1
|
Fan Y, Wang S, Huang S, Tian X. Liquid-like Surface Chemistry Meets Structured Textures: A Synergistic Approach to Advanced Repellent Materials. ACS NANO 2025; 19:18929-18946. [PMID: 40365790 DOI: 10.1021/acsnano.5c01630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Liquid-repellent surfaces have advanced significantly over two decades. While super-liquid-repellent surfaces with micro/nano-textures dominate the field, liquid-like smooth surfaces (LLSS) grafted with highly flexible molecule chains offer a compelling alternative, enabling near-ideal dynamic droplet repellency with ultralow contact angle hysteresis (CAH). Prior LLSS studies have focused on optimizing molecular structures, grafting densities, and mechanical stability, enabling applications in anti-fouling, liquid harvesting, and drag reduction. However, innovation challenges and performance bottlenecks hinder practical scalability. This review highlights a transformative approach developed in recent years: integrating liquid-like surface chemistry with structured surfaces to overcome existing limitations. We outline the key requirements for achieving liquid-like surfaces, their structure-related features and unique interface properties including low CAH, reduced adhesion, enhanced slippage, and nucleation inhibition. By synergizing liquid-like chemistry and surface textures, we categorize pioneering works into application-driven areas such as microscopic residue suppression, enhanced droplet mobility, optimized membrane separation, sustainable fabrics and condensation heat transfer. This composite strategy not only deepens fundamental understanding of liquid-like wetting mechanisms but also broadens real-world applicability. We conclude with perspectives on future challenges and opportunities, positioning this promising material system as a frontier in functional interfacial materials.
Collapse
Affiliation(s)
- Yue Fan
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuai Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| | - Shilin Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuelin Tian
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Wang FW, Sun J, Tuteja A. Material Design for Durable Lubricant-Infused Surfaces That Can Reduce Liquid and Solid Fouling. ACS NANO 2025; 19:18075-18094. [PMID: 40331593 DOI: 10.1021/acsnano.5c03214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Liquid and solid fouling is a pervasive problem in numerous natural and industrial settings, significantly impacting energy efficiency, greenhouse emissions, operational costs, equipment lifespan, and human health. Inspired by pitcher plants, recently developed lubricant-infused surfaces (LISs) demonstrate resistance to both liquid and solid accretion under diverse environmental conditions, offering a potential solution to combat various foulants such as ice, bacteria, and mineral deposits. However, the commercial viability for most fouling-resistant LISs has thus far been compromised due to the challenges associated with maintaining a stable lubricant layer during operation. This review aims to address this important concern by providing systematic material design guidelines for fabricating durable LISs. We discuss fundamental design principles, methods for evaluating fouling resistance, and strategies to prevent lubricant loss. By presenting a comprehensive design methodology for this important class of materials, this review aims to aid future advancements in the field of antifouling surfaces, potentially impacting a variety of industries ranging from marine engineering to medical device manufacturing.
Collapse
Affiliation(s)
- Fan-Wei Wang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianxing Sun
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anish Tuteja
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Zhang W, Wang X, Guo Z. Advances in small droplets manipulation on bio-inspired slippery surfaces: chances and challenges. MATERIALS HORIZONS 2025; 12:3267-3285. [PMID: 39992357 DOI: 10.1039/d4mh01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The manipulation of droplets with non-destructive, efficient, and high-precision features is of great importance in several fields, including microfluidics and biomedicine. The lubrication layer of bioinspired slippery surfaces demonstrates remarkable stability and self-restoration capabilities when subjected to external perturbations. Consequently, research into the manipulation of droplets on slippery surfaces has continued to make progress. This paper presents a review of the methods of droplet manipulation on bioinspired slippery surfaces. It begins by outlining the basic theory of slippery surfaces and the mechanism of droplet motion on slippery surfaces. Furthermore, droplet manipulation methods on slippery surfaces are classified into active and passive approaches based on the presence of external stimuli (e.g., heat, light, electricity, and magnetism). Finally, an outlook is provided on the current challenges facing droplet manipulation on slippery surfaces, and potential solution ideas are presented.
Collapse
Affiliation(s)
- Wenhao Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Xiaobo Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
4
|
Delens M, Franckart A, Harris DM, Vandewalle N. 3D-printed spines for programmable liquid topographies and micromanipulation. Nat Commun 2025; 16:4348. [PMID: 40348765 PMCID: PMC12065812 DOI: 10.1038/s41467-025-59483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
Manipulating floating objects, whether solid or liquid, from microscopic to mesoscopic sizes, is crucial in various microfluidics and microfabrication applications. While capillary menisci naturally self-assemble and transport floating particles, their shapes and sizes are limited by the properties of the fluid and the objects involved. We herein harness the superposition of capillary menisci to curve liquid interfaces controllably. By using 3D-printed spines piercing the interface, we can finely adjust height gradients across the liquid surface to create specific liquid topographies. Thus, our method becomes a powerful tool for manipulating floating objects into programmable paths. Combining experimental demonstrations, numerical simulations, and theoretical modeling, we study the liquid elevation created by specific spine dispositions and the three-dimensional manipulation of submillimetric particles. Multiple examples showcase the method's potential applications, including sorting and capturing particles, which could pave the way for cleaning fluid interfaces.
Collapse
Affiliation(s)
- Megan Delens
- GRASP, Institute of Physics B5a, University of Liège, B4000, Liège, Belgium.
| | - Axel Franckart
- GRASP, Institute of Physics B5a, University of Liège, B4000, Liège, Belgium
| | - Daniel M Harris
- Harris Lab, School of Engineering, Center for Fluid Mechanics, Brown University, Providence, RI, 02912, USA
| | - Nicolas Vandewalle
- GRASP, Institute of Physics B5a, University of Liège, B4000, Liège, Belgium
| |
Collapse
|
5
|
Li Y, Liu H, Huo L, Lei M, Lakhtakia A. Compositional-Asymmetry-Induced Transition of Directional Liquid Transport on Tilted and Janusian Nanohair Arrays. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20418-20430. [PMID: 40099843 DOI: 10.1021/acsami.4c23088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Anisotropic wetting on certain surfaces endowed with structural asymmetry or compositional gradients commonly impedes the directional adjustment of liquid transport. We report here that directional liquid transport (DLT) against the tilt direction of nanohair and in the reverse direction was achieved on tilted-nanohair arrays (TNAs) and tilted-Janusian-nanohair arrays (TJNAs), respectively. Janusian compositional asymmetry on the surface of TJNAs was created by plasma polymer deposition on structurally asymmetric TNAs previously fabricated by Faraday-cage-assisted plasma nanotexturing. The structurally asymmetric TNAs led to DLT against the tilting direction due to the asymmetric wetting under the capillary imbibition between tilted nanohairs and the preferential coalescence of liquid against the tilt direction. The Janusian compositional asymmetry of TJNAs changing the capillarity imbibition condition between tilted nanohairs resulted in the transition of the liquid spreading direction along the tilt direction. The spreading direction along and against the tilt direction is predicted through a comprehensive analysis of the structural and compositional asymmetries of the TNAs and TJNAs.
Collapse
Affiliation(s)
- Yupeng Li
- Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Haodong Liu
- Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lei Huo
- Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Mingkai Lei
- Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Akhlesh Lakhtakia
- NanoMM-Nanoengineered Metamaterials Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
6
|
Ru Y, Liu M. Superwetting Gels: Wetting Principles, Applications, and Challenges. ACS NANO 2025; 19:7583-7600. [PMID: 39970347 DOI: 10.1021/acsnano.4c17507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Along with the in-depth understanding of wetting behaviors in nature, superwetting gels have received a lot of attention in the past decade. The viscoelasticity of gel materials makes wetting characteristics different from those of rigid materials and brings diverse functionality. In this Review, we summarize the current progress in principles of gel wettability from two aspects: wetting on gels and wetting of gels. Distinct from rigid substrates, the viscoelasticity and solid-liquid coexistence of gel materials introduce additional factors, including surface tension and deformation, resulting in various wetting phenomena. Besides, the similarity between gels and tissues broadens its applications in biomedical devices and smart interfacial regulation. We further conclude the current application that utilizes superwetting gels. Finally, we provide our perspective for future research directions.
Collapse
Affiliation(s)
- Yunfei Ru
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Mingjie Liu
- Center for Bioinspired Science and Technology, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, P. R. China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
7
|
Li N, Yang P, Bai Z, Shen T, Liu Z, Qin S, Hu J, Yu C, Dong Z, Chen X. Bioinspired Electrostatic Capture-and-Release System for Precise Microdroplet Manipulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418711. [PMID: 39806840 DOI: 10.1002/adma.202418711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/01/2025] [Indexed: 01/16/2025]
Abstract
The application of physical fields is crucial for droplet generation and manipulation, underpinning technologies like printing, microfluidic biochips, drug delivery, and flexible sensors. Despite advancements, precise micro/nanoscale droplet generation and accurate microfluidic reactions remain challenging. Inspired by the liquid ejection mechanisms in microscopic organisms, an electrostatic manipulator for the precise capture, emission, and transport of microdroplets is proposed. This approach enables the controlled and periodic emission of nanoscale daughter droplets from microscale parent droplets, achieved through dielectric pinning on surfaces and electrostatic field-driven forces. Results show precise nanoscale droplet release on inert polymer surfaces, enabling directional, contamination-free liquid manipulation. Moreover, leveraging surface treatment techniques and robust electrostatic force-driven transportation, a versatile strategy for droplet generation and manipulation, spanning from microfluidic devices to chemical reaction operations. The novel droplet manipulation phenomena and control strategies can advance the fields of electrostatic-based microfluidics, materials fabrication, and beyond.
