1
|
Jandova V, Altman J, Sehadova H, Macek M, Fibich P, Ruka AT, Dolezal J. Climate warming promotes growth in Himalayan alpine cushion plants but threatens survival through increased extreme snowfall. THE NEW PHYTOLOGIST 2025. [PMID: 40356206 DOI: 10.1111/nph.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025]
Abstract
Climate warming stimulates growth and reproduction in cold-adapted plants but also leads to extreme weather events that may hinder their performance. We examined these predictions in the cold-arid Himalayan subnival zone at 5900 m, where unprecedented warming and extreme snowfalls occurred over the past three decades. We collected 205 individuals of Ladakiella klimesii, analyzing climate influences on their growth and recruitment through annual growth rings. Radial growth was highly sensitive to summer temperatures, with warmer conditions significantly enhancing growth. However, increased winter precipitation negatively impacted growth and recruitment by shortening the growing season. Warmer winters and springs, combined with autumn snow cover, favored recruitment, while extreme late winter and summer snowfall disrupted growth and recruitment through intensified soil disturbances. We also found a trade-off between growth rate and longevity: Plants established during warmer periods grow rapidly but have shorter lifespans, whereas those emerging in colder conditions grow more slowly yet persist longer, with implications for long-term population stability. These findings highlight the complex relationship between growth, longevity, and survival in a shifting climate. Although warming promotes growth, it may also decrease longevity and population persistence. The rising frequency of extreme snowfall presents new survival challenges for the world's highest-occurring plants.
Collapse
Affiliation(s)
- Veronika Jandova
- Institute of Botany of the Czech Academy of Science, Zámek 1, CZ 252 43, Průhonice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ 370 05, České Budějovice, Czech Republic
| | - Jan Altman
- Institute of Botany of the Czech Academy of Science, Zámek 1, CZ 252 43, Průhonice, Czech Republic
| | - Hana Sehadova
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ 370 05, České Budějovice, Czech Republic
- Laboratory of Microscopy and Histology, Biology Centre, Institute of Entomology of the Czech Academy of Sciences, Branišovská 1160, CZ 370 05, České Budějovice, Czech Republic
| | - Martin Macek
- Institute of Botany of the Czech Academy of Science, Zámek 1, CZ 252 43, Průhonice, Czech Republic
| | - Pavel Fibich
- Institute of Botany of the Czech Academy of Science, Zámek 1, CZ 252 43, Průhonice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ 370 05, České Budějovice, Czech Republic
| | - Adam Taylor Ruka
- Institute of Botany of the Czech Academy of Science, Zámek 1, CZ 252 43, Průhonice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ 370 05, České Budějovice, Czech Republic
| | - Jiri Dolezal
- Institute of Botany of the Czech Academy of Science, Zámek 1, CZ 252 43, Průhonice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ 370 05, České Budějovice, Czech Republic
| |
Collapse
|
2
|
Yang L, Peng S, Zhu D. Extended Gap Between Snowmelt and Greenup Increases Dust Storm Occurrence. GLOBAL CHANGE BIOLOGY 2025; 31:e70236. [PMID: 40387504 DOI: 10.1111/gcb.70236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025]
Abstract
Impacts of climate change on spring phenology and snowmelt timing are well-documented across the Northern Hemisphere. However, the critical period between the snowmelt end date (SED) and the start of the growing season (SOS)-the SED-SOS gap-and its consequences have been largely overlooked. Here, we use satellite-derived and ground-based SED and SOS data from 2001 to 2019 to investigate temporal trends in the SED-SOS gap and the potential impacts across the Northern Hemisphere. We find that SED-SOS gap has extended at an average rate of -0.10 days yr-1, with approximately 50% of the regions exhibit an extending trend. In high-latitude and high-altitude regions, the SED-SOS gap tends to narrow due to delayed SED or a faster advancement of SOS than that of SED, while mid-latitude regions show extending gaps due to faster SED advancement or delayed SOS. A case study in Inner Mongolia reveals that an extended SED-SOS gap significantly increases dust storm occurrence by enhancing soil exposure to wind erosion, posing potential threats to ecosystems and human health. As SED and SOS dynamics become increasingly complex under future climate change, our findings emphasize the importance of monitoring the SED-SOS gap and understanding its dynamics to inform climate adaptation strategies and protect ecological and societal well-being.
