1
|
de Jong TJ, Demertzi AD, Robinson WE, Huck WTS. Environmental History is Transferred via Minerals Altering Formose Reaction Pathways. Angew Chem Int Ed Engl 2025; 64:e202504659. [PMID: 40116706 PMCID: PMC12124346 DOI: 10.1002/anie.202504659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/23/2025]
Abstract
It is generally accepted that minerals were an important source of prebiotic catalysis. In this work we demonstrate how the prebiotic sugar forming formose reaction is guided to unique reaction compositions in the presence of a variety of minerals. When the same mineral is transferred between multiple sequential batch reactions, a new reaction composition is obtained after each reaction cycle. We attribute this effect to the adsorption of catalytic Ca(OH)2 to mineral surfaces. Further exploration shows that first exposing the mineral surface to the aqueous catalyst allows the mineral to subsequently produce formose outputs without the need for any additional catalyst to be present. As such, the mineral surface functions as storage of the preceding environmental conditions. Our work supports the development of chemical complexity through the transfer of information between sequences of chemical environments.
Collapse
Affiliation(s)
- Thijs J. de Jong
- Department of Physical Organic ChemistryInstitute for Molecules and Materials (IMM)Radboud UniversityNijmegenNetherlands
| | - Astra D. Demertzi
- Department of Physical Organic ChemistryInstitute for Molecules and Materials (IMM)Radboud UniversityNijmegenNetherlands
| | - William E. Robinson
- Department of Physical Organic ChemistryInstitute for Molecules and Materials (IMM)Radboud UniversityNijmegenNetherlands
| | - Wilhelm T. S. Huck
- Department of Physical Organic ChemistryInstitute for Molecules and Materials (IMM)Radboud UniversityNijmegenNetherlands
| |
Collapse
|
2
|
Wang CH, Jhang YY, Yu SS. Catalytic peptide/hemin complex from ester-amide exchange reaction mediated by deep eutectic solvents. RSC Adv 2025; 15:119-123. [PMID: 39758916 PMCID: PMC11694504 DOI: 10.1039/d4ra08607d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025] Open
Abstract
The functions of peptides often emerge upon their self-assembly or binding with other co-factors. However, the synthetic complexity makes these functional peptides intractable. Here, we utilize the ester-amide exchange reaction in deep eutectic solvents to generate peptide libraries from unactivated amino acids. This strategy leads to peptide mixtures that exhibit hemin-binding capability and peroxidase-like activity.
Collapse
Affiliation(s)
- Cheng-Hsi Wang
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
| | - Yao-Yu Jhang
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
| | - Sheng-Sheng Yu
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
- Core Facility Center, National Cheng Kung University Tainan 70101 Taiwan
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University Tainan 70101 Taiwan
| |
Collapse
|
3
|
Mougkogiannis P, Adamatzky A. Modulation of electrical activity of proteinoid microspheres with chondroitin sulfate clusters. PLoS One 2024; 19:e0313077. [PMID: 39630635 PMCID: PMC11616837 DOI: 10.1371/journal.pone.0313077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
Proteinoids-thermal proteins-are produced by heating amino acids to their melting point and initiation of polymerisation to produce polymeric chains. Proteinoids swell in aqueous solution into hollow microspheres. The proteinoid microspheres produce endogenous burst of electrical potential spikes and change patterns of their electrical activity in response to illumination. These microspheres were proposed as proto-neurons in 1950s. To evaluate pathways of potential evolution of these proto-neurons and their applicability of chimera neuromorphic circuits we decided to hybridise them with hondroitin sulphate (CS) clusters, which form a part of the brain extracellular matrix. We found a novel synergistic interaction between CS clusters and proteinoids that dramatically affects patterns of electrical activity of proteinoid microspheres. Our study might shed light on evolution of synaptic plasticity's molecular mechanisms and the role of extracellular matrix-protein interactions in learning, and open up possibilities for novel methods in unconventional computing and the development of adaptable, brain-inspired computational systems.
Collapse
Affiliation(s)
| | - Andrew Adamatzky
- Unconventional Computing Lab, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
4
|
Mathis C, Patel D, Weimer W, Forrest S. Self-organization in computation and chemistry: Return to AlChemy. CHAOS (WOODBURY, N.Y.) 2024; 34:093142. [PMID: 39345193 DOI: 10.1063/5.0207358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024]
Abstract
How do complex adaptive systems, such as life, emerge from simple constituent parts? In the 1990s, Walter Fontana and Leo Buss proposed a novel modeling approach to this question, based on a formal model of computation known as the λ calculus. The model demonstrated how simple rules, embedded in a combinatorially large space of possibilities, could yield complex, dynamically stable organizations, reminiscent of biochemical reaction networks. Here, we revisit this classic model, called AlChemy, which has been understudied over the past 30 years. We reproduce the original results and study the robustness of those results using the greater computing resources available today. Our analysis reveals several unanticipated features of the system, demonstrating a surprising mix of dynamical robustness and fragility. Specifically, we find that complex, stable organizations emerge more frequently than previously expected, that these organizations are robust against collapse into trivial fixed points, but that these stable organizations cannot be easily combined into higher order entities. We also study the role played by the random generators used in the model, characterizing the initial distribution of objects produced by two random expression generators, and their consequences on the results. Finally, we provide a constructive proof that shows how an extension of the model, based on the typed λ calculus, could simulate transitions between arbitrary states in any possible chemical reaction network, thus indicating a concrete connection between AlChemy and chemical reaction networks. We conclude with a discussion of possible applications of AlChemy to self-organization in modern programming languages and quantitative approaches to the origin of life.
Collapse
Affiliation(s)
- Cole Mathis
- Biodesign Institute, Arizona State University, Tempe, Arizona 85281, USA
- School of Complex Adaptive Systems, Arizona State University, Tempe, Arizona 85281, USA
| | - Devansh Patel
- Biodesign Institute, Arizona State University, Tempe, Arizona 85281, USA
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, Arizona 85281, USA
| | - Westley Weimer
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Stephanie Forrest
- Biodesign Institute, Arizona State University, Tempe, Arizona 85281, USA
- School of Complex Adaptive Systems, Arizona State University, Tempe, Arizona 85281, USA
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, Arizona 85281, USA
- Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| |
Collapse
|
5
|
Chandru K, Potiszil C, Jia TZ. Alternative Pathways in Astrobiology: Reviewing and Synthesizing Contingency and Non-Biomolecular Origins of Terrestrial and Extraterrestrial Life. Life (Basel) 2024; 14:1069. [PMID: 39337854 PMCID: PMC11433091 DOI: 10.3390/life14091069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The pursuit of understanding the origins of life (OoL) on and off Earth and the search for extraterrestrial life (ET) are central aspects of astrobiology. Despite the considerable efforts in both areas, more novel and multifaceted approaches are needed to address these profound questions with greater detail and with certainty. The complexity of the chemical milieu within ancient geological environments presents a diverse landscape where biomolecules and non-biomolecules interact. This interaction could lead to life as we know it, dominated by biomolecules, or to alternative forms of life where non-biomolecules could play a pivotal role. Such alternative forms of life could be found beyond Earth, i.e., on exoplanets and the moons of Jupiter and Saturn. Challenging the notion that all life, including ET life, must use the same building blocks as life on Earth, the concept of contingency-when expanded beyond its macroevolution interpretation-suggests that non-biomolecules may have played essential roles at the OoL. Here, we review the possible role of contingency and non-biomolecules at the OoL and synthesize a conceptual model formally linking contingency with non-biomolecular OoL theories. This model emphasizes the significance of considering the role of non-biomolecules both at the OoL on Earth or beyond, as well as their potential as agnostic biosignatures indicative of ET Life.
Collapse
Affiliation(s)
- Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor 43600, Malaysia
- Polymer Research Center (PORCE), Faculty of Science and Technology, National University of Malaysia, Selangor 43600, Malaysia
- Institute of Physical Chemistry, CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa 682-0193, Tottori, Japan
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku 152-8550, Tokyo, Japan
| |
Collapse
|
6
|
Zhang L, Zhang M, Guo X, Gan D, Ye Y, Zhao Y, Ying J. A model for N-to-C direction in prebiotic peptide synthesis. Chem Commun (Camb) 2024; 60:2748-2751. [PMID: 38362617 DOI: 10.1039/d3cc06101a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Drawing inspiration from the initiating amino acid modification in biosynthetic peptides, we have successfully demonstrated a biomimetic mechanism for N-to-C terminal extension in prebiotic peptide synthesis. This achievement was accomplished by using acetylated amino acid amides as the N-terminal substrate for peptide synthesis and amino acid amides as the C-terminal extension, with the reaction carried out in a dry-wet cycle at 80 °C without requiring any activators. This provides a plausible pathway for the formation of prebiotic peptides.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Drug Discovery Technology, Ningbo University, No. 818 Fenghua Road, Ningbo, Zhejiang 315211, China.
| | - Min Zhang
- Institute of Drug Discovery Technology, Ningbo University, No. 818 Fenghua Road, Ningbo, Zhejiang 315211, China.
| | - Xiaofan Guo
- Institute of Drug Discovery Technology, Ningbo University, No. 818 Fenghua Road, Ningbo, Zhejiang 315211, China.
| | - Dingwei Gan
- School of Electrical Engineering, Xi'an Jiaotong University, No. 28 Xianning West Road, China
| | - Yong Ye
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, No. 818 Fenghua Road, Ningbo, Zhejiang 315211, China.
- College of Chemistry and Chemical Engineering, Xiamen University, No. 422, China
| | - Jianxi Ying
- Institute of Drug Discovery Technology, Ningbo University, No. 818 Fenghua Road, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
7
|
Foote S, Sinhadc P, Mathis C, Walker SI. False Positives and the Challenge of Testing the Alien Hypothesis. ASTROBIOLOGY 2023; 23:1189-1201. [PMID: 37962842 DOI: 10.1089/ast.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The origin of life and the detection of alien life have historically been treated as separate scientific research problems. However, they are not strictly independent. Here, we discuss the need for a better integration of the sciences of life detection and origins of life. Framing these dual problems within the formalism of Bayesian hypothesis testing, we demonstrate via simple examples how high confidence in life detection claims require either (1) a strong prior hypothesis about the existence of life in a particular alien environment, or conversely, (2) signatures of life that are not susceptible to false positives. As a case study, we discuss the role of priors and hypothesis testing in recent results reporting potential detection of life in the venusian atmosphere and in the icy plumes of Enceladus. While many current leading biosignature candidates are subject to false positives because they are not definitive of life, our analyses demonstrate why it is necessary to shift focus to candidate signatures that are definitive. This indicates a necessity to develop methods that lack substantial false positives, by using observables for life that rely on prior hypotheses with strong theoretical and empirical support in identifying defining features of life. Abstract theories developed in pursuit of understanding universal features of life are more likely to be definitive and to apply to life-as-we-don't-know-it. We discuss Molecular Assembly theory as an example of such an observable which is applicable to life detection within the solar system. In the absence of alien examples these are best validated in origin of life experiments, substantiating the need for better integration between origins of life and biosignature science research communities. This leads to a conclusion that extraordinary claims in astrobiology (e.g., definitive detection of alien life) require extraordinary explanations, whereas the evidence itself could be quite ordinary.
Collapse
Affiliation(s)
- Searra Foote
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Pritvik Sinhadc
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
- Dubai College, Dubai, UAE
| | - Cole Mathis
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Sara Imari Walker
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute for Science, Seattle, Washington, USA
- ASU-SFI Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
8
|
Boigenzahn H, González LD, Thompson JC, Zavala VM, Yin J. Kinetic Modeling and Parameter Estimation of a Prebiotic Peptide Reaction Network. J Mol Evol 2023; 91:730-744. [PMID: 37796316 DOI: 10.1007/s00239-023-10132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023]
Abstract
Although our understanding of how life emerged on Earth from simple organic precursors is speculative, early precursors likely included amino acids. The polymerization of amino acids into peptides and interactions between peptides are of interest because peptides and proteins participate in complex interaction networks in extant biology. However, peptide reaction networks can be challenging to study because of the potential for multiple species and systems-level interactions between species. We developed and employed a computational network model to describe reactions between amino acids to form di-, tri-, and tetra-peptides. Our experiments were initiated with two of the simplest amino acids, glycine and alanine, mediated by trimetaphosphate-activation and drying to promote peptide bond formation. The parameter estimates for bond formation and hydrolysis reactions in the system were found to be poorly constrained due to a network property known as sloppiness. In a sloppy model, the behavior mostly depends on only a subset of parameter combinations, but there is no straightforward way to determine which parameters should be included or excluded. Despite our inability to determine the exact values of specific kinetic parameters, we could make reasonably accurate predictions of model behavior. In short, our modeling has highlighted challenges and opportunities toward understanding the behaviors of complex prebiotic chemical experiments.
Collapse
Affiliation(s)
- Hayley Boigenzahn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI, 53715, USA
| | - Leonardo D González
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Jaron C Thompson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Victor M Zavala
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - John Yin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI, 53715, USA.
| |
Collapse
|
9
|
Boigenzahn H, Yin J. Glycine to Oligoglycine via Sequential Trimetaphosphate Activation Steps in Drying Environments. ORIGINS LIFE EVOL B 2022; 52:249-261. [DOI: 10.1007/s11084-022-09634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022]
|
10
|
Peng Z, Linderoth J, Baum DA. The hierarchical organization of autocatalytic reaction networks and its relevance to the origin of life. PLoS Comput Biol 2022; 18:e1010498. [PMID: 36084149 PMCID: PMC9491600 DOI: 10.1371/journal.pcbi.1010498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/21/2022] [Accepted: 08/18/2022] [Indexed: 12/16/2022] Open
Abstract
Prior work on abiogenesis, the emergence of life from non-life, suggests that it requires chemical reaction networks that contain self-amplifying motifs, namely, autocatalytic cores. However, little is known about how the presence of multiple autocatalytic cores might allow for the gradual accretion of complexity on the path to life. To explore this problem, we develop the concept of a seed-dependent autocatalytic system (SDAS), which is a subnetwork that can autocatalytically self-maintain given a flux of food, but cannot be initiated by food alone. Rather, initiation of SDASs requires the transient introduction of chemical "seeds." We show that, depending on the topological relationship of SDASs in a chemical reaction network, a food-driven system can accrete complexity in a historically contingent manner, governed by rare seeding events. We develop new algorithms for detecting and analyzing SDASs in chemical reaction databases and describe parallels between multi-SDAS networks and biological ecosystems. Applying our algorithms to both an abiotic reaction network and a biochemical one, each driven by a set of simple food chemicals, we detect SDASs that are organized as trophic tiers, of which the higher tier can be seeded by relatively simple chemicals if the lower tier is already activated. This indicates that sequential activation of trophically organized SDASs by seed chemicals that are not much more complex than what already exist could be a mechanism of gradual complexification from relatively simple abiotic reactions to more complex life-like systems. Interestingly, in both reaction networks, higher-tier SDASs include chemicals that might alter emergent features of chemical systems and could serve as early targets of selection. Our analysis provides computational tools for analyzing very large chemical/biochemical reaction networks and suggests new approaches to studying abiogenesis in the lab.
Collapse
Affiliation(s)
- Zhen Peng
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeff Linderoth
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison Wisconsin, United States of America
| | - David A. Baum
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
11
|
Cronin L, Kitson PJ. Selection of assembly complexity in a space of tetrapeptides. Chem 2022. [DOI: 10.1016/j.chempr.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Robinson WE, Daines E, van Duppen P, de Jong T, Huck WTS. Environmental conditions drive self-organization of reaction pathways in a prebiotic reaction network. Nat Chem 2022; 14:623-631. [PMID: 35668214 DOI: 10.1038/s41557-022-00956-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022]
Abstract
The evolution of life from the prebiotic environment required a gradual process of chemical evolution towards greater molecular complexity. Elaborate prebiotically relevant synthetic routes to the building blocks of life have been established. However, it is still unclear how functional chemical systems evolved with direction using only the interaction between inherent molecular chemical reactivity and the abiotic environment. Here we demonstrate how complex systems of chemical reactions exhibit well-defined self-organization in response to varying environmental conditions. This self-organization allows the compositional complexity of the reaction products to be controlled as a function of factors such as feedstock and catalyst availability. We observe how Breslow's cycle contributes to the reaction composition by feeding C2 building blocks into the network, alongside reaction pathways dominated by formaldehyde-driven chain growth. The emergence of organized systems of chemical reactions in response to changes in the environment offers a potential mechanism for a chemical evolution process that bridges the gap between prebiotic chemical building blocks and the origin of life.
Collapse
Affiliation(s)
- William E Robinson
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Elena Daines
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Peer van Duppen
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Thijs de Jong
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands.
| |
Collapse
|
13
|
Evolution of Realistic Organic Mixtures for the Origins of Life through Wet–Dry Cycling. SCI 2022. [DOI: 10.3390/sci4020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
One of the challenges in understanding chemical evolution is the large number of starting organics and environments that were plausible on early Earth. Starting with realistic organic mixtures and using chemical analyses that are not biologically biased, understanding the interplay between organic composition and environment can be approached using statistical analysis. In this work, a mixture of 73 organics was cycled through dehydrating conditions five times, considering environmental parameters of pH, salinity, and rehydration solution. Products were analyzed by HPLC, amide and ester assays, and phosphatase and esterase assays. While all environmental factors were found to influence chemical evolution, salinity was found to play a large role in the evolution of these mixtures, with samples diverging at very high sea salt concentrations. This framework should be expanded and formalized to improve our understanding of abiogenesis.
Collapse
|
14
|
Arya A, Ray J, Sharma S, Cruz Simbron R, Lozano A, Smith HB, Andersen JL, Chen H, Meringer M, Cleaves HJ. An open source computational workflow for the discovery of autocatalytic networks in abiotic reactions. Chem Sci 2022; 13:4838-4853. [PMID: 35655880 PMCID: PMC9067619 DOI: 10.1039/d2sc00256f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
A central question in origins of life research is how non-entailed chemical processes, which simply dissipate chemical energy because they can do so due to immediate reaction kinetics and thermodynamics, enabled the origin of highly-entailed ones, in which concatenated kinetically and thermodynamically favorable processes enhanced some processes over others. Some degree of molecular complexity likely had to be supplied by environmental processes to produce entailed self-replicating processes. The origin of entailment, therefore, must connect to fundamental chemistry that builds molecular complexity. We present here an open-source chemoinformatic workflow to model abiological chemistry to discover such entailment. This pipeline automates generation of chemical reaction networks and their analysis to discover novel compounds and autocatalytic processes. We demonstrate this pipeline's capabilities against a well-studied model system by vetting it against experimental data. This workflow can enable rapid identification of products of complex chemistries and their underlying synthetic relationships to help identify autocatalysis, and potentially self-organization, in such systems. The algorithms used in this study are open-source and reconfigurable by other user-developed workflows.
Collapse
Affiliation(s)
- Aayush Arya
- Department of Physics, Lovely Professional University Jalandhar Delhi-GT Road Phagwara Punjab 144411 India
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
| | - Jessica Ray
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
| | - Siddhant Sharma
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
- Department of Biochemistry, Deshbandhu College, University of Delhi New Delhi 110019 India
| | - Romulo Cruz Simbron
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
- Laboratorio de Investigación Fisicoquímica (LABINFIS), Universidad Nacional de Ingeniería Av. Túpac Amaru 210 Lima Peru
- Centro de Tecnologías de la Información y Comunicaciones (CTIC UNI), Universidad Nacional de Ingenieria Av. Túpac Amaru 210 Lima Peru
| | - Alejandro Lozano
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
- Unidad Profesional Interdisciplinaria de Biotecnología - Instituto Politécnico Nacional 550 Av. Acueducto 07340 Mexico City Mexico
| | - Harrison B Smith
- Earth-Life Science Institute, Tokyo Institute of Technology Tokyo Japan
| | - Jakob Lykke Andersen
- Department of Mathematics and Computer Science, University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Huan Chen
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - Markus Meringer
- German Aerospace Center (DLR) 82234 Oberpfaffenhofen Wessling Germany
| | - Henderson James Cleaves
- Blue Marble Space Institute of Science Seattle Washington 98104 USA
- Earth-Life Science Institute, Tokyo Institute of Technology Tokyo Japan
| |
Collapse
|
15
|
|
16
|
Sithamparam M, Satthiyasilan N, Chen C, Jia TZ, Chandru K. A material-based panspermia hypothesis: The potential of polymer gels and membraneless droplets. Biopolymers 2022; 113:e23486. [PMID: 35148427 DOI: 10.1002/bip.23486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
The Panspermia hypothesis posits that either life's building blocks (molecular Panspermia) or life itself (organism-based Panspermia) may have been interplanetarily transferred to facilitate the origins of life (OoL) on a given planet, complementing several current OoL frameworks. Although many spaceflight experiments were performed in the past to test for potential terrestrial organisms as Panspermia seeds, it is uncertain whether such organisms will likely "seed" a new planet even if they are able to survive spaceflight. Therefore, rather than using organisms, using abiotic chemicals as seeds has been proposed as part of the molecular Panspermia hypothesis. Here, as an extension of this hypothesis, we introduce and review the plausibility of a polymeric material-based Panspermia seed (M-BPS) as a theoretical concept, where the type of polymeric material that can function as a M-BPS must be able to: (1) survive spaceflight and (2) "function", i.e., contingently drive chemical evolution toward some form of abiogenesis once arriving on a foreign planet. We use polymeric gels as a model example of a potential M-BPS. Polymeric gels that can be prebiotically synthesized on one planet (such as polyester gels) could be transferred to another planet via meteoritic transfer, where upon landing on a liquid bearing planet, can assemble into structures containing cellular-like characteristics and functionalities. Such features presupposed that these gels can assemble into compartments through phase separation to accomplish relevant functions such as encapsulation of primitive metabolic, genetic and catalytic materials, exchange of these materials, motion, coalescence, and evolution. All of these functions can result in the gels' capability to alter local geochemical niches on other planets, thereby allowing chemical evolution to lead to OoL events.
Collapse
Affiliation(s)
- Mahendran Sithamparam
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nirmell Satthiyasilan
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
17
|
Frenkel-Pinter M, Jacobson KC, Eskew-Martin J, Forsythe JG, Grover MA, Williams LD, Hud NV. Differential Oligomerization of Alpha versus Beta Amino Acids and Hydroxy Acids in Abiotic Proto-Peptide Synthesis Reactions. Life (Basel) 2022; 12:265. [PMID: 35207553 PMCID: PMC8876357 DOI: 10.3390/life12020265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
The origin of biopolymers is a central question in origins of life research. In extant life, proteins are coded linear polymers made of a fixed set of twenty alpha-L-amino acids. It is likely that the prebiotic forerunners of proteins, or protopeptides, were more heterogenous polymers with a greater diversity of building blocks and linkage stereochemistry. To investigate a possible chemical selection for alpha versus beta amino acids in abiotic polymerization reactions, we subjected mixtures of alpha and beta hydroxy and amino acids to single-step dry-down or wet-dry cycling conditions. The resulting model protopeptide mixtures were analyzed by a variety of analytical techniques, including mass spectrometry and NMR spectroscopy. We observed that amino acids typically exhibited a higher extent of polymerization in reactions that also contained alpha hydroxy acids over beta hydroxy acids, whereas the extent of polymerization by beta amino acids was higher compared to their alpha amino acid analogs. Our results suggest that a variety of heterogenous protopeptide backbones existed during the prebiotic epoch, and that selection towards alpha backbones occurred later as a result of polymer evolution.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.F.-P.); (K.C.J.); (J.E.-M.); (J.G.F.); (M.A.G.)
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Kaitlin C. Jacobson
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.F.-P.); (K.C.J.); (J.E.-M.); (J.G.F.); (M.A.G.)
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jonathan Eskew-Martin
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.F.-P.); (K.C.J.); (J.E.-M.); (J.G.F.); (M.A.G.)
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA
| | - Jay G. Forsythe
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.F.-P.); (K.C.J.); (J.E.-M.); (J.G.F.); (M.A.G.)
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA
| | - Martha A. Grover
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.F.-P.); (K.C.J.); (J.E.-M.); (J.G.F.); (M.A.G.)
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Loren Dean Williams
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.F.-P.); (K.C.J.); (J.E.-M.); (J.G.F.); (M.A.G.)
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nicholas V. Hud
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.F.-P.); (K.C.J.); (J.E.-M.); (J.G.F.); (M.A.G.)
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
18
|
Supramolecular systems chemistry through advanced analytical techniques. Anal Bioanal Chem 2022; 414:5105-5119. [DOI: 10.1007/s00216-021-03824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/01/2022]
|
19
|
From amino acid mixtures to peptides in liquid sulphur dioxide on early Earth. Nat Commun 2021; 12:7182. [PMID: 34893619 PMCID: PMC8664857 DOI: 10.1038/s41467-021-27527-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/18/2021] [Indexed: 01/01/2023] Open
Abstract
The formation of peptide bonds is one of the most important biochemical reaction steps. Without the development of structurally and catalytically active polymers, there would be no life on our planet. However, the formation of large, complex oligomer systems is prevented by the high thermodynamic barrier of peptide condensation in aqueous solution. Liquid sulphur dioxide proves to be a superior alternative for copper-catalyzed peptide condensations. Compared to water, amino acids are activated in sulphur dioxide, leading to the incorporation of all 20 proteinogenic amino acids into proteins. Strikingly, even extremely low initial reactant concentrations of only 50 mM are sufficient for extensive peptide formation, yielding up to 2.9% of dialanine in 7 days. The reactions carried out at room temperature and the successful use of the Hadean mineral covellite (CuS) as a catalyst, suggest a volcanic environment for the formation of the peptide world on early Earth. Peptide bond formation is one of the key biochemical reactions needed for the formation of life, but is thermodynamically unfavoured in water. Here, the authors report on the possibility of complex oligomer formation in liquid sulphur dioxide which may have existed on early Earth at the emergence of life.
Collapse
|
20
|
Vincent L, Colón-Santos S, Cleaves HJ, Baum DA, Maurer SE. The Prebiotic Kitchen: A Guide to Composing Prebiotic Soup Recipes to Test Origins of Life Hypotheses. Life (Basel) 2021; 11:life11111221. [PMID: 34833097 PMCID: PMC8618940 DOI: 10.3390/life11111221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/14/2021] [Accepted: 10/30/2021] [Indexed: 01/20/2023] Open
Abstract
“Prebiotic soup” often features in discussions of origins of life research, both as a theoretical concept when discussing abiological pathways to modern biochemical building blocks and, more recently, as a feedstock in prebiotic chemistry experiments focused on discovering emergent, systems-level processes such as polymerization, encapsulation, and evolution. However, until now, little systematic analysis has gone into the design of well-justified prebiotic mixtures, which are needed to facilitate experimental replicability and comparison among researchers. This paper explores principles that should be considered in choosing chemical mixtures for prebiotic chemistry experiments by reviewing the natural environmental conditions that might have created such mixtures and then suggests reasonable guidelines for designing recipes. We discuss both “assembled” mixtures, which are made by mixing reagent grade chemicals, and “synthesized” mixtures, which are generated directly from diversity-generating primary prebiotic syntheses. We discuss different practical concerns including how to navigate the tremendous uncertainty in the chemistry of the early Earth and how to balance the desire for using prebiotically realistic mixtures with experimental tractability and replicability. Examples of two assembled mixtures, one based on materials likely delivered by carbonaceous meteorites and one based on spark discharge synthesis, are presented to illustrate these challenges. We explore alternative procedures for making synthesized mixtures using recursive chemical reaction systems whose outputs attempt to mimic atmospheric and geochemical synthesis. Other experimental conditions such as pH and ionic strength are also considered. We argue that developing a handful of standardized prebiotic recipes may facilitate coordination among researchers and enable the identification of the most promising mechanisms by which complex prebiotic mixtures were “tamed” during the origin of life to give rise to key living processes such as self-propagation, information processing, and adaptive evolution. We end by advocating for the development of a public prebiotic chemistry database containing experimental methods (including soup recipes), results, and analytical pipelines for analyzing complex prebiotic mixtures.
Collapse
Affiliation(s)
- Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; (L.V.); (S.C.-S.)
| | - Stephanie Colón-Santos
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; (L.V.); (S.C.-S.)
| | - H. James Cleaves
- Earth and Planets Laboratory, The Carnegie Institution for Science, Washington, DC 20015, USA;
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Blue Marble Space Institute for Science, Seattle, WA 97154, USA
| | - David A. Baum
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; (L.V.); (S.C.-S.)
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence: (D.A.B.); (S.E.M.)
| | - Sarah E. Maurer
- Department of Chemistry and Biochemistry, Central Connecticut State University, New Britain, CT 06050, USA
- Correspondence: (D.A.B.); (S.E.M.)
| |
Collapse
|
21
|
Sharma S, Arya A, Cruz R, Cleaves II HJ. Automated Exploration of Prebiotic Chemical Reaction Space: Progress and Perspectives. Life (Basel) 2021; 11:1140. [PMID: 34833016 PMCID: PMC8624352 DOI: 10.3390/life11111140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Prebiotic chemistry often involves the study of complex systems of chemical reactions that form large networks with a large number of diverse species. Such complex systems may have given rise to emergent phenomena that ultimately led to the origin of life on Earth. The environmental conditions and processes involved in this emergence may not be fully recapitulable, making it difficult for experimentalists to study prebiotic systems in laboratory simulations. Computational chemistry offers efficient ways to study such chemical systems and identify the ones most likely to display complex properties associated with life. Here, we review tools and techniques for modelling prebiotic chemical reaction networks and outline possible ways to identify self-replicating features that are central to many origin-of-life models.
Collapse
Affiliation(s)
- Siddhant Sharma
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA; (S.S.); (A.A.); (R.C.)
- Department of Biochemistry, Deshbandhu College, University of Delhi, New Delhi 110019, India
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Aayush Arya
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA; (S.S.); (A.A.); (R.C.)
- Department of Physics, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara 144001, India
| | - Romulo Cruz
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA; (S.S.); (A.A.); (R.C.)
- Big Data Laboratory, Information and Communications Technology Center (CTIC), National University of Engineering, Amaru 210, Lima 15333, Peru
| | - Henderson James Cleaves II
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA; (S.S.); (A.A.); (R.C.)
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
22
|
Criado-Reyes J, Bizzarri BM, García-Ruiz JM, Saladino R, Di Mauro E. The role of borosilicate glass in Miller-Urey experiment. Sci Rep 2021; 11:21009. [PMID: 34697338 PMCID: PMC8545935 DOI: 10.1038/s41598-021-00235-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/06/2021] [Indexed: 11/08/2022] Open
Abstract
We have designed a set of experiments to test the role of borosilicate reactor on the yielding of the Miller-Urey type of experiment. Two experiments were performed in borosilicate flasks, two in a Teflon flask and the third couple in a Teflon flask with pieces of borosilicate submerged in the water. The experiments were performed in CH4, N2, and NH3 atmosphere either buffered at pH 8.7 with NH4Cl or unbuffered solutions at pH ca. 11, at room temperature. The Gas Chromatography-Mass Spectroscopy results show important differences in the yields, the number of products, and molecular weight. In particular, a dipeptide, multi-carbon dicarboxylic acids, PAHs, and a complete panel of biological nucleobases form more efficiently or exclusively in the borosilicate vessel. Our results offer a better explanation of the famous Miller's experiment showing the efficiency of borosilicate in a triphasic system including water and the reduced Miller-Urey atmosphere.
Collapse
Affiliation(s)
- Joaquín Criado-Reyes
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas, Universidad de Granada, Avenida de las Palmeras 4, Armilla, 18100, Granada, Spain
| | - Bruno M Bizzarri
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100, Viterbo, Italy
| | - Juan Manuel García-Ruiz
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas, Universidad de Granada, Avenida de las Palmeras 4, Armilla, 18100, Granada, Spain.
| | - Raffaele Saladino
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100, Viterbo, Italy.
| | - Ernesto Di Mauro
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100, Viterbo, Italy
| |
Collapse
|
23
|
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn RV. Peptide-Based Supramolecular Systems Chemistry. Chem Rev 2021; 121:13869-13914. [PMID: 34519481 DOI: 10.1021/acs.chemrev.1c00089] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration.
Collapse
Affiliation(s)
- Fahmeed Sheehan
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Ankit Jain
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Mohit Kumar
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona 08028, Spain
| | - Mona Tayarani-Najjaran
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Daniela Kroiss
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
24
|
A robotic prebiotic chemist probes long term reactions of complexifying mixtures. Nat Commun 2021; 12:3547. [PMID: 34112788 PMCID: PMC8192940 DOI: 10.1038/s41467-021-23828-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/17/2021] [Indexed: 11/08/2022] Open
Abstract
To experimentally test hypotheses about the emergence of living systems from abiotic chemistry, researchers need to be able to run intelligent, automated, and long-term experiments to explore chemical space. Here we report a robotic prebiotic chemist equipped with an automatic sensor system designed for long-term chemical experiments exploring unconstrained multicomponent reactions, which can run autonomously over long periods. The system collects mass spectrometry data from over 10 experiments, with 60 to 150 algorithmically controlled cycles per experiment, running continuously for over 4 weeks. We show that the robot can discover the production of high complexity molecules from simple precursors, as well as deal with the vast amount of data produced by a recursive and unconstrained experiment. This approach represents what we believe to be a necessary step towards the design of new types of Origin of Life experiments that allow testable hypotheses for the emergence of life from prebiotic chemistry.
Collapse
|
25
|
Lampel A, McPhee SA, Kassem S, Sementa D, Massarano T, Aramini JM, He Y, Ulijn RV. Melanin-Inspired Chromophoric Microparticles Composed of Polymeric Peptide Pigments. Angew Chem Int Ed Engl 2021; 60:7564-7569. [PMID: 33432673 DOI: 10.1002/anie.202015170] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 01/12/2023]
Abstract
Melanin and related polyphenolic pigments are versatile functional polymers that serve diverse aesthetic and protective roles across the living world. These polymeric pigments continue to inspire the development of adhesive, photonic, electronic and radiation-protective materials and coatings. The properties of these structures are dictated by covalent and non-covalent interactions in ways that, despite progress, are not fully understood. It remains a major challenge to direct oxidative polymerization of their precursors (amino acids, (poly-)phenols, thiols) toward specific structures. By taking advantage of supramolecular pre-organization of tyrosine-tripeptides and reactive sequestering of selected amino acids during enzymatic oxidation, we demonstrate the spontaneous formation of distinct new chromophores with optical properties that are far beyond the range of those found in biological melanins, in terms of color, UV absorbance and fluorescent emission.
Collapse
Affiliation(s)
- Ayala Lampel
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA.,The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.,The Center for Nanoscience and Nanotechnology Tel Aviv University, Tel Aviv, 69978, Israel.,Sagol Center for Regenerative Biotechnology Tel Aviv University, Tel Aviv, 69978, Israel
| | - Scott A McPhee
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA
| | - Salma Kassem
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA
| | - Tlalit Massarano
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - James M Aramini
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA
| | - Ye He
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA.,Ph.D. programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| |
Collapse
|
26
|
Lampel A, McPhee SA, Kassem S, Sementa D, Massarano T, Aramini JM, He Y, Ulijn RV. Melanin‐Inspired Chromophoric Microparticles Composed of Polymeric Peptide Pigments. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ayala Lampel
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York (CUNY) 85 St Nicholas Terrace New York NY 10031 USA
- The Shmunis School of Biomedicine and Cancer Research George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 69978 Israel
- The Center for Nanoscience and Nanotechnology Tel Aviv University Tel Aviv 69978 Israel
- Sagol Center for Regenerative Biotechnology Tel Aviv University Tel Aviv 69978 Israel
| | - Scott A. McPhee
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York (CUNY) 85 St Nicholas Terrace New York NY 10031 USA
| | - Salma Kassem
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York (CUNY) 85 St Nicholas Terrace New York NY 10031 USA
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York (CUNY) 85 St Nicholas Terrace New York NY 10031 USA
| | - Tlalit Massarano
- The Shmunis School of Biomedicine and Cancer Research George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 69978 Israel
| | - James M. Aramini
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York (CUNY) 85 St Nicholas Terrace New York NY 10031 USA
| | - Ye He
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York (CUNY) 85 St Nicholas Terrace New York NY 10031 USA
| | - Rein V. Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York (CUNY) 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College City University of New York 695 Park Avenue New York NY 10065 USA
- Ph.D. programs in Biochemistry and Chemistry The Graduate Center of the City University of New York New York NY 10016 USA
| |
Collapse
|
27
|
Classification of the Biogenicity of Complex Organic Mixtures for the Detection of Extraterrestrial Life. Life (Basel) 2021; 11:life11030234. [PMID: 33809046 PMCID: PMC8001260 DOI: 10.3390/life11030234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 11/17/2022] Open
Abstract
Searching for life in the Universe depends on unambiguously distinguishing biological features from background signals, which could take the form of chemical, morphological, or spectral signatures. The discovery and direct measurement of organic compounds unambiguously indicative of extraterrestrial (ET) life is a major goal of Solar System exploration. Biology processes matter and energy differently from abiological systems, and materials produced by biological systems may become enriched in planetary environments where biology is operative. However, ET biology might be composed of different components than terrestrial life. As ET sample return is difficult, in situ methods for identifying biology will be useful. Mass spectrometry (MS) is a potentially versatile life detection technique, which will be used to analyze numerous Solar System environments in the near future. We show here that simple algorithmic analysis of MS data from abiotic synthesis (natural and synthetic), microbial cells, and thermally processed biological materials (lab-grown organisms and petroleum) easily identifies relational organic compound distributions that distinguish pristine and aged biological and abiological materials, which likely can be attributed to the types of compounds these processes produce, as well as how they are formed and decompose. To our knowledge this is the first comprehensive demonstration of the utility of this analytical technique for the detection of biology. This method is independent of the detection of particular masses or molecular species samples may contain. This suggests a general method to agnostically detect evidence of biology using MS given a sufficiently strong signal in which the majority of the material in a sample has either a biological or abiological origin. Such metrics are also likely to be useful for studies of possible emergent living phenomena, and paleobiological samples.
Collapse
|
28
|
Jia TZ, Bapat NV, Verma A, Mamajanov I, Cleaves HJ, Chandru K. Incorporation of Basic α-Hydroxy Acid Residues into Primitive Polyester Microdroplets for RNA Segregation. Biomacromolecules 2021; 22:1484-1493. [PMID: 33663210 DOI: 10.1021/acs.biomac.0c01697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleic acid segregation and compartmentalization were likely essential functions that primitive compartment systems resolved during evolution. Recently, polyester microdroplets generated from dehydration synthesis of various α-hydroxy acids (αHA) were suggested as potential primitive compartments. Some of these droplets can differentially segregate and compartmentalize organic dyes, proteins, and nucleic acids. However, the previously studied polyester microdroplets included limited αHA chemical diversity, which may not reflect the chemical diversity available in the primitive Earth environment. Here, we increased the chemical diversity of polyester microdroplet systems by combinatorially adding an αHA monomer with a basic side chain, 4-amino-2-hydroxybutyric acid (4a2h), which was incorporated with different ratios of other αHAs containing uncharged side chains to form combinatorial heteropolyesters via dehydration synthesis. Incorporation of 4a2h in the polymers resulted in the assembly of some polyester microdroplets able to segregate fluorescent RNA or potentially acquire intrinsic fluorescent character, suggesting that minor modifications of polyester composition can significantly impact the functional properties of primitive compartments. This study suggests one process by which primitive chemical systems can increase diversity of compartment "phenotype" through simple modifications in their chemical composition.
Collapse
Affiliation(s)
- Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, Washington 98154, United States
| | - Niraja V Bapat
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra 411008, India
| | - Ajay Verma
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra 411008, India
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - H James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, Washington 98154, United States.,Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey 08540, United States
| | - Kuhan Chandru
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague 6 - Dejvice, Czech Republic.,Space Science Centre (ANGKASA), Institute of Climate Change, National University of Malaysia, UKM, Bangi, Selangor Darul Ehsan 43650, Malaysia
| |
Collapse
|
29
|
Sibilska-Kaminski IK, Yin J. Toward Molecular Cooperation by De Novo Peptides. ORIGINS LIFE EVOL B 2021; 51:71-82. [PMID: 33566281 PMCID: PMC8212187 DOI: 10.1007/s11084-021-09603-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Theoretical models of the chemical origins of life depend on self-replication or autocatalysis, processes that arise from molecular interactions, recruitment, and cooperation. Such models often lack details about the molecules and reactions involved, giving little guidance to those seeking to detect signs of interaction, recruitment, or cooperation in the laboratory. Here, we develop minimal mathematical models of reactions involving specific chemical entities: amino acids and their condensation reactions to form de novo peptides. Reactions between two amino acids form a dipeptide product, which enriches linearly in time; subsequent recruitment of such products to form longer peptides exhibit super-linear growth. Such recruitment can be reciprocated: a peptide contributes to and benefits from the formation of one or more other peptides; in this manner, peptides can cooperate and thereby exhibit autocatalytic or exponential growth. We have started to test these predictions by quantitative analysis of de novo peptide synthesis conducted by wet-dry cycling of a five-amino acid mixture over 21 days. Using high-performance liquid chromatography, we tracked abundance changes for >60 unique peptide species. Some species were highly transient, with the emergence of up to 17 new species and the extinction of nine species between samplings, while other species persisted across many cycles. Of the persisting species, most exhibited super-linear growth, a sign of recruitment anticipated by our models. This work shows how mathematical modeling and quantitative analysis of kinetic data can guide the search for prebiotic chemistries that have the potential to cooperate and replicate.
Collapse
Affiliation(s)
- Izabela K Sibilska-Kaminski
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery , University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI, 53715, USA
| | - John Yin
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery , University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI, 53715, USA.
| |
Collapse
|
30
|
Chandru K, Jia TZ, Mamajanov I, Bapat N, Cleaves HJ. Prebiotic oligomerization and self-assembly of structurally diverse xenobiological monomers. Sci Rep 2020; 10:17560. [PMID: 33067516 PMCID: PMC7567815 DOI: 10.1038/s41598-020-74223-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Prebiotic chemists often study how modern biopolymers, e.g., peptides and nucleic acids, could have originated in the primitive environment, though most contemporary biomonomers don't spontaneously oligomerize under mild conditions without activation or catalysis. However, life may not have originated using the same monomeric components that it does presently. There may be numerous non-biological (or "xenobiological") monomer types that were prebiotically abundant and capable of facile oligomerization and self-assembly. Many modern biopolymers degrade abiotically preferentially via processes which produce thermodynamically stable ring structures, e.g. diketopiperazines in the case of proteins and 2', 3'-cyclic nucleotide monophosphates in the case of RNA. This weakness is overcome in modern biological systems by kinetic control, but this need not have been the case for primitive systems. We explored here the oligomerization of a structurally diverse set of prebiotically plausible xenobiological monomers, which can hydrolytically interconvert between cyclic and acyclic forms, alone or in the presence of glycine under moderate temperature drying conditions. These monomers included various lactones, lactams and a thiolactone, which varied markedly in their stability, propensity to oligomerize and apparent modes of initiation, and the oligomeric products of some of these formed self-organized microscopic structures which may be relevant to protocell formation.
Collapse
Affiliation(s)
- Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, Level 3, Research Complex, National University of Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628, Prague 6-Dejvice, Czech Republic.
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Blue Marble Space Institute for Science, 1001 4th Ave, Suite 3201, Seattle, WA, 98154, USA
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Niraja Bapat
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411 008, India
| | - H James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Blue Marble Space Institute for Science, 1001 4th Ave, Suite 3201, Seattle, WA, 98154, USA
- Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ, 08540, USA
| |
Collapse
|
31
|
Preiner M, Asche S, Becker S, Betts HC, Boniface A, Camprubi E, Chandru K, Erastova V, Garg SG, Khawaja N, Kostyrka G, Machné R, Moggioli G, Muchowska KB, Neukirchen S, Peter B, Pichlhöfer E, Radványi Á, Rossetto D, Salditt A, Schmelling NM, Sousa FL, Tria FDK, Vörös D, Xavier JC. The Future of Origin of Life Research: Bridging Decades-Old Divisions. Life (Basel) 2020; 10:E20. [PMID: 32110893 PMCID: PMC7151616 DOI: 10.3390/life10030020] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Research on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future. We find that even though classical approaches and theories-e.g. bottom-up and top-down, RNA world vs. metabolism-first-have been prevalent in origin of life research, they are ceasing to be mutually exclusive and they can and should feed integrating approaches. Here we focus on pressing questions and recent developments that bridge the classical disciplines and approaches, and highlight expectations for future endeavours in origin of life research.
Collapse
Affiliation(s)
- Martina Preiner
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Silke Asche
- School of Chemistry, University of Glasgow, Glasgow G128QQ, UK;
| | - Sidney Becker
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK;
| | - Holly C. Betts
- School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK;
| | - Adrien Boniface
- Environmental Microbial Genomics, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, 69130 Ecully, France;
| | - Eloi Camprubi
- Origins Center, Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands;
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, Level 3, Research Complex, National University of Malaysia, UKM Bangi 43600, Selangor, Malaysia;
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague 6–Dejvice, Czech Republic
| | - Valentina Erastova
- UK Centre for Astrobiology, School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
| | - Sriram G. Garg
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Nozair Khawaja
- Institut für Geologische Wissenschaften, Freie Universität Berlin, 12249 Berlin, Germany;
| | | | - Rainer Machné
- Institute of Synthetic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany; (R.M.); (N.M.S.)
- Quantitative and Theoretical Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Giacomo Moggioli
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4DQ, UK;
| | - Kamila B. Muchowska
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France;
| | - Sinje Neukirchen
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Benedikt Peter
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Edith Pichlhöfer
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Ádám Radványi
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary (D.V.)
- Institute of Evolution, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Daniele Rossetto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| | - Annalena Salditt
- Systems Biophysics, Physics Department, Ludwig-Maximilians-Universität München, 80799 Munich, Germany;
| | - Nicolas M. Schmelling
- Institute of Synthetic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany; (R.M.); (N.M.S.)
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Filipa L. Sousa
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Fernando D. K. Tria
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Dániel Vörös
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary (D.V.)
- Institute of Evolution, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Joana C. Xavier
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| |
Collapse
|
32
|
Polyesters as a Model System for Building Primitive Biologies from Non-Biological Prebiotic Chemistry. Life (Basel) 2020; 10:life10010006. [PMID: 31963928 PMCID: PMC7175156 DOI: 10.3390/life10010006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
A variety of organic chemicals were likely available on prebiotic Earth. These derived from diverse processes including atmospheric and geochemical synthesis and extraterrestrial input, and were delivered to environments including oceans, lakes, and subaerial hot springs. Prebiotic chemistry generates both molecules used by modern organisms, such as proteinaceous amino acids, as well as many molecule types not used in biochemistry. As prebiotic chemical diversity was likely high, and the core of biochemistry uses a rather small set of common building blocks, the majority of prebiotically available organic compounds may not have been those used in modern biochemistry. Chemical evolution was unlikely to have been able to discriminate which molecules would eventually be used in biology, and instead, interactions among compounds were governed simply by abundance and chemical reactivity. Previous work has shown that likely prebiotically available α-hydroxy acids can combinatorially polymerize into polyesters that self-assemble to create new phases which are able to compartmentalize other molecule types. The unexpectedly rich complexity of hydroxy acid chemistry and the likely enormous structural diversity of prebiotic organic chemistry suggests chemical evolution could have been heavily influenced by molecules not used in contemporary biochemistry, and that there is a considerable amount of prebiotic chemistry which remains unexplored.
Collapse
|
33
|
Olasagasti F, Rajamani S. Lipid-Assisted Polymerization of Nucleotides. Life (Basel) 2019; 9:life9040083. [PMID: 31694196 PMCID: PMC6958317 DOI: 10.3390/life9040083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
In addition to being one of the proponents of the “Lipid World hypothesis”, David Deamer, together with other colleagues, pioneered studies involving formation of RNA-like oligomers from their ‘non-activated’, prebiotically plausible monomeric moieties. In particular, the pioneering work in this regard was a publication from 2008 in Origins of Life and Evolution of Biospheres, The Journal of the International Astrobiology Society, wherein we described the formation of RNA-like oligomers from nucleoside 5’-monophosphates. In that study, we had simulated a terrestrial geothermal environment, a niche that is thought to have facilitated the prebiotic non-enzymatic synthesis of polynucleotides. We showed that a mixture of lipids and non-activated mononucleotides resulted in the formation of relatively long strands of RNA-like polymers when subjected to repeated cycles of dehydration and rehydration (DH-RH). Since 2008, terrestrial geothermal niches and DH-RH conditions have been explored in the context of several other prebiotic processes. In this article, we review the work that we and other researchers have carried out since then in this line of research, including the development of new apparatus to carry out the simulation of prebiotic terrestrial geothermal environments.
Collapse
Affiliation(s)
- Felix Olasagasti
- Microfluidics & BIOMICs Cluster, Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Farmazia Fakultatea, Unibertsitateko Ibilbidea 7, 01006 Gasteiz, Basque Country, Spain
- Correspondence:
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
34
|
Bartlett SJ, Beckett P. Probing complexity: thermodynamics and computational mechanics approaches to origins studies. Interface Focus 2019; 9:20190058. [PMID: 31641432 DOI: 10.1098/rsfs.2019.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
This paper proposes new avenues for origins research that apply modern concepts from stochastic thermodynamics, information thermodynamics and complexity science. Most approaches to the emergence of life prioritize certain compounds, reaction pathways, environments or phenomena. What they all have in common is the objective of reaching a state that is recognizably alive, usually positing the need for an evolutionary process. As with life itself, this correlates with a growth in the complexity of the system over time. Complexity often takes the form of an intuition or a proxy for a phenomenon that defies complete understanding. However, recent progress in several theoretical fields allows the rigorous computation of complexity. We thus propose that measurement and control of the complexity and information content of origins-relevant systems can provide novel insights that are absent in other approaches. Since we have no guarantee that the earliest forms of life (or alien life) used the same materials and processes as extant life, an appeal to complexity and information processing provides a more objective and agnostic approach to the search for life's beginnings. This paper gives an accessible overview of the three relevant branches of modern thermodynamics. These frameworks are not commonly applied in origins studies, but are ideally suited to the analysis of such non-equilibrium systems. We present proposals for the application of these concepts in both theoretical and experimental origins settings.
Collapse
Affiliation(s)
- Stuart J Bartlett
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Patrick Beckett
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA.,Department of Civil and Environmental Engineering, University of California Davis, Davis, CA, USA
| |
Collapse
|
35
|
Kroiss D, Ashkenasy G, Braunschweig AB, Tuttle T, Ulijn RV. Catalyst: Can Systems Chemistry Unravel the Mysteries of the Chemical Origins of Life? Chem 2019. [DOI: 10.1016/j.chempr.2019.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Doran D, Abul‐Haija YM, Cronin L. Emergence of Function and Selection from Recursively Programmed Polymerisation Reactions in Mineral Environments. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David Doran
- School of ChemistryUniversity of Glasgow Glasgow G12 8QQ UK
| | | | - Leroy Cronin
- School of ChemistryUniversity of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
37
|
Doran D, Abul-Haija YM, Cronin L. Emergence of Function and Selection from Recursively Programmed Polymerisation Reactions in Mineral Environments. Angew Chem Int Ed Engl 2019; 58:11253-11256. [PMID: 31206983 PMCID: PMC6772075 DOI: 10.1002/anie.201902287] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/21/2019] [Indexed: 01/06/2023]
Abstract
Living systems are characterised by an ability to sustain chemical reaction networks far-from-equilibrium. It is likely that life first arose through a process of continual disruption of equilibrium states in recursive reaction networks, driven by periodic environmental changes. Herein, we report the emergence of proto-enzymatic function from recursive polymerisation reactions using amino acids and glycolic acid. Reactions were kept out of equilibrium by diluting products 9:1 in fresh starting solution at the end of each recursive cycle, and the development of complex high molecular weight species is explored using a new metric, the Mass Index, which allows the complexity of the system to be explored as a function of cycle. This process was carried out on a range of different mineral environments. We explored the hypothesis that disrupting equilibrium via recursive cycling imposes a selection pressure and subsequent boundary conditions on products. After just four reaction cycles, product mixtures from recursive reactions exhibit greater catalytic activity and truncation of product space towards higher-molecular-weight species compared to non-recursive controls.
Collapse
Affiliation(s)
- David Doran
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Leroy Cronin
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
38
|
Colón‐Santos S, Cooper GJT, Cronin L. Taming the Combinatorial Explosion of the Formose Reaction via Recursion within Mineral Environments. CHEMSYSTEMSCHEM 2019. [DOI: 10.1002/syst.201900014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Leroy Cronin
- School of ChemistryUniversity of Glasgow University Avenue Glasgow G12 8QQ UK
| |
Collapse
|