 2021; 41:1489-1504. [PMID: 33397711 PMCID: PMC7896016 DOI: 10.1523/jneurosci.0674-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/11/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) exhibit melanopsin-dependent light responses that persist in the absence of rod and cone photoreceptor-mediated input. In addition to signaling anterogradely to the brain, ipRGCs signal retrogradely to intraretinal circuitry via gap junction-mediated electrical synapses with amacrine cells (ACs). However, the targets and functions of these intraretinal signals remain largely unknown. Here, in mice of both sexes, we identify circuitry that enables M5 ipRGCs to locally inhibit retinal neurons via electrical synapses with a nonspiking GABAergic AC. During pharmacological blockade of rod- and cone-mediated input, whole-cell recordings of corticotropin-releasing hormone-expressing (CRH+) ACs reveal persistent visual responses that require both melanopsin expression and gap junctions. In the developing retina, ipRGC-mediated input to CRH+ ACs is weak or absent before eye opening, indicating a primary role for this input in the mature retina (i.e., in parallel with rod- and cone-mediated input). Among several ipRGC types, only M5 ipRGCs exhibit consistent anatomical and physiological coupling to CRH+ ACs. Optogenetic stimulation of local CRH+ ACs directly drives IPSCs in M4 and M5, but not M1-M3, ipRGCs. CRH+ ACs also inhibit M2 ipRGC-coupled spiking ACs, demonstrating direct interaction between discrete networks of ipRGC-coupled interneurons. Together, these results demonstrate a functional role for electrical synapses in translating ipRGC activity into feedforward and feedback inhibition of local retinal circuits.SIGNIFICANCE STATEMENT Melanopsin directly generates light responses in intrinsically photosensitive retinal ganglion cells (ipRGCs). Through gap junction-mediated electrical synapses with retinal interneurons, these uniquely photoreceptive RGCs may also influence the activity and output of neuronal circuits within the retina. Here, we identified and studied an electrical synaptic circuit that, in principle, could couple ipRGC activity to the chemical output of an identified retinal interneuron. Specifically, we found that M5 ipRGCs form electrical synapses with corticotropin-releasing hormone-expressing amacrine cells, which locally release GABA to inhibit specific RGC types. Thus, ipRGCs are poised to influence the output of diverse retinal circuits via electrical synapses with interneurons.
Collapse
Affiliation(s)
| | | | | | | | - Nicholas J Justice
- Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas 77030
| | - Jonathan B Demb
- Interdepartmental Neuroscience Program
- Department of Ophthalmology and Visual Science
- Department of Cellular and Molecular Physiology
- Department of Neuroscience, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
22
|
Orexin-A Intensifies Mouse Pupillary Light Response by Modulating Intrinsically Photosensitive Retinal Ganglion Cells. J Neurosci 2021; 41:2566-2580. [PMID: 33536197 DOI: 10.1523/jneurosci.0217-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
We show for the first time that the neuropeptide orexin modulates pupillary light response, a non-image-forming visual function, in mice of either sex. Intravitreal injection of the orexin receptor (OXR) antagonist TCS1102 and orexin-A reduced and enhanced pupillary constriction in response to light, respectively. Orexin-A activated OX1Rs on M2-type intrinsically photosensitive retinal ganglion cells (M2 cells), and caused membrane depolarization of these cells by modulating inward rectifier potassium channels and nonselective cation channels, thus resulting in an increase in intrinsic excitability. The increased intrinsic excitability could account for the orexin-A-evoked increase in spontaneous discharges and light-induced spiking rates of M2 cells, leading to an intensification of pupillary constriction. Orexin-A did not alter the light response of M1 cells, which could be because of no or weak expression of OX1Rs on them, as revealed by RNAscope in situ hybridization. In sum, orexin-A is likely to decrease the pupil size of mice by influencing M2 cells, thereby improving visual performance in awake mice via enhancing the focal depth of the eye's refractive system.SIGNIFICANCE STATEMENT This study reveals the role of the neuropeptide orexin in mouse pupillary light response, a non-image-forming visual function. Intravitreal orexin-A administration intensifies light-induced pupillary constriction via increasing the excitability of M2 intrinsically photosensitive retinal ganglion cells by activating the orexin receptor subtype OX1R. Modulation of inward rectifier potassium channels and nonselective cation channels were both involved in the ionic mechanisms underlying such intensification. Orexin could improve visual performance in awake mice by reducing the pupil size and thereby enhancing the focal depth of the eye's refractive system.