Collapse
Affiliation(s)
- Ning Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziyi Bai
- CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tao Shen
- CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhaoqi Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyao Qin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cunlong Yu
- CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiangyu Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Liu J, Wang Q, Shen F, Zhang C, Cheng C, Deng H, Yang E, Chen X, Fang K, Zhou Y, Su Y, Zhang J, Wang D. Reversible Lubricating Layer for Improving the Endoscope Field with High Transparency and Antipollution Property. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2130-2138. [PMID: 39680842 DOI: 10.1021/acsami.4c14695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Endoscopes, a minimally invasive medical tool, are susceptible to impaired visibility due to the adhesion of biological fluids. However, traditional self-cleaning coatings face limitations in terms of transparency and sustainability, making it difficult to apply them to lenses. Inspired by the phospholipid layer of the eye, a reversible lubricating layer (RL-layer) with low-adhesion and high-transparency properties is reported. Even coagulated blood can be easily removed due to the low surface tension and easy swing of the brushes. In addition, the silicon-oxygen bonds can be cleaved by fluoride ions, thereby achieving reversible modification and showing potential in sustainable usage. To prove the concept, biomimetic endoscopic lenses are employed in vivo experiments. The results indicate that it consistently maintains a clear vision in narrow spaces containing mucus and exhibits excellent biocompatibility. The reversible lubricating layer provides valuable reference significance for self-cleaning coatings in other fields.
Collapse
Affiliation(s)
- Jinbo Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qiannan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Fuhao Shen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Congcong Zhang
- College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chang Cheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Haitao Deng
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Enfeng Yang
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiao Chen
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871 China
| | - Kefan Fang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871 China
| | - Yuan Zhou
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan Su
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Dianyu Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Yang Y, Jiang P, Li H, Li W, Li D, Yan X, Zhu X, Ye D, Yang Y, Wang H, Chen R, Liao Q. Photothermal-Driven Droplet Manipulation: A Perspective. J Phys Chem Lett 2024; 15:8877-8895. [PMID: 39171577 DOI: 10.1021/acs.jpclett.4c01977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Optofluidics, which utilizes the interactions between light and fluids to realize various functions, has garnered increasing attention owing to the advantages of operational simplicity, exceptional flexibility, rapid response, etc. As one of the typical light-fluid interactions, the localized photothermal effect serving as a stimulus has been widely used for fluid manipulation. Particularly, significant progress on photothermal-driven droplet manipulation has been made. In this perspective, recent advancements in localized photothermal effect driven droplet manipulation are summarized. First, the photothermal manipulation of droplets on open surfaces is outlined. An attractive droplet manipulation of light droplet levitation above the gas-liquid interface via localized photothermal effect is then discussed. Besides, the photothermal-driven manipulation of droplets in an immiscible liquid phase is also discussed. Although promising, further development of photothermal-driven droplet manipulation is still needed. The challenges and perspectives of this light droplet manipulation strategy for broad implementation are summarized, which will help future studies and applications.
Collapse
Affiliation(s)
- Yijing Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Pengcheng Jiang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Haonan Li
- Institute of Laser Manufacturing, Henan Academy of Sciences, Zhengzhou 450046, P. R. China
| | - Wei Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Dongliang Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xiao Yan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Dingding Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Yang Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Hong Wang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Rong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
10
|
Huang K, Si Y, Hu J. Fluid Unidirectional Transport Induced by Structure and Ambient Elements across Porous Materials: From Principles to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402527. [PMID: 38812415 DOI: 10.1002/adma.202402527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Spontaneous or nonspontaneous unidirectional fluid transport across multidimension can occur under specific structural designs and ambient elements for porous materials. While existing reviews have extensively summarized unidirectional fluid transport on surfaces, there is an absence of literature summarizing fluid's unidirectional transport across porous materials. This review introduces wetting phenomena observed on natural biological surfaces or porous structures. Subsequently, it offers an overview of diverse principles and potential applications in this field, emphasizing various physical and chemical structural designs (surface energy, capillary size, topographic curvature) and ambient elements (underwater, under oil, pressure, and solar energy). Applications encompass moisture-wicking fabric, sensors, skincare, fog collection, oil-water separation, electrochemistry, liquid-based gating, and solar evaporators. Additionally, significant principles and formulas from various studies are compelled to offer readers valuable references. Simultaneously, potential advantages and challenges are critically assessed in these applications and the perspectives are presented.
Collapse
Affiliation(s)
- Kaisong Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
11
|
Zhu Y, Niu H, Wang Y, Li G, Qiu B, Zhang M, Yan F, Xu Y, Guo C, Xuan S. Janus Flexible Device with Microcone Channels for Sampling and Analysis of Biological Microfluidics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13648-13656. [PMID: 38952282 DOI: 10.1021/acs.langmuir.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Controlling the spontaneous directional transport of droplets plays an important role in the application of microchemical reactions and microdroplet detection. Although the relevant technologies have been widely studied, the existing spontaneous droplet transport strategies still face problems of complex structure, single function, and poor flexibility. Inspired by the spontaneous droplet transport strategy in nature, an asymmetric wettability surface with microcone channels (AWS-MC) is prepared on a flexible fabric by combining surface modification and femtosecond laser manufacturing technology. On this surface, the capillary force and Laplace pressure induced by the wettability gradient and the geometric structure gradient drive the droplet transport from the hydrophobic surface to the hydrophilic surface. Notably, droplets in adjacent hydrophilic regions do not exchange substances even if the gap in the hydrophilic region is only 1 mm, which provides an ideal platform for numerous detections by a single drop. The droplet transport strategy does not require external energy and can adapt to the manipulation of various droplet types. Application of this surface in the blood of organisms is demonstrated. This work provides an effective method for microdroplet-directed self-transport and microdroplet detection.
Collapse
Affiliation(s)
- Yuying Zhu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
| | - Hanhan Niu
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yuan Wang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Guoqiang Li
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Bensheng Qiu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
| | - Miaoqi Zhang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Fei Yan
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yuanchong Xu
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Chenghong Guo
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Sensen Xuan
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
12
|
Han X, Jin R, Sun Y, Han K, Che P, Wang X, Guo P, Tan S, Sun X, Dai H, Dong Z, Heng L, Jiang L. Infinite Self-Propulsion of Circularly On/Discharged Droplets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311729. [PMID: 38282097 DOI: 10.1002/adma.202311729] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/14/2024] [Indexed: 01/30/2024]
Abstract
Self-propulsion of droplets in a controlled and long path at a high-speed is crucial for organic synthesis, pathological diagnosis and programable lab-on-a-chip. To date, extensive efforts have been made to achieve droplet self-propulsion by asymmetric gradient, yet, existing structural, chemical, or charge density gradients can only last for a while (<50 mm). Here, this work designs a symmetrical waved alternating potential (WAP) on a superhydrophobic surface to charge or discharge the droplets during the transport process. By deeply studying the motion mechanisms for neutral droplets and charged droplets, the circularly on/discharged droplets achieve the infinite self-propulsion (>1000 mm) with an ultrahigh velocity of meters per second. In addition, after permutation and combination of two motion styles of the droplets, it can be competent for more interesting work, such as liquid diode and liquid logic gate. Being assembled into a microfluidic chip, the strategy would be applied in chemical synthesis, cell culture, and diagnostic kits.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Rongyu Jin
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Yue Sun
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Keyu Han
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Pengda Che
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Xuan Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Pu Guo
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Shengda Tan
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Xu Sun
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Haoyu Dai
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liping Heng
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
13
|
Wang X, Zhuang Z, Li X, Yao X. Droplet Manipulation on Bioinspired Slippery Surfaces: From Design Principle to Biomedical Applications. SMALL METHODS 2024; 8:e2300253. [PMID: 37246251 DOI: 10.1002/smtd.202300253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/02/2023] [Indexed: 05/30/2023]
Abstract
Droplet manipulation with high efficiency, high flexibility, and programmability, is essential for various applications in biomedical sciences and engineering. Bioinspired liquid-infused slippery surfaces (LIS), with exceptional interfacial properties, have led to expanding research for droplet manipulation. In this review, an overview of actuation principles is presented to illustrate how materials or systems can be designed for droplet manipulation on LIS. Recent progress on new manipulation methods on LIS is also summarized and their prospective applications in anti-biofouling and pathogen control, biosensing, and the development of digital microfluidics are presented. Finally, an outlook is made on the key challenges and opportunities for droplet manipulation on LIS.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Zhicheng Zhuang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518075, P. R. China
| |
Collapse
|
14
|
Jiao L, Tan D, Hu Y, Yang Y, Guo Q, Zhou N, Wu H, Chen C, Zhao X, Hu G. Efficient fabrication of bioinspired soft, ridged-slippery surfaces with large-range anisotropic wettability for droplet manipulation. SOFT MATTER 2024; 20:2812-2822. [PMID: 38446214 DOI: 10.1039/d3sm01766d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The droplet lossless directional motion control on slippery surfaces holds immense promise for applications in microfluidic chips, hazardous substance detection, chemical dispensing, etc. However, a significant challenge in this domain lies in efficiently developing soft, slippery surfaces with large-range anisotropic wettability and compatibility for curved scenarios. This study addressed this challenge through a quick 3D printing-assisted method to produce soft, ridged-slippery surfaces (SRSSs) as the droplet manipulation platform. The SRSSs demonstrated substantial anisotropic rolling resistances, measuring 116.9 μN in the perpendicular direction and 7.7 μN in the parallel direction, exhibiting a ratio of 15.2. Combining several extents of anisotropic wettability on a soft substrate could realize diverse reagent manipulation functions. Furthermore, these SRSSs showcased high compatibility with various droplet constituents, impressive liquid impact resistance, self-repair capability, and mechanical durability and thermal durability, ensuring exceptional applicability. As proofs of concept, the SRSSs were successfully applied in droplet control and classification for heavy metal ion detection, mechanical arm-based droplet grab and release, and cross-species transport, showcasing their remarkable versatility, compatibility, and practicality in advanced droplet microfluidic chips and water harvesting applications.
