1
|
Lan SC, Perng MD, Chang YY, Chen YF, Lan MY. Phenotypic and molecular characterization of a recurrent SPTAN1 mutation causing SPG91. Mol Biol Rep 2025; 52:476. [PMID: 40397273 DOI: 10.1007/s11033-025-10582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Spectrins are ubiquitous cytoskeleton proteins found in all metazoan cells. αII-spectrin, encoded by SPTAN1, is the pivotal protein responsible for organization of the axonal cytoskeleton. Monoallelic SPTAN1 mutations cause various inherited neurological diseases, including spastic paraplegia 91 (SPG91), a type of hereditary spastic paraplegia (HSP). METHODS AND RESULTS We reported two patients with SPG91 caused by the SPTAN1 mutation c.55 C > T (p.Arg19Trp), who presented with lower limb spasticity and polyneuropathy. An analysis of the patients reported in the literature in addition to the present patients revealed that SPTAN1 p.Arg19Trp was specific for an HSP phenotype, with 35% of the combined patients with sensory‒motor polyneuropathy and 30% with cerebellar ataxia. In computational simulations, this variant was predicted to perturb the stability of αII/β spectrin heterotetramerization but did not destabilize the tetramerization domain of αII-spectrin. CONCLUSIONS Our findings on genotype‒phenotype correlations and genetic effects on molecular characteristics may provide important insights into the exploration of αII-spectrin-related neurological diseases.
Collapse
Affiliation(s)
- Shih-Chun Lan
- School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Der Perng
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ying-Fa Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Macarrón-Palacios V, Hubrich J, do Rego Barros Fernandes Lima MA, Metzendorf NG, Kneilmann S, Trapp M, Acuna C, Patrizi A, D’Este E, Kilimann MW. Paralemmin-1 controls the nanoarchitecture of the neuronal submembrane cytoskeleton. SCIENCE ADVANCES 2025; 11:eadt3724. [PMID: 40053592 PMCID: PMC11887803 DOI: 10.1126/sciadv.adt3724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
The submembrane cytoskeleton of neurons displays a highly ordered 190-nanometer periodic actin-spectrin lattice, the membrane-associated periodic skeleton (MPS). It is involved in mechanical resilience, signaling, and action potential transmission. Here, we identify paralemmin-1 (Palm1) as a component and regulator of the MPS. Palm1 binds to the amino-terminal region of βII-spectrin, and MINFLUX microscopy localizes it in close proximity (<20 nanometers) to the actin-capping protein and MPS component adducin. Combining overexpression, knockout, and rescue experiments, we observe that the expression level of Palm1 controls the degree of periodicity of the MPS and also affects the electrophysiological properties of neurons. A single amino acid mutation (W54A) in Palm1 abolishes the MPS binding and remodeling activities of Palm1. Our findings identify Palm1 as a protein specifically dedicated to organizing the MPS and will advance the understanding of the assembly and plasticity of the actin-spectrin submembrane skeleton in general.
Collapse
Affiliation(s)
- Victor Macarrón-Palacios
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Jasmine Hubrich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | | | | | - Simon Kneilmann
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Marleen Trapp
- Schaller Research Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Claudio Acuna
- Laboratory of Neural Circuits and Behavior, Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Elisa D’Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Manfred W. Kilimann
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| |
Collapse
|
3
|
Davison CA, Garcia D, Feng C, Hao H, Jorgensen EM, Hammarlund M. The neuron-intrinsic membrane skeleton is required for motor neuron integrity throughout lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639536. [PMID: 40060495 PMCID: PMC11888272 DOI: 10.1101/2025.02.23.639536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Axons experience physical stress throughout an organism's lifetime, and disruptions in axonal integrity are hallmarks of both neurodegenerative diseases and traumatic injuries. The spectrin-based membrane periodic skeleton (MPS) is proposed to have a crucial role in maintaining axonal strength, flexibility, and resilience. To investigate the importance of the intrinsic MPS for GABAergic motor neuron integrity in C. elegans, we employed the auxin-inducible degron system to degrade β-spectrin/UNC-70 in a cell-type specific and time-dependent manner. Degradation of β-spectrin from all neurons beginning at larval development resulted in widespread axon breakage and regeneration in VD/DD GABAergic motor neurons in both larval and adult animals. Similarly, targeted degradation of β-spectrin in GABA neurons alone resulted in extensive breakage. Moreover, we found that depleting β-spectrin from the mature nervous system also induced axon breaks. By contrast, epidermal β-spectrin was not required for axon integrity of VD/DD neurons. These findings demonstrate the cell-intrinsic importance of neuronal β-spectrin/UNC-70 for axon integrity both during development and in adulthood.
Collapse
Affiliation(s)
- Carrie Ann Davison
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Daniela Garcia
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Chengye Feng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Hongyan Hao
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Erik M Jorgensen
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, Salt Lake City, UT, USA
| | - Marc Hammarlund
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Lead Contact
| |
Collapse
|
4
|
Yoon S, Penzes P. Roles of ANK2/ankyrin-B in neurodevelopmental disorders: Isoform functions and implications for autism spectrum disorder and epilepsy. Curr Opin Neurobiol 2025; 90:102938. [PMID: 39631164 PMCID: PMC11839328 DOI: 10.1016/j.conb.2024.102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
The ANK2 gene, encoding ankyrin-B, is a high-confidence risk factor for neurodevelopmental disorders (NDDs). Evidence from exome sequencing studies have repeatedly implicated rare variants in ANK2 in autism spectrum disorder. Recently, the functions of ankyrin-B isoforms on neuronal phenotypes have been investigated using a number of techniques including electrophysiology, proteomic screens and behavioral analysis using animal models with loss of distinct Ank2 isoforms or with targeted loss of Ank2 in different cell types and time points during brain development. ANK2 variants and their pathophysiology could provide valuable insights into the molecular mechanisms underlying NDDs. In this review, we focus on recently reported studies to help understand the pathological mechanisms of ANK2 loss and how it may facilitate the development of treatments for NDDs in the future.