Collapse
|
23
|
Aranda ML, Schmidt TM. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cell Mol Life Sci 2021; 78:889-907. [PMID: 32965515 PMCID: PMC8650628 DOI: 10.1007/s00018-020-03641-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
The melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) are a relatively recently discovered class of atypical ganglion cell photoreceptor. These ipRGCs are a morphologically and physiologically heterogeneous population that project widely throughout the brain and mediate a wide array of visual functions ranging from photoentrainment of our circadian rhythms, to driving the pupillary light reflex to improve visual function, to modulating our mood, alertness, learning, sleep/wakefulness, regulation of body temperature, and even our visual perception. The presence of melanopsin as a unique molecular signature of ipRGCs has allowed for the development of a vast array of molecular and genetic tools to study ipRGC circuits. Given the emerging complexity of this system, this review will provide an overview of the genetic tools and methods used to study ipRGCs, how these tools have been used to dissect their role in a variety of visual circuits and behaviors in mice, and identify important directions for future study.
Collapse
Affiliation(s)
- Marcos L Aranda
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
24
|
Storchi R, Milosavljevic N, Allen AE, Zippo AG, Agnihotri A, Cootes TF, Lucas RJ. A High-Dimensional Quantification of Mouse Defensive Behaviors Reveals Enhanced Diversity and Stimulus Specificity. Curr Biol 2020; 30:4619-4630.e5. [PMID: 33007242 PMCID: PMC7728163 DOI: 10.1016/j.cub.2020.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Instinctive defensive behaviors, consisting of stereotyped sequences of movements and postures, are an essential component of the mouse behavioral repertoire. Since defensive behaviors can be reliably triggered by threatening sensory stimuli, the selection of the most appropriate action depends on the stimulus property. However, since the mouse has a wide repertoire of motor actions, it is not clear which set of movements and postures represent the relevant action. So far, this has been empirically identified as a change in locomotion state. However, the extent to which locomotion alone captures the diversity of defensive behaviors and their sensory specificity is unknown. To tackle this problem, we developed a method to obtain a faithful 3D reconstruction of the mouse body that enabled to quantify a wide variety of motor actions. This higher dimensional description revealed that defensive behaviors are more stimulus specific than indicated by locomotion data. Thus, responses to distinct stimuli that were equivalent in terms of locomotion (e.g., freezing induced by looming and sound) could be discriminated along other dimensions. The enhanced stimulus specificity was explained by a surprising diversity. A clustering analysis revealed that distinct combinations of movements and postures, giving rise to at least 7 different behaviors, were required to account for stimulus specificity. Moreover, each stimulus evoked more than one behavior, revealing a robust one-to-many mapping between sensations and behaviors that was not apparent from locomotion data. Our results indicate that diversity and sensory specificity of mouse defensive behaviors unfold in a higher dimensional space, spanning multiple motor actions.