Collapse
Affiliation(s)
- Long Jiao
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
- Zhejiang Tuff Development Company, Ltd., Jiaxing, 314400, China
| | - Dingqiang Tan
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Yanjun Hu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Yijing Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing, 400030, China.
| | - Qianqian Guo
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Nan Zhou
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Huaping Wu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Chen Chen
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Xingang Zhao
- Zhejiang Tuff Development Company, Ltd., Jiaxing, 314400, China
| | - Guohua Hu
- Zhejiang Tuff Development Company, Ltd., Jiaxing, 314400, China
| |
Collapse
|
15
|
Wang X, Li X, Pu A, Shun HB, Chen C, Ai L, Tan Z, Zhang J, Liu K, Gao J, Ban K, Yao X. On-chip droplet analysis and cell spheroid screening by capillary wrapping enabled shape-adaptive ferrofluid transporters. LAB ON A CHIP 2024; 24:1782-1793. [PMID: 38358122 DOI: 10.1039/d3lc00906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Non-invasive droplet manipulation with no physical damage to the sample is important for the practical value of manipulation tools in multidisciplinary applications from biochemical analysis and diagnostics to cell engineering. It is a challenge to achieve this for most existing photothermal, electric stimuli, and magnetic field-based technologies. Herein, we present a droplet handling toolbox, the ferrofluid transporter, for non-invasive droplet manipulation in an oil environment. It involves the transport of droplets with high robustness and efficiency owing to low interfacial friction. This capability caters to various scenarios including droplets with varying components and solid cargo. Moreover, we fabricated a droplet array by transporter positioning and achieved droplet gating and sorting for complex manipulation in the droplet array. Benefiting from the ease of scale-up and high biocompatibility, the transporter-based droplet array can serve as a digital microfluidic platform for on-chip droplet-based bioanalysis, cell spheroid culture, and downstream drug screening tests.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Xin Li
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Aoyang Pu
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Ho Bak Shun
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Cien Chen
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Liqing Ai
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Zhaoling Tan
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Jilin Zhang
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Kai Liu
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Jun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong Province, P. R. China.
| | - Kiwon Ban
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Xi Yao
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518075, P. R. China
| |
Collapse
|
16
|
Lin M, Kim P, Arunachalam S, Hardian R, Adera S, Aizenberg J, Yao X, Daniel D. Emergent Collective Motion of Self-Propelled Condensate Droplets. PHYSICAL REVIEW LETTERS 2024; 132:058203. [PMID: 38364153 DOI: 10.1103/physrevlett.132.058203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 12/13/2023] [Indexed: 02/18/2024]
Abstract
Recently, there is much interest in droplet condensation on soft or liquid or liquidlike substrates. Droplets can deform soft and liquid interfaces resulting in a wealth of phenomena not observed on hard, solid surfaces (e.g., increased nucleation, interdroplet attraction). Here, we describe a unique collective motion of condensate water droplets that emerges spontaneously when a solid substrate is covered with a thin oil film. Droplets move first in a serpentine, self-avoiding fashion before transitioning to circular motions. We show that this self-propulsion (with speeds in the 0.1-1 mm s^{-1} range) is fueled by the interfacial energy release upon merging with newly condensed but much smaller droplets. The resultant collective motion spans multiple length scales from submillimeter to several centimeters, with potentially important heat-transfer and water-harvesting applications.
Collapse
Affiliation(s)
- Marcus Lin
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Philseok Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Sankara Arunachalam
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rifan Hardian
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Solomon Adera
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Xi Yao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Dan Daniel
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
17
|
Wu J, Fang D, Zhou Y, Gao G, Zeng J, Zeng Y, Zheng H. Multifunctional droplet handling on surface-charge-graphic-decorated porous papers. LAB ON A CHIP 2024; 24:594-603. [PMID: 38175166 DOI: 10.1039/d3lc00806a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Developing a fluidic platform that combines high-throughput with reconfigurability is essential for a wide range of cutting-edge applications, but achieving both capabilities simultaneously remains a significant challenge. Herein, we propose a novel and unique method for droplet manipulation via drawing surface charge graphics on electrode-free papers in a contactless way. We find that opposite charge graphics can be written and retained on the surface layer of porous insulating paper by a controlled charge depositing method. The retained charge graphics result in high-resolution patterning of electrostatic potential wells (EPWs) on the hydrophobic porous surface, allowing for digital and high-throughput droplet handling. Since the charge graphics can be written/projected dynamically and simultaneously in large areas, allowing for on-demand and real-time reconfiguration of EPWs, we are able to develop a charge-graphic fluidic platform with both high reconfigurability and high throughput. The advantages and application potential of the platform have been demonstrated in chemical detection and dynamically controllable fluidic networks.
Collapse
Affiliation(s)
- Jiayao Wu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.
| | - Duokui Fang
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yifan Zhou
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Ge Gao
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Ji Zeng
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yubin Zeng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Huai Zheng
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
18
|
Sun P, Hao X, Jin Y, Yin Y, Wu C, Zhang J, Gao L, Wang S, Wang Z. Heterogenous Slippery Surfaces: Enabling Spontaneous and Rapid Transport of Viscous Liquids with Viscosities Exceeding 10 000 mPa s. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304218. [PMID: 37649201 DOI: 10.1002/smll.202304218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Superhydrophobic and slippery lubricant-infused surfaces have garnered significant attention for their potential to passively transport low-viscosity liquids like water (1 mPa s). Despite exciting progress, these designs have proven ineffective for transporting high-viscosity liquids such as polydimethylsiloxane (5500 mPa s) due to their inherent limitations imposed by the homogenous surface design, resulting in high viscous drags and compromised capillary forces. Here, a heterogenous water-infused divergent surface (WIDS) is proposed that achieves spontaneous, rapid, and long-distance transport of viscous liquids. WIDS reduces viscous drag by spatially isolating the viscous liquids and surface roughness through its heterogenous, slippery topological design, and generates capillary forces through its heterogenous wetting distributions. The essential role of surface heterogeneity in viscous liquid transport is theoretically and experimentally verified. Remarkably, such a heterogenous paradigm enables transporting liquids with viscosities exceeding 12 500 mPa s, which is two orders of magnitude higher than state-of-the-art techniques. Furthermore, this heterogenous design is generic for various viscous liquids and can be made flexible, making it promising for various systems that require viscous liquid management, such as micropatterning.
Collapse
Affiliation(s)
- Pengcheng Sun
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Xiuqing Hao
- Department of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210000, P. R. China
| | - Yuankai Jin
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yingying Yin
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Chenyang Wu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jie Zhang
- Department of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210000, P. R. China
| | - Lujia Gao
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Steven Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| |
Collapse
|
19
|
Zhang W, Ji Q, Zhang G, Gu Z, Wang H, Hu C, Liu H, Ren ZJ, Qu J. Pumping and sliding of droplets steered by a hydrogel pattern for atmospheric water harvesting. Natl Sci Rev 2023; 10:nwad334. [PMID: 38299118 PMCID: PMC10829482 DOI: 10.1093/nsr/nwad334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 02/02/2024] Open
Abstract
Atmospheric water harvesting is an emerging strategy for decentralized and potable water supplies. However, water nucleation and microdroplet coalescence on condensing surfaces often result in surface flooding owing to the lack of a sufficient directional driving force for shedding. Herein, inspired by the fascinating properties of lizards and catfish, we present a condensing surface with engineered hydrogel patterns that enable rapid and sustainable water harvesting through the directional pumping and drag-reduced sliding of water droplets. The movement of microscale condensed droplets is synergistically driven by the surface energy gradient and difference in Laplace pressure induced by the arch hydrogel patterns. Meanwhile, the superhydrophilic hydrogel surface can strongly bond inner-layer water molecules to form a lubricant film that reduces drag and facilitates the sliding of droplets off the condensing surface. Thus, this strategy is promising for various water purification techniques based on liquid-vapor phase-change processes.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenao Gu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haozhi Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Zhan D, Guo Z. Overview of the design of bionic fine hierarchical structures for fog collection. MATERIALS HORIZONS 2023; 10:4827-4856. [PMID: 37743773 DOI: 10.1039/d3mh01094e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Nature always uses its special wisdom to construct elegant and suitable schemes. Consequently, organisms in the flora and fauna are endowed with fine hierarchical structures (HS) to adapt to the harsh environment due to many years of evolution. Water is one of the most important resources; however, easy access to it is one the biggest challenges faced by human beings. In this case, fog collection (FC) is considered an efficient method to collect water, where bionic HS can be the bridge to efficiently facilitate the process of the FC. In this review, firstly, we discuss the basic principles of FC. Secondly, the role of HS in FC is analyzed in terms of the microstructure of typical examples of plants and animals. Simultaneously, the water-harvesting function of HS in a relatively new organism, fungal filament, is also presented. Thirdly, the HS design in each representative work is analyzed from a biomimetic perspective (single to multiple biomimetic approaches). The role of HS in FC, and then the FC performance of each work are analyzed in order of spatial dimension from a bionic perspective. Finally, the challenges at this stage and the outlook for the future are presented.