Collapse
Affiliation(s)
- Lu Yang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Shushi Peng
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Peking University, Beijing, China
- Institute of Carbon Neutrality, Peking University, Beijing, China
| | - Dan Zhu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Peking University, Beijing, China
- Institute of Carbon Neutrality, Peking University, Beijing, China
| |
Collapse
|
3
|
Carley LN, Mitchell-Olds T, Morris WF. Increasing Aridity May Threaten the Maintenance of a Plant Defence Polymorphism. Ecol Lett 2025; 28:e70039. [PMID: 39737722 DOI: 10.1111/ele.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 01/01/2025]
Abstract
It is unclear how environmental change influences standing genetic variation in wild populations. Here, we characterised environmental conditions that protect versus erode polymorphic chemical defences in Boechera stricta (Brassicaceae), a short-lived perennial wildflower. By manipulating drought and herbivory in a 4-year field experiment, we measured the effects of driver variation on vital rates of genotypes varying in defence chemistry and then assessed interacting driver effects on total fitness (estimated as each genotype's lineage growth rate, λ) using demographic models. Drought and herbivory interacted to shape vital rates, but contrasting defence genotypes had equivalent total fitness in many environments. Defence polymorphism thus may persist under a range of conditions; however, ambient field conditions fall close to the boundary of putatively polymorphic environment space, and increasing aridity may drive populations to monomorphism. Consequently, elevated intensity and/or frequency of drought under climate change may erode genetic variation for defence chemistry in B. stricta.
Collapse
Affiliation(s)
- Lauren N Carley
- University Program in Ecology, Duke University, Durham, North Carolina, USA
- Department of Biology, Duke University, Durham, North Carolina, USA
- Rocky Mountain Biological Laboratory, Gothic, Colorado, USA
- Ecology & Evolution Department, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
4
|
Carscadden KA, Doak DF, Oldfather MF, Emery NC. Demographic responses of hybridizing cinquefoils to changing climate in the Colorado Rocky Mountains. Ecol Evol 2023; 13:e10097. [PMID: 37449020 PMCID: PMC10336340 DOI: 10.1002/ece3.10097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023] Open
Abstract
Hybridization between taxa generates new pools of genetic variation that can lead to different environmental responses and demographic trajectories over time than seen in parental lineages. The potential for hybrids to have novel environmental tolerances may be increasingly important in mountainous regions, which are rapidly warming and drying due to climate change. Demographic analysis makes it possible to quantify within- and among-species responses to variation in climate and to predict population growth rates as those conditions change. We estimated vital rates and population growth in 13 natural populations of two cinquefoil taxa (Potentilla hippiana and P. pulcherrima) and their hybrid across elevation gradients in the Southern Rockies. Using three consecutive years of environmental and demographic data, we compared the demographic responses of hybrid and parental taxa to environmental variation across space and time. All three taxa had lower predicted population growth rates under warm, dry conditions. However, the magnitude of these responses varied among taxa and populations. Hybrids had consistently lower predicted population growth rates than P. hippiana. In contrast, hybrid performance relative to P. pulcherrima varied with population and climate, with the hybrid maintaining relatively stable growth rates while populations of P. pulcherrima shrank under warm, dry conditions. Our findings demonstrate that hybrids in this system are neither intrinsically unfit nor universally more vigorous than parents, suggesting that the demographic consequences of hybridization are context-dependent. Our results also imply that shifts to warmer and drier conditions could have particularly negative repercussions for P. pulcherrima, which is currently the most abundant taxon in the study area, possibly as a legacy of more favorable historical climates. More broadly, the distributions of these long-lived taxa are lagging behind their demographic trajectories, such that the currently less common P. hippiana could become the most abundant of the Potentilla taxa as this region continues to warm and dry.
Collapse
Affiliation(s)
- Kelly A. Carscadden
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Daniel F. Doak
- Department of Environmental StudiesUniversity of Colorado BoulderBoulderColoradoUSA
| | - Meagan F. Oldfather
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Nancy C. Emery
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
5
|
Blonder BW, Brodrick PG, Chadwick KD, Carroll E, Cruz-de Hoyos RM, Expósito-Alonso M, Hateley S, Moon M, Ray CA, Tran H, Walton JA. Climate lags and genetics determine phenology in quaking aspen (Populus tremuloides). THE NEW PHYTOLOGIST 2023; 238:2313-2328. [PMID: 36856334 DOI: 10.1111/nph.18850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/19/2023] [Indexed: 05/19/2023]
Abstract
Spatiotemporal patterns of phenology may be affected by mosaics of environmental and genetic variation. Environmental drivers may have temporally lagged impacts, but patterns and mechanisms remain poorly known. We combine multiple genomic, remotely sensed, and physically modeled datasets to determine the spatiotemporal patterns and drivers of canopy phenology in quaking aspen, a widespread clonal dioecious tree species with diploid and triploid cytotypes. We show that over 391 km2 of southwestern Colorado: greenup date, greendown date, and growing season length vary by weeks and differ across sexes, cytotypes, and genotypes; phenology has high phenotypic plasticity and heritabilities of 31-61% (interquartile range); and snowmelt date, soil moisture, and air temperature predict phenology, at temporal lags of up to 3 yr. Our study shows that lagged environmental effects are needed to explain phenological variation and that the effect of cytotype on phenology is obscured by its correlation with topography. Phenological patterns are consistent with responses to multiyear accumulation of carbon deficit or hydraulic damage.
Collapse
Affiliation(s)
- Benjamin W Blonder
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, CA, 94720, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | - Philip G Brodrick
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - K Dana Chadwick
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Erin Carroll
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, CA, 94720, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | - Roxanne M Cruz-de Hoyos
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, CA, 94720, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | | | - Shannon Hateley
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Minkyu Moon
- Department of Earth & Environment, Boston University, Boston, MA, 02215, USA
| | - Courtenay A Ray
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, CA, 94720, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | - Hoang Tran
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08540, USA
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - James A Walton
- Molecular Ecology Laboratory, Department of Wildland Resources, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
6
|
Campbell DR, Raguso RA, Midzik M, Bischoff M, Broadhead GT. Genetic and spatial variation in vegetative and floral traits across a hybrid zone. AMERICAN JOURNAL OF BOTANY 2022; 109:1780-1793. [PMID: 36193908 PMCID: PMC9828138 DOI: 10.1002/ajb2.16067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Genetic variation influences the potential for evolution to rescue populations from impacts of environmental change. Most studies of genetic variation in fitness-related traits focus on either vegetative or floral traits, with few on floral scent. How vegetative and floral traits compare in potential for adaptive evolution is poorly understood. METHODS We measured variation across source populations, planting sites, and genetic families for vegetative and floral traits in a hybrid zone. Seeds from families of Ipomopsis aggregata, I. tenuituba, and F1 and F2 hybrids of the two species were planted into three common gardens. Measured traits included specific leaf area (SLA), trichomes, water-use efficiency (WUE), floral morphology, petal color, nectar, and floral volatiles. RESULTS Vegetative traits SLA and WUE varied greatly among planting sites, while showing weak or no genetic variation among source populations. Specific leaf area and trichomes responded plastically to snowmelt date, and SLA exhibited within-population genetic variation. All aspects of floral morphology varied genetically among source populations, and corolla length, corolla width, and sepal width varied genetically within populations. Heritability was not detected for volatiles due to high environmental variation, although one terpene had high evolvability, and high emission of two terpenes, a class of compounds emitted more strongly from the calyx than the corolla, correlated genetically with sepal width. Environmental variation across sites was weak for floral morphology and stronger for volatiles and vegetative traits. The inheritance of three of four volatiles departed from additive. CONCLUSIONS Results indicate stronger genetic potential for evolutionary responses to selection in floral morphology compared with scent and vegetative traits and suggest potentially adaptive plasticity in some vegetative traits.
Collapse
Affiliation(s)
- Diane R. Campbell
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
- Rocky Mountain Biological LaboratoryCrested ButteCO81224USA
| | - Robert A. Raguso
- Department of Neurobiology and BehaviorCornell UniversityIthacaNY14853USA
| | - Maya Midzik
- Rocky Mountain Biological LaboratoryCrested ButteCO81224USA
| | - Mascha Bischoff
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
- Rocky Mountain Biological LaboratoryCrested ButteCO81224USA
- Department of Neurobiology and BehaviorCornell UniversityIthacaNY14853USA
- Environmental Research Institute, North Highland CollegeCastle StreetThursoKW14 7JDUK
| | | |
Collapse
|
7
|
Rushworth CA, Wagner MR, Mitchell-Olds T, Anderson JT. The Boechera model system for evolutionary ecology. AMERICAN JOURNAL OF BOTANY 2022; 109:1939-1961. [PMID: 36371714 DOI: 10.1002/ajb2.16090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Model systems in biology expand the research capacity of individuals and the community. Closely related to Arabidopsis, the genus Boechera has emerged as an important ecological model owing to the ability to integrate across molecular, functional, and eco-evolutionary approaches. Boechera species are broadly distributed in relatively undisturbed habitats predominantly in western North America and provide one of the few experimental systems for identification of ecologically important genes through genome-wide association studies and investigations of selection with plants in their native habitats. The ecologically, evolutionarily, and agriculturally important trait of apomixis (asexual reproduction via seeds) is common in the genus, and field experiments suggest that abiotic and biotic environments shape the evolution of sex. To date, population genetic studies have focused on the widespread species B. stricta, detailing population divergence and demographic history. Molecular and ecological studies show that balancing selection maintains genetic variation in ~10% of the genome, and ecological trade-offs contribute to complex trait variation for herbivore resistance, flowering phenology, and drought tolerance. Microbiome analyses have shown that host genotypes influence leaf and root microbiome composition, and the soil microbiome influences flowering phenology and natural selection. Furthermore, Boechera offers numerous opportunities for investigating biological responses to global change. In B. stricta, climate change has induced a shift of >2 weeks in the timing of first flowering since the 1970s, altered patterns of natural selection, generated maladaptation in previously locally-adapted populations, and disrupted life history trade-offs. Here we review resources and results for this eco-evolutionary model system and discuss future research directions.
Collapse
Affiliation(s)
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA
| | | | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
8
|
Navarro J, Powers JM, Paul A, Campbell DR. Phenotypic plasticity and selection on leaf traits in response to snowmelt timing and summer precipitation. THE NEW PHYTOLOGIST 2022; 234:1477-1490. [PMID: 35274312 DOI: 10.1111/nph.18084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/09/2022] [Indexed: 05/21/2023]
Abstract
Vegetative traits of plants can respond directly to changes in the environment, such as those occurring under climate change. That phenotypic plasticity could be adaptive, maladaptive, or neutral. We manipulated the timing of spring snowmelt and amount of summer precipitation in factorial combination and examined responses of specific leaf area (SLA), trichome density, leaf water content (LWC), photosynthetic rate, stomatal conductance and intrinsic water-use efficiency (iWUE) in the subalpine herb Ipomopsis aggregata. The experiment was repeated in three years differing in natural timing of snowmelt. To examine natural selection, we used survival, relative growth rate, and flowering as fitness indices. A 50% reduction in summer precipitation reduced stomatal conductance and increased iWUE, and doubled precipitation increased LWC. Combining natural and experimental variation, earlier snowmelt reduced soil moisture, photosynthetic rate and stomatal conductance, and increased trichome density and iWUE. Precipitation reduction reversed the mortality selection favoring high stomatal conductance under normal and doubled precipitation, and higher LWC improved growth. Earlier snowmelt is a strong signal of climate change and can change expression of leaf morphology and gas exchange traits, just as reduced precipitation can. Stomatal conductance and SLA showed adaptive plasticity under some conditions.
Collapse
Affiliation(s)
- Jocelyn Navarro
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ, 85721, USA
- Rocky Mountain Biological Laboratory, 8000 County Road 317, Crested Butte, CO, 81224, USA
| | - John M Powers
- Rocky Mountain Biological Laboratory, 8000 County Road 317, Crested Butte, CO, 81224, USA
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA, 92697, USA
| | - Ayaka Paul
- Rocky Mountain Biological Laboratory, 8000 County Road 317, Crested Butte, CO, 81224, USA
- Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO, 80523, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Diane R Campbell
- Rocky Mountain Biological Laboratory, 8000 County Road 317, Crested Butte, CO, 81224, USA
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA, 92697, USA
| |
Collapse
|
9
|
Zettlemoyer MA. Monitoring demography of resurrected populations of locally extinct and extant species to investigate drivers of species loss. Am Nat 2022; 200:E36-E51. [DOI: 10.1086/720206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Carscadden KA, Doak DF, Emery NC. Climate Variation Influences Flowering Time Overlap in a Pair of Hybridizing Montane Plants. WEST N AM NATURALIST 2022. [DOI: 10.3398/064.082.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kelly A. Carscadden
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant St., Boulder, CO 80309
| | - Daniel F. Doak
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant St., Boulder, CO 80309
| | - Nancy C. Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant St., Boulder, CO 80309
| |
Collapse
|
11
|
Powers JM, Briggs HM, Dickson RG, Li X, Campbell DR. Earlier snow melt and reduced summer precipitation alter floral traits important to pollination. GLOBAL CHANGE BIOLOGY 2022; 28:323-339. [PMID: 34582609 DOI: 10.1111/gcb.15908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Climate change can cause changes in expression of organismal traits that influence fitness. In flowering plants, floral traits can respond to drought, and that phenotypic plasticity has the potential to affect pollination and plant reproductive success. Global climate change is leading to earlier snow melt in snow-dominated ecosystems as well as affecting precipitation during the growing season, but the effects of snow melt timing on floral morphology and rewards remain unknown. We conducted crossed manipulations of spring snow melt timing (early vs. control) and summer monsoon precipitation (addition, control, and reduction) that mimicked recent natural variation, and examined plastic responses in floral traits of Ipomopsis aggregata over 3 years in the Rocky Mountains. We tested whether increased summer precipitation compensated for earlier snow melt, and if plasticity was associated with changes in soil moisture and/or leaf gas exchange. Lower summer precipitation decreased corolla length, style length, corolla width, sepal width, and nectar production, and increased nectar concentration. Earlier snow melt (taking into account natural and experimental variation) had the same effects on those traits and decreased inflorescence height. The effect of reduced summer precipitation was stronger in earlier snow melt years for corolla length and sepal width. Trait reductions were explained by drier soil during the flowering period, but this effect was only partially explained by how drier soils affected plant water stress, as measured by leaf gas exchange. We predicted the effects of plastic trait changes on pollinator visitation rates, pollination success, and seed production using prior studies on I. aggregata. The largest predicted effect of drier soil on relative fitness components via plasticity was a decrease in male fitness caused by reduced pollinator rewards (nectar production). Early snow melt and reduced precipitation are strong drivers of phenotypic plasticity, and both should be considered when predicting effects of climate change on plant traits in snow-dominated ecosystems.
Collapse
Affiliation(s)
- John M Powers
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Heather M Briggs
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Rachel G Dickson
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Xinyu Li
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Diane R Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| |
Collapse
|
12
|
Jeong H, Cho YC, Kim E. Differential plastic responses to temperature and nitrogen deposition in the subalpine plant species, Primula farinosa subsp . modesta. AOB PLANTS 2021; 13:plab061. [PMID: 34646436 PMCID: PMC8501906 DOI: 10.1093/aobpla/plab061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Future environmental changes are projected to threaten plant populations near mountaintops, but plastic responses of plant traits that are related to demographic parameters may reduce the detrimental effects of altered environments. Despite its ecological significance, little is known about the intraspecific variation of plasticity in alpine plant species such as Primula farinosa subsp. modesta. In this study, we investigated the plastic responses of plants at the early developmental stage from four P. farinosa natural populations in response to temperature and nitrogen deposition under laboratory conditions. Measured traits included plant survival, leaf number, rosette diameter, carbon assimilation rate and leaf chlorophyll content. In addition, we conducted a demographic survey of the natural populations to assess the plant's performance at the early developmental stage in the field and evaluate the ecological implications of our experimental treatments. The seedling stage contributed to the projected population growth rate in natural conditions, and the growth and survival of seedlings in the field were comparable to those grown in the control treatment. In response to high temperature, plants exhibited lower survival but produced larger rosettes with more leaves. Nitrogen deposition had little effect on plant survival and plant size; however, it increased plant survival in one population and altered the effect of temperature on the carbon assimilation rate. Populations exhibited differential plasticity indexes of measured traits in response to environmental treatments. These results suggest that even though the plants suffer from high early mortality under increasing temperature, stimulated growth at a high temperature potentially contributes to the persistence of P. farinosa natural populations. Natural populations might face differential extinction risks due to distinctive plastic responses to altered environments.
Collapse
Affiliation(s)
- Hyungsoon Jeong
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Yong-Chan Cho
- Conservation Center for Gwangneung Forest, Korea National Arboretum, Pocheon 11186, Korea
| | - Eunsuk Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
13
|
Endres KL, Morozumi CN, Loy X, Briggs HM, CaraDonna PJ, Iler AM, Picklum DA, Barr WA, Brosi BJ. Plant-pollinator interaction niche broadens in response to severe drought perturbations. Oecologia 2021; 197:577-588. [PMID: 34546496 DOI: 10.1007/s00442-021-05036-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
The composition of plant-pollinator interactions-i.e., who interacts with whom in diverse communities-is highly dynamic, and we have a very limited understanding of how interaction identities change in response to perturbations in nature. One prediction from niche and diet theory is that resource niches will broaden to compensate for resource reductions driven by perturbations, yet this has not been empirically tested in plant-pollinator systems in response to real-world perturbations in the field. Here, we use a long-term dataset of floral visitation to Ipomopsis aggregata, a montane perennial herb, to test whether the breadth of its floral visitation niche (i.e., flower visitor richness) changed in response to naturally occurring drought perturbations. Fewer floral resources are available in drought years, which could drive pollinators to expand their foraging niches, thereby expanding plants' floral visitation niches. We compared two drought years to three non-drought years to analyze changes in niche breadth and community composition of floral visitors to I. aggregata, predicting broadened niche breadth and distinct visitor community composition in drought years compared to non-drought years. We found statistically significant increases in niche breadth in drought years as compared to non-drought conditions, but no statistically distinguishable changes in community composition of flower visitors. Our findings suggest that plants' floral visitation niches may exhibit considerable plasticity in response to disturbance. This may have widespread consequences for community-level stability as well as functional consequences if increased niche overlap affects pollination services.
Collapse
Affiliation(s)
- Kelly L Endres
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Connor N Morozumi
- Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, USA.
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA.
| | - Xingwen Loy
- Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | | | - Paul J CaraDonna
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- Plant Biology and Conservation, Northwestern University, Evanston, IL, USA
- Chicago Botanic Garden, The Negaunee Institute of Plant Conservation Science and Action, Glencoe, IL, USA
| | - Amy M Iler
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- Plant Biology and Conservation, Northwestern University, Evanston, IL, USA
- Chicago Botanic Garden, The Negaunee Institute of Plant Conservation Science and Action, Glencoe, IL, USA
| | - Devon A Picklum
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, USA
| | - William A Barr
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - Berry J Brosi
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- Department of Ecology and Evolution, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Kawai Y, Kudo G. Climate change shifts population structure and demographics of an alpine herb,
Anemone narcissiflora ssp. sachalinensis
(Ranunculaceae), along a snowmelt gradient. POPUL ECOL 2021. [DOI: 10.1002/1438-390x.12089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuka Kawai
- Faculty of Environmental Earth Science Hokkaido University Sapporo Hokkaido Japan
| | - Gaku Kudo
- Faculty of Environmental Earth Science Hokkaido University Sapporo Hokkaido Japan
| |
Collapse
|
15
|
Evers SM, Knight TM, Inouye DW, Miller TEX, Salguero-Gómez R, Iler AM, Compagnoni A. Lagged and dormant season climate better predict plant vital rates than climate during the growing season. GLOBAL CHANGE BIOLOGY 2021; 27:1927-1941. [PMID: 33586192 DOI: 10.1111/gcb.15519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Understanding the effects of climate on the vital rates (e.g., survival, development, reproduction) and dynamics of natural populations is a long-standing quest in ecology, with ever-increasing relevance in the face of climate change. However, linking climate drivers to demographic processes requires identifying the appropriate time windows during which climate influences vital rates. Researchers often do not have access to the long-term data required to test a large number of windows, and are thus forced to make a priori choices. In this study, we first synthesize the literature to assess current a priori choices employed in studies performed on 104 plant species that link climate drivers with demographic responses. Second, we use a sliding-window approach to investigate which combination of climate drivers and temporal window have the best predictive ability for vital rates of four perennial plant species that each have over a decade of demographic data (Helianthella quinquenervis, Frasera speciosa, Cylindriopuntia imbricata, and Cryptantha flava). Our literature review shows that most studies consider time windows in only the year preceding the measurement of the vital rate(s) of interest, and focus on annual or growing season temporal scales. In contrast, our sliding-window analysis shows that in only four out of 13 vital rates the selected climate drivers have time windows that align with, or are similar to, the growing season. For many vital rates, the best window lagged more than 1 year and up to 4 years before the measurement of the vital rate. Our results demonstrate that for the vital rates of these four species, climate drivers that are lagged or outside of the growing season are the norm. Our study suggests that considering climatic predictors that fall outside of the most recent growing season will improve our understanding of how climate affects population dynamics.
Collapse
Affiliation(s)
- Sanne M Evers
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Tiffany M Knight
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - David W Inouye
- Department of Biology, University of Maryland, College Park, MD, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - Tom E X Miller
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, TX, USA
| | | | - Amy M Iler
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, USA
| | - Aldo Compagnoni
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Hamann E, Wadgymar SM, Anderson JT. Costs of reproduction under experimental climate change across elevations in the perennial forb Boechera stricta. Proc Biol Sci 2021; 288:20203134. [PMID: 33849323 PMCID: PMC8059524 DOI: 10.1098/rspb.2020.3134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/17/2021] [Indexed: 01/13/2023] Open
Abstract
Investment in current reproduction can reduce future fitness by depleting resources needed for maintenance, particularly under environmental stress. These trade-offs influence life-history evolution. We tested whether climate change alters the future-fitness costs of current reproduction in a large-scale field experiment of Boechera stricta (Brassicaceae). Over 6 years, we simulated climate change along an elevational gradient in the Rocky Mountains through snow removal, which accelerates snowmelt and reduces soil water availability. Costs of reproduction were greatest in arid, lower elevations, where high initial reproductive effort depressed future fitness. At mid-elevations, initial reproduction augmented subsequent fitness in benign conditions, but pronounced costs emerged under snow removal. At high elevation, snow removal dampened costs of reproduction by prolonging the growing season. In most scenarios, failed reproduction in response to resource limitation depressed lifetime fecundity. Indeed, fruit abortion only benefited high-fitness individuals under benign conditions. We propose that climate change could shift life-history trade-offs in an environment-dependent fashion, possibly favouring early reproduction and short lifespans in stressful conditions.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and the Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | | | - Jill T. Anderson
- Department of Genetics and the Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- The Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
17
|
Compagnoni A, Pardini E, Knight TM. Increasing temperature threatens an already endangered coastal dune plant. Ecosphere 2021. [DOI: 10.1002/ecs2.3454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Aldo Compagnoni
- Institute of Biology Martin Luther University Halle‐Wittenberg Am Kirchtor 1 06108Halle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e 04103LeipzigGermany
| | - Eleanor Pardini
- Environmental Studies Program Washington University in St. Louis 1 Brookings DriveBox 1165 St. Louis Missouri63130USA
| | - Tiffany M. Knight
- Institute of Biology Martin Luther University Halle‐Wittenberg Am Kirchtor 1 06108Halle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e 04103LeipzigGermany
- Department of Community Ecology Helmholtz Centre for Environmental Research – UFZ Theodor‐Lieser‐Straße 4 06120Halle (Saale)Germany
| |
Collapse
|
18
|
Anderson J, Song BH. Plant adaptation to climate change - Where are we? JOURNAL OF SYSTEMATICS AND EVOLUTION 2020; 58:533-545. [PMID: 33584833 PMCID: PMC7875155 DOI: 10.1111/jse.12649] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Climate change poses critical challenges for population persistence in natural communities, agriculture and environmental sustainability, and food security. In this review, we discuss recent progress in climatic adaptation in plants. We evaluate whether climate change exerts novel selection and disrupts local adaptation, whether gene flow can facilitate adaptive responses to climate change, and if adaptive phenotypic plasticity could sustain populations in the short term. Furthermore, we discuss how climate change influences species interactions. Through a more in-depth understanding of these eco-evolutionary dynamics, we will increase our capacity to predict the adaptive potential of plants under climate change. In addition, we review studies that dissect the genetic basis of plant adaptation to climate change. Finally, we highlight key research gaps, ranging from validating gene function, to elucidating molecular mechanisms, expanding research systems from model species to other natural species, testing the fitness consequences of alleles in natural environments, and designing multifactorial studies that more closely reflect the complex and interactive effects of multiple climate change factors. By leveraging interdisciplinary tools (e.g., cutting-edge omics toolkits, novel ecological strategies, newly-developed genome editing technology), researchers can more accurately predict the probability that species can persist through this rapid and intense period of environmental change, as well as cultivate crops to withstand climate change, and conserve biodiversity in natural systems.
Collapse
Affiliation(s)
- Jill Anderson
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Authors for correspondence. Bao-Hua Song. ; Jill Anderson.
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Authors for correspondence. Bao-Hua Song. ; Jill Anderson.
| |
Collapse
|
19
|
Contrasting effects of climate change on seasonal survival of a hibernating mammal. Proc Natl Acad Sci U S A 2020; 117:18119-18126. [PMID: 32631981 DOI: 10.1073/pnas.1918584117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seasonal environmental conditions shape the behavior and life history of virtually all organisms. Climate change is modifying these seasonal environmental conditions, which threatens to disrupt population dynamics. It is conceivable that climatic changes may be beneficial in one season but result in detrimental conditions in another because life-history strategies vary between these time periods. We analyzed the temporal trends in seasonal survival of yellow-bellied marmots (Marmota flaviventer) and explored the environmental drivers using a 40-y dataset from the Colorado Rocky Mountains (USA). Trends in survival revealed divergent seasonal patterns, which were similar across age-classes. Marmot survival declined during winter but generally increased during summer. Interestingly, different environmental factors appeared to drive survival trends across age-classes. Winter survival was largely driven by conditions during the preceding summer and the effect of continued climate change was likely to be mainly negative, whereas the likely outcome of continued climate change on summer survival was generally positive. This study illustrates that seasonal demographic responses need disentangling to accurately forecast the impacts of climate change on animal population dynamics.
Collapse
|
20
|
Anderson JT, Wadgymar SM. Climate change disrupts local adaptation and favours upslope migration. Ecol Lett 2019; 23:181-192. [DOI: 10.1111/ele.13427] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/19/2019] [Accepted: 10/19/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Jill T. Anderson
- Department of Genetics and Odum School of Ecology University of Georgia Athens GA 30602 USA
- The Rocky Mountain Biological Laboratory Crested Butte CO 81224 USA
| | | |
Collapse
|