Collapse
Affiliation(s)
- Riccardo Storchi
- Division of Neuroscience and Experimental Psychology, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Nina Milosavljevic
- Division of Neuroscience and Experimental Psychology, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Annette E Allen
- Division of Neuroscience and Experimental Psychology, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Antonio G Zippo
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Aayushi Agnihotri
- Division of Neuroscience and Experimental Psychology, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Timothy F Cootes
- Division of Informatics, Imaging & Data Science, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert J Lucas
- Division of Neuroscience and Experimental Psychology, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
25
|
Zhang YS, Mucollari I, Kwan CC, Dingillo G, Amar J, Schwartz GW, Fawzi AA. Reversed Neurovascular Coupling on Optical Coherence Tomography Angiography Is the Earliest Detectable Abnormality before Clinical Diabetic Retinopathy. J Clin Med 2020; 9:jcm9113523. [PMID: 33142724 PMCID: PMC7692675 DOI: 10.3390/jcm9113523] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy (DR) has traditionally been viewed as either a microvasculopathy or a neuropathy, though neurovascular coupling deficits have also been reported and could potentially be the earliest derangement in DR. To better understand neurovascular coupling in the diabetic retina, we investigated retinal hemodynamics by optical coherence tomography angiography (OCTA) in individuals with diabetes mellitus (DM) but without DR (DM no DR) and mild non-proliferative DR (mild NPDR) compared to healthy eyes. Using an experimental design to monitor the capillary responses during transition from dark adaptation to light, we examined 19 healthy, 14 DM no DR and 11 mild NPDR individuals. We found that the only structural vascular abnormality in the DM no DR group was increased superficial capillary plexus (SCP) vessel density (VD) compared to healthy eyes, while mild NPDR eyes showed significant vessel loss in the SCP at baseline. There was no significant difference in inner retinal thickness between the groups. During dark adaptation, the deep capillary plexus (DCP) VD was lower in mild NPDR individuals compared to the other two groups, which may leave the photoreceptors more susceptible to ischemia in the dark. When transitioning from dark to ambient light, both diabetic groups showed a qualitative reversal of VD trends in the SCP and middle capillary plexus (MCP), with significantly decreased SCP at 5 min and increased MCP VD at 50 s compared to healthy eyes, which may impede metabolic supply to the inner retina during light adaptation. Mild NPDR eyes also demonstrated DCP dilation at 50 s and 5 min and decreased adjusted flow index at 5 min in light. Our results show altered neurovascular responses in all three macular vascular plexuses in diabetic subjects in the absence of structural neuronal changes on high resolution imaging, suggesting that neurovascular uncoupling may be a key mechanism in the early pathogenesis of DR, well before the clinical appearance of vascular or neuronal loss.
Collapse
Affiliation(s)
- Yi Stephanie Zhang
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (Y.S.Z.); (I.M.); (C.C.K.); (G.D.); (J.A.); (G.W.S.)
| | - Ilda Mucollari
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (Y.S.Z.); (I.M.); (C.C.K.); (G.D.); (J.A.); (G.W.S.)
| | - Changyow C. Kwan
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (Y.S.Z.); (I.M.); (C.C.K.); (G.D.); (J.A.); (G.W.S.)
| | - Gianna Dingillo
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (Y.S.Z.); (I.M.); (C.C.K.); (G.D.); (J.A.); (G.W.S.)
| | - Jaspreet Amar
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (Y.S.Z.); (I.M.); (C.C.K.); (G.D.); (J.A.); (G.W.S.)
| | - Gregory W. Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (Y.S.Z.); (I.M.); (C.C.K.); (G.D.); (J.A.); (G.W.S.)
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amani A. Fawzi
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (Y.S.Z.); (I.M.); (C.C.K.); (G.D.); (J.A.); (G.W.S.)
- Correspondence:
| |
Collapse
|
26
|
|
27
|
Zhang YS, Lee HE, Kwan CC, Schwartz GW, Fawzi AA. Caffeine Delays Retinal Neurovascular Coupling during Dark to Light Adaptation in Healthy Eyes Revealed by Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci 2020; 61:37. [PMID: 32340030 PMCID: PMC7401906 DOI: 10.1167/iovs.61.4.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The purpose of this study was to investigate the acute effects of caffeine on retinal hemodynamics during dark to light adaptation using optical coherence tomography angiography (OCTA). Methods Thirteen healthy individuals (13 eyes) underwent OCTA imaging after dark adaptation and at repeated intervals during the transition to ambient light in two imaging sessions: control and after ingesting 200 mg of caffeine. We analyzed the parafoveal vessel density (VD) and adjusted flow index (AFI) of the superficial capillary plexus (SCP), middle capillary plexus (MCP), and deep capillary plexus (DCP), as well as the vessel length density (VLD) of the SCP. After adjusting for age, refractive error, and scan quality, we compared parameters between control and caffeine conditions. Results In the dark, MCP VD decreased significantly after caffeine (−2.63 ± 1.28%). During the transition to light, initially, DCP VD increased (12.55 ± 2.52%), whereas SCP VD decreased (−2.09 ± 0.91%) significantly with caffeine compared to control. By 15 minutes in light, DCP VD reversed and was significantly decreased (−5.45 ± 2.62%), whereas MCP VD increased (4.65 ± 1.74%). There were no differences in AFI or VLD. Conclusions We show that, overall, caffeine causes a trend of delayed vascular response in all three macular capillary plexuses in response to ambient light. Whereas the MCP is constricted in the dark, during the transition from dark to light, there is initially delay followed by prolonged constriction of the DCP and constriction followed by slow dilation of the SCP. We posit that these delayed vascular responses may present potential risk of capillary ischemia.
Collapse
|
28
|
Cameron MA, Morley JW, Pérez-Fernández V. Seeing the light: different photoreceptor classes work together to drive adaptation in the mammalian retina. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Foster RG, Hughes S, Peirson SN. Circadian Photoentrainment in Mice and Humans. BIOLOGY 2020; 9:biology9070180. [PMID: 32708259 PMCID: PMC7408241 DOI: 10.3390/biology9070180] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/26/2022]
Abstract
Light around twilight provides the primary entrainment signal for circadian rhythms. Here we review the mechanisms and responses of the mouse and human circadian systems to light. Both utilize a network of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). In both species action spectra and functional expression of OPN4 in vitro show that melanopsin has a λmax close to 480 nm. Anatomical findings demonstrate that there are multiple pRGC sub-types, with some evidence in mice, but little in humans, regarding their roles in regulating physiology and behavior. Studies in mice, non-human primates and humans, show that rods and cones project to and can modulate the light responses of pRGCs. Such an integration of signals enables the rods to detect dim light, the cones to detect higher light intensities and the integration of intermittent light exposure, whilst melanopsin measures bright light over extended periods of time. Although photoreceptor mechanisms are similar, sensitivity thresholds differ markedly between mice and humans. Mice can entrain to light at approximately 1 lux for a few minutes, whilst humans require light at high irradiance (>100’s lux) and of a long duration (>30 min). The basis for this difference remains unclear. As our retinal light exposure is highly dynamic, and because photoreceptor interactions are complex and difficult to model, attempts to develop evidence-based lighting to enhance human circadian entrainment are very challenging. A way forward will be to define human circadian responses to artificial and natural light in the “real world” where light intensity, duration, spectral quality, time of day, light history and age can each be assessed.
Collapse
|
30
|
Abstract
A small fraction of mammalian retinal ganglion cells are directly photoreceptive thanks to their expression of the photopigment melanopsin. These intrinsically photosensitive retinal ganglion cells (ipRGCs) have well-established roles in a variety of reflex responses to changes in ambient light intensity, including circadian photoentrainment. In this article, we review the growing evidence, obtained primarily from laboratory mice and humans, that the ability to sense light via melanopsin is also an important component of perceptual and form vision. Melanopsin photoreception has low temporal resolution, making it fundamentally biased toward detecting changes in ambient light and coarse patterns rather than fine details. Nevertheless, melanopsin can indirectly impact high-acuity vision by driving aspects of light adaptation ranging from pupil constriction to changes in visual circuit performance. Melanopsin also contributes directly to perceptions of brightness, and recent data suggest that this influences the appearance not only of overall scene brightness, but also of low-frequency patterns.
Collapse
Affiliation(s)
- Robert J Lucas
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Annette E Allen
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Nina Milosavljevic
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Riccardo Storchi
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Tom Woelders
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
31
|
Eleftheriou CG, Wright P, Allen AE, Elijah D, Martial FP, Lucas RJ. Melanopsin Driven Light Responses Across a Large Fraction of Retinal Ganglion Cells in a Dystrophic Retina. Front Neurosci 2020; 14:320. [PMID: 32317928 PMCID: PMC7147324 DOI: 10.3389/fnins.2020.00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/18/2020] [Indexed: 02/02/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and project to central targets, allowing them to contribute to both image-forming and non-image forming vision. Recent studies have highlighted chemical and electrical synapses between ipRGCs and neurons of the inner retina, suggesting a potential influence from the melanopsin-born signal to affect visual processing at an early stage of the visual pathway. We investigated melanopsin responses in ganglion cell layer (GCL) neurons of both intact and dystrophic mouse retinas using 256 channel multi-electrode array (MEA) recordings. A wide 200 μm inter-electrode spacing enabled a pan-retinal visualization of melanopsin's influence upon GCL activity. Upon initial stimulation of dystrophic retinas with a long, bright light pulse, over 37% of units responded with an increase in firing (a far greater fraction than can be expected from the anatomically characterized number of ipRGCs). This relatively widespread response dissipated with repeated stimulation even at a quite long inter-stimulus interval (ISI; 120 s), to leave a smaller fraction of responsive units (<10%; more in tune with the predicted number of ipRGCs). Visually intact retinas appeared to lack such widespread melanopsin responses indicating that it is a feature of dystrophy. Taken together, our data reveal the potential for anomalously widespread melanopsin responses in advanced retinal degeneration. These could be used to probe the functional reorganization of retinal circuits in degeneration and should be taken into account when using retinally degenerate mice as a model of disease.
Collapse
Affiliation(s)
- Cyril G. Eleftheriou
- Burke Neurological Institute at Weill Cornell Medicine, White Plains, NY, United States
| | - Phillip Wright
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniel Elijah
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Franck P. Martial
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
32
|
Sonoda T, Okabe Y, Schmidt TM. Overlapping morphological and functional properties between M4 and M5 intrinsically photosensitive retinal ganglion cells. J Comp Neurol 2020; 528:1028-1040. [PMID: 31691279 PMCID: PMC7007370 DOI: 10.1002/cne.24806] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 02/03/2023]
Abstract
Multiple retinal ganglion cell (RGC) types in the mouse retina mediate pattern vision by responding to specific features of the visual scene. The M4 and M5 melanopsin-expressing, intrinsically photosensitive retinal ganglion cell (ipRGC) subtypes are two RGC types that are thought to play major roles in pattern vision. The M4 ipRGCs overlap in population with ON-alpha RGCs, while M5 ipRGCs were recently reported to exhibit opponent responses to different wavelengths of light (color opponency). Despite their seemingly distinct roles in visual processing, previous reports have suggested that these two populations may exhibit overlap in their morphological and functional properties, which calls into question whether these are in fact distinct RGC types. Here, we show that M4 and M5 ipRGCs are distinct morphological classes of ipRGCs, but they cannot be exclusively differentiated based on color opponency and dendritic morphology as previously reported. Instead, we find that M4 and M5 ipRGCs can only be distinguished based on soma size and the number of dendritic branch points in combination with SMI-32 immunoreactivity. These results have important implications for clearly defining RGC types and their roles in visual behavior.
Collapse
Affiliation(s)
- Takuma Sonoda
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA
| | - Yudai Okabe
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | | |
Collapse
|
33
|
Adhikari P, Zele AJ, Cao D, Kremers J, Feigl B. The melanopsin-directed white noise electroretinogram (wnERG). Vision Res 2019; 164:83-93. [DOI: 10.1016/j.visres.2019.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
|
34
|
Do MTH. Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior. Neuron 2019; 104:205-226. [PMID: 31647894 PMCID: PMC6944442 DOI: 10.1016/j.neuron.2019.07.016] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
The mammalian visual system encodes information over a remarkable breadth of spatiotemporal scales and light intensities. This performance originates with its complement of photoreceptors: the classic rods and cones, as well as the intrinsically photosensitive retinal ganglion cells (ipRGCs). IpRGCs capture light with a G-protein-coupled receptor called melanopsin, depolarize like photoreceptors of invertebrates such as Drosophila, discharge electrical spikes, and innervate dozens of brain areas to influence physiology, behavior, perception, and mood. Several visual responses rely on melanopsin to be sustained and maximal. Some require ipRGCs to occur at all. IpRGCs fulfill their roles using mechanisms that include an unusual conformation of the melanopsin protein, an extraordinarily slow phototransduction cascade, divisions of labor even among cells of a morphological type, and unorthodox configurations of circuitry. The study of ipRGCs has yielded insight into general topics that include photoreceptor evolution, cellular diversity, and the steps from biophysical mechanisms to behavior.
Collapse
Affiliation(s)
- Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Storchi R, Rodgers J, Gracey M, Martial FP, Wynne J, Ryan S, Twining CJ, Cootes TF, Killick R, Lucas RJ. Measuring vision using innate behaviours in mice with intact and impaired retina function. Sci Rep 2019; 9:10396. [PMID: 31316114 PMCID: PMC6637134 DOI: 10.1038/s41598-019-46836-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/26/2019] [Indexed: 01/23/2023] Open
Abstract
Measuring vision in rodents is a critical step for understanding vision, improving models of human disease, and developing therapies. Established behavioural tests for perceptual vision, such as the visual water task, rely on learning. The learning process, while effective for sighted animals, can be laborious and stressful in animals with impaired vision, requiring long periods of training. Current tests that that do not require training are based on sub-conscious, reflex responses (e.g. optokinetic nystagmus) that don't require involvement of visual cortex and higher order thalamic nuclei. A potential alternative for measuring vision relies on using visually guided innate defensive responses, such as escape or freeze, that involve cortical and thalamic circuits. In this study we address this possibility in mice with intact and degenerate retinas. We first develop automatic methods to detect behavioural responses based on high dimensional tracking and changepoint detection of behavioural time series. Using those methods, we show that visually guided innate responses can be elicited using parametisable stimuli, and applied to describing the limits of visual acuity in healthy animals and discriminating degrees of visual dysfunction in mouse models of retinal degeneration.
Collapse
Affiliation(s)
- R Storchi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - J Rodgers
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - M Gracey
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - F P Martial
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - J Wynne
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - S Ryan
- Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | - C J Twining
- School of Computer Science, University of Manchester, Manchester, UK
| | - T F Cootes
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - R Killick
- Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | - R J Lucas
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
36
|
Milosavljevic N. How Does Light Regulate Mood and Behavioral State? Clocks Sleep 2019; 1:319-331. [PMID: 33089172 PMCID: PMC7445808 DOI: 10.3390/clockssleep1030027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023] Open
Abstract
The idea that light affects mood and behavioral state is not new. However, not much is known about the particular mechanisms and circuits involved. To fully understand these, we need to know what properties of light are important for mediating changes in mood as well as what photoreceptors and pathways are responsible. Increasing evidence from both human and animal studies imply that a specialized class of retinal ganglion cells, intrinsically photosensitive retinal ganglion cells (ipRGCs), plays an important role in the light-regulated effects on mood and behavioral state, which is in line with their well-established roles in other non-visual responses (pupillary light reflex and circadian photoentrainment). This paper reviews our current understanding on the mechanisms and paths by which the light information modulates behavioral state and mood.
Collapse
Affiliation(s)
- Nina Milosavljevic
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
37
|
Zele AJ, Adhikari P, Cao D, Feigl B. Melanopsin driven enhancement of cone-mediated visual processing. Vision Res 2019; 160:72-81. [DOI: 10.1016/j.visres.2019.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/16/2019] [Accepted: 04/21/2019] [Indexed: 12/13/2022]
|
38
|
Abstract
Detection and discrimination of spatial patterns is thought to originate with photoreception by rods and cones. Here, we investigated whether the inner-retinal photoreceptor melanopsin could represent a third origin for form vision. We developed a 4-primary visual display capable of presenting patterns differing in contrast for melanopsin vs cones, and generated spectrally distinct stimuli that were indistinguishable for cones (metamers) but presented contrast for melanopsin. Healthy observers could detect sinusoidal gratings formed by these metamers when presented in the peripheral retina at low spatial (≤0.8 cpd) and temporal (≤0.45 Hz) frequencies, and Michelson contrasts ≥14% for melanopsin. Metameric gratings became invisible at lower light levels (<1013 melanopsin photons cm−2 sr−1 s−1) when rods are more active. The addition of metameric increases in melanopsin contrast altered appearance of greyscale representations of coarse gratings and a range of everyday images. These data identify melanopsin as a new potential origin for aspects of spatial vision in humans. The perception of spatial patterns (form vision) is thought to rely on rod and cone cells in the retina. Here, the authors show that a third kind of retinal cell, melanopsin-expressing ganglion cells, can also detect form in humans, under particular conditions.
Collapse
|