Collapse
Affiliation(s)
- Sehyoun Yoon
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Northwestern University, Center for Autism and Neurodevelopment, Chicago, IL, 60611, USA
| |
Collapse
|
5
|
Li G, Wang P, Feng X, Li Y. Identification of a pyroptosis-related prognostic model for colorectal cancer and validation of the core gene SPTBN5. Discov Oncol 2024; 15:787. [PMID: 39692974 DOI: 10.1007/s12672-024-01691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Pyroptosis, an emerging type of programmed cell death. The mechanisms of pyroptosis mainly include inflammasome-activated pyroptosis and non-inflammasome-activated pyroptosis. Multiple prognostic scoring systems that utilize pyroptosis-related gene expression have been validated as effective predictors of patient outcomes. But the relationship between pyroptosis and colorectal cancer remains unclear. This study has established a gene signature associated with pyroptosis to forecast the prognosis of CRC patients. METHODS An analysis of 52 pyroptosis genes was conducted in both CRC and normal colorectal tissues, leading to the discovery of differentially expressed genes (DEGs). Core pyroptosis-related genes were identified using least absolute shrinkage and selection operator (LASSO) Cox regression to establish a prognostic risk score (PRS) for predicting CRC patient outcomes. The TCGA cohort was split into high-risk and low-risk groups based on the PRS, followed by Gene Ontology (GO) and KEGG pathway analyses. Additionally, differences in the enrichment scores of 16 immune cell types and the activity of 13 immune-related pathways were compared. The role of SPTBN5, a core pyroptosis-related gene, was validated through functional experiments on human colorectal adenocarcinoma cells (SW480). RESULTS 40 differentially expressed genes were identified from 52 pyroptosis genes. A risk model was subsequently developed using 25 core pyroptosis-related genes identified through LASSO Cox regression analysis, and this model was validated in GEO cohorts. GO and KEGG pathway analyses showed that the DEGs are predominantly associated with mineral absorption, thyroid hormone synthesis, and pancreatic secretion. Functional experiments demonstrated that down-regulation of SPTBN5 expression through transfection led to significant decreases in the proliferation, migration, and clonogenicity of SW480 cells. CONCLUSION The PRS can identify high-risk CRC patient groups and predict patient prognosis. SPTBN5 may present a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Guangyao Li
- Department of General Surgery, The First Afliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Department of Gastrointestinal Surgery, The Second People's Hospital of Wuhu, Wuhu, 241000, Anhui, China
| | - Pingyu Wang
- Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xiangnan Feng
- Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yongxiang Li
- Department of General Surgery, The First Afliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
6
|
Chowdhury TA, Luy DA, Scapellato G, Farache D, Lee ASY, Quinn CC. Ortholog of autism candidate gene RBM27 regulates mitoribosomal assembly factor MALS-1 to protect against mitochondrial dysfunction and axon degeneration during neurodevelopment. PLoS Biol 2024; 22:e3002876. [PMID: 39480871 PMCID: PMC11556708 DOI: 10.1371/journal.pbio.3002876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/12/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Mitochondrial dysfunction is thought to be a key component of neurodevelopmental disorders such as autism, intellectual disability, and attention-deficit hyperactivity disorder (ADHD). However, little is known about the molecular mechanisms that protect against mitochondrial dysfunction during neurodevelopment. Here, we address this question through the investigation of rbm-26, the Caenorhabditis elegans ortholog of the RBM27 autism candidate gene, which encodes an RNA-binding protein whose role in neurons is unknown. We report that RBM-26 (RBM26/27) protects against axonal defects by negatively regulating expression of the MALS-1 (MALSU1) mitoribosomal assembly factor. Autism-associated missense variants in RBM-26 cause a sharp decrease in RBM-26 protein expression along with defects in axon overlap and axon degeneration that occurs during larval development. Using a biochemical screen, we identified the mRNA for the MALS-1 mitoribosomal assembly factor as a binding partner for RBM-26. Loss of RBM-26 function causes a dramatic overexpression of mals-1 mRNA and MALS-1 protein. Moreover, genetic analysis indicates that this overexpression of MALS-1 is responsible for the mitochondrial and axon degeneration defects in rbm-26 mutants. These observations reveal a mechanism that regulates expression of a mitoribosomal assembly factor to protect against axon degeneration during neurodevelopment.
Collapse
Affiliation(s)
- Tamjid A. Chowdhury
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - David A. Luy
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Garrett Scapellato
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Dorian Farache
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Amy S. Y. Lee
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Christopher C. Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
7
|
Chowdhury TA, Luy DA, Scapellato G, Farache D, Lee ASY, Quinn CC. Autism candidate gene rbm-26 ( RBM26/27) regulates MALS-1 to protect against mitochondrial dysfunction and axon degeneration during neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.12.562060. [PMID: 37873356 PMCID: PMC10592788 DOI: 10.1101/2023.10.12.562060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Mitochondrial dysfunction is thought to be a key component of neurodevelopmental disorders such as autism, intellectual disability, and ADHD. However, little is known about the molecular mechanisms that protect against mitochondrial dysfunction during neurodevelopment. Here, we address this question through the investigation of rbm-26, the C. elegans ortholog of the RBM27 autism candidate gene, which encodes an RNA-binding protein whose role in neurons is unknown. We report that RBM-26 (RBM26/27) protects against axonal defects by negatively regulating expression of the MALS-1 (MALSU1) mitoribosomal assembly factor. Autism-associated missense variants in RBM-26 cause a sharp decrease in RBM-26 protein expression along with defects in in axon overlap and axon degeneration that occurs during larval development. Using a biochemical screen, we identified the mRNA for the MALS-1 mitoribosomal assembly factor as a binding partner for RBM-26. Loss of RBM-26 function causes a dramatic overexpression of mals-1 mRNA and MALS-1 protein. Moreover, genetic analysis indicates that this overexpression of MALS-1 is responsible for the mitochondrial and axon degeneration defects in rbm-26 mutants. These observations reveal a mechanism that regulates expression of a mitoribosomal assembly factor to protect against axon degeneration during neurodevelopment.
Collapse
Affiliation(s)
- Tamjid A Chowdhury
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - David A Luy
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Garrett Scapellato
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Dorian Farache
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy SY Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christopher C Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
8
|
Shi YW, Xu CC, Sun CY, Liu JX, Zhao SY, Liu D, Fan XJ, Wang CP. GM1 Ameliorates Neuronal Injury in Rats after Cerebral Ischemia and Reperfusion: Potential Contribution of Effects on SPTBN1-mediated Signaling. Neuroscience 2024; 551:103-118. [PMID: 38810691 DOI: 10.1016/j.neuroscience.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Monosialoganglioside GM1 (GM1) has long been used as a therapeutic agent for neurological diseases in the clinical treatment of ischemic stroke. However, the mechanism underlying the neuroprotective function of GM1 is still obscure until now. In this study, we investigated the effects of GM1 in ischemia and reperfusion (I/R) brain injury models. Middle cerebral artery occlusion and reperfusion (MCAO/R) rats were treated with GM1 (60 mg·kg-1·d-1, tail vein injection) for 2 weeks. The results showed that GM1 substantially attenuated the MCAO/R-induced neurological dysfunction and inhibited the inflammatory responses and cell apoptosis in ischemic parietal cortex. We further revealed that GM1 inhibited the activation of NFκB/MAPK signaling pathway induced by MCAO/R injury. To explore its underlying mechanism of the neuroprotective effect, transcriptome sequencing was introduced to screen the differentially expressed genes (DEGs). By function enrichment and PPI network analyses, Sptbn1 was identified as a node gene in the network regulated by GM1 treatment. In the MCAO/R model of rats and oxygen-glucose deprivation and reperfusion (OGD/R) model of primary culture of rat cortical neurons, we first found that SPTBN1 was involved in the attenuation of I/R induced neuronal injury after GM1 administration. In SPTBN1-knockdown SH-SY5Y cells, the treatment with GM1 (20 μM) significantly increased SPTBN1 level. Moreover, OGD/R decreased SPTBN1 level in SPTBN1-overexpressed SH-SY5Y cells. These results indicated that GM1 might achieve its potent neuroprotective effects by regulating inflammatory response, cell apoptosis, and cytomembrane and cytoskeleton signals through SPTBN1. Therefore, SPTBN1 may be a potential target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yun-Wei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China; School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Chun-Cheng Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Chun-Yan Sun
- Qilu Pharmaceutical Co., Ltd., Ji'nan 250104, Shandong, People's Republic of China
| | - Jia-Xing Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Shu-Yong Zhao
- Qilu Pharmaceutical Co., Ltd., Ji'nan 250104, Shandong, People's Republic of China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong 226019, Jiangsu, People's Republic of China.
| | - Xing-Juan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China.
| | - Cai-Ping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Liebergall SR, Goldberg EM. Ndnf Interneuron Excitability Is Spared in a Mouse Model of Dravet Syndrome. J Neurosci 2024; 44:e1977232024. [PMID: 38443186 PMCID: PMC11044195 DOI: 10.1523/jneurosci.1977-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Dravet syndrome (DS) is a neurodevelopmental disorder characterized by epilepsy, developmental delay/intellectual disability, and features of autism spectrum disorder, caused by heterozygous loss-of-function variants in SCN1A encoding the voltage-gated sodium channel α subunit Nav1.1. The dominant model of DS pathogenesis is the "interneuron hypothesis," whereby GABAergic interneurons (INs) express and preferentially rely on Nav1.1-containing sodium channels for action potential (AP) generation. This has been shown for three of the major subclasses of cerebral cortex GABAergic INs: those expressing parvalbumin (PV), somatostatin, and vasoactive intestinal peptide. Here, we define the function of a fourth major subclass of INs expressing neuron-derived neurotrophic factor (Ndnf) in male and female DS (Scn1a+/-) mice. Patch-clamp electrophysiological recordings of Ndnf-INs in brain slices from Scn1a+/â mice and WT controls reveal normal intrinsic membrane properties, properties of AP generation and repetitive firing, and synaptic transmission across development. Immunohistochemistry shows that Nav1.1 is strongly expressed at the axon initial segment (AIS) of PV-expressing INs but is absent at the Ndnf-IN AIS. In vivo two-photon calcium imaging demonstrates that Ndnf-INs in Scn1a+/â mice are recruited similarly to WT controls during arousal. These results suggest that Ndnf-INs are the only major IN subclass that does not prominently rely on Nav1.1 for AP generation and thus retain their excitability in DS. The discovery of a major IN subclass with preserved function in the Scn1a+/â mouse model adds further complexity to the "interneuron hypothesis" and highlights the importance of considering cell-type heterogeneity when investigating mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sophie R Liebergall
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
- Medical Scientist Training Program, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Ethan M Goldberg
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
- Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
- The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
10
|
Sert O, Ding X, Zhang C, Mi R, Hoke A, Rasband MN. Postsynaptic β1 spectrin maintains Na + channels at the neuromuscular junction. J Physiol 2024; 602:1127-1145. [PMID: 38441922 PMCID: PMC10942750 DOI: 10.1113/jp285894] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 03/16/2024] Open
Abstract
Spectrins function together with actin as obligatory subunits of the submembranous cytoskeleton. Spectrins maintain cell shape, resist mechanical forces, and stabilize ion channel and transporter protein complexes through binding to scaffolding proteins. Recently, pathogenic variants of SPTBN4 (β4 spectrin) were reported to cause both neuropathy and myopathy. Although the role of β4 spectrin in neurons is mostly understood, its function in skeletal muscle, another excitable tissue subject to large forces, is unknown. Here, using a muscle specific β4 spectrin conditional knockout mouse, we show that β4 spectrin does not contribute to muscle function. In addition, we show β4 spectrin is not present in muscle, indicating the previously reported myopathy associated with pathogenic SPTBN4 variants is neurogenic in origin. More broadly, we show that α2, β1 and β2 spectrins are found in skeletal muscle, with α2 and β1 spectrins being enriched at the postsynaptic neuromuscular junction (NMJ). Surprisingly, using muscle specific conditional knockout mice, we show that loss of α2 and β2 spectrins had no effect on muscle health, function or the enrichment of β1 spectrin at the NMJ. Muscle specific deletion of β1 spectrin also had no effect on muscle health, but, with increasing age, resulted in the loss of clustered NMJ Na+ channels. Together, our results suggest that muscle β1 spectrin functions independently of an associated α spectrin to maintain Na+ channel clustering at the postsynaptic NMJ. Furthermore, despite repeated exposure to strong forces and in contrast to neurons, muscles do not require spectrin cytoskeletons to maintain cell shape or integrity. KEY POINTS: The myopathy found in pathogenic human SPTBN4 variants (where SPTBN4 is the gene encoding β4 spectrin) is neurogenic in origin. β1 spectrin plays essential roles in maintaining the density of neuromuscular junction Nav1.4 Na+ channels. By contrast to the canonical view of spectrin organization and function, we show that β1 spectrin can function independently of an associated α spectrin. Despite the large mechanical forces experienced by muscle, we show that spectrins are not required for muscle cell integrity. This is in stark contrast to red blood cells and the axons of neurons.
Collapse
Affiliation(s)
- Ozlem Sert
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| | - Xiaoyun Ding
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| | - Chuansheng Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| | - Ruifa Mi
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Ahmet Hoke
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| |
Collapse
|
11
|
Glomb O, Swaim G, Munoz LLancao P, Lovejoy C, Sutradhar S, Park J, Wu Y, Cason SE, Holzbaur ELF, Hammarlund M, Howard J, Ferguson SM, Gramlich MW, Yogev S. A kinesin-1 adaptor complex controls bimodal slow axonal transport of spectrin in Caenorhabditis elegans. Dev Cell 2023; 58:1847-1863.e12. [PMID: 37751746 PMCID: PMC10574138 DOI: 10.1016/j.devcel.2023.08.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
An actin-spectrin lattice, the membrane periodic skeleton (MPS), protects axons from breakage. MPS integrity relies on spectrin delivery via slow axonal transport, a process that remains poorly understood. We designed a probe to visualize endogenous spectrin dynamics at single-axon resolution in vivo. Surprisingly, spectrin transport is bimodal, comprising fast runs and movements that are 100-fold slower than previously reported. Modeling and genetic analysis suggest that the two rates are independent, yet both require kinesin-1 and the coiled-coil proteins UNC-76/FEZ1 and UNC-69/SCOC, which we identify as spectrin-kinesin adaptors. Knockdown of either protein led to disrupted spectrin motility and reduced distal MPS, and UNC-76 overexpression instructed excessive transport of spectrin. Artificially linking spectrin to kinesin-1 drove robust motility but inefficient MPS assembly, whereas impairing MPS assembly led to excessive spectrin transport, suggesting a balance between transport and assembly. These results provide insight into slow axonal transport and MPS integrity.
Collapse
Affiliation(s)
- Oliver Glomb
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Grace Swaim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Pablo Munoz LLancao
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christopher Lovejoy
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sabyasachi Sutradhar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Junhyun Park
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Youjun Wu
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sydney E Cason
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marc Hammarlund
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA; Quantitative Biology Institute, Yale University, New Haven, CT 06510, USA
| | - Shawn M Ferguson
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Shaul Yogev
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
12
|
Goswami-Sewell D, Bagnetto C, Gomez CC, Anderson JT, Maheshwari A, Zuniga-Sanchez E. βII-Spectrin Is Required for Synaptic Positioning during Retinal Development. J Neurosci 2023; 43:5277-5289. [PMID: 37369589 PMCID: PMC10359034 DOI: 10.1523/jneurosci.0063-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
Neural circuit assembly is a multistep process where synaptic partners are often born at distinct developmental stages, and yet they must find each other and form precise synaptic connections with one another. This developmental process often relies on late-born neurons extending their processes to the appropriate layer to find and make synaptic connections to their early-born targets. The molecular mechanism responsible for the integration of late-born neurons into an emerging neural circuit remains unclear. Here, we uncovered a new role for the cytoskeletal protein βII-spectrin in properly positioning presynaptic and postsynaptic neurons to the developing synaptic layer. Loss of βII-spectrin disrupts retinal lamination, leads to synaptic connectivity defects, and results in impaired visual function in both male and female mice. Together, these findings highlight a new function of βII-spectrin in assembling neural circuits in the mouse outer retina.SIGNIFICANCE STATEMENT Neurons that assemble into a functional circuit are often integrated at different developmental time points. However, the molecular mechanism that guides the precise positioning of neuronal processes to the correct layer for synapse formation is relatively unknown. Here, we show a new role for the cytoskeletal scaffolding protein, βII-spectrin in the developing retina. βII-spectrin is required to position presynaptic and postsynaptic neurons to the nascent synaptic layer in the mouse outer retina. Loss of βII-spectrin disrupts positioning of neuronal processes, alters synaptic connectivity, and impairs visual function.
Collapse
Affiliation(s)
| | - Caitlin Bagnetto
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Cesiah C Gomez
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Joseph T Anderson
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Akash Maheshwari
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Elizabeth Zuniga-Sanchez
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
13
|
Chai Z, Gu S, Lykotrafitis G. Dynamics of the axon plasma membrane skeleton. SOFT MATTER 2023; 19:2514-2528. [PMID: 36939651 DOI: 10.1039/d2sm01602h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It was recently revealed via super-resolution microscopy experiments that the axon plasma membrane skeleton (APMS) comprises a series of periodically arranged azimuthal actin rings connected via longitudinal spectrin filaments forming an orthotropic network. The common perception is that APMS enhances structural stability of the axon but its impact on axon deformation is unknown. To investigate the response of the APMS to extension, we introduce a coarse-grain molecular dynamics model consisting of actin particles forming rings and chains of particles representing spectrin tetramers with repeats than can unfold. We observe that the shape of force-extension curve is initially linear and the force level depends on the extension rate. Even during the initial deformation stage, unfolding of spectrin repeats occurs, but the saw-tooth shape of the corresponding force-extension curve observed in the case of one spectrin tetramer does not appear in the case of the entire APMS. The reason is that spectrin unfolding is not synchronized across filaments during extension. If actin-spectrin associations remain intact, the force-extension response reaches a perfectly plastic region because of increased spectrin unfolding frequency. However, when actin-spectrin links dissociate, which can happen at moderate and high extension rates, APMS softens and the resistance force decreases linearly as the axon elongates until it reaches a point where the APMS is completely severed. Furthermore, when the ring-to-ring distance is maintained fixed under stretch, the resistance force relaxes exponentially as a function of time due to additional unfolding of spectrin tetramers following the Kelvin-Voigt representation of the Zener model.
Collapse
Affiliation(s)
- Zhaojie Chai
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Shiju Gu
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
14
|
Lorenzo DN, Edwards RJ, Slavutsky AL. Spectrins: molecular organizers and targets of neurological disorders. Nat Rev Neurosci 2023; 24:195-212. [PMID: 36697767 PMCID: PMC10598481 DOI: 10.1038/s41583-022-00674-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/26/2023]
Abstract
Spectrins are cytoskeletal proteins that are expressed ubiquitously in the mammalian nervous system. Pathogenic variants in SPTAN1, SPTBN1, SPTBN2 and SPTBN4, four of the six genes encoding neuronal spectrins, cause neurological disorders. Despite their structural similarity and shared role as molecular organizers at the cell membrane, spectrins vary in expression, subcellular localization and specialization in neurons, and this variation partly underlies non-overlapping disease presentations across spectrinopathies. Here, we summarize recent progress in discerning the local and long-range organization and diverse functions of neuronal spectrins. We provide an overview of functional studies using mouse models, which, together with growing human genetic and clinical data, are helping to illuminate the aetiology of neurological spectrinopathies. These approaches are all critical on the path to plausible therapeutic solutions.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Reginald J Edwards
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anastasia L Slavutsky
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Dziadkowiak E, Nowakowska-Kotas M, Budrewicz S, Koszewicz M. Pathology of Initial Axon Segments in Chronic Inflammatory Demyelinating Polyradiculoneuropathy and Related Disorders. Int J Mol Sci 2022; 23:13621. [PMID: 36362407 PMCID: PMC9658771 DOI: 10.3390/ijms232113621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 07/30/2023] Open
Abstract
The diagnosis of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is based on a combination of clinical, electrodiagnostic and laboratory features. The different entities of the disease include chronic immune sensory polyradiculopathy (CISP) and autoimmune nodopathies. It is debatable whether CIDP occurring in the course of other conditions, i.e., monoclonal IgG or IgA gammopathy, should be treated as a separate disease entity from idiopathic CIDP. This study aims to evaluate the molecular differences of the nodes of Ranvier and the initial axon segment (AIS) and juxtaparanode region (JXP) as the potential cause of phenotypic variation of CIDP while also seeking new pathomechanisms since JXP is sequestered behind the paranode and autoantibodies may not access the site easily. The authors initially present the structure of the different parts of the neuron and its functional significance, then discuss the problem of whether damage to the juxtaparanodal region, Schwann cells and axons could cause CIDP or if these damages should be separated as separate disease entities. In particular, AIS's importance for modulating neural excitability and carrying out transport along the axon is highlighted. The disclosure of specific pathomechanisms, including novel target antigens, in the heterogeneous CIDP syndrome is important for diagnosing and treating these patients.
Collapse
|
16
|
Cytoskeletal assembly in axonal outgrowth and regeneration analyzed on the nanoscale. Sci Rep 2022; 12:14387. [PMID: 35999340 PMCID: PMC9399097 DOI: 10.1038/s41598-022-18562-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
The axonal cytoskeleton is organized in a highly periodic structure, the membrane-associated periodic skeleton (MPS), which is essential to maintain the structure and function of the axon. Here, we use stimulated emission depletion microscopy of primary rat cortical neurons in microfluidic chambers to analyze the temporal and spatial sequence of MPS formation at the distal end of growing axons and during regeneration after axotomy. We demonstrate that the MPS does not extend continuously into the growing axon but develops from patches of periodic βII-spectrin arrangements that grow and coalesce into a continuous scaffold. We estimate that the underlying sequence of assembly, elongation, and subsequent coalescence of periodic βII-spectrin patches takes around 15 h. Strikingly, we find that development of the MPS occurs faster in regenerating axons after axotomy and note marked differences in the morphology of the growth cone and adjacent axonal regions between regenerating and unlesioned axons. Moreover, we find that inhibition of the spectrin-cleaving enzyme calpain accelerates MPS formation in regenerating axons and increases the number of regenerating axons after axotomy. Taken together, we provide here a detailed nanoscale analysis of MPS development in growing axons.
Collapse
|
17
|
York NS, Sanchez-Arias JC, McAdam ACH, Rivera JE, Arbour LT, Swayne LA. Mechanisms underlying the role of ankyrin-B in cardiac and neurological health and disease. Front Cardiovasc Med 2022; 9:964675. [PMID: 35990955 PMCID: PMC9386378 DOI: 10.3389/fcvm.2022.964675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The ANK2 gene encodes for ankyrin-B (ANKB), one of 3 members of the ankyrin family of proteins, whose name is derived from the Greek word for anchor. ANKB was originally identified in the brain (B denotes “brain”) but has become most widely known for its role in cardiomyocytes as a scaffolding protein for ion channels and transporters, as well as an interacting protein for structural and signaling proteins. Certain loss-of-function ANK2 variants are associated with a primarily cardiac-presenting autosomal-dominant condition with incomplete penetrance and variable expressivity characterized by a predisposition to supraventricular and ventricular arrhythmias, arrhythmogenic cardiomyopathy, congenital and adult-onset structural heart disease, and sudden death. Another independent group of ANK2 variants are associated with increased risk for distinct neurological phenotypes, including epilepsy and autism spectrum disorders. The mechanisms underlying ANKB's roles in cells in health and disease are not fully understood; however, several clues from a range of molecular and cell biological studies have emerged. Notably, ANKB exhibits several isoforms that have different cell-type–, tissue–, and developmental stage– expression profiles. Given the conservation within ankyrins across evolution, model organism studies have enabled the discovery of several ankyrin roles that could shed important light on ANKB protein-protein interactions in heart and brain cells related to the regulation of cellular polarity, organization, calcium homeostasis, and glucose and fat metabolism. Along with this accumulation of evidence suggesting a diversity of important ANKB cellular functions, there is an on-going debate on the role of ANKB in disease. We currently have limited understanding of how these cellular functions link to disease risk. To this end, this review will examine evidence for the cellular roles of ANKB and the potential contribution of ANKB functional variants to disease risk and presentation. This contribution will highlight the impact of ANKB dysfunction on cardiac and neuronal cells and the significance of understanding the role of ANKB variants in disease.
Collapse
Affiliation(s)
- Nicole S. York
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Alexa C. H. McAdam
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
| | - Joel E. Rivera
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Laura T. Arbour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
- *Correspondence: Laura T. Arbour
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Cellular and Physiological Sciences and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Leigh Anne Swayne
| |
Collapse
|
18
|
Outer Hair Cell Function is Normal in βV Spectrin Knockout Mice. Hear Res 2022; 423:108564. [DOI: 10.1016/j.heares.2022.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
|
19
|
Labba NA, Wæhler HA, Houdaifi N, Zosen D, Haugen F, Paulsen RE, Hadera MG, Eskeland R. Paracetamol perturbs neuronal arborization and disrupts the cytoskeletal proteins SPTBN1 and TUBB3 in both human and chicken in vitro models. Toxicol Appl Pharmacol 2022; 449:116130. [PMID: 35714712 DOI: 10.1016/j.taap.2022.116130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
Epidemiological studies have linked long-term/high-dose usage of paracetamol (N-acetyl-para-aminophenol, APAP) during pregnancy to adverse neuropsychiatric outcomes, primarily attention-deficit hyperactive disorder (ADHD), in the offspring. Though variable, ADHD has been associated with phenotypic alterations characterized by reductions in grey matter densities and aberrations in structural connectivity, effects which are thought to originate in neurodevelopment. We used embryonic chicken cerebellar granule neurons (CGNs) and neuronally differentiating human NTERA2 cells (NT2Ns) to investigate the in vitro effects of APAP on cell viability, migration, neuritogenesis, and the intracellular levels of various proteins involved in neurodevelopment as well as in the maintenance of the structure and function of neurites. Exposure to APAP ranging from 100 to 1600 μM yielded concentration- and time-dependent reductions in cell viability and levels of neurite arborization, as well as reductions in the levels of the cytoskeletal protein β2-spectrin, with the highest APAP concentration resulting in between 50 and 75% reductions in the aforementioned metrics over the course of 72 h. Exposure to APAP also reduced migration in the NT2Ns but not CGNs. Moreover, we found concentration- and time-dependent increases in punctate aggregation of the cytoskeletal protein β3-tubulin following exposure to APAP in both cell model systems, with the highest APAP concentration approximately doubling the number of aggregates over 72-120 h. Our findings demonstrate that APAP negatively perturbs neurite arborization degree, with concurrent reductions in the protein levels of β2-spectrin and disruption of the integrity of β3-tubulin, both proteins of which play important roles in neuronal structure and function.
Collapse
Affiliation(s)
- Nils-Anders Labba
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Hallvard Austin Wæhler
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Nora Houdaifi
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Denis Zosen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Fred Haugen
- Department of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Mussie Ghezu Hadera
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Ragnhild Eskeland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway.
| |
Collapse
|
20
|
Li S, Liu T, Li K, Bai X, Xi K, Chai X, Mi L, Li J. Spectrins and human diseases. Transl Res 2022; 243:78-88. [PMID: 34979321 DOI: 10.1016/j.trsl.2021.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Spectrin, as one of the major components of a plasma membrane-associated cytoskeleton, is a cytoskeletal protein composed of the modular structure of α and β subunits. The spectrin-based skeleton is essential for preserving the integrity and mechanical characteristics of the cell membrane. Moreover, spectrin regulates a variety of cell processes including cell apoptosis, cell adhesion, cell spreading, and cell cycle. Dysfunction of spectrins is implicated in various human diseases including hemolytic anemia, neurodegenerative diseases, ataxia, heart diseases, and cancers. Here, we briefly discuss spectrins function as well as the clinical manifestations and currently known molecular mechanisms of human diseases related to spectrins, highlighting that strategies for targeting regulation of spectrins function may provide new avenues for therapeutic intervention for these diseases.
Collapse
Affiliation(s)
- Shan Li
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Ting Liu
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Kejing Li
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Xinyi Bai
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Kewang Xi
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Xiaojing Chai
- Central Laboratory, The First Hospital of Lanzhou University, Gansu, China
| | - Leyuan Mi
- The First School of Clinical Medicine, Lanzhou University, Gansu, China; Clinical Laboratory Center, Gansu Provincial Maternity and Child Care Hospital, Gansu, China
| | - Juan Li
- Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Gansu, China; Central Laboratory, The First Hospital of Lanzhou University, Gansu, China.
| |
Collapse
|
21
|
Denha SA, Atang AE, Hays TS, Avery AW. β-III-spectrin N-terminus is required for high-affinity actin binding and SCA5 neurotoxicity. Sci Rep 2022; 12:1726. [PMID: 35110634 PMCID: PMC8810934 DOI: 10.1038/s41598-022-05762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
Recent structural studies of β-III-spectrin and related cytoskeletal proteins revealed N-terminal sequences that directly bind actin. These sequences are variable in structure, and immediately precede a conserved actin-binding domain composed of tandem calponin homology domains (CH1 and CH2). Here we investigated in Drosophila the significance of the β-spectrin N-terminus, and explored its functional interaction with a CH2-localized L253P mutation that underlies the neurodegenerative disease spinocerebellar ataxia type 5 (SCA5). We report that pan-neuronal expression of an N-terminally truncated β-spectrin fails to rescue lethality resulting from a β-spectrin loss-of-function allele, indicating that the N-terminus is essential to β-spectrin function in vivo. Significantly, N-terminal truncation rescues neurotoxicity and defects in dendritic arborization caused by L253P. In vitro studies show that N-terminal truncation eliminates L253P-induced high-affinity actin binding, providing a mechanistic basis for rescue. These data suggest that N-terminal sequences may be useful therapeutic targets for small molecule modulation of the aberrant actin binding associated with SCA5 β-spectrin and spectrin-related disease proteins.
Collapse
Affiliation(s)
- Sarah A Denha
- Department of Chemistry, Oakland University, Rochester, MI, USA
| | | | - Thomas S Hays
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Adam W Avery
- Department of Chemistry, Oakland University, Rochester, MI, USA. .,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
22
|
Variants in ADD1 cause intellectual disability, corpus callosum dysgenesis, and ventriculomegaly in humans. Genet Med 2022; 24:319-331. [PMID: 34906466 PMCID: PMC8802223 DOI: 10.1016/j.gim.2021.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Adducins interconnect spectrin and actin filaments to form polygonal scaffolds beneath the cell membranes and form ring-like structures in neuronal axons. Adducins regulate mouse neural development, but their function in the human brain is unknown. METHODS We used exome sequencing to uncover ADD1 variants associated with intellectual disability (ID) and brain malformations. We studied ADD1 splice isoforms in mouse and human neocortex development with RNA sequencing, super resolution imaging, and immunoblotting. We investigated 4 variant ADD1 proteins and heterozygous ADD1 cells for protein expression and ADD1-ADD2 dimerization. We studied Add1 functions in vivo using Add1 knockout mice. RESULTS We uncovered loss-of-function ADD1 variants in 4 unrelated individuals affected by ID and/or structural brain defects. Three additional de novo copy number variations covering the ADD1 locus were associated with ID and brain malformations. ADD1 is highly expressed in the neocortex and the corpus callosum, whereas ADD1 splice isoforms are dynamically expressed between cortical progenitors and postmitotic neurons. Human variants impair ADD1 protein expression and/or dimerization with ADD2. Add1 knockout mice recapitulate corpus callosum dysgenesis and ventriculomegaly phenotypes. CONCLUSION Our human and mouse genetics results indicate that pathogenic ADD1 variants cause corpus callosum dysgenesis, ventriculomegaly, and/or ID.
Collapse
|
23
|
JIP3 links lysosome transport to regulation of multiple components of the axonal cytoskeleton. Commun Biol 2022; 5:5. [PMID: 35013510 PMCID: PMC8748971 DOI: 10.1038/s42003-021-02945-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
Lysosome axonal transport is important for the clearance of cargoes sequestered by the endocytic and autophagic pathways. Building on observations that mutations in the JIP3 (MAPK8IP3) gene result in lysosome-filled axonal swellings, we analyzed the impact of JIP3 depletion on the cytoskeleton of human neurons. Dynamic focal lysosome accumulations were accompanied by disruption of the axonal periodic scaffold (spectrin, F-actin and myosin II) throughout each affected axon. Additionally, axonal microtubule organization was locally disrupted at each lysosome-filled swelling. This local axonal microtubule disorganization was accompanied by accumulations of both F-actin and myosin II. These results indicate that transport of axonal lysosomes is functionally interconnected with mechanisms that control the organization and maintenance of the axonal cytoskeleton. They have potential relevance to human neurological disease arising from JIP3 mutations as well as for neurodegenerative diseases associated with the focal accumulations of lysosomes within axonal swellings such as Alzheimer’s disease. Rafiq et al. report that disruption of JIP3-dependent control of axonal lysosome transport in human neurons results in unexpected changes to the organization of multiple cytoskeletal proteins. This study provides new insights that improve our understanding of intellectual disabilities caused by mutations in JIP3, and are relevant for neurodegenerative diseases associated with accumulations of lysosomes such as the Alzheimer’s disease
Collapse
|
24
|
Montgomery A, Garbouchian A, Bentley M. Visualizing Vesicle-Bound Kinesins in Cultured Hippocampal Neurons. Methods Mol Biol 2022; 2431:239-247. [PMID: 35412280 DOI: 10.1007/978-1-0716-1990-2_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Eukaryotic cells use microtubule-based vesicle transport to exchange molecules between compartments. Kinesin family members mediate all microtubule plus end-directed vesicle transport. Of the 45 kinesins expressed in humans, some 20 mediate microtubule plus-end directed vesicle transport. Here we describe a technique to visualize vesicle-bound kinesins in cultured hippocampal neurons. The method involves the expression of the vesicle-binding tail domain while minimizing the cytoplasmic pool. Using this approach drastically improves vesicle labeling compared to full-length kinesins. This tool is useful for systematically comparing the localization of different kinesins in the same cell type and for identifying cargo proteins that reside in vesicles moved by a specific kinesin family member. While we describe the assay in cultured hippocampal neurons, we expect it to be easily transferable to other eukaryotic cell types.
Collapse
Affiliation(s)
- Andrew Montgomery
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Alex Garbouchian
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Marvin Bentley
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
25
|
Creighton BA, Afriyie S, Ajit D, Casingal CR, Voos KM, Reger J, Burch AM, Dyne E, Bay J, Huang JK, Anton ES, Fu MM, Lorenzo DN. Giant ankyrin-B mediates transduction of axon guidance and collateral branch pruning factor sema 3A. eLife 2021; 10:69815. [PMID: 34812142 PMCID: PMC8610419 DOI: 10.7554/elife.69815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/04/2021] [Indexed: 01/19/2023] Open
Abstract
Variants in the high confident autism spectrum disorder (ASD) gene ANK2 target both ubiquitously expressed 220 kDa ankyrin-B and neurospecific 440 kDa ankyrin-B (AnkB440) isoforms. Previous work showed that knock-in mice expressing an ASD-linked Ank2 variant yielding a truncated AnkB440 product exhibit ectopic brain connectivity and behavioral abnormalities. Expression of this variant or loss of AnkB440 caused axonal hyperbranching in vitro, which implicated AnkB440 microtubule bundling activity in suppressing collateral branch formation. Leveraging multiple mouse models, cellular assays, and live microscopy, we show that AnkB440 also modulates axon collateral branching stochastically by reducing the number of F-actin-rich branch initiation points. Additionally, we show that AnkB440 enables growth cone (GC) collapse in response to chemorepellent factor semaphorin 3 A (Sema 3 A) by stabilizing its receptor complex L1 cell adhesion molecule/neuropilin-1. ASD-linked ANK2 variants failed to rescue Sema 3A-induced GC collapse. We propose that impaired response to repellent cues due to AnkB440 deficits leads to axonal targeting and branch pruning defects and may contribute to the pathogenicity of ANK2 variants.
Collapse
Affiliation(s)
- Blake A Creighton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Simone Afriyie
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Deepa Ajit
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Cristine R Casingal
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Kayleigh M Voos
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Joan Reger
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States.,Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, United States
| | - April M Burch
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Eric Dyne
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States
| | - Julia Bay
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, United States
| | - E S Anton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Meng-Meng Fu
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States
| | - Damaris N Lorenzo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Carolina Institute for Developmental Disabilities, Chapel Hill, United States
| |
Collapse
|
26
|
Ma X, Zhang M, Yan R, Wu H, Yang B, Miao Z. β2SP/TET2 complex regulates gene 5hmC modification after cerebral ischemia. J Cell Mol Med 2021; 25:11300-11309. [PMID: 34799994 PMCID: PMC8650033 DOI: 10.1111/jcmm.17060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
βII spectrin (β2SP) is encoded by Sptbn1 and is involved in the regulation of various cell functions. β2SP contributes to the formation of the myelin sheath, which may be related to the mechanism of neuropathy caused by demyelination. As one of the main features of cerebral ischemia, demyelination plays a key role in the mechanism of cerebral ischemia injury. Here, we showed that β2SP levels were increased, and this molecule interacted with TET2 after ischemic injury. Furthermore, we found that the level of TET2 was decreased in the nucleus when β2SP was knocked out after oxygen and glucose deprivation (OGD), and the level of 5hmC was reduced in the OGD+β2SP KO group. In contrast, the expression of β2SP did not change in TET2 KO mice. In addition, the 5hmC sequencing results revealed that β2SP can affect the level of 5hmC, the differentially hydroxymethylated region (DhMR) mainly related with the Calcium signalling pathway, cGMP‐PKG signalling pathway, Wnt signalling pathway and Hippo signalling pathway. In summary, our results suggest that β2SP could regulate the gene 5hmC by interacted with TET2 and will become a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Xiaohua Ma
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Meng Zhang
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Rui Yan
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Hainan Wu
- College of Forestry, Nanjing Forestry University, Nanjing City, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, China
| |
Collapse
|
27
|
Abstract
Fluorescence imaging techniques play a pivotal role in our understanding of the nervous system. The emergence of various super-resolution microscopy methods and specialized fluorescent probes enables direct insight into neuronal structure and protein arrangements in cellular subcompartments with so far unmatched resolution. Super-resolving visualization techniques in neurons unveil a novel understanding of cytoskeletal composition, distribution, motility, and signaling of membrane proteins, subsynaptic structure and function, and neuron-glia interaction. Well-defined molecular targets in autoimmune and neurodegenerative disease models provide excellent starting points for in-depth investigation of disease pathophysiology using novel and innovative imaging methodology. Application of super-resolution microscopy in human brain samples and for testing clinical biomarkers is still in its infancy but opens new opportunities for translational research in neurology and neuroscience. In this review, we describe how super-resolving microscopy has improved our understanding of neuronal and brain function and dysfunction in the last two decades.
Collapse
Affiliation(s)
- Christian Werner
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
28
|
Costa AR, Sousa MM. The role of the membrane-associated periodic skeleton in axons. Cell Mol Life Sci 2021; 78:5371-5379. [PMID: 34085116 PMCID: PMC11071922 DOI: 10.1007/s00018-021-03867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
The identification of the membrane periodic skeleton (MPS), composed of a periodic lattice of actin rings interconnected by spectrin tetramers, was enabled by the development of super-resolution microscopy, and brought a new exciting perspective to our view of neuronal biology. This exquisite cytoskeleton arrangement plays an important role on mechanisms regulating neuronal (dys)function. The MPS was initially thought to provide mainly for axonal mechanical stability. Since its discovery, the importance of the MPS in multiple aspects of neuronal biology has, however, emerged. These comprise its capacity to act as a signaling platform, regulate axon diameter-with important consequences on the efficiency of axonal transport and electrophysiological properties- participate in the assembly and function of the axon initial segment, and control axon microtubule stability. Recently, MPS disassembly has also surfaced as an early player in the course of axon degeneration. Here, we will discuss the current knowledge on the role of the MPS in axonal physiology and disease.
Collapse
Affiliation(s)
- Ana Rita Costa
- Nerve Regeneration Group, IBMC- Instituto de Biologia Molecular e Celular and i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Monica Mendes Sousa
- Nerve Regeneration Group, IBMC- Instituto de Biologia Molecular e Celular and i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
29
|
Cousin MA, Creighton BA, Breau KA, Spillmann RC, Torti E, Dontu S, Tripathi S, Ajit D, Edwards RJ, Afriyie S, Bay JC, Harper KM, Beltran AA, Munoz LJ, Falcon Rodriguez L, Stankewich MC, Person RE, Si Y, Normand EA, Blevins A, May AS, Bier L, Aggarwal V, Mancini GMS, van Slegtenhorst MA, Cremer K, Becker J, Engels H, Aretz S, MacKenzie JJ, Brilstra E, van Gassen KLI, van Jaarsveld RH, Oegema R, Parsons GM, Mark P, Helbig I, McKeown SE, Stratton R, Cogne B, Isidor B, Cacheiro P, Smedley D, Firth HV, Bierhals T, Kloth K, Weiss D, Fairley C, Shieh JT, Kritzer A, Jayakar P, Kurtz-Nelson E, Bernier RA, Wang T, Eichler EE, van de Laar IMBH, McConkie-Rosell A, McDonald MT, Kemppainen J, Lanpher BC, Schultz-Rogers LE, Gunderson LB, Pichurin PN, Yoon G, Zech M, Jech R, Winkelmann J, Beltran AS, Zimmermann MT, Temple B, Moy SS, Klee EW, Tan QKG, Lorenzo DN. Pathogenic SPTBN1 variants cause an autosomal dominant neurodevelopmental syndrome. Nat Genet 2021; 53:1006-1021. [PMID: 34211179 PMCID: PMC8273149 DOI: 10.1038/s41588-021-00886-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/14/2021] [Indexed: 12/22/2022]
Abstract
SPTBN1 encodes βII-spectrin, the ubiquitously expressed β-spectrin that forms micrometer-scale networks associated with plasma membranes. Mice deficient in neuronal βII-spectrin have defects in cortical organization, developmental delay and behavioral deficiencies. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous SPTBN1 variants may also show measurable compromise of neural development and function. Here we identify heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features. We show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics. Our studies define SPTBN1 variants as the genetic basis of a neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and underscore the critical role of βII-spectrin in the central nervous system.
Collapse
Affiliation(s)
- Margot A Cousin
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
| | - Blake A Creighton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keith A Breau
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C Spillmann
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | | | - Sruthi Dontu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Swarnendu Tripathi
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Deepa Ajit
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Reginald J Edwards
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Simone Afriyie
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julia C Bay
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn M Harper
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alvaro A Beltran
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Human Pluripotent Stem Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lorena J Munoz
- Human Pluripotent Stem Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liset Falcon Rodriguez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Yue Si
- GeneDx, Gaithersburg, MD, USA
| | | | | | - Alison S May
- Department of Neurology, Columbia University, New York, NY, USA
| | - Louise Bier
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Vimla Aggarwal
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
- Laboratory of Personalized Genomic Medicine, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Jessica Becker
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefan Aretz
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | | | - Eva Brilstra
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Paul Mark
- Spectrum Health Medical Genetics, Grand Rapids, MI, USA
| | - Ingo Helbig
- Division of Neurology, Departments of Neurology and Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah E McKeown
- Division of Neurology, Departments of Neurology and Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert Stratton
- Genetics, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Benjamin Cogne
- Service de Génétique Médicale, CHU Nantes, Nantes, France
- Université de Nantes, CNRS, INSERM, L'Institut du Thorax, Nantes, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, Nantes, France
- Université de Nantes, CNRS, INSERM, L'Institut du Thorax, Nantes, France
| | - Pilar Cacheiro
- William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Damian Smedley
- William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Helen V Firth
- Department of Clinical Genetics, Cambridge University Hospitals, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Kloth
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Deike Weiss
- Neuropediatrics, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecilia Fairley
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Joseph T Shieh
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Amy Kritzer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | | | - Evangeline Kurtz-Nelson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Ingrid M B H van de Laar
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Allyn McConkie-Rosell
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Marie T McDonald
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Jennifer Kemppainen
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Brendan C Lanpher
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Laura E Schultz-Rogers
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Lauren B Gunderson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Pavel N Pichurin
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Grace Yoon
- Divisions of Clinical/Metabolic Genetics and Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Robert Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Adriana S Beltran
- Human Pluripotent Stem Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brenda Temple
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sheryl S Moy
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Queenie K-G Tan
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Damaris N Lorenzo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
30
|
Gialluisi A, Reccia MG, Modugno N, Nutile T, Lombardi A, Di Giovannantonio LG, Pietracupa S, Ruggiero D, Scala S, Gambardella S, International Parkinson’s Disease Genomics Consortium (IPDGC) NoyceAlastair J.KaiyrzhanovRauanMiddlehurstBenKiaDemis A.TanManuelaHouldenHenryMorrisHuw R.Plun-FavreauHeleneHolmansPeterHardyJohnTrabzuniDaniahQuinnJohnBubbVivienMokKin Y.KinghornKerri J.BillingsleyKimberleyWoodNicholas W.LewisPatrickSchreglmannSebastianLoveringRuthR’BiboLeaManzoniClaudiaRizigMieRytenMinaGuelfiSebastianEscott-PriceValentinaChelbanVioricaFoltynieThomasWilliamsNigelMorrisonKaren E.ClarkeCarlBriceAlexisDanjouFabriceLesageSuzanneCorvolJean-ChristopheMartinezMariaSchulteClaudiaBrockmannKathrinSimón-SánchezJavierHeutinkPeterRizzuPatriziaSharmaManuGasserThomasCooksonMark R.Bandres-CigaSaraBlauwendraatCornelisCraigDavid W.NarendraDerekFaghriFarazGibbsJ. RaphaelHernandezDena G.Van Keuren-JensenKendallShulmanJoshua M.IwakiHirotakaLeonardHampton L.NallsMike A.RobakLaurieBrasJoseGuerreiroRitaLubbeStevenFinkbeinerStevenMencacciNiccolo E.LunguCodrinSingletonAndrew B.ScholzSonja W.ReedXylenaAlcalayRoy N.Gan-OrZivRouleauGuy A.KrohnLynneKrohnLynnevan HiltenJacobus J.MarinusJohanAdarmes-GómezAstrid D.AguilarMiquelAlvarezIgnacioAlvarezVictoriaBarreroFrancisco JavierYarzaJesús Alberto BergarecheBernal-BernalInmaculadaBlazquezMartaBonilla-ToribioMartaBotíaJuan A.BoungiornoMaría TeresaBuiza-RuedaDoloresCarrilloFátimaCarrión-ClaroMarioCerdanDeboraClarimónJordiComptaYaroslauDiez-FairenMonicaDols-IcardoOriolDuarteJacintoDuranRaquelEscamilla-SevillaFranciscoEzquerraMarioFelizCiciFernándezManelFernández-SantiagoRubénGarciaCiaraGarcía-RuizPedroGómez-GarrePilarHerediaMaria Jose GomezGonzalez-AramburuIsabelPagolaAna GorostidiHoenickaJanetInfanteJonJesúsSilviaJimenez-EscrigAdrianoKulisevskyJaimeLabrador-EspinosaMiguel A.Lopez-SendonJose Luisde Munain ArreguiAdolfo LópezMaciasDanielTorresIrene MartínezMarínJuanMartiMaria JoseMartínez-CastrilloJuan CarlosMéndez-del-BarrioCarlotaGonzálezManuel MenéndezMataMarinaMínguezAdolfoMirPabloRezolaElisabet MondragonMuñozEstebanPagonabarragaJavierPastorPauErrazquinFrancisco PerezPeriñán-TocinoTeresaRuiz-MartínezJavierRuzClaraRodriguezAntonio SanchezSierraMaríaSuarez-SanmartinEstherTaberneroCesarTartariJuan PabloTejera-ParradoCristinaTolosaEduardValldeoriolaFrancescVargas-GonzálezLauraVelaLydiaVivesFranciscoZimprichAlexanderPihlstromLasseToftMathiasKoksSulevTabaPilleHassin-BaerSharonMajamaaKariSiitonenAriOkubadejoNjideka U.OjoOluwadamilola O.KaiyrzhanovRauanShashkinChingizZharkynbekovaNaziraAkhmetzhanovVadimAitkulovaAkbotaZholdybayevaElenaZharmukhanovZharkynKaishybayevaGulnazKarimovaAltynaySadykovaDinara, Iacoviello L, Gianfrancesco F, Acampora D, D’Esposito M, Simeone A, Ciullo M, Esposito T. Identification of sixteen novel candidate genes for late onset Parkinson's disease. Mol Neurodegener 2021; 16:35. [PMID: 34148545 PMCID: PMC8215754 DOI: 10.1186/s13024-021-00455-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative movement disorder affecting 1-5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD. METHODS The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls). RESULTS Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD. Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10- 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD. Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment. CONCLUSIONS Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment.
Collapse
Affiliation(s)
- Alessandro Gialluisi
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
| | - Mafalda Giovanna Reccia
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
| | - Nicola Modugno
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
| | - Teresa Nutile
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| | - Alessia Lombardi
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
| | - Luca Giovanni Di Giovannantonio
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| | - Sara Pietracupa
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
| | - Daniela Ruggiero
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| | - Simona Scala
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
| | - Stefano Gambardella
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
- grid.12711.340000 0001 2369 7670Department of Biomolecular Science, University of Urbino Carlo Bò, Urbino, Italy
| | | | - Licia Iacoviello
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
- grid.18147.3b0000000121724807Research Center in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fernando Gianfrancesco
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| | - Dario Acampora
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| | - Maurizio D’Esposito
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| | - Antonio Simeone
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| | - Marina Ciullo
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| | - Teresa Esposito
- grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
- grid.419869.b0000 0004 1758 2860National Research Council, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Naples, Italy
| |
Collapse
|
31
|
Liu M, Pi H, Xi Y, Wang L, Tian L, Chen M, Xie J, Deng P, Zhang T, Zhou C, Liang Y, Zhang L, He M, Lu Y, Chen C, Yu Z, Zhou Z. KIF5A-dependent axonal transport deficiency disrupts autophagic flux in trimethyltin chloride-induced neurotoxicity. Autophagy 2021; 17:903-924. [PMID: 32160081 PMCID: PMC8078766 DOI: 10.1080/15548627.2020.1739444] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 01/18/2023] Open
Abstract
Trimethyltin chloride (TMT) is widely used as a constituent of fungicides and plastic stabilizers in the industrial and agricultural fields, and is generally acknowledged to have potent neurotoxicity, especially in the hippocampus; however, the mechanism of induction of neurotoxicity by TMT remains elusive. Herein, we exposed Neuro-2a cells to different concentrations of TMT (2, 4, and 8 μM) for 24 h. Proteomic analysis, coupled with bioinformatics analysis, revealed the important role of macroautophagy/autophagy-lysosome machinery in TMT-induced neurotoxicity. Further analysis indicated significant impairment of autophagic flux by TMT via suppressed lysosomal function, such as by inhibiting lysosomal proteolysis and changing the lysosomal pH, thereby contributing to defects in autophagic clearance and subsequently leading to nerve cell death. Mechanistically, molecular interaction networks of Ingenuity Pathway Analysis identified a downregulated molecule, KIF5A (kinesin family member 5A), as a key target in TMT-impaired autophagic flux. TMT decreased KIF5A protein expression, disrupted the interaction between KIF5A and lysosome, and impaired lysosomal axonal transport. Moreover, Kif5a overexpression restored axonal transport, increased lysosomal dysfunction, and antagonized TMT-induced neurotoxicity in vitro. Importantly, in TMT-administered mice with seizure symptoms and histomorphological injury in the hippocampus, TMT inhibited KIF5A expression in the hippocampus. Gene transfer of Kif5a enhanced autophagic clearance in the hippocampus and alleviated TMT-induced neurotoxicity in vivo. Our results are the first to demonstrate KIF5A-dependent axonal transport deficiency to cause autophagic flux impairment via disturbance of lysosomal function in TMT-induced neurotoxicity; manipulation of KIF5A may be a therapeutic approach for antagonizing TMT-induced neurotoxicity.Abbreviations: 3-MA: 3-methyladenine; AAV: adeno-associated virus; ACTB: actin beta; AGC: automatic gain control; ATG: autophagy-related; ATP6V0D1: ATPase H+ transporting lysosomal V0 subunit D1; ATP6V1E1: ATPase H+ transporting lysosomal V1 subunit E1; CA: cornu ammonis; CQ: chloroquine; CTSB: cathepsin B; CTSD: cathepsin D; DCTN1: dynactin subunit 1; DG: dentate gyrus; DYNLL1: dynein light chain LC8-type 1; FBS: fetal bovine serum; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; IPA: Ingenuity Pathway Analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes; KIF5A: kinesin family member 5A; LAMP: lysosomal-associated membrane protein; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PBS: phosphate-buffered saline; PFA: paraformaldehyde; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PRM: parallel reaction monitoring; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; SYP: synaptophysin; TAX1BP1: Tax1 binding protein 1; TMT: trimethyltin chloride; TUB: tubulin.
Collapse
Affiliation(s)
- Mengyu Liu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China
- School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yu Xi
- Department of Environmental Medicine, and Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| | - Li Tian
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Mengyan Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Jia Xie
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Tao Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Chao Zhou
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yidan Liang
- Department of Cell Biology, School of Life Sciences and School of Medicine, Guangxi University, Nanning, China