Collapse
Affiliation(s)
- Danyan Zhan
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
21
|
Cheng H, Shao W, Jin J, Wu J, Zhao M, Tang B, Zhou G. Robust reverse-electrowetting based energy harvesting on slippery surface. RSC Adv 2023; 13:31659-31666. [PMID: 37908647 PMCID: PMC10613949 DOI: 10.1039/d3ra06099c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Reversed-electrowetting based droplet electricity generator (REWOD-DEG) shows merits in high power densities, tunable output formats, and wide adaptability to diverse mechanical energies. However, the surface charge trapping and dielectric failure, which are also common challenges for electrowetting system, hinders the development of reliable REWOD-DEGs for long-term running. We innovatively introduce a slippery lubricant-infused porous surface (SLIPS) into REWOD-DEG. Benefits from the significant inhibitory effect for surface charge trapping and ambient contamination, self-healing characteristic given by SLIPS, and robust reversed-electrowetting based energy harvesting were achieved. The SLIPS enhanced REWOD-DEG experienced 100 days of intermittent energy harvesting without deterioration. In addition, the device shows robust performances when exposed to a variety of extreme working conditions, like low temperature, pH, humidity, fouling, and even scratching. This work may address the core application challenges of REWOD based devices, and inspire the development of other robust droplet-based electricity generators.
Collapse
Affiliation(s)
- Haimei Cheng
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
- National Center for International Research on Green Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
| | - Wan Shao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
- National Center for International Research on Green Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
| | - Jing Jin
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
- National Center for International Research on Green Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
| | - Junjun Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
- National Center for International Research on Green Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
| | - Manhong Zhao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
- National Center for International Research on Green Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
| | - Biao Tang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
- National Center for International Research on Green Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
- National Center for International Research on Green Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
- Shenzhen Guohua Optoelectronics Tech. Co. Ltd Shenzhen 518110 People's Republic of China
| |
Collapse
|
22
|
Li H, Yang Y, Zhu X, Ye D, Yang Y, Wang H, Chen R, Liao Q. Droplet transportation on photosensitive lubricant-impregnated slippery surfaces in response to the light induced Marangoni effect and asymmetrical wetting ridges. SOFT MATTER 2023; 19:7323-7333. [PMID: 37727081 DOI: 10.1039/d3sm00887h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Flexible control of droplet transportation is crucial in various applications but is constrained by liquid-solid friction. The development of biomimetic lubricant-impregnated slippery surfaces provides a new solution for flexible manipulation of droplet transportation. Herein, a light strategy is reported for flexibly controlling droplet transportation on photosensitive lubricant-impregnated slippery surfaces. Owing to the localized heating effect of a focused laser beam via photothermal conversion, the resultant thermal Marangoni flow and horizontal component of the surface tension associated with the asymmetric wetting ridges are together responsible for actuating droplet transportation. It is found that the asymmetry of the wetting ridge is dominated by the thickness of the infused oil layer, which directly affects the droplet transportation. The feasibility of this light strategy is also demonstrated by uphill movement, droplet coalescence, and chemical reaction. This study provides a new design for potential applications in open droplet microfluidics, analytical chemistry, diagnosis, etc.
Collapse
Affiliation(s)
- Haonan Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China.
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Yijing Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China.
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China.
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Dingding Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China.
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Yang Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China.
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Hong Wang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China.
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Rong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China.
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China.
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
23
|
Yang JL, Song YY, Zhang X, Zhang ZQ, Cheng GG, Liu Y, Lv GJ, Ding JN. Research progress of bionic fog collection surfaces based on special structures from natural organisms. RSC Adv 2023; 13:27839-27864. [PMID: 37731827 PMCID: PMC10508262 DOI: 10.1039/d3ra04253g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023] Open
Abstract
With the increasing shortage of water resources, people are seeking more innovative ways to collect fog to meet the growing need for production and the demand for livelihood. It has been proven that fog collection is efficient for collecting water in dry but foggy areas. As a hot research topic in recent years, bionic surfaces with fog collection functions have attracted widespread attention in practical applications and basic research. By studying natural organisms and bionic surfaces, more avenues are provided for the development of fog collection devices. Firstly, starting from biological prototypes, this article explored the structural characteristics and fog collection mechanisms of natural organisms such as spider silk, desert beetles, cactus, Nepenthes and other animals and plants (Sarracenia, shorebird and wheat awn), revealing the fog collection mechanism of the natural organisms based on microstructures. Secondly, based on the theory of interfacial tension, we would delve into the fog collection function's theoretical basis and wetting model, expounding the fog collection mechanism from a theoretical perspective. Thirdly, a detailed introduction was given to prepare bionic surfaces and recently explore fog collection devices. For bionic surfaces of a single biological prototype, the fog collection efficiency is about 2000-4000 mg cm-2 h-1. For bionic surfaces of multiple biological prototypes, the fog collection efficiency reaches 7000 mg cm-2 h-1. Finally, a critical analysis was conducted on the current challenges and future developments, aiming to promote the next generation of fog collection devices from a scientific perspective from research to practical applications.
Collapse
Affiliation(s)
- Jia-Lei Yang
- School of Mechanical Engineering, Jiangsu University Zhenjiang 212013 Jiangsu P. R. China
| | - Yun-Yun Song
- School of Mechanical Engineering, Jiangsu University Zhenjiang 212013 Jiangsu P. R. China
| | - Xu Zhang
- School of Mechanical Engineering, Jiangsu University Zhenjiang 212013 Jiangsu P. R. China
| | - Zhong-Qiang Zhang
- School of Mechanical Engineering, Jiangsu University Zhenjiang 212013 Jiangsu P. R. China
| | - Guang-Gui Cheng
- School of Mechanical Engineering, Jiangsu University Zhenjiang 212013 Jiangsu P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University Changchun 130022 P. R. China
| | - Guo-Jun Lv
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212003 P. R. China
| | - Jian-Ning Ding
- School of Mechanical Engineering, Jiangsu University Zhenjiang 212013 Jiangsu P. R. China
- School of Mechanical Engineering, Yangzhou University Yangzhou 225127 Jiangsu P. R. China
| |
Collapse
|
24
|
Jiang S, Li B, Zhao J, Wu D, Zhang Y, Zhao Z, Zhang Y, Yu H, Shao K, Zhang C, Li R, Chen C, Shen Z, Hu J, Dong B, Zhu L, Li J, Wang L, Chu J, Hu Y. Magnetic Janus origami robot for cross-scale droplet omni-manipulation. Nat Commun 2023; 14:5455. [PMID: 37673871 PMCID: PMC10482950 DOI: 10.1038/s41467-023-41092-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The versatile manipulation of cross-scale droplets is essential in many fields. Magnetic excitation is widely used for droplet manipulation due to its distinguishing merits. However, facile magnetic actuation strategies are still lacked to realize versatile multiscale droplet manipulation. Here, a type of magnetically actuated Janus origami robot is readily fabricated for versatile cross-scale droplet manipulation including three-dimensional transport, merging, splitting, dispensing and release of daughter droplets, stirring and remote heating. The robot allows untethered droplet manipulation from ~3.2 nL to ~51.14 μL. It enables splitting of droplet, precise dispensing (minimum of ~3.2 nL) and release (minimum of ~30.2 nL) of daughter droplets. The combination of magnetically controlled rotation and photothermal properties further endows the robot with the ability to stir and heat droplets remotely. Finally, the application of the robot in polymerase chain reaction (PCR) is explored. The extraction and purification of nucleic acids can be successfully achieved.
Collapse
Affiliation(s)
- Shaojun Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Bo Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Jun Zhao
- Center of Engineering Technology Research for Biomedical Optical Instrument, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Yiyuan Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Zhipeng Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hao Yu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Kexiang Shao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Cong Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Rui Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chao Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zuojun Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jie Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Bin Dong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ling Zhu
- Center of Engineering Technology Research for Biomedical Optical Instrument, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
25
|
Xu H, Zhou Y, Daniel D, Herzog J, Wang X, Sick V, Adera S. Droplet attraction and coalescence mechanism on textured oil-impregnated surfaces. Nat Commun 2023; 14:4901. [PMID: 37596277 PMCID: PMC10439220 DOI: 10.1038/s41467-023-40279-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/20/2023] [Indexed: 08/20/2023] Open
Abstract
Droplets residing on textured oil-impregnated surfaces form a wetting ridge due to the imbalance of interfacial forces at the contact line, leading to a wealth of phenomena not seen on traditional lotus-leaf-inspired non-wetting surfaces. Here, we show that the wetting ridge leads to long-range attraction between millimeter-sized droplets, which coalesce in three distinct stages: droplet attraction, lubricant draining, and droplet merging. Our experiments and model show that the magnitude of the velocity and acceleration at which droplets approach each other horizontally is the same as the vertical oil rise velocity and acceleration in the wetting ridge. Moreover, the droplet coalescence mechanism can be modeled using the classical mass-spring system. The insights gained from this work will inform future fundamental studies on remote droplet interaction on textured oil-impregnated surfaces for optimizing water harvesting and condensation heat transfer.
Collapse
Affiliation(s)
- Haobo Xu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yimin Zhou
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Dan Daniel
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Joshua Herzog
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoguang Wang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
- Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | - Volker Sick
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Solomon Adera
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Hou H, Wu X, Hu Z, Gao S, Wu Y, Lin Y, Dai L, Zou G, Liu L, Yuan Z. High-speed directional transport of condensate droplets on superhydrophobic saw-tooth surfaces. J Colloid Interface Sci 2023; 649:290-301. [PMID: 37352560 DOI: 10.1016/j.jcis.2023.06.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
HYPOTHESIS Most droplets on high-efficiency condensing surfaces have radii of less than 100 μm, but conventional droplet transport methods (such as wettability-gradient surfaces and structural-curvature-gradient surfaces) that rely on the unbalanced force of three-phase lines can only transport millimeter-sized droplets efficiently. Regulating high-speed directional transport of condensate droplets is still challenging. Therefore, we present a method for condensate droplet transportation, based on the reaction force of the superhydrophobic saw-tooth surfaces to the liquid bridge, the condensate droplets could be transported at high speed and over long distances. EXPERIMENTS The superhydrophobic saw-tooth surfaces are fabricated by femtosecond laser ablation and chemical etching. Condensation experiments and luminescent particle characterization experiments on different surfaces are conducted. Aided by the theoretical analysis, we illustrate the remarkable performance of condensate droplet transportation on saw-tooth surfaces. FINDINGS Compared with conventional methods, our method improves the transport velocity and relative transport distance by 1-2 orders of magnitude and achieves directional transport of the smallest condensate droplet of about 2 μm. Furthermore, the superhydrophobic saw-tooth surfaces enable multi-hop directional jumping of condensate droplets, leading to cross-scale increases in transport distances from microns to decimeters.
Collapse
Affiliation(s)
- Huimin Hou
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaomin Wu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Zhifeng Hu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Sihang Gao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Yuxi Wu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yukai Lin
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Liyu Dai
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Guisheng Zou
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiping Yuan
- Department of Energy and Power Engineering, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
27
|
Peng Y, Li C, Jiao Y, Zhu S, Hu Y, Xiong W, Cao Y, Li J, Wu D. Active Droplet Transport Induced by Moving Meniscus on a Slippery Magnetic Responsive Micropillar Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5901-5910. [PMID: 37040610 DOI: 10.1021/acs.langmuir.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Intelligent droplet manipulation plays a crucial role in both scientific research and industrial technology. Inspired by nature, meniscus driving is an ingenious way to spontaneously transport droplets. However, the shortages of short-range transport and droplet coalescence limit its application. Here, an active droplet manipulation strategy based on the slippery magnetic responsive micropillar array (SMRMA) is reported. With the aid of a magnetic field, the micropillar array bends and induces the infusing oil to form a moving meniscus, which can attract nearby droplets and transport them for a long range. Significantly, clustered droplets on SMRMA can be isolated by micropillars, avoiding droplet coalescence. Moreover, through adjusting the arrangement of the micropillars of SMRMA, multi-functional droplet manipulation such as unidirectional droplet transport, multi-droplet transport, droplet mixing, and droplet screening can be achieved. This work provides a promising approach for intelligent droplet manipulation and unfolds broad application prospects in microfluidics, microchemical reaction, biomedical engineering, and other fields.
Collapse
Affiliation(s)
- Yubin Peng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Chuanzong Li
- School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Yunlong Jiao
- Institute of Tribology, School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Wei Xiong
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaoyu Cao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
28
|
Bai X, Gou X, Zhang J, Liang J, Yang L, Wang S, Hou X, Chen F. A Review of Smart Superwetting Surfaces Based on Shape-Memory Micro/Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206463. [PMID: 36609999 DOI: 10.1002/smll.202206463] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Bioinspired smart superwetting surfaces with special wettability have aroused great attention from fundamental research to technological applications including self-cleaning, oil-water separation, anti-icing/corrosion/fogging, drag reduction, cell engineering, liquid manipulation, and so on. However, most of the reported smart superwetting surfaces switch their wettability by reversibly changing surface chemistry rather than surface microstructure. Compared with surface chemistry, the regulation of surface microstructure is more difficult and can bring novel functions to the surfaces. As a kind of stimulus-responsive material, shape-memory polymer (SMP) has become an excellent candidate for preparing smart superwetting surfaces owing to its unique shape transformation property. This review systematically summarizes the recent progress of smart superwetting SMP surfaces including fabrication methods, smart superwetting phenomena, and related application fields. The smart superwettabilities, such as superhydrophobicity/superomniphobicity with tunable adhesion, reversible switching between superhydrophobicity and superhydrophilicity, switchable isotropic/anisotropic wetting, slippery surface with tunable wettability, and underwater superaerophobicity/superoleophobicity with tunable adhesion, can be obtained on SMP micro/nanostructures by regulating the surface morphology. Finally, the challenges and future prospects of smart superwetting SMP surfaces are discussed.
Collapse
Affiliation(s)
- Xue Bai
- Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, P. R. China
| | - Xiaodan Gou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jialiang Zhang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jie Liang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lijing Yang
- Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, P. R. China
| | - Shaopeng Wang
- Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, P. R. China
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
29
|
Deng Q, Xie J, Kong S, Tang T, Zhou J. Long-Term Retention Microbubbles with Three-Layer Structure for Floating Intravesical Instillation Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205630. [PMID: 36634975 DOI: 10.1002/smll.202205630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Intravesical instillation is an effective treatment for bladder cancer. However, clinical anticancer agents always suffer rapid excretion by periodic urination, leading to low therapeutic efficacy. Prolonging the retention time of drugs in the bladder is the key challenge for intravesical instillation treatment. Herein, a facile and powerful surface cross-linking-freeze drying strategy is proposed to generate ultra-stable albumin bovine air microbubbles (BSA-MBs) that can float and adhere to the bladder wall to overcome the excretion of urination and exhibit a remarkable property of long-term retention in the bladder. More noteworthy, BSA-MBs are endowed with a specific three-layer structure, namely, the outer membrane, middle drug loading layer and inner air core, which makes them have a low density to easily float and possess a high drug loading capacity. Based on their unique superiorities, the therapeutic potential of doxorubicin (DOX)-loaded BSA-MBs (DOX-MBs) is exemplified by intravesical instillation for bladder cancer. After injection into the bladder, DOX-MBs can remain in the bladder for a long time and sustain the release of DOX in urine, exhibiting potent anticancer efficacy. Consequently, the prolonged retention of BSA-MBs in the bladder renders them as an effective floating drug delivery system for intravesical instillation therapy.
Collapse
Affiliation(s)
- Qiurong Deng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Junyi Xie
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shuying Kong
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Tianmin Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
30
|
Han X, Tan S, Jin R, Jiang L, Heng L. Noncontact Charge Shielding Knife for Liquid Microfluidics. J Am Chem Soc 2023; 145:6420-6427. [PMID: 36898132 DOI: 10.1021/jacs.2c13674] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Multibehavioral droplet manipulation in a precise and programmed manner is crucial for stoichiometry, biological virus detection, and intelligent lab-on-a-chip. Apart from fundamental navigation, merging, splitting, and dispensing of the droplets are required for being combined in a microfluidic chip as well. Yet, existing active manipulations including strategies from light to magnetism are arduous to use to split liquids on superwetting surfaces without mass loss and contamination, because of the high cohesion and Coanda effect. Here, we demonstrate a charge shielding mechanism (CSM) for platforms to integrate with a series of functions. In response to attachment of shielding layers from the bottom, the instantaneous and repeatable change of local potential on our platform achieves the desired loss-free manipulation of droplets, with a wide-ranging surface tension from 25.7 mN m-1 to 87.6 mN m-1, functioning as a noncontact air knife to cleave, guide, rotate, and collect reactive monomers on demand. With further refinement of the surface circuit, the droplets, just as the electron, can be programmed to be transported directionally at extremely high speeds of 100 mm s-1. This new generation of microfluidics is expected to be applied in the field of bioanalysis, chemical synthesis, and diagnostic kit.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education Department, School of Chemistry, Beihang University, Beijing 100083, China
| | - Shengda Tan
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education Department, School of Chemistry, Beihang University, Beijing 100083, China
| | - Rongyu Jin
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education Department, School of Chemistry, Beihang University, Beijing 100083, China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education Department, School of Chemistry, Beihang University, Beijing 100083, China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liping Heng
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education Department, School of Chemistry, Beihang University, Beijing 100083, China
| |
Collapse
|
31
|
Zhou S, Jiang L, Dong Z. Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chem Rev 2023; 123:2276-2310. [PMID: 35522923 DOI: 10.1021/acs.chemrev.1c00976] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid flowing around a solid edge, i.e., overflow, is a commonly observed flow behavior. Recent research into surface wetting properties and microstructure-controlled overflow behavior has attracted much attention. Achieving controllable macroscale liquid dynamics by manipulating the micro-nanoscale liquid overflow has stimulated diverse scientific interest and fostered widespread use in practical applications. In this review, we outline the evolution of overflow and present a critical survey of the mechanism of surface wetting properties and microstructure-controlled liquid overflow in multilength scales ranging from centimeter to micro and even nanoscale. We summarize the latest progress in utilizing the mechanisms to manipulate liquid overflow and achieve macroscale liquid dynamics and in emerging applications to manipulate overflow for sustainable development in various fields, along with challenges and perspectives.
Collapse
Affiliation(s)
- Shan Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
32
|
Zhou P, Yan Y, Cheng J, Zhou C. Directional Self-Transportation of Droplets on Superwetting Wedge-Shaped Surface in Air and Underliquid Environments. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8742-8750. [PMID: 36740783 DOI: 10.1021/acsami.2c21392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The directional self-transportation of droplets has aroused great attention in microfluidic systems. However, most reported surfaces are mainly designed for driving water droplets to move in air, displaying low adaptability in complex environments. This work presents a wedge-shaped surface with multiple superwettability, i.e., superhydrophilicity/superoleophilicity and underwater superoleophobicity/underoil superhydrophobicity, fabricated by electrodeposition of a metal-organic framework on a copper sheet. This surface exhibited excellent performance for driving droplet self-transportation, regardless of the droplet type (water or oil) and environmental media (air or underliquids). In air, the wedge-shaped surface with wedge angle of 9.2° could move droplets of water and dodecane up to 24.5 mm and 17.9 mm, respectively. The movement of water droplet under dodecane, however, dropped from 24.5 mm to 22.1 mm, while the dodecane droplet underwater increased from 17.9 mm to 20.3 mm in moving displacement, indicating the underliquid environment is in favor of manipulation of oil droplets. Furthermore, the droplet convergence, transportation, and separation were achieved on the well-designed multiple wedge tracks in air with a total movement distance up to 60.0 mm. The test of micro-oil droplets collecting under water demonstrated that a sponge with two wedges has 2.1 times the oil droplet collection capacity over that of the sponge only, providing a new strategy for efficient treatment of the micro-oil droplets contaminated water.
Collapse
Affiliation(s)
- Peizhang Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China
| | - Yuanyang Yan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China
| | - Jiang Cheng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| |
Collapse
|
33
|
Chen Y, Chen X, Zhu Z, Sun M, Li S, Gan M, Tang SY, Li W, Zhang S, Sun L, Li X. 3D actuation of foam-core liquid metal droplets. SOFT MATTER 2023; 19:1293-1299. [PMID: 36524440 DOI: 10.1039/d2sm01349e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Precise manipulation of liquid metal (LM) droplets possesses the potential to enable a wide range of applications in reconfigurable electronics, robotics, and microelectromechanical systems. Although a variety of methods have been explored to actuate LM droplets on a 2D plane, versatile 3D manipulation remains a challenge due to the difficulty in overcoming their heavy weight. Here, foam-core liquid metal (FCLM) droplets that can maintain the surface properties of LM while significantly reducing the density are developed, enabling 3D manipulation in an electrolyte. The FCLM droplet is fabricated by coating LM on the surface of a copper-grafted foam sphere. The actuation of the FCLM droplet is realized by electrically inducing Marangoni flow on the LM surface. Two motion modes of the FCLM droplet are observed and studied and the actuation performance is characterized. Multiple FCLM droplets can be readily controlled to form 3D structures, demonstrating their potential to be further developed to form collaborative robots for enabling wider applications.
Collapse
Affiliation(s)
- Yue Chen
- College of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China.
| | - Xuanhan Chen
- College of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China.
| | - Zhenhong Zhu
- Children's Hospital of Soochow University, Soochow University, Suzhou, 215000, China
| | - Mingyuan Sun
- College of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China.
| | - Shen Li
- College of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China.
| | - Minfeng Gan
- Department of Orthopedic, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, China.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shiwu Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Lining Sun
- College of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China.
| | - Xiangpeng Li
- College of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
34
|
Sun J, Weisensee PB. Marangoni-induced reversal of meniscus-climbing microdroplets. SOFT MATTER 2023; 19:625-633. [PMID: 36168911 DOI: 10.1039/d2sm00979j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Small water droplets or particles located at an oil meniscus typically climb the meniscus due to unbalanced capillary forces. Here, we introduce a size-dependent reversal of this meniscus-climbing behavior, where upon cooling of the underlying substrate, droplets of different sizes concurrently ascend and descend the meniscus. We show that microscopic Marangoni convection cells within the oil meniscus are responsible for this phenomenon. While dynamics of relatively larger water microdroplets are still dominated by unbalanced capillary forces and hence ascend the meniscus, smaller droplets are carried by the surface flow and consequently descend the meniscus. We further demonstrate that the magnitude and direction of the convection cells depend on the meniscus geometry and the substrate temperature and introduce a modified Marangoni number that well predicts their strength. Our findings provide a new approach to manipulating droplets on a liquid meniscus that could have applications in material self-assembly, biological sensing and testing, or phase change heat transfer.
Collapse
Affiliation(s)
- Jianxing Sun
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, USA.
| | - Patricia B Weisensee
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
35
|
Kang BS, Choi JS, An JH, Kang SM. Bioinspired On-Demand Directional Droplet Manipulation Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2351-2356. [PMID: 36573556 DOI: 10.1021/acsami.2c17055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, we exploited the properties of nature-inspired hierarchical structures to propose surfaces capable of on-demand directional droplet manipulation. A microline polydimethylsiloxane structure that simulated a bamboo leaf was fabricated, and silica particles were embedded onto its surface to create hierarchical structures. The as-fabricated multiscale line structures exhibited anisotropic wetting properties along the advancing direction. As the embedded particle size increased, the perpendicular roll-off angle (ROA) decreased and the anisotropic roll-off characteristic disappeared, adopting lotus-leaf characteristics. Consequently, the fabricated surface exhibited characteristics of both bamboo and lotus leaves. The roll off could be controlled through different ROAs by changing the particles size of silica on the same surface.
Collapse
Affiliation(s)
- Byeong Su Kang
- Department of Mechanical Engineering, Chungnam National University, Daejeon34134, Republic of Korea
| | - Ji Seong Choi
- Department of Mechanical Engineering, Chungnam National University, Daejeon34134, Republic of Korea
| | - Joon Hyung An
- Department of Mechanical Engineering, Chungnam National University, Daejeon34134, Republic of Korea
| | - Seong Min Kang
- Department of Mechanical Engineering, Chungnam National University, Daejeon34134, Republic of Korea
| |
Collapse
|
36
|
Xu Y, Yao Y, Deng W, Fang JC, Dupont RL, Zhang M, Čopar S, Tkalec U, Wang X. Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces. NANO RESEARCH 2022:1-10. [PMID: 36570861 DOI: 10.1007/s12274-022-5239-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/29/2022] [Accepted: 11/13/2022] [Indexed: 05/22/2023]
Abstract
UNLABELLED Magnetocontrollable droplet mobility on surfaces of both solids and simple fluids have been widely used in a wide range of applications. However, little is understood about the effect of the magnetic field on the wettability and mobility of droplets on structured fluids. Here, we report the manipulation of the dynamic behaviors of water droplets on a film of thermotropic liquid crystals (LCs). We find that the static wetting behavior and static friction of water droplets on a 4'-octyl-4-biphenylcarbonitrile (8CB) film strongly depend on the LC mesophases, and that a magnetic field caused no measurable change to these properties. However, we find that the droplet dynamics can be affected by a magnetic field as it slides on a nematic 8CB film, but not on isotropic 8CB, and is dependent on both the direction and strength of the magnetic field. By measuring the dynamic friction of a droplet sliding on a nematic 8CB film, we find that a magnetic field alters the internal orientational ordering of the 8CB which in turn affects its viscosity. We support this interpretation with a scaling argument using the LC magnetic coherence length that includes (i) the elastic energy from the long-range orientational ordering of 8CB and (ii) the free energy from the interaction between 8CB and a magnetic field. Overall, these results advance our understanding of droplet mobility on LC films and enable new designs for responsive surfaces that can manipulate the mobility of water droplets. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (further details of the stability of LCIPS against water-induced dewetting, the interfacial tension and contact angle measurement using a goniometer, the estimation of the thickness of LC wrapping layer at air-water interface on droplets, SEM measurements, the average sliding velocity of a water droplet on 5CB, E7, silicone oil, and mineral oil films with and without a magnetic field, representative force diagram (F d versus time) of a 3-µL water droplet moving at a speed of 0.1 mm/s on a nematic 8CB film, F dynamic acting on 3 µL water droplets moving at speeds of 0.1-1 mm/s on an isotropic 8CB film, the calculated magnetic coherence length as a function of the magnitude of the magnetic field applied to the nematic LCIPS, and the apparent advancing and receding contact angles of a moving water droplet on nematic LCIPS as a function of time, and polarized light micrographs (top view) of a nematic 8CB film between two DMOAP-functionalized glass slides before and after applying a horizontal magnetic field) is available in the online version of this article at 10.1007/s12274-022-5318-y.
Collapse
Affiliation(s)
- Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - Weichen Deng
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Jen-Chun Fang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Robert L Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Meng Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Simon Čopar
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Uroš Tkalec
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Department of Condensed Matter Physics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
- Sustainability Institute, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
37
|
Xu Y, Yao Y, Deng W, Fang JC, Dupont RL, Zhang M, Čopar S, Tkalec U, Wang X. Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces. NANO RESEARCH 2022; 16:5098-5107. [PMID: 36570861 PMCID: PMC9768411 DOI: 10.1007/s12274-022-5318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/29/2022] [Accepted: 11/13/2022] [Indexed: 05/25/2023]
Abstract
Magnetocontrollable droplet mobility on surfaces of both solids and simple fluids have been widely used in a wide range of applications. However, little is understood about the effect of the magnetic field on the wettability and mobility of droplets on structured fluids. Here, we report the manipulation of the dynamic behaviors of water droplets on a film of thermotropic liquid crystals (LCs). We find that the static wetting behavior and static friction of water droplets on a 4'-octyl-4-biphenylcarbonitrile (8CB) film strongly depend on the LC mesophases, and that a magnetic field caused no measurable change to these properties. However, we find that the droplet dynamics can be affected by a magnetic field as it slides on a nematic 8CB film, but not on isotropic 8CB, and is dependent on both the direction and strength of the magnetic field. By measuring the dynamic friction of a droplet sliding on a nematic 8CB film, we find that a magnetic field alters the internal orientational ordering of the 8CB which in turn affects its viscosity. We support this interpretation with a scaling argument using the LC magnetic coherence length that includes (i) the elastic energy from the long-range orientational ordering of 8CB and (ii) the free energy from the interaction between 8CB and a magnetic field. Overall, these results advance our understanding of droplet mobility on LC films and enable new designs for responsive surfaces that can manipulate the mobility of water droplets. Electronic Supplementary Material Supplementary material (further details of the stability of LCIPS against water-induced dewetting, the interfacial tension and contact angle measurement using a goniometer, the estimation of the thickness of LC wrapping layer at air-water interface on droplets, SEM measurements, the average sliding velocity of a water droplet on 5CB, E7, silicone oil, and mineral oil films with and without a magnetic field, representative force diagram (Fd versus time) of a 3-µL water droplet moving at a speed of 0.1 mm/s on a nematic 8CB film, Fdynamic acting on 3 µL water droplets moving at speeds of 0.1-1 mm/s on an isotropic 8CB film, the calculated magnetic coherence length as a function of the magnitude of the magnetic field applied to the nematic LCIPS, and the apparent advancing and receding contact angles of a moving water droplet on nematic LCIPS as a function of time, and polarized light micrographs (top view) of a nematic 8CB film between two DMOAP-functionalized glass slides before and after applying a horizontal magnetic field) is available in the online version of this article at 10.1007/s12274-022-5318-y.
Collapse
Affiliation(s)
- Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - Weichen Deng
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Jen-Chun Fang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Robert L. Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Meng Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Simon Čopar
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Uroš Tkalec
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Department of Condensed Matter Physics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
- Sustainability Institute, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
38
|
He G, Zhang C, Dong Z. Survival in desert: Extreme water adaptations and bioinspired structural designs. iScience 2022; 26:105819. [PMID: 36636349 PMCID: PMC9830228 DOI: 10.1016/j.isci.2022.105819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Deserts are the driest places in the world, desert creatures have evolved special adaptations to survive in this extreme water shortage environment. The collection and transport of condensed water have been of particular interest regarding the potential transfer of the underlying mechanisms to technical applications. In this review, the mechanisms of water capture and transport were first summarized. Secondly, an introduction of four typical desert creatures including cactus, desert beetles, lizards, and snakes which have special adaptations to manage water was elaborated. Thirdly, the recent progress of biomimetic water-collecting structures including cactus, desert beetles, and lizards inspired designs and the influence of overflow on water collection was demonstrated. Finally, the conclusions were drawn, and future issues were pointed out. The present study will further promote research on bioinspired water management strategies.
Collapse
Affiliation(s)
- Guandi He
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengqi Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China,Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China,Corresponding author
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding author
| |
Collapse
|
39
|
Peng Y, Jiao Y, Li C, Zhu S, Chen C, Hu Y, Li J, Cao Y, Wu D. Meniscus-Induced Directional Self-Transport of Submerged Bubbles on a Slippery Oil-Infused Pillar Array with Height-Gradient. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15001-15007. [PMID: 36410051 DOI: 10.1021/acs.langmuir.2c02791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Directional manipulation of submerged bubbles is fundamental for both theoretical research and industrial production. However, most current strategies are limited to the upward motion direction, complex surface topography, and additional apparatuses. Here, we report a meniscus-induced self-transport platform, namely, a slippery oil-infused pillar array with height-gradient (SOPAH) by combining femtosecond laser drilling and replica mold technology. Owing to the unbalanced capillary force and Laplace pressure difference, bubbles on SOPAH tend to spontaneously transport along the meniscus gradient toward a higher elevation. The self-transport performances of bubbles near the pillars depend on the complex meniscus shape. Significantly, to understand the underlying transport mechanism, the 3D meniscus profile is simulated by solving the Young-Laplace equation. It is found that the concave valleys formed between the adjacent pillars can change the gradient direction of the meniscus and lead to the varied transport performances. Finally, by taking advantage of a water electrolysis system, the assembled SOPAH serving as a bubble-collecting device is successfully deployed. This work should not only bring new insights into the meniscus-induced self-transport dynamics but also benefit potential applications in the field of intelligent bubble manipulation.
Collapse
Affiliation(s)
- Yubin Peng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou510632, China
| | - Yunlong Jiao
- Institute of Tribology, School of Mechanical Engineering, Hefei University of Technology, Hefei230009, China
| | - Chuanzong Li
- School of Computer and Information Engineering, Fuyang Normal University, Fuyang236037, China
| | - Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei230026, China
| | - Chao Chen
- Department of Materials Physics and New Energy Device, School of Materials Science and Engineering, Hefei University of Technology, Hefei230009, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei230026, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei230026, China
| | - Yaoyu Cao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou510632, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
40
|
Wang L, Yin K, Deng Q, Huang Q, He J, Duan J. Wetting Ridge-Guided Directional Water Self-Transport. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204891. [PMID: 36253156 PMCID: PMC9731720 DOI: 10.1002/advs.202204891] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Indexed: 05/12/2023]
Abstract
Directional water self-transport plays a crucial role in diverse applications such as biosensing and water harvesting. Despite extensive progress, current strategies for directional water self-transport are restricted to a short self-driving distance, single function, and complicated fabrication methods. Here, a lubricant-infused heterogeneous superwettability surface (LIHSS) for directional water self-transport is proposed on polyimide (PI) film through femtosecond laser direct writing and lubricant infusion. By tuning the parameters of the femtosecond laser, the wettability of PI film can be transformed into superhydrophobic or superhydrophilic. After trapping water droplets on the superhydrophilic surface and depositing excess lubricant, the asymmetrical wetting ridge drives water droplets by an attractive capillary force on the LIHSS. Notably, the maximum droplet self-driving distance can approach ≈3 mm, which is nearly twice as long as the previously reported strategies for direction water self-transport. Significantly, it is demonstrated that this strategy makes it possible to achieve water self-transport, anti-gravity pumping, and chemical microreaction on a tilted LIHSS. This work provides an efficient method to fabricate a promising platform for realizing directional water self-transport.
Collapse
Affiliation(s)
- Lingxiao Wang
- Hunan Key Laboratory of Nanophotonics and DevicesSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Kai Yin
- Hunan Key Laboratory of Nanophotonics and DevicesSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
- The State Key Laboratory of High Performance and Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Qinwen Deng
- Hunan Key Laboratory of Nanophotonics and DevicesSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Qiaoqiao Huang
- Hunan Key Laboratory of Nanophotonics and DevicesSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and DevicesSchool of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Ji‐An Duan
- The State Key Laboratory of High Performance and Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083P. R. China
| |
Collapse
|
41
|
Zheng W, Huang J, Zang X, Xu X, Cai W, Lin Z, Lai Y. Judicious Design and Rapid Manufacturing of a Flexible, Mechanically Resistant Liquid-Like Coating with Strong Bonding and Antifouling Abilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204581. [PMID: 36018280 DOI: 10.1002/adma.202204581] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Fluorine-free liquid-repellent coatings have been highly demanded for a variety of applications. However, rapid formation of coatings possessing outstanding oil repellency and strong bonding ability as well as good mechanical strength (e.g., bendability, impact resistance, and scratch resistance) remains a grand challenge. Herein, a robust strategy to rapidly create fluorine-free oil-repellent coatings in only 30 s via rational design of a semi-interpenetrating polymer network structure is reported. The resulting coating manifests strong bonding capability both in air and underwater. More importantly, it not only provides unprecedented oil repellency, even to high-viscosity crude oil, but also achieves both excellent bendability and hardness. This simple yet effective design strategy opens up a new avenue to manufacture multifunctional materials and devices with desirable features and structural complexities for applications in sustainable antifouling, drag reduction, nondestructive transportation, liquid collection, and biomedicine, among other areas.
Collapse
Affiliation(s)
- Weiwei Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Xuerui Zang
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Xuanfei Xu
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Weilong Cai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Zhiqun Lin
- Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| |
Collapse
|
42
|
Kang SM, An JH. Robust and Transparent Lossless Directional Omniphobic Ultra-Thin Sticker-Type Film with Re-entrant Micro-Stripe Arrays. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39646-39653. [PMID: 35979700 DOI: 10.1021/acsami.2c12398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Directional droplet-sliding control without wetting the surface is immensely required in advanced surface engineering, including biological and chemical analyses or green technology. However, the development of robust and transparent thin sticker-type directional omniphobic films for portable usage in smart microfluidic platforms is rare. In this study, we report a novel perfluoropolyether (PFPE) directional omniphobic film (PDOF). The PDOF is a robust and transparent ultra-thin sticker-type film that can control the anisotropic sliding of various liquid droplets on the surface. The PFPE is a chemically stable and turgid material compared to polydimethylsiloxane (PDMS), which is often used to fabricate liquid-repellent thin films. A well-designed fabrication criterion through adhesion engineering in the soft-molding process was developed using the PFPE to obtain a PDOF with a thickness of 56 μm, with re-entrant micro-stripe structures on the surface. The fabricated PDOF showed intriguing liquid sliding properties based on the direction and spacing of the microstructures. This aspect is defined as an anisotropic factor.
Collapse
Affiliation(s)
- Seong Min Kang
- Department of Mechanical Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Joon Hyung An
- Department of Mechanical Engineering, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
43
|
Wang D, Chen Y, Huang Y, Bai H, Tan Y, Gao P, Deng X, Xia F, Jiang L. Universal and Stable Slippery Coatings: Chemical Combination Induced Adhesive-Lubricant Cooperation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203057. [PMID: 35843880 DOI: 10.1002/smll.202203057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Liquid lubricant of low affinity makes slippery coatings widely used in lubricating, anti-biofouling, anti-icing, fluid guiding, and drag reduction. Two critical challenges, however, remain in the practical application of slippery coatings consisting of liquid lubricants: (1) universality regardless of roughness and chemical composition of substrates, (2) stability of surface lubricity against evaporation. Herein, a chemical method is reported to create a universal and stable slippery lubricant-adhesive cooperated coating (SLACC) through acid catalyzed dehydration reaction between the phenolic hydroxyl of polydopamine (PDA), with universal (for challenge-1) and strong (for challenge-2) adhesion properties, and liquid-like polydimethylsiloxane (PDMS), with lubricant properties. Through overlying PDMS on PDA, a spatial gradient interpenetration of chemical combined PDA and PDMS leaving lubricant PDMS at the outermost of coating is achieved. This structure contributes to the following performances of SLACC: nearly universality suitable for 100 different abiotic or biotic substrates and stability sustainable for long-term usages, UV radiating, refrigerating, hot air drying, freeze drying, knife scratch and abrasion. This proposed strategy is envisioned anti-fouling from plane to tube and exhibits drag reduction in confined space.
Collapse
Affiliation(s)
- Dagui Wang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yajie Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yao Tan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Pengcheng Gao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
44
|
Wang F, Liu M, Liu C, Zhao Q, Wang T, Wang Z, Du X. Light-induced charged slippery surfaces. SCIENCE ADVANCES 2022; 8:eabp9369. [PMID: 35857475 PMCID: PMC9269890 DOI: 10.1126/sciadv.abp9369] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Slippery lubricant-infused porous (SLIPS) and superhydrophobic surfaces have emerged as promising interfacial materials for various applications such as self-cleaning, anti-icing, and antifouling. Paradoxically, the coverage/screening of lubricant layer on underlying rough matrix endows functionalities impossible on superhydrophobic surfaces; however, the inherent flexibility in programming droplet manipulation through tailoring structure or surface charge gradient in underlying matrix is compromised. Here, we develop a class of slippery material that harnesses the dual advantages of both solid and lubricant. This is achieved by rationally constructing a photothermal-responsive composite matrix with real-time light-induced surface charge regeneration capability, enabling photocontrol of droplets in various working scenarios. We demonstrate that this light-induced charged slippery surface (LICS) exerts photocontrol of droplets with fast speed, long distance, antigravity motion, and directionally collective motion. We further extend the LICS to biomedical domains, ranging from specific morphological hydrogel bead formation in an open environment to biological diagnosis and analysis in closed-channel microfluidics.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, P. R. China
| | - Meijin Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, P. R. China
| | - Cong Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, P. R. China
| | - Qilong Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, P. R. China
| | - Ting Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, P. R. China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, P. R. China
| | - Xuemin Du
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, P. R. China
| |
Collapse
|
45
|
Yang Y, Bai H, Li M, Li Z, Wang X, Wang P, Cao M. An interfacial floating tumbler with a penetrable structure and Janus wettability inspired by Pistia stratiotes. MATERIALS HORIZONS 2022; 9:1888-1895. [PMID: 35666656 DOI: 10.1039/d2mh00361a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Designing advanced interfacial materials is decisive to the improvement of multiphase systems. Inspired by the superior floatability of Pistia stratiotes, here we present a superhydrophobic/hydrophilic 3D Janus floater with a water managing ability. Its self-regulated floatation mechanism, as well as its water removal logic, should provide insight into the development of multifunctional interfacial carriers in the fields of micro-devices, solar evaporation, etc.
Collapse
Affiliation(s)
- Yifan Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Haoyu Bai
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Muqian Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhe Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xinsheng Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Pengwei Wang
- Laboratory for Advanced Interfacial Materials and Devices, Research Center for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong.
| | - Moyuan Cao
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| |
Collapse
|
46
|
Ni E, Song L, Li Z, Lu G, Jiang Y, Li H. Unidirectional self-actuation transport of a liquid metal nanodroplet in a two-plate confinement microchannel. NANOSCALE ADVANCES 2022; 4:2752-2761. [PMID: 36132291 PMCID: PMC9416919 DOI: 10.1039/d1na00832c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Controllable directional transport of a liquid metal nanodroplet in a microchannel has been a challenge in the field of nanosensors, nanofluidics, and nanofabrication. In this paper, we report a novel design that the self-actuation of a gallium nanodroplet in a two-plate confinement microchannel could be achieved via a continuous wetting gradient. More importantly, suitable channel parameters could be used to manipulate the dynamic behavior of the gallium nanodroplet. The self-actuation transport in the two-plate confinement microchannel is the result of the competition between the driving force from the difference of the Laplace pressure and energy dissipation from the viscous resistance. Furthermore, we have identified the conditions to assess whether the droplet will pass through the contractive cross-section or not. This work can provide guidance for manipulating liquid metal nanodroplets in microchannels.
Collapse
Affiliation(s)
- Erli Ni
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University Jinan 250061 China
| | - Lin Song
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University Xi'an 710072 China
| | - Zhichao Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University Jinan 250061 China
| | - Guixuan Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University Jinan 250061 China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University Jinan 250061 China
- Shenzhen Research Institute of Shandong University Shenzhen 518057 China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University Jinan 250061 China
| |
Collapse
|
47
|
Han X, Li J, Tang X, Li W, Zhao H, Yang L, Wang L. Droplet Bouncing: Fundamentals, Regulations, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200277. [PMID: 35306734 DOI: 10.1002/smll.202200277] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Droplet impact is a ubiquitous phenomenon in nature, daily life, and industrial processes. It is thus crucial to tune the impact outcomes for various applications. As a special outcome of droplet impact, the bouncing of droplets keeps the form of the droplets after the impact and minimizes the energy loss during the impact, being beneficial in many applications. A unified understanding of droplet bouncing is in high demand for effective development of new techniques to serve applications. This review shows the fundamentals, regulations, and applications of millimeter-sized droplet bouncing on solid surfaces and same/miscible liquids (liquid pool and another droplet). Regulation methods and current applications are summarized, and potential directions are proposed.
Collapse
Affiliation(s)
- Xing Han
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Jiaqian Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Xin Tang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Wei Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Haibo Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ling Yang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| |
Collapse
|
48
|
Mo J, Wang C, Zeng J, Sha J, Li Z, Chen Y. Directional passive transport of nanodroplets on general axisymmetric surfaces. Phys Chem Chem Phys 2022; 24:9727-9734. [PMID: 35412533 DOI: 10.1039/d1cp05905j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rapid removal of small-sized droplets passively using fixed structures is a key challenge for various applications including anti-icing, rapid cooling, and water harvesting. In this work, we investigate the directional motion of nanodroplets on axisymmetric surfaces with curvature gradient through molecular dynamics (MD) simulations. It is found that as the shape of the axisymmetric surface is changed from a dome to a trumpet, the droplet velocity is greatly enhanced, by a factor of ∼14. Such an increase is mainly caused by the increment in the driving force. The droplet velocity changes nonlinearly as the surface wettability is varied and assumes the maximum at the contact angle of ∼75°. We derive a formula for the driving force of nanodroplets on general axisymmetric surfaces by evaluating the pressure gradient inside the droplet induced by the curvature gradient. Molecular dynamics simulations are performed to directly measure the driving force and confirm that the theoretical formula works well. By illustrating the reduced initial velocity of droplets as a function of a dimensionless number, which represents the ratio of the driving force to the retentive force due to contact angle hysteresis, we show that the onset of droplet motion on axisymmetric surfaces occurs when the dimensionless number is above a critical value. The dimensionless number reveals the effects of surface geometry, surface wettability, and droplet size on the droplet motion.
Collapse
Affiliation(s)
- Jingwen Mo
- Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | - Chen Wang
- Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | - Jiaying Zeng
- Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | - Zhigang Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, P. R. China.
| |
Collapse
|
49
|
Tang J, Zhao Y, Wang M, Wang D, Yang X, Hao R, Wang M, Wang Y, He H, Xin JH, Zheng S. Circadian humidity fluctuation induced capillary flow for sustainable mobile energy. Nat Commun 2022; 13:1291. [PMID: 35277510 PMCID: PMC8917138 DOI: 10.1038/s41467-022-28998-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/23/2022] [Indexed: 11/09/2022] Open
Abstract
Circadian humidity fluctuation is an important factor that affects human life all over the world. Here we show that spherical cap-shaped ionic liquid drops sitting on nanowire array are able to continuously output electricity when exposed to outdoor air, which we attribute to the daily humidity fluctuation induced directional capillary flow. Specifically, ionic liquid drops could absorb/desorb water around the liquid/vapor interface and swell/shrink depending on air humidity fluctuation. While pinning of the drop by nanowire array suppresses advancing/receding of triple-phase contact line. To maintain the surface tension-regulated spherical cap profile, inward/outward flow arises for removing excess fluid from the edge or filling the perimeter with fluid from center. This moisture absorption/desorption-caused capillary flow is confirmed by in-situ microscope imaging. We conduct further research to reveal how environmental humidity affects flow rate and power generation performance. To further illustrate feasibility of our strategy, we combine the generators to light up a red diode and LCD screen. All these results present the great potential of tiny humidity fluctuation as an easily accessible anytime-and-anywhere small-scale green energy resource. Droplet generators convert mechanical movements of droplets into small-scale electricity. Here, Tang et al. report a humidity-driven power generator by utilizing daily humidity fluctuation in atmosphere enabling continuous generation of electricity upon moisture absorption and desorption cycles.
Collapse
|
50
|
Manipulation and control of droplets on surfaces in a homogeneous electric field. Nat Commun 2022; 13:289. [PMID: 35022399 PMCID: PMC8755840 DOI: 10.1038/s41467-021-27879-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/07/2021] [Indexed: 01/17/2023] Open
Abstract
A method to manipulate and control droplets on a surface is presented. The method is based on inducing electric dipoles inside the droplets using a homogeneous external electric field. It is shown that the repulsive dipole force efficiently suppresses the coalescence of droplets moving on a liquid-infused surface (LIS). Using a combination of experiments, numerical computations and semi-analytical models, the dependence of the repulsion force on the droplet volumes, the distance between the droplets and the electric field strength is revealed. The method allows to suppress coalescence in complex multi-droplet flows and is real-time adaptive. When the electric field strength exceeds a critical value, tip streaming from the droplets sets in. Based on that, it becomes possible to withdraw minute samples from an array of droplets in a parallel process. Control of droplet coalescence is a major challenge of droplet microfluidics. Here, the authors show that homogenous external electric field can induce dipoles inside droplets, which can be used to withdraw samples from an array of droplets.
Collapse
|