1
|
Wei K, Zhang J, Qu W, Zhu J, Zhu Q, Yi W, Zou C, Ma D, Li X. FUT8 Regulates Cerebellar Neurogenesis and Development Through Maintaining the Level of Neural Cell Adhesion Molecule Cntn2. Mol Neurobiol 2025; 62:5679-5694. [PMID: 39604780 DOI: 10.1007/s12035-024-04620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Core fucosylation at N-glycans, which is uniquely catalyzed by fucosyltransferase FUT8, plays essential roles in post-translational regulation of protein function. Aberrant core fucosylation leads to neurological disorders in individuals with congenital glycosylation disorders (CDG). However, the underlying mechanisms for these neurological defects remain largely unknown. In this study, we have showed that FUT8 and fucosylation are abundant in cerebellum. Specific deletion of Fut8 in cerebellar granule neuron progenitors (GNPs) results in the impaired proliferation and differentiation of GNPs, as well as the compromised neuronal development, synaptic physiology and motor coordination. Mechanistically, we have showed that Fut8 deficiency reduced Contactin 2 (Cntn2) expression, a member of neural cell adhesion molecules (NCAMs). Furthermore, ectopic Cntn2 can rescue the neuronal defects induced by Fut8 deficiency. Collectively, our study has revealed the important roles of FUT8 and core fucosylation in regulating cerebellar development and function through modulating Cntn2 expression.
Collapse
Affiliation(s)
- Kaiyan Wei
- The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, 310052, China
- School of Medicine, The Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Jinyu Zhang
- The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, 310052, China
- School of Medicine, The Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Wenzheng Qu
- The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, 310052, China
| | - Jinpiao Zhu
- The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, 310052, China
| | - Qiang Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen Yi
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chaochun Zou
- The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, 310052, China.
| | - Daqing Ma
- The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, 310052, China.
- School of Medicine, The Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China.
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| | - Xuekun Li
- The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, 310052, China.
- School of Medicine, The Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Li Y, Chen L, Xue S, Song Z, Liu H, Li H, Shen W, Zhang C, Wu H. Alternative spliceosomal protein Eftud2 mediated Kif3a exon skipping promotes SHH-subgroup medulloblastoma progression. Cell Death Differ 2025:10.1038/s41418-025-01512-9. [PMID: 40275081 DOI: 10.1038/s41418-025-01512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Alternative splicing plays a pivotal role in various facets of organogenesis, immune response, and tumorigenesis. Medulloblastoma represents a prevalent childhood brain tumor, with approximately one-third classified as the Sonic Hedgehog (SHH) subgroup. Nevertheless, the contribution of alternative splicing to medulloblastoma oncogenesis remains elusive. This investigation delineated an upregulation of the spliceosomal protein Eftud2 in the SHH-subgroup medulloblastoma mouse model and human medulloblastoma patients. Targeted ablation of Eftud2 in granule precursor cells (GNPs) within the cerebellum prolonged the survival of SHH-subgroup medulloblastoma mice, indicating a putative association between Eftud2 expression and medulloblastoma prognosis. Functional assays unveiled that EFTUD2 depletion in human medulloblastoma cells significantly curtailed cellular proliferation by impeding the activation of the SHH signaling pathway. Through multi-omics sequencing analysis, it was discerned that Eftud2 influences exons 10-11 skipping of Kif3a, a kinesin motor critical for primary cilia formation. Notably, exons 10-11 skipping in Kif3a augmented human medulloblastoma cell proliferation by potentiating the transcriptional activity of Gli2. These findings underscore a robust correlation between Eftud2 and SHH-subgroup medulloblastoma, emphasizing its regulatory role in modulating downstream transcription factors through the alternative splicing of pivotal genes within the SHH signaling pathway, thereby propelling the aggressive proliferation of SHH-subgroup medulloblastoma.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Saisai Xue
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhihong Song
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Heli Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Hao Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wei Shen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
3
|
Jia Y, Zhang L, Zhou W, Chen S, Zhang H, Liu L, Guo H, Wang Z, Cui Y, Niu R, Zhang F. Rack1 promotes breast cancer stemness properties and tumorigenesis through the E2F1-SOX2 axis. Cancer Cell Int 2025; 25:40. [PMID: 39939870 PMCID: PMC11823217 DOI: 10.1186/s12935-025-03678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Breast cancer remains the most prevalent malignancy and the leading cause of cancer-related mortality among women worldwide. The primary factors contributing to the deterioration and death of patients with breast cancer are metastasis, recurrence, and drug resistance. These phenomena are closely related to the presence of breast cancer stem cells; however, the exact mechanisms regulating stemness remain to be elucidated. Rack1 (Receptor for Activated C Kinase 1), a well-known versatile scaffold protein, has been implicated in tumorigenesis and progression in numerous cancer types; however, its specific role in breast cancer stemness remains to be elucidated. METHODS Using bioinformatic and immunohistochemical approaches, we validated that the expression level of Rack1 is associated with cancer stemness and affects the prognosis of patients. Through a series of experimental methods including mammosphere formation assay, flow cytometry, qPCR, Western blotting, and CHX assays, we validated at the molecular and cellular levels the mechanism by which Rack1 influences cancer stemness via the E2F1/SOX2 axis. Furthermore, by designing and utilizing lentiviral constructs to establish xenograft tumor models in mice, we further confirmed in vivo the impact of the Rack1/E2F1/SOX2 axis on the tumorigenic capacity of breast cancer cells. RESULTS Our findings indicate that Rack1 plays a critical role in preserving the stemness characteristics of breast cancer cells. Mechanistically, the observed effects of Rack1 are achieved through the modulation of SOX2 expression, a master transcription factor that regulates cancer cell stemness and maintenance. We further demonstrate that Rack1 increases the stability of the E2F1 protein by inhibiting its ubiquitination and subsequent proteasome-mediated degradation, which in turn transcriptionally upregulates SOX2, thereby maintaining breast cancer cell stemness and tumorigenesis. CONCLUSION This study thus unveils a novel mechanism through which Rack1 executes its oncogenic function. This study also demonstrates that targeting the Rack1-E2F-SOX2 axis may be a potential strategy to inhibit breast cancer development and progression.
Collapse
Affiliation(s)
- Yidi Jia
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Luoming Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Wei Zhou
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Shuhua Chen
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Liming Liu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Hui Guo
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Yanfen Cui
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
4
|
Lin Y, Jin H, She Y, Zhang Y, Cui L, Xie C, Liu Y, Zhang H, Guo H, Wu J, Li L, Guo Z, Wang X, Jiang W, Chen X, He S, Zhou P, Tan J, Bei JX, Liu J, Chen YX, Zhao Q, Xia X, Wang Z. CBX2 suppresses interferon signaling to diminish tumor immunogenicity via a noncanonical corepressor complex. Proc Natl Acad Sci U S A 2025; 122:e2417529122. [PMID: 39883845 PMCID: PMC11804501 DOI: 10.1073/pnas.2417529122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/27/2024] [Indexed: 02/01/2025] Open
Abstract
Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models. By analysis of the CBX2-regulated transcriptional program coupled with mass spectrometry screening of CBX2-interacting proteins, we found that CBX2 suppresses interferon signaling independent of its function in the canonical PRC. Mechanistically, CBX2 directly interacts with RACK1 and facilitates the recruitment of HDAC1, which attenuates the H3K27ac modification on the promoter regions of interferon-stimulated genes, thereby suppressing interferon signaling. Consequently, CBX2 reduces tumor immunogenicity and enables immune evasion. Moreover, a high expression level of CBX2 is associated with immune suppressive tumor microenvironment and reduced efficacy of immunotherapy across various human cancer types. Our study identifies a noncanonical CBX2-RACK1-HDAC1 corepressor complex in suppression of tumor immunogenicity, thereby presenting a potential target and biomarker for tumor immunotherapy.
Collapse
Affiliation(s)
- Yanxun Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Huan Jin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Yong She
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Yiqun Zhang
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Lei Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Huanling Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Hui Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Lin Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Zixuan Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Wu Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Xu Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou510080, China
| | - Shuai He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Jinyun Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
- Platform of Metabolomics Center for Precision Medicine, Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080, China
| | - Yan-Xing Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou571199, China
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510050, China
| |
Collapse
|
5
|
Yang G, Yang Y, Song Z, Chen L, Liu F, Li Y, Jiang S, Xue S, Pei J, Wu Y, He Y, Chu B, Wu H. Spliceosomal GTPase Eftud2 deficiency-triggered ferroptosis leads to Purkinje cell degeneration. Neuron 2024; 112:3452-3469.e9. [PMID: 39153477 DOI: 10.1016/j.neuron.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Spliceosomal GTPase elongation factor Tu GTP binding domain containing 2 (EFTUD2) is a causative gene for mandibulofacial dysostosis with microcephaly (MFDM) syndrome comprising cerebellar hypoplasia and motor dysfunction. How EFTUD2 deficiency contributes to these symptoms remains elusive. Here, we demonstrate that specific ablation of Eftud2 in cerebellar Purkinje cells (PCs) in mice results in severe ferroptosis, PC degeneration, dyskinesia, and cerebellar atrophy, which recapitulates phenotypes observed in patients with MFDM. Mechanistically, Eftud2 promotes Scd1 and Gch1 expression, upregulates monounsaturated fatty acid phospholipids, and enhances antioxidant activity, thereby suppressing PC ferroptosis. Importantly, we identified transcription factor Atf4 as a downstream target to regulate anti-ferroptosis effects in PCs in a p53-independent manner. Inhibiting ferroptosis efficiently rescued cerebellar deficits in Eftud2 cKO mice. Our data reveal an important role of Eftud2 in maintaining PC survival, showing that pharmacologically or genetically inhibiting ferroptosis may be a promising therapeutic strategy for EFTUD2 deficiency-induced disorders.
Collapse
Affiliation(s)
- Guochao Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China
| | - Yinghong Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250100 Jinan, China
| | - Zhihong Song
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Fengjiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Shaofei Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Saisai Xue
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jie Pei
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166 Nanjing, China
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250100 Jinan, China.
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China; Chinese Institute for Brain Research, 102206 Beijing, China.
| |
Collapse
|
6
|
Wang C, Li M, Li S, Wei X, Dong N, Liu S, Yuan Z, Li B, Pierro A, Tang X, Bai Y. Rack1-mediated ferroptosis affects hindgut development in rats with anorectal malformations: Spatial transcriptome insights. Cell Prolif 2024; 57:e13618. [PMID: 38523594 PMCID: PMC11216944 DOI: 10.1111/cpr.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Anorectal malformation (ARM), a common congenital anomaly of the digestive tract, is a result of insufficient elongation of the urorectal septum. The cytoplasmic protein Receptor of Activated C-Kinase 1 (Rack1) is involved in embryonic neural development; however, its role in embryonic digestive tract development and ARM formation is unexplored. Our study explored the hindgut development and cell death mechanisms in ARM-affected rats using spatial transcriptome analysis. We induced ARM in rats by administering ethylenethiourea via gavage on gestational day (GD) 10. On GDs 14-16, embryos from both normal and ARM groups underwent spatial transcriptome sequencing, which identified key genes and signalling pathways. Rack1 exhibited significant interactions among differentially expressed genes on GDs 15 and 16. Reduced Rack1 expression in the ARM-affected hindgut, verified by Rack1 silencing in intestinal epithelial cells, led to increased P38 phosphorylation and activation of the MAPK signalling pathway. The suppression of this pathway downregulated Nqo1 and Gpx4 expression, resulting in elevated intracellular levels of ferrous ions, reactive oxygen species (ROS) and lipid peroxides. Downregulation of Gpx4 expression in the ARM hindgut, coupled with Rack1 co-localisation and consistent mitochondrial morphology, indicated ferroptosis. In summary, Rack1, acting as a hub gene, modulates ferrous ions, lipid peroxides, and ROS via the P38-MAPK/Nqo1/Gpx4 axis. This modulation induces ferroptosis in intestinal epithelial cells, potentially influencing hindgut development during ARM onset.
Collapse
Affiliation(s)
- Chen‐Yi Wang
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Mu‐Yu Li
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Si‐Ying Li
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Xiao‐Gao Wei
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Nai‐Xuan Dong
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Shu‐Ting Liu
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Zheng‐Wei Yuan
- Key Laboratory of Health Ministry for Congenital MalformationShengjing Hospital of China Medical UniversityShenyangChina
| | - Bo Li
- Division of General and Thoracic SurgeryThe Hospital for Sick ChildrenTorontoCanada
| | - Agostino Pierro
- Division of General and Thoracic SurgeryThe Hospital for Sick ChildrenTorontoCanada
| | - Xiao‐Bing Tang
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Yu‐Zuo Bai
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
7
|
Cheng Q, Yang X, Zou T, Sun L, Zhang X, Deng L, Wu M, Gai W, Jiang H, Guo T, Lu Y, Dong J, Niu C, Pan W, Zhang J. RACK1 enhances STAT3 stability and promotes T follicular helper cell development and function during blood-stage Plasmodium infection in mice. PLoS Pathog 2024; 20:e1012352. [PMID: 39024388 PMCID: PMC11288429 DOI: 10.1371/journal.ppat.1012352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/30/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
CD4+ T cells are central mediators of protective immunity to blood-stage malaria, particularly for their capacity in orchestrating germinal center reaction and generating parasite-specific high-affinity antibodies. T follicular helper (Tfh) cells are predominant CD4+ effector T cell subset implicated in these processes, yet the factors and detailed mechanisms that assist Tfh cell development and function during Plasmodium infection are largely undefined. Here we provide evidence that receptor for activated C kinase 1 (RACK1), an adaptor protein of various intracellular signals, is not only important for CD4+ T cell expansion as previously implied but also plays a prominent role in Tfh cell differentiation and function during blood-stage Plasmodium yoelii 17XNL infection. Consequently, RACK1 in CD4+ T cells contributes significantly to germinal center formation, parasite-specific IgG production, and host resistance to the infection. Mechanistic exploration detects specific interaction of RACK1 with STAT3 in P. yoelii 17XNL-responsive CD4+ T cells, ablation of RACK1 leads to defective STAT3 phosphorylation, accompanied by substantially lower amount of STAT3 protein in CD4+ T cells, whereas retroviral overexpression of RACK1 or STAT3 in RACK1-deficient CD4+ T cells greatly restores STAT3 activity and Bcl-6 expression under the Tfh polarization condition. Further analyses suggest RACK1 positively regulates STAT3 stability by inhibiting the ubiquitin-proteasomal degradation process, thus promoting optimal STAT3 activity and Bcl-6 induction during Tfh cell differentiation. These findings uncover a novel mechanism by which RACK1 participates in posttranslational regulation of STAT3, Tfh cell differentiation, and subsequent development of anti-Plasmodium humoral immunity.
Collapse
Affiliation(s)
- Qianqian Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiqin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tao Zou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lin Sun
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Xueting Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lijiao Deng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Mengyao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wenbin Gai
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tingting Guo
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuchen Lu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunxiao Niu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Weiqing Pan
- Department of Tropical Diseases, Navy Medical University, Shanghai, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
8
|
Pi Y, Feng Q, Sun F, Wang Z, Zhao Y, Chen D, Liu Y, Lou G. Loss of SMURF2 expression enhances RACK1 stability and promotes ovarian cancer progression. Cell Death Differ 2023; 30:2382-2392. [PMID: 37828084 PMCID: PMC10657365 DOI: 10.1038/s41418-023-01226-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Receptor for activated C kinase 1 (RACK1) has been confirmed to take part in multiple biological events and the mechanism supporting abnormal RACK1 expression in ovarian cancer (OC) remains to be characterized. Here, we identified Smad ubiquitin regulatory factor 2 (SMURF2) as a bona fide E3 ligase of RACK1 in OC. SMURF2 effectively added the K6, K33 and K48 ubiquitin chains to the RACK1, resulting in polyubiquitination and instability of RACK1. PCAF promoted acetylation of RACK1 at K130, leading to SMURF2-mediated RACK1 ubiquitination inhibited and promote OC progression. The expression levels of SMURF2 and RACK1 were negatively correlated. SMURF2 was abnormal low expression in human ovarian cancer, resulting in decreased ubiquitination of RACK1 and increased stability, which promoted OC progression, and strongly associated with poor patients' prognosis. In general, our results demonstrated that SMURF2 plays a pivotal role in stabilizing RACK1, which in turn facilitates tumorigenesis in OC, suggesting that SMURF2-RACK1 axis may prove to be potential targets for the treatment of OC.
Collapse
Affiliation(s)
- Yanan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150086, P. R. China
| | - Qiushi Feng
- Heilongjiang Academy of Chinese Medical Sciences, Harbin, 150036, P. R. China
| | - Fusheng Sun
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150086, P. R. China
| | - Zhiqiang Wang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150086, P. R. China
| | - Yue Zhao
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150086, P. R. China
| | - Dejia Chen
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150086, P. R. China
| | - Yiming Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150086, P. R. China
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150086, P. R. China.
| |
Collapse
|
9
|
Sun Y, Li M, Geng J, Meng S, Tu R, Zhuang Y, Sun M, Rui M, Ou M, Xing G, Johnson TK, Xie W. Neuroligin 2 governs synaptic morphology and function through RACK1-cofilin signaling in Drosophila. Commun Biol 2023; 6:1056. [PMID: 37853189 PMCID: PMC10584876 DOI: 10.1038/s42003-023-05428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Neuroligins are transmembrane cell adhesion proteins well-known for their genetic links to autism spectrum disorders. Neuroligins can function by regulating the actin cytoskeleton, however the factors and mechanisms involved are still largely unknown. Here, using the Drosophila neuromuscular junction as a model, we reveal that F-Actin assembly at the Drosophila NMJ is controlled through Cofilin signaling mediated by an interaction between DNlg2 and RACK1, factors not previously known to work together. The deletion of DNlg2 displays disrupted RACK1-Cofilin signaling pathway with diminished actin cytoskeleton proteo-stasis at the terminal of the NMJ, aberrant NMJ structure, reduced synaptic transmission, and abnormal locomotion at the third-instar larval stage. Overexpression of wildtype and activated Cofilin in muscles are sufficient to rescue the morphological and physiological defects in dnlg2 mutants, while inactivated Cofilin is not. Since the DNlg2 paralog DNlg1 is known to regulate F-actin assembly mainly via a specific interaction with WAVE complex, our present work suggests that the orchestration of F-actin by Neuroligins is a diverse and complex process critical for neural connectivity.
Collapse
Affiliation(s)
- Yichen Sun
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Moyi Li
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
- Jiangsu Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Junhua Geng
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Sibie Meng
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Renjun Tu
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Yan Zhuang
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Menglong Rui
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Mengzhu Ou
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Guangling Xing
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Chemistry, and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Wei Xie
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
- Jiangsu Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
10
|
Tian R, Tian J, Zuo X, Ren S, Zhang H, Liu H, Wang Z, Cui Y, Niu R, Zhang F. RACK1 facilitates breast cancer progression by competitively inhibiting the binding of β-catenin to PSMD2 and enhancing the stability of β-catenin. Cell Death Dis 2023; 14:685. [PMID: 37848434 PMCID: PMC10582012 DOI: 10.1038/s41419-023-06191-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
The receptor for activated C kinase 1 (RACK1) is a key scaffolding protein with multifunctional and multifaceted properties. By mediating protein-protein interactions, RACK1 integrates multiple intracellular signals involved in the regulation of various physiological and pathological processes. Dysregulation of RACK1 has been implicated in the initiation and progression of many tumors. However, the exact function of RACK1 in cancer cellular processes, especially in proliferation, remains controversial. Here, we show that RACK1 is required for breast cancer cell proliferation in vitro and tumor growth in vivo. This effect of RACK1 is associated with its ability to enhance β-catenin stability and activate the canonical WNT signaling pathway in breast cancer cells. We identified PSMD2, a key component of the proteasome, as a novel binding partner for RACK1 and β-catenin. Interestingly, although there is no interaction between RACK1 and β-catenin, RACK1 binds PSMD2 competitively with β-catenin. Moreover, RACK1 prevents ubiquitinated β-catenin from binding to PSMD2, thereby protecting β-catenin from proteasomal degradation. Collectively, our findings uncover a novel mechanism by which RACK1 increases β-catenin stability and promotes breast cancer proliferation.
Collapse
Affiliation(s)
- Ruinan Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Jianfei Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Xiaoyan Zuo
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Sixin Ren
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Hui Liu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Yanfen Cui
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
11
|
Shen LP, Li W, Pei LZ, Yin J, Xie ST, Li HZ, Yan C, Wang JJ, Zhang Q, Zhang XY, Zhu JN. Oxytocin Receptor in Cerebellar Purkinje Cells Does Not Engage in Autism-Related Behaviors. CEREBELLUM (LONDON, ENGLAND) 2023; 22:888-904. [PMID: 36040660 DOI: 10.1007/s12311-022-01466-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The classical motor center cerebellum is one of the most consistent structures of abnormality in autism spectrum disorders (ASD), and neuropeptide oxytocin is increasingly explored as a potential pharmacotherapy for ASD. However, whether oxytocin targets the cerebellum for therapeutic effects remains unclear. Here, we report a localization of oxytocin receptor (OXTR) in Purkinje cells (PCs) of cerebellar lobule Crus I, which is functionally connected with ASD-implicated circuits. OXTR activation neither affects firing activities, intrinsic excitability, and synaptic transmission of normal PCs nor improves abnormal intrinsic excitability and synaptic transmission of PCs in maternal immune activation (MIA) mouse model of autism. Furthermore, blockage of OXTR in Crus I in wild-type mice does not induce autistic-like social, stereotypic, cognitive, and anxiety-like behaviors. These results suggest that oxytocin signaling in Crus I PCs seems to be uninvolved in ASD pathophysiology, and contribute to understanding of targets and mechanisms of oxytocin in ASD treatment.
Collapse
Affiliation(s)
- Li-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ling-Zhu Pei
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jun Yin
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
12
|
Wang Q, Jiang S, Wu Y, Zhang Y, Huang M, Qiu Y, Luo X. Prognostic and clinicopathological role of RACK1 for cancer patients: a systematic review and meta-analysis. PeerJ 2023; 11:e15873. [PMID: 37601269 PMCID: PMC10434108 DOI: 10.7717/peerj.15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Background The receptor for activated C kinase 1 (RACK1) expression is associated with clinicopathological characteristics and the prognosis of various cancers; however, the conclusions are controversial. As a result, this study aimed to explore the clinicopathological and prognostic values of RACK1 expression in patients with cancer. Methodology PubMed, Embase, Web of Science, Cochrane Library, and Scopus were comprehensively explored from their inception to April 20, 2023, for selecting studies on the clinicopathological and prognostic role of RACK1 in patients with cancer that met the criteria for inclusion in this review. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were used to assess the prognosis-predictive value of RACK1 expression, while pooled odds ratios (ORs) and 95% CIs were used to evaluate the correlation between RACK1 expression and the clinicopathological characteristics of patients with cancer. The quality of the included studies was evaluated using the Newcastle-Ottawa Scale. Results Twenty-two studies (13 on prognosis and 20 on clinicopathological characteristics) were included in this systematic review and meta-analysis. The findings indicated that high RACK1 expression was significantly associated with poor overall survival (HR = 1.62; 95% CI, 1.13-2.33; P = 0.009; I2 = 89%) and reversely correlated with disease-free survival/recurrence-free survival (HR = 1.87; 95% CI, 1.22-2.88; P = 0.004; I2 = 0%). Furthermore, increased RACK1 expression was significantly associated with lymphatic invasion/N+ stage (OR = 1.74; 95% CI, 1.04-2.90; P = 0.04; I2 = 79%) of tumors. Conclusions RACK1 may be a global predictive marker of poor prognosis in patients with cancer and unfavorable clinicopathological characteristics. However, further clinical studies are required to validate these findings.
Collapse
Affiliation(s)
- Qiuhao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sixin Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - You Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Qiu
- Laboratory of Pathology, Clinical Research Center for Breast, Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaobo Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Zhang J, Wei K, Qu W, Wang M, Zhu Q, Dong X, Huang X, Yi W, Xu S, Li X. Ogt Deficiency Induces Abnormal Cerebellar Function and Behavioral Deficits of Adult Mice through Modulating RhoA/ROCK Signaling. J Neurosci 2023; 43:4559-4579. [PMID: 37225434 PMCID: PMC10286951 DOI: 10.1523/jneurosci.1962-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Previous studies have shown the essential roles of O-GlcNAc transferase (Ogt) and O-GlcNAcylation in neuronal development, function and neurologic diseases. However, the function of Ogt and O-GlcNAcylation in the adult cerebellum has not been well elucidated. Here, we have found that cerebellum has the highest level of O-GlcNAcylation relative to cortex and hippocampus of adult male mice. Specific deletion of Ogt in granule neuron precursors (GNPs) induces abnormal morphology and decreased size of the cerebellum in adult male Ogt deficient [conditional knock-out (cKO)] mice. Adult male cKO mice show the reduced density and aberrant distribution of cerebellar granule cells (CGCs), the disrupted arrangement of Bergman glia (BG) and Purkinje cells. In addition, adult male cKO mice exhibit aberrant synaptic connection, impaired motor coordination, and learning and memory abilities. Mechanistically, we have identified G-protein subunit α12 (Gα12) is modified by Ogt-mediated O-GlcNAcylation. O-GlcNAcylation of Gα12 facilitates its binding to Rho guanine nucleotide exchange factor 12 (Arhgef12) and consequently activates RhoA/ROCK signaling. RhoA/ROCK pathway activator LPA can rescue the developmental deficits of Ogt deficient CGCs. Therefore, our study has revealed the critical function and related mechanisms of Ogt and O-GlcNAcylation in the cerebellum of adult male mice.SIGNIFICANCE STATEMENT Cerebellar function are regulated by diverse mechanisms. To unveil novel mechanisms is critical for understanding the cerebellar function and the clinical therapy of cerebellum-related diseases. In the present study, we have shown that O-GlcNAc transferase gene (Ogt) deletion induces abnormal cerebellar morphology, synaptic connection, and behavioral deficits of adult male mice. Mechanistically, Ogt catalyzes O-GlcNAcylation of Gα12, which promotes the binding to Arhgef12, and regulates RhoA/ROCK signaling pathway. Our study has uncovered the important roles of Ogt and O-GlcNAcylation in regulating cerebellar function and cerebellum-related behavior. Our results suggest that Ogt and O-GlcNAcylation could be potential targets for some cerebellum-related diseases.
Collapse
Affiliation(s)
- Jinyu Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Kaiyan Wei
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Wenzheng Qu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Mengxuan Wang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Qiang Zhu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, China
| | - Xiaoxue Dong
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Wen Yi
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou 310052, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
14
|
Chi ZC. Hedgehog/GLI and gastric cancer: Research progress and current status. Shijie Huaren Xiaohua Zazhi 2023; 31:389-396. [DOI: 10.11569/wcjd.v31.i10.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Hedgehog/GLI (Hh/GLI) is an important signaling pathway. It has been confirmed in various cancer studies that mutated or dysregulated Hh signals may be the behavioral phenotype of tumors, leading to the occurrence of various cancers. The abnormally activated Hh pathway endows tumor cells with a tendency to occur, proliferate, and migrate. In recent years, studies have found that the Hh signaling pathway induces gastric cancer (GC) invasion and epithelial mesenchymal transition. This article reviews the research progress and current status of Hh/GLI related to GC. Unveiling the new veil of GC occurrence will open a new approach for targeted therapy of this malignancy.
Collapse
|
15
|
Liu F, Li S, Zhao X, Xue S, Li H, Yang G, Li Y, Wu Y, Zhu L, Chen L, Wu H. O-GlcNAcylation Is Required for the Survival of Cerebellar Purkinje Cells by Inhibiting ROS Generation. Antioxidants (Basel) 2023; 12:antiox12040806. [PMID: 37107182 PMCID: PMC10135177 DOI: 10.3390/antiox12040806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Purkinje cells (PCs), as a unique type of neurons output from the cerebellar cortex, are essential for the development and physiological function of the cerebellum. However, the intricate mechanisms underlying the maintenance of Purkinje cells are unclear. The O-GlcNAcylation (O-GlcNAc) of proteins is an emerging regulator of brain function that maintains normal development and neuronal circuity. In this study, we demonstrate that the O-GlcNAc transferase (OGT) in PCs maintains the survival of PCs. Furthermore, a loss of OGT in PCs induces severe ataxia, extensor rigidity and posture abnormalities in mice. Mechanistically, OGT regulates the survival of PCs by inhibiting the generation of intracellular reactive oxygen species (ROS). These data reveal a critical role of O-GlcNAc signaling in the survival and maintenance of cerebellar PCs.
Collapse
|
16
|
Shi Y, Fan C, Li K, Yuan M, Shi T, Qian S, Wu H. Fish oil fat emulsion alleviates traumatic brain injury in mice by regulation of microglia polarization. Neurosci Lett 2023; 804:137217. [PMID: 36997019 DOI: 10.1016/j.neulet.2023.137217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Microglia activation, a hallmark of brain neuroinflammation, contributes to the secondary damage following traumatic brain injury (TBI). To explore the potential roles of different fat emulsions-long chain triglyceride (LCT) / medium chain triglyceride (MCT) and fish oil (FO) fat emulsion in neuroprotection and neuroinflammation in TBI, in this study, we first generated the controlled cortical impact (CCI) model of TBI mice. Then either LCT/MCT or FO fat emulsion treated mice were studied by Nissl staining to assess the lesion volume. Sham and TBI mice treated with 0.9% saline were used as controls. The fatty acid composition in different TBI mouse brains was further evaluated by gas chromatography. Immunofluorescent staining and quantitative RT-PCR both demonstrated the suppression of pro-inflammatory microglia and upregulated anti-inflammatory microglia in FO fat emulsion treated TBI brain or primary microglia induced by lipopolysaccharide (LPS) in vitro. Furthermore, motor and cognitive behavioral tests showed FO fat emulsion could partially improve the motor function in TBI mice. Together, our results indicate that FO fat emulsion significantly alleviates the TBI injury and neuroinflammation probably by regulating microglia polarization.
Collapse
Affiliation(s)
- Yuan Shi
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Chaonan Fan
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045 Beijing, China
| | - Kechun Li
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045 Beijing, China
| | - Mengqi Yuan
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Taoxing Shi
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Suyun Qian
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045 Beijing, China.
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China.
| |
Collapse
|
17
|
Cheng Q, Wu J, Xia Y, Cheng Q, Zhao Y, Zhu P, Zhang W, Zhang S, Zhang L, Yuan Y, Li C, Chen G, Xue B. Disruption of protein geranylgeranylation in the cerebellum causes cerebellar hypoplasia and ataxia via blocking granule cell progenitor proliferation. Mol Brain 2023; 16:24. [PMID: 36782228 PMCID: PMC9923931 DOI: 10.1186/s13041-023-01010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
The prenylation of proteins is involved in a variety of biological functions. However, it remains unknown whether it plays an important role in the morphogenesis of the cerebellum. To address this question, we generated a mouse model, in which the geranylgeranyl pyrophosphate synthase (Ggps1) gene is inactivated in neural progenitor cells in the developing cerebellum. We report that conditional knockout (cKO) of Ggps1 leads to severe ataxia and deficient locomotion. To identify the underlying mechanisms, we completed a series of cellular and molecular experiments. First, our morphological analysis revealed significantly decreased population of granule cell progenitors (GCPs) and impaired proliferation of GCPs in the developing cerebellum of Ggps1 cKO mice. Second, our molecular analysis showed increased expression of p21, an important cell cycle regulator in Ggps1 cKO mice. Together, this study highlights a critical role of Ggpps-dependent protein prenylation in the proliferation of cerebellar GCPs during cerebellar development.
Collapse
Affiliation(s)
- Qi Cheng
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Jing Wu
- grid.89957.3a0000 0000 9255 8984Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166 China
| | - Yingqian Xia
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Qing Cheng
- grid.89957.3a0000 0000 9255 8984Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004 Jiangsu China
| | - Yinjuan Zhao
- grid.410625.40000 0001 2293 4910Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Peixiang Zhu
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Wangling Zhang
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Shihu Zhang
- grid.410745.30000 0004 1765 1045Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Lei Zhang
- Medical Imaging Center of Fuyang People’s Hospital, Fuyang, Anhui Province China
| | - Yushan Yuan
- Medical Imaging Center of Fuyang People’s Hospital, Fuyang, Anhui Province China
| | - Chaojun Li
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center On Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Guiquan Chen
- Medical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
18
|
Wu PR, Chiang SY, Midence R, Kao WC, Lai CL, Cheng IC, Chou SJ, Chen CC, Huang CY, Chen RH. Wdr4 promotes cerebellar development and locomotion through Arhgap17-mediated Rac1 activation. Cell Death Dis 2023; 14:52. [PMID: 36681682 PMCID: PMC9867761 DOI: 10.1038/s41419-022-05442-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 01/22/2023]
Abstract
Patients with mutations of WDR4, a substrate adaptor of the CUL4 E3 ligase complex, develop cerebellar atrophy and gait phenotypes. However, the underlying mechanisms remain unexplored. Here, we identify a crucial role of Wdr4 in cerebellar development. Wdr4 deficiency in granule neuron progenitors (GNPs) not only reduces foliation and the sizes of external and internal granular layers but also compromises Purkinje neuron organization and the size of the molecular layer, leading to locomotion defects. Mechanistically, Wdr4 supports the proliferation of GNPs by preventing their cell cycle exit. This effect is mediated by Wdr4-induced ubiquitination and degradation of Arhgap17, thereby activating Rac1 to facilitate cell cycle progression. Disease-associated Wdr4 variants, however, cannot provide GNP cell cycle maintenance. Our study identifies Wdr4 as a previously unappreciated participant in cerebellar development and locomotion, providing potential insights into treatment strategies for diseases with WDR4 mutations, such as primordial dwarfism and Galloway-Mowat syndrome.
Collapse
Affiliation(s)
- Pei-Rung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan.
| | - Shang-Yin Chiang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Robert Midence
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Wen-Chao Kao
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chun-Lun Lai
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - I-Cheng Cheng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
19
|
Yazdani N, Willits RK. Mimicking the neural stem cell niche: An engineer’s view of cell: material interactions. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1086099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells have attracted attention in recent years to treat neurodegeneration. There are two neurogenic regions in the brain where neural stem cells reside, one of which is called the subventricular zone (SVZ). The SVZ niche is a complicated microenvironment providing cues to regulate self-renewal and differentiation while maintaining the neural stem cell’s pool. Many scientists have spent years understanding the cellular and structural characteristics of the SVZ niche, both in homeostasis and pathological conditions. On the other hand, engineers focus primarily on designing platforms using the knowledge they acquire to understand the effect of individual factors on neural stem cell fate decisions. This review provides a general overview of what we know about the components of the SVZ niche, including the residing cells, extracellular matrix (ECM), growth factors, their interactions, and SVZ niche changes during aging and neurodegenerative diseases. Furthermore, an overview will be given on the biomaterials used to mimic neurogenic niche microenvironments and the design considerations applied to add bioactivity while meeting the structural requirements. Finally, it will discuss the potential gaps in mimicking the microenvironment.
Collapse
|
20
|
Wang H, Xie Y, Wang X, Geng X, Gao L. Characterization of the RACK1 gene of Aips cerana cerana and its role in adverse environmental stresses. Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110796. [PMID: 35973656 DOI: 10.1016/j.cbpb.2022.110796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
Abstract
Receptors for Activated C Kinase 1 (RACK1s) are a kind of multifunction scaffold protein that plays an important role in cell signal transductions and animal development. However, the function of RACK1 in the Chinese honeybee Apis cerana cerana is little known. Here, we isolated and identified a RACK1 gene from Apis cerana cerana, named AccRACK1. By bioinformatic analysis, we revealed a high nucleic acid homology between AccRACK1 and RACK1 of Apis cerana. RT-qPCR analyses demonstrated AccRACK1 was mostly expressed in 3rd instar larvae, darked-eyed pupae and adults (one and thirty days post-emergence), suggesting it might participate in the development of A. cerana cerana. Moreover, the expression of AccRACK1 was highest in the thorax, followed by the venom gland. Compared to the blank control group, AccRACK1 was induced by 24 and 44 °C, HgCl2 and pesticides (paraquat, pyridaben and methomyl) but inhibited by 14 °C, H2O2, UV light and cyhalothrin. Additionally, 0.05, 0.1, 1, 5 and 10 mg/ml PPN (juvenile hormone analogue pyriproxyfen) could promote the expression of AccRACK1, with 1 mg/ml showing the highest upregulation, suggesting it was regulated by hormones. Further study found that after knockdown of AccRACK1 by RNAi, the expression of the eukaryotic initiation factor 6 of A. cerana cerana (AcceIF6), an initiation factor regulating the initiation of translation, was inhibited, indicating AccRACK1 might affect cellular responses by translation. These findings, taken together, suggest AccRACK1 is involved in the development and responses to abiotic stresses of A. cerana cerana, and therefore, it may be of critical importance to the survival of A. cerana cerana.
Collapse
Affiliation(s)
- Hongfei Wang
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yucai Xie
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Xiaoqing Wang
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Xiaoshan Geng
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lijun Gao
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China.
| |
Collapse
|
21
|
Yu D, Deng D, Chen B, Sun H, Lyu J, Zhao Y, Chen P, Wu H, Ren D. Rack1 regulates cellular patterning and polarity in the mouse cochlea. Exp Cell Res 2022; 421:113387. [PMID: 36252648 DOI: 10.1016/j.yexcr.2022.113387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022]
Abstract
Rack1 features seven WD40 repeats that fold into a multifaceted scaffold used to build signaling complexes in a context-dependent manner. Previous in vitro studies have revealed associations between Rack1 and many other proteins. Rack 1 is required for establishing planar cell polarity (PCP) in zebrafish and Xenopus. However, any molecular role of Rack1 in protein complexes or polarity regulation remains unclear. Here, we show that Rack1 is an essential gene in mice. Conditional knockout of Rack1 shortened the cochlear duct and induced cellular patterning defects characteristic of defective convergent extension (this PCP process is mediated by cellular junctional remodeling in the developing cochlear epithelium). Also, cochlear hair cells were no longer uniformly oriented in Rack1 conditional knockout mutants. Rack1 was enriched in the cellular cortices of sensory hair cells. In Rack1-deficient cochleae, E-cadherin expression at the cellular boundaries was greatly reduced. Together, the findings reveal a molecular role of Rack1 in PCP signaling that likely involves modulation of E-cadherin levels at the adherens junctions of the plasma membrane.
Collapse
Affiliation(s)
- Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Cell Biology, Emory University, Atlanta, GA, United States; Department of Otolaryngology, Emory University, Atlanta, GA, United States; Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Di Deng
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Binjun Chen
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Haojie Sun
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Jihan Lyu
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Yu Zhao
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Chen
- Department of Cell Biology, Emory University, Atlanta, GA, United States; Department of Otolaryngology, Emory University, Atlanta, GA, United States.
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Dongdong Ren
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
22
|
Gupta R, Mehan S, Chhabra S, Giri A, Sherawat K. Role of Sonic Hedgehog Signaling Activation in the Prevention of Neurological Abnormalities Associated with Obsessive-Compulsive Disorder. Neurotox Res 2022; 40:1718-1738. [PMID: 36272053 DOI: 10.1007/s12640-022-00586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022]
Abstract
The smoothened sonic hedgehog (Smo-Shh) pathway is one mechanism that influences neurogenesis, including brain cell differentiation and development during childhood. Shh signaling dysregulation leads to decreased target gene transcription, which contributes to increased neuronal excitation, apoptosis, and neurodegeneration, eventually leading to neurological deficits. Neuropsychiatric disorders such as OCD and related neurological dysfunctions are characterized by neurotransmitter imbalance, neuroinflammation, oxidative stress, and impaired neurogenesis, disturbing the cortico-striato-thalamo-cortical (CSTC) link neuronal network. Despite the availability of several treatments, such as selective serotonin reuptake inhibitors, some individuals may not benefit much from them. Several trials on the use of antipsychotics in the treatment of OCD have also produced inadequate findings. This evidence-based review focuses on a potential pharmacological approach to alleviating OCD and associated neuronal deficits by preventing neurochemical alterations, in which sonic hedgehog activators are neuroprotective, lowering neuronal damage while increasing neuronal maintenance and survival. As a result, stimulating SMO-Shh via its potential activators may have neuroprotective effects on neurological impairment associated with OCD. This review investigates the link between SMO-Shh signaling and the neurochemical abnormalities associated with the progression of OCD and associated neurological dysfunctions. Role of Smo-Shh signaling in serotonergic neurogenesis and in maintaining their neuronal identity. The Shh ligand activates two main transcriptional factors known as Foxa2 and Nkx2.2, which again activates another transcriptional factor, GATA (GATA2 and GATA3), in post mitotic precursor cells of serotonergic neurons-following increased expression of Pet-1 and Lmx1b after GATA regulates the expression of many serotonergic enzymes such as TPH2, SERT, VMAT, slc6a4, Htr1a, Htr1b (Serotonin receptor enzymes), and MAO that regulate and control the release of serotonin and maintain their neuronal identity after their maturation. Abbreviation: Foxa2: Forkhead box; GATA: Globin transcription factor; Lmx1b: LIM homeobox transcription factor 1 beta; TPH2: Tryptophan hydroxylase 2; Htr1a: Serotonin receptor 1a; Htr1b: Serotonin receptor 1b; SERT: Serotonin transporter; VMAT: Vesicular monoamine transporter; MAO: Monoamine oxidase.
Collapse
Affiliation(s)
- Ria Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| | - Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kajal Sherawat
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
23
|
Goldkamp AK, Li Y, Rivera RM, Hagen DE. Differentially expressed tRNA-derived fragments in bovine fetuses with assisted reproduction induced congenital overgrowth syndrome. Front Genet 2022; 13:1055343. [PMID: 36457750 PMCID: PMC9705782 DOI: 10.3389/fgene.2022.1055343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
Background: As couples struggle with infertility and livestock producers wish to rapidly improve genetic merit in their herd, assisted reproductive technologies (ART) have become increasingly popular in human medicine as well as the livestock industry. Utilizing ART can cause an increased risk of congenital overgrowth syndromes, such as Large Offspring Syndrome (LOS) in ruminants. A dysregulation of transcripts has been observed in bovine fetuses with LOS, which is suggested to be a cause of the phenotype. Our recent study identified variations in tRNA expression in LOS individuals, leading us to hypothesize that variations in tRNA expression can influence the availability of their processed regulatory products, tRNA-derived fragments (tRFs). Due to their resemblance in size to microRNAs, studies suggest that tRFs target mRNA transcripts and regulate gene expression. Thus, we have sequenced small RNA isolated from skeletal muscle and liver of day 105 bovine fetuses to elucidate the mechanisms contributing to LOS. Moreover, we have utilized our previously generated tRNA sequencing data to analyze the contribution of tRNA availability to tRF abundance. Results: 22,289 and 7,737 unique tRFs were predicted in the liver and muscle tissue respectively. The greatest number of reads originated from 5' tRFs in muscle and 5' halves in liver. In addition, mitochondrial (MT) and nuclear derived tRF expression was tissue-specific with most MT-tRFs and nuclear tRFs derived from LysUUU and iMetCAU in muscle, and AsnGUU and GlyGCC in liver. Despite variation in tRF abundance within treatment groups, we identified differentially expressed (DE) tRFs across Control-AI, ART-Normal, and ART-LOS groups with the most DE tRFs between ART-Normal and ART-LOS groups. Many DE tRFs target transcripts enriched in pathways related to growth and development in the muscle and tumor development in the liver. Finally, we found positive correlation coefficients between tRNA availability and tRF expression in muscle (R = 0.47) and liver (0.6). Conclusion: Our results highlight the dysregulation of tRF expression and its regulatory roles in LOS. These tRFs were found to target both imprinted and non-imprinted genes in muscle as well as genes linked to tumor development in the liver. Furthermore, we found that tRNA transcription is a highly modulated event that plays a part in the biogenesis of tRFs. This study is the first to investigate the relationship between tRNA and tRF expression in combination with ART-induced LOS.
Collapse
Affiliation(s)
- Anna K. Goldkamp
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Yahan Li
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Rocio M. Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Darren E. Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
24
|
Rac-deficient cerebellar granule neurons die before they migrate to the internal granule layer. Sci Rep 2022; 12:14848. [PMID: 36050459 PMCID: PMC9436960 DOI: 10.1038/s41598-022-19252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Granule neurons are the most common cell type in the cerebellum. They are generated in the external granule layer and migrate inwardly, forming the internal granule layer. Small Rho GTPases play various roles during development of the nervous system and may be involved in generation, differentiation and migration of granule neurons. We deleted Rac1, a member of small Rho GTPases, by GFAP-Cre driver in cerebellar granule neurons and Bergmann glial cells. Rac1flox/flox; Cre mice showed impaired migration and slight reduction in the number of granule neurons in the internal granule layer. Deletion of both Rac1 and Rac3 resulted in almost complete absence of granule neurons. Rac-deficient granule neurons differentiated into p27 and NeuN-expressing post mitotic neurons, but died before migration to the internal granule layer. Loss of Rac3 has little effect on granule neuron development. Rac1flox/flox; Rac3+/−; Cre mice showed intermediate phenotype between Rac1flox/flox; Cre and Rac1flox/flox; Rac3−/−; Cre mice in both survival and migration of granule neurons. Rac3 itself seems to be unimportant in the development of the cerebellum, but has some roles in Rac1-deleted granule neurons. Conversely, overall morphology of Rac1+/flox; Rac3−/−; Cre cerebella was normal. One allele of Rac1 is therefore thought to be sufficient to promote development of cerebellar granule neurons.
Collapse
|
25
|
O-GlcNAcylation promotes cerebellum development and medulloblastoma oncogenesis via SHH signaling. Proc Natl Acad Sci U S A 2022; 119:e2202821119. [PMID: 35969743 PMCID: PMC9407465 DOI: 10.1073/pnas.2202821119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cerebellar development relies on a precise coordination of metabolic signaling, epigenetic signaling, and transcriptional regulation. Here, we reveal that O-GlcNAc transferase (OGT) regulates cerebellar neurogenesis and medulloblastoma growth via a Sonic hedgehog (Shh)-Smo-Gli2 pathway. We identified Gli2 as a substrate of OGT, and unveiled cross-talk between O-GlcNAc and epigenetic signaling as a means to regulate Gli2 transcriptional activity. Moreover, genetic ablation or chemical inhibition of OGT significantly suppresses tumor progression and increases survival in a mouse model of Shh subgroup medulloblastoma. Taken together, the data in our study provide a line of inquiry to decipher the signaling mechanisms underlying cerebellar development, and highlights a potential target to investigate related pathologies, such as medulloblastoma. Sonic hedgehog (Shh) signaling plays a critical role in regulating cerebellum development by maintaining the physiological proliferation of granule neuron precursors (GNPs), and its dysregulation leads to the oncogenesis of medulloblastoma. O-GlcNAcylation (O-GlcNAc) of proteins is an emerging regulator of brain function that maintains normal development and neuronal circuitry. Here, we demonstrate that O-GlcNAc transferase (OGT) in GNPs mediate the cerebellum development, and the progression of the Shh subgroup of medulloblastoma. Specifically, OGT regulates the neurogenesis of GNPs by activating the Shh signaling pathway via O-GlcNAcylation at S355 of GLI family zinc finger 2 (Gli2), which in turn promotes its deacetylation and transcriptional activity via dissociation from p300, a histone acetyltransferases. Inhibition of OGT via genetic ablation or chemical inhibition improves survival in a medulloblastoma mouse model. These data uncover a critical role for O-GlcNAc signaling in cerebellar development, and pinpoint a potential therapeutic target for Shh-associated medulloblastoma.
Collapse
|
26
|
Song J, Ge Y, Sun X, Guan Q, Gong S, Wei M, Niu J, Zhao L. Noncoding RNAs related to the hedgehog pathway in cancer: clinical implications and future perspectives. Mol Cancer 2022; 21:115. [PMID: 35581586 PMCID: PMC9112456 DOI: 10.1186/s12943-022-01591-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/10/2022] [Indexed: 12/27/2022] Open
Abstract
Cancer is a type of malignant affliction threatening human health worldwide; however, the molecular mechanism of cancer pathogenesis remains to be elusive. The oncogenic hedgehog (Hh) pathway is a highly evolutionarily conserved signaling pathway in which the hedgehog-Patched complex is internalized to cellular lysosomes for degradation, resulting in the release of Smoothened inhibition and producing downstream intracellular signals. Noncoding RNAs (ncRNAs) with diversified regulatory functions have the potency of controlling cellular processes. Compelling evidence reveals that Hh pathway, ncRNAs, or their crosstalk play complicated roles in the initiation, metastasis, apoptosis and drug resistance of cancer, allowing ncRNAs related to the Hh pathway to serve as clinical biomarkers for targeted cancer therapy. In this review, we attempt to depict the multiple patterns of ncRNAs in the progression of malignant tumors via interactions with the Hh crucial elements in order to better understand the complex regulatory mechanism, and focus on Hh associated ncRNA therapeutics aimed at boosting their application in the clinical setting.
Collapse
Affiliation(s)
- Jia Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yuexin Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, 110000, People's Republic of China
| | - Jumin Niu
- Department of Gynecology, Shenyang Women's and Children's Hospital, Shenyang, 110011, People's Republic of China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
27
|
Loss of O-GlcNAcylation on MeCP2 at Threonine 203 Leads to Neurodevelopmental Disorders. Neurosci Bull 2021; 38:113-134. [PMID: 34773221 PMCID: PMC8821740 DOI: 10.1007/s12264-021-00784-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/06/2021] [Indexed: 02/03/2023] Open
Abstract
Mutations of the X-linked methyl-CpG-binding protein 2 (MECP2) gene in humans are responsible for most cases of Rett syndrome (RTT), an X-linked progressive neurological disorder. While genome-wide screens in clinical trials have revealed several putative RTT-associated mutations in MECP2, their causal relevance regarding the functional regulation of MeCP2 at the etiologic sites at the protein level requires more evidence. In this study, we demonstrated that MeCP2 was dynamically modified by O-linked-β-N-acetylglucosamine (O-GlcNAc) at threonine 203 (T203), an etiologic site in RTT patients. Disruption of the O-GlcNAcylation of MeCP2 specifically at T203 impaired dendrite development and spine maturation in cultured hippocampal neurons, and disrupted neuronal migration, dendritic spine morphogenesis, and caused dysfunction of synaptic transmission in the developing and juvenile mouse cerebral cortex. Mechanistically, genetic disruption of O-GlcNAcylation at T203 on MeCP2 decreased the neuronal activity-induced induction of Bdnf transcription. Our study highlights the critical role of MeCP2 T203 O-GlcNAcylation in neural development and synaptic transmission potentially via brain-derived neurotrophic factor.
Collapse
|
28
|
Loo CKC, Pearen MA, Ramm GA. The Role of Sonic Hedgehog in Human Holoprosencephaly and Short-Rib Polydactyly Syndromes. Int J Mol Sci 2021; 22:ijms22189854. [PMID: 34576017 PMCID: PMC8468456 DOI: 10.3390/ijms22189854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
The Hedgehog (HH) signalling pathway is one of the major pathways controlling cell differentiation and proliferation during human development. This pathway is complex, with HH function influenced by inhibitors, promotors, interactions with other signalling pathways, and non-genetic and cellular factors. Many aspects of this pathway are not yet clarified. The main features of Sonic Hedgehog (SHH) signalling are discussed in relation to its function in human development. The possible role of SHH will be considered using examples of holoprosencephaly and short-rib polydactyly (SRP) syndromes. In these syndromes, there is wide variability in phenotype even with the same genetic mutation, so that other factors must influence the outcome. SHH mutations were the first identified genetic causes of holoprosencephaly, but many other genes and environmental factors can cause malformations in the holoprosencephaly spectrum. Many patients with SRP have genetic defects affecting primary cilia, structures found on most mammalian cells which are thought to be necessary for canonical HH signal transduction. Although SHH signalling is affected in both these genetic conditions, there is little overlap in phenotype. Possible explanations will be canvassed, using data from published human and animal studies. Implications for the understanding of SHH signalling in humans will be discussed.
Collapse
Affiliation(s)
- Christine K. C. Loo
- South Eastern Area Laboratory Services, Department of Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-93829015
| | - Michael A. Pearen
- Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.A.P.); (G.A.R.)
| | - Grant A. Ramm
- Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.A.P.); (G.A.R.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| |
Collapse
|
29
|
Liu F, Shao J, Yang H, Yang G, Zhu Q, Wu Y, Zhu L, Wu H. Disruption of rack1 suppresses SHH-type medulloblastoma formation in mice. CNS Neurosci Ther 2021; 27:1518-1530. [PMID: 34480519 PMCID: PMC8611787 DOI: 10.1111/cns.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction Medulloblastoma (MB) is a malignant pediatric brain tumor that arises in the cerebellar granular neurons. Sonic Hedgehog subtype of MB (SHH‐MB) is one of the major subtypes of MB in the clinic. However, the molecular mechanisms underlying MB tumorigenesis are still not fully understood. Aims Our previous work demonstrated that the receptor for activated C kinase 1 (Rack1) is essential for SHH signaling activation in granule neuron progenitors (GNPs) during cerebellar development. To investigate the potential role of Rack1 in MB development, human MB tissue array and SHH‐MB genetic mouse model were used to study the expression of function of Rack1 in MB pathogenesis. Results We found that the expression of Rack1 was significantly upregulated in the majority of human cerebellar MB tumors. Genetic ablation of Rack1 expression in SHH‐MB tumor mice could significantly inhibit MB proliferation, reduce the tumor size, and prolong the survival of tumor rescue mice. Interestingly, neither apoptosis nor autophagy levels were affected in Rack1‐deletion rescue mice compared to WT mice, but the expression of Gli1 and HDAC2 was significantly decreased suggesting the inactivation of SHH signaling pathway in rescue mice. Conclusion Our results demonstrated that Rack1 may serve as a potential candidate for the diagnostic marker and therapeutic target of MB, including SHH‐MB.
Collapse
Affiliation(s)
- Fengjiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jingyuan Shao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Haihong Yang
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Guochao Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingling Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China.,Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
30
|
Yin S, Liao Q, Wang Y, Shi Q, Xia P, Yi M, Huang J. Ccdc134 deficiency impairs cerebellar development and motor coordination. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12763. [PMID: 34382738 DOI: 10.1111/gbb.12763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
Coiled-coil domain containing 134 (CCDC134) has been shown to serve as an immune cytokine to exert antitumor effects and to act as a novel regulator of hADA2a to affect PCAF acetyltransferase activity. While Ccdc134 loss causes abnormal brain development in mice, the significance of CCDC134 in neuronal development in vivo is controversial. Here, we report that CCDC134 is highly expressed in Purkinje cells (PCs) at all developmental stages and regulates mammalian cerebellar development in a cell type-specific manner. Selective deletion of Ccdc134 in mouse neural stem cells (NSCs) caused defects in cerebellar morphogenesis, including a decrease in the number of PCs and impairment of PC dendritic growth, as well as abnormal granule cell development. Moreover, loss of Ccdc134 caused progressive motor dysfunction with deficits in motor coordination and motor learning. Finally, Ccdc134 deficiency inhibited Wnt signaling but increased Ataxin1 levels. Our findings provide evidence that CCDC134 plays an important role in cerebellar development, possibly through regulating Wnt signaling and Ataxin1 expression levels, and in controlling cerebellar function for motor coordination and motor learning, ultimately making it a potential contributor to cerebellar pathogenesis.
Collapse
Affiliation(s)
- Sha Yin
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qinyuan Liao
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Yida Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianwen Shi
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Zhu Q, Chen L, Li Y, Huang M, Shao J, Li S, Cheng J, Yang H, Wu Y, Zhang J, Feng J, Fan M, Wu H. Rack1 is essential for corticogenesis by preventing p21-dependent senescence in neural stem cells. Cell Rep 2021; 36:109639. [PMID: 34469723 DOI: 10.1016/j.celrep.2021.109639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/27/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022] Open
Abstract
Normal neurodevelopment relies on intricate signaling pathways that balance neural stem cell (NSC) self-renewal, maturation, and survival. Disruptions lead to neurodevelopmental disorders, including microcephaly. Here, we implicate the inhibition of NSC senescence as a mechanism underlying neurogenesis and corticogenesis. We report that the receptor for activated C kinase (Rack1), a family member of WD40-repeat (WDR) proteins, is highly enriched in NSCs. Deletion of Rack1 in developing cortical progenitors leads to a microcephaly phenotype. Strikingly, the absence of Rack1 decreases neurogenesis and promotes a cellular senescence phenotype in NSCs. Mechanistically, the senescence-related p21 signaling pathway is dramatically activated in Rack1 null NSCs, and removal of p21 significantly rescues the Rack1-knockout phenotype in vivo. Finally, Rack1 directly interacts with Smad3 to suppress the activation of transforming growth factor (TGF)-β/Smad signaling pathway, which plays a critical role in p21-mediated senescence. Our data implicate Rack1-driven inhibition of p21-induced NSC senescence as a critical mechanism behind normal cortical development.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Minghe Huang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Jingyuan Shao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Shen Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Juanxian Cheng
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Haihong Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jiyan Zhang
- Department of Neuroimmunology and Antibody Engineering, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China
| | - Ming Fan
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu Province, China; Chinese Institute for Brain Research, 102206 Beijing, China.
| |
Collapse
|
32
|
Goodwin LR, Zapata G, Timpano S, Marenger J, Picketts DJ. Impaired SNF2L Chromatin Remodeling Prolongs Accessibility at Promoters Enriched for Fos/Jun Binding Sites and Delays Granule Neuron Differentiation. Front Mol Neurosci 2021; 14:680280. [PMID: 34295220 PMCID: PMC8290069 DOI: 10.3389/fnmol.2021.680280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Chromatin remodeling proteins utilize the energy from ATP hydrolysis to mobilize nucleosomes often creating accessibility for transcription factors within gene regulatory elements. Aberrant chromatin remodeling has diverse effects on neuroprogenitor homeostasis altering progenitor competence, proliferation, survival, or cell fate. Previous work has shown that inactivation of the ISWI genes, Smarca5 (encoding Snf2h) and Smarca1 (encoding Snf2l) have dramatic effects on brain development. Smarca5 conditional knockout mice have reduced progenitor expansion and severe forebrain hypoplasia, with a similar effect on the postnatal growth of the cerebellum. In contrast, Smarca1 mutants exhibited enlarged forebrains with delayed progenitor differentiation and increased neuronal output. Here, we utilized cerebellar granule neuron precursor (GNP) cultures from Smarca1 mutant mice (Ex6DEL) to explore the requirement for Snf2l on progenitor homeostasis. The Ex6DEL GNPs showed delayed differentiation upon plating that was not attributed to changes in the Sonic Hedgehog pathway but was associated with overexpression of numerous positive effectors of proliferation, including targets of Wnt activation. Transcriptome analysis identified increased expression of Fosb and Fosl2 while ATACseq experiments identified a large increase in chromatin accessibility at promoters many enriched for Fos/Jun binding sites. Nonetheless, the elevated proliferation index was transient and the Ex6DEL cultures initiated differentiation with a high concordance in gene expression changes to the wild type cultures. Genes specific to Ex6DEL differentiation were associated with an increased activation of the ERK signaling pathway. Taken together, this data provides the first indication of how Smarca1 mutations alter progenitor cell homeostasis and contribute to changes in brain size.
Collapse
Affiliation(s)
- Laura R Goodwin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Gerardo Zapata
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Sara Timpano
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jacob Marenger
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
33
|
Choi JM, Acharya R, Marasini S, Narayan B, Lee KW, Hwang WS, Chang DY, Kim SS, Suh-Kim H. Cell Type-specific Knockout with Gli1-mediated Cre Recombination in the Developing Cerebellum. Exp Neurobiol 2021; 30:203-212. [PMID: 34230222 PMCID: PMC8278141 DOI: 10.5607/en21017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
The inducible Cre-loxP system provides a useful tool for inducing the selective deletion of genes that are essential for proper development and enables the study of gene functions in properly developed animals. Here, we show that inducible Cre-loxP driven by the Gli1-promoter can induce cell-type-specific deletion of target genes in cerebellar cortical neurons. We used reporter mice containing the YFP (yellow fluorescence protein) gene at the Gt(ROSA)26Sor locus with a loxP-flanked transcriptional stop sequence, in which successful Cre-mediated excision of the stop sequence is indicated by YFP expression in Cre-expressing cells. Administration of tamoxifen during early postnatal days (P4~7) induces Cre-dependent excision of stop sequences and allows YFP expression in proliferating neuronal progenitor cells in the external granule layer and Bergmann glia in the Purkinje cell layer. A substantial number of YFP-positive progenitor cells in the external granule layer migrated to the internal granule cell layer and became granule cell neurons. By comparison, injection of tamoxifen during late postnatal days (P19~22) induces YFP expression only in Bergmann glia, and most granule cell neurons were devoid of YFP expression. The results indicate that the Gli1 promoter is temporarily active in progenitor cells in the external granule layer during the early postnatal period but constitutively active in Bergmann glia. We propose that the Gli1-mediated CreER system can be applied for the conditional deletion of genes of interest from cerebellar granule cell neurons and/or Bergmann glia.
Collapse
Affiliation(s)
- Jung-Mi Choi
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Rakshya Acharya
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | | | - Bashyal Narayan
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | - Kwang-Wook Lee
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Woo Sup Hwang
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | | | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea.,Research Center, CelleBrain Ltd., Jeonju 54871, Korea
| |
Collapse
|
34
|
Shiraishi R, Kawauchi D. Epigenetic regulation in medulloblastoma pathogenesis revealed by genetically engineered mouse models. Cancer Sci 2021; 112:2948-2957. [PMID: 34050694 PMCID: PMC8353939 DOI: 10.1111/cas.14990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma is the most common malignant cerebellar tumor in children. Recent technological advances in multilayered ’omics data analysis have revealed 4 molecular subgroups of medulloblastoma (Wingless/int, Sonic hedgehog, Group3, and Group4). (Epi)genomic and transcriptomic profiling on human primary medulloblastomas has shown distinct oncogenic drivers and cellular origin(s) across the subgroups. Despite tremendous efforts to identify the molecular signals driving tumorigenesis, few of the identified targets were druggable; therefore, a further understanding of the etiology of tumors is required to establish effective molecular‐targeted therapies. Chromatin regulators are frequently mutated in medulloblastoma, prompting us to investigate epigenetic changes and the accompanying activation of oncogenic signaling during tumorigenesis. For this purpose, we have used germline and non‐germline genetically engineered mice to model human medulloblastoma and to conduct useful, molecularly targeted, preclinical studies. This review discusses the biological implications of chromatin regulator mutations during medulloblastoma pathogenesis, based on recent in vivo animal studies.
Collapse
Affiliation(s)
- Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
35
|
Wang XT, Zhou L, Cai XY, Xu FX, Xu ZH, Li XY, Shen Y. Deletion of Mea6 in Cerebellar Granule Cells Impairs Synaptic Development and Motor Performance. Front Cell Dev Biol 2021; 8:627146. [PMID: 33718348 PMCID: PMC7946997 DOI: 10.3389/fcell.2020.627146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023] Open
Abstract
The cerebellum is conceptualized as a processor of complex movements. Many diseases with gene-targeted mutations, including Fahr's disease associated with the loss-of-function mutation of meningioma expressed antigen 6 (Mea6), exhibit cerebellar malformations, and abnormal motor behaviors. We previously reported that the defects in cerebellar development and motor performance of Nestin-Cre;Mea6 F/F mice are severer than those of Purkinje cell-targeted pCP2-Cre;Mea6 F/F mice, suggesting that Mea6 acts on other types of cerebellar cells. Hence, we investigated the function of Mea6 in cerebellar granule cells. We found that mutant mice with the specific deletion of Mea6 in granule cells displayed abnormal posture, balance, and motor learning, as indicated in footprint, head inclination, balanced beam, and rotarod tests. We further showed that Math1-Cre;Mea6 F/F mice exhibited disrupted migration of granule cell progenitors and damaged parallel fiber-Purkinje cell synapses, which may be related to impaired intracellular transport of vesicular glutamate transporter 1 and brain-derived neurotrophic factor. The present findings extend our previous work and may help to better understand the pathogenesis of Fahr's disease.
Collapse
Affiliation(s)
- Xin-Tai Wang
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin-Yu Cai
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang-Xiao Xu
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Heng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiang-Yao Li
- Department of Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ying Shen
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Li Y, Cheng JX, Yang HH, Chen LP, Liu FJ, Wu Y, Fan M, Wu HT. Transferrin receptor 1 plays an important role in muscle development and denervation-induced muscular atrophy. Neural Regen Res 2021; 16:1308-1316. [PMID: 33318410 PMCID: PMC8284266 DOI: 10.4103/1673-5374.301024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous studies demonstrate an accumulation of transferrin and transferrin receptor 1 (TfR1) in regenerating peripheral nerves. However, the expression and function of transferrin and TfR1 in the denervated skeletal muscle remain poorly understood. In this study, a mouse model of denervation was produced by complete tear of the left brachial plexus nerve. RNA-sequencing revealed that transferrin expression in the denervated skeletal muscle was upregulated, while TfR1 expression was downregulated. We also investigated the function of TfR1 during development and in adult skeletal muscles in mice with inducible deletion or loss of TfR1. The ablation of TfR1 in skeletal muscle in early development caused severe muscular atrophy and early death. In comparison, deletion of TfR1 in adult skeletal muscles did not affect survival or glucose metabolism, but caused skeletal muscle atrophy and motor functional impairment, similar to the muscular atrophy phenotype observed after denervation. These findings suggest that TfR1 plays an important role in muscle development and denervation-induced muscular atrophy. This study was approved by the Institutional Animal Care and Use Committee of Beijing Institute of Basic Medical Sciences, China (approval No. SYXK 2017-C023) on June 1, 2018.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Juan-Xian Cheng
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hai-Hong Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing; Department of Anesthesiology, the General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Li-Ping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Feng-Jiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ming Fan
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences; Chinese Institute for Brain Research (CIBR), Beijing, China
| | - Hai-Tao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences; Chinese Institute for Brain Research (CIBR), Beijing; Key Laboratory of Neuroregeneration, Coinnovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
37
|
The role of RNA-binding and ribosomal proteins as specific RNA translation regulators in cellular differentiation and carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166046. [PMID: 33383105 DOI: 10.1016/j.bbadis.2020.166046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Tight control of mRNA expression is required for cell differentiation; imbalanced regulation may lead to developmental disorders and cancer. The activity of the translational machinery (including ribosomes and translation factors) regulates the rate (slow or fast) of translation of encoded proteins, and the quality of these proteins highly depends on which mRNAs are available for translation. Specific RNA-binding and ribosomal proteins seem to play a key role in controlling gene expression to determine the differentiation fate of the cell. This demonstrates the important role of RNA-binding proteins, specific ribosome-binding proteins and microRNAs as key molecules in controlling the specific proteins required for the differentiation or dedifferentiation of cells. This delicate balance between specific proteins (in terms of quality and availability) and post-translational modifications occurring in the cytoplasm is crucial for cell differentiation, dedifferentiation and oncogenic potential. In this review, we report how defects in the regulation of mRNA translation can be dependent on specific proteins and can induce an imbalance between differentiation and dedifferentiation in cell fate determination.
Collapse
|
38
|
Groves I, Placzek M, Fletcher AG. Of mitogens and morphogens: modelling Sonic Hedgehog mechanisms in vertebrate development. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190660. [PMID: 32829689 PMCID: PMC7482217 DOI: 10.1098/rstb.2019.0660] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2020] [Indexed: 12/22/2022] Open
Abstract
Sonic Hedgehog (Shh) Is a critical protein in vertebrate development, orchestrating patterning and growth in many developing systems. First described as a classic morphogen that patterns tissues through a spatial concentration gradient, subsequent studies have revealed a more complex mechanism, in which Shh can also regulate proliferation and differentiation. While the mechanism of action of Shh as a morphogen is well understood, it remains less clear how Shh might integrate patterning, proliferation and differentiation in a given tissue, to ultimately direct its morphogenesis. In tandem with experimental studies, mathematical modelling can help gain mechanistic insights into these processes and bridge the gap between Shh-regulated patterning and growth, by integrating these processes into a common theoretical framework. Here, we briefly review the roles of Shh in vertebrate development, focusing on its functions as a morphogen, mitogen and regulator of differentiation. We then discuss the contributions that modelling has made to our understanding of the action of Shh and highlight current challenges in using mathematical models in a quantitative and predictive way. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Ian Groves
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Marysia Placzek
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Alexander G. Fletcher
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
39
|
Cheng J, Wu Y, Chen L, Li Y, Liu F, Shao J, Huang M, Fan M, Wu H. Loss of O-GlcNAc transferase in neural stem cells impairs corticogenesis. Biochem Biophys Res Commun 2020; 532:541-547. [PMID: 32896380 DOI: 10.1016/j.bbrc.2020.08.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 01/17/2023]
Abstract
The proper development of the cerebral cortex is essential for brain formation and functioning. O-GlcNAcylation, an important posttranslational modification, regulates the pathways critical for neuronal health and the survival of the cerebral cortex in neurodegenerative diseases. However, the role of O-GlcNAcylation in regulating cerebral cortical development at the embryonic and early postnatal (0-21 days) stages is still largely unknown. Here we report that the selective deletion of O-GlcNAc transferase (OGT) in neural stem cells (NSCs) in mice led to a series of severe brain developmental deficits, including dramatic shrinkage of cortical and hippocampal histoarchitecture, widespread neuronal apoptosis, decrease in cell proliferation, induction of endoplasmic reticulum (ER) stress, and inhibition of neuronal dendritic and axonal differentiation. The pathology of corticogenesis deficits caused by OGT deletion may largely rely on complicated biological processes, such as proliferation, apoptosis and differentiation. Our results suggest that dysfunctional O-GlcNAcylation in NSCs may be an important contributor to neurodevelopmental diseases.
Collapse
Affiliation(s)
- Juanxian Cheng
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China
| | - Fengjiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China
| | - Jingyuan Shao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China
| | - Minghe Huang
- College of Hengyang Medical Sciences, Nanhua University, Hengyang, 421001, Hunan Province, China
| | - Ming Fan
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, Jiangsu Province, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China; College of Hengyang Medical Sciences, Nanhua University, Hengyang, 421001, Hunan Province, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, Jiangsu Province, China; Chinese Institute for Brain Research, 102206, Beijing, China.
| |
Collapse
|
40
|
Gao J, Liao Y, Qiu M, Shen W. Wnt/β-Catenin Signaling in Neural Stem Cell Homeostasis and Neurological Diseases. Neuroscientist 2020; 27:58-72. [PMID: 32242761 DOI: 10.1177/1073858420914509] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neural stem/progenitor cells (NSCs) maintain the ability of self-renewal and differentiation and compose the complex nervous system. Wnt signaling is thought to control the balance of NSC proliferation and differentiation via the transcriptional coactivator β-catenin during brain development and adult tissue homeostasis. Disruption of Wnt signaling may result in developmental defects and neurological diseases. Here, we summarize recent findings of the roles of Wnt/β-catenin signaling components in NSC homeostasis for the regulation of functional brain circuits. We also suggest that the potential role of Wnt/β-catenin signaling might lead to new therapeutic strategies for neurological diseases, including, but not limited to, spinal cord injury, Alzheimer's disease, Parkinson's disease, and depression.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Liao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
D'Mello SR. Regulation of Central Nervous System Development by Class I Histone Deacetylases. Dev Neurosci 2020; 41:149-165. [PMID: 31982872 PMCID: PMC7263453 DOI: 10.1159/000505535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Neurodevelopment is a highly complex process composed of several carefully regulated events starting from the proliferation of neuroepithelial cells and culminating with and refining of neural networks and synaptic transmission. Improper regulation of any of these neurodevelopmental events often results in severe brain dysfunction. Accumulating evidence indicates that epigenetic modifications of chromatin play a key role in neurodevelopmental regulation. Among these modifications are histone acetylation and deacetylation, which control access of transcription factors to DNA, thereby regulating gene transcription. Histone deacetylation, which restricts access of transcription factor repressing gene transcription, involves the action of members of a family of 18 enzymes, the histone deacetylases (HDAC), which are subdivided in 4 subgroups. This review focuses on the Group 1 HDACs - HDAC 1, 2, 3, and 8. Although much of the evidence for HDAC involvement in neurodevelopment has come from the use of pharmacological inhibitors, because these agents are generally nonselective with regard to their effects on individual members of the HDAC family, this review is limited to evidence garnered from the use of molecular genetic approaches. Our review describes that Class I HDACs play essential roles in all phases of neurodevelopment. Modulation of the activity of individual HDACs could be an important therapeutic approach for neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, USA,
| |
Collapse
|
42
|
Yang H, Yang C, Zhu Q, Wei M, Li Y, Cheng J, Liu F, Wu Y, Zhang J, Zhang C, Wu H. Rack1 Controls Parallel Fiber-Purkinje Cell Synaptogenesis and Synaptic Transmission. Front Cell Neurosci 2019; 13:539. [PMID: 31920545 PMCID: PMC6927999 DOI: 10.3389/fncel.2019.00539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023] Open
Abstract
Purkinje cells (PCs) in the cerebellum receive two excitatory afferents including granule cells-derived parallel fiber (PF) and the climbing fiber. Scaffolding protein Rack1 is highly expressed in the cerebellar PCs. Here, we found delayed formation of specific cerebellar vermis lobule and impaired motor coordination in PC-specific Rack1 conditional knockout mice. Our studies further revealed that Rack1 is essential for PF–PC synapse formation. In addition, Rack1 plays a critical role in regulating synaptic plasticity and long-term depression (LTD) induction of PF–PC synapses without changing the expression of postsynaptic proteins. Together, we have discovered Rack1 as the crucial molecule that controls PF–PC synaptogenesis and synaptic plasticity. Our studies provide a novel molecular insight into the mechanisms underlying the neural development and neuroplasticity in the cerebellum.
Collapse
Affiliation(s)
- Haihong Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Chaojuan Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Mengping Wei
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Juanxian Cheng
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Fengjiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jiyan Zhang
- Department of Neuroimmunology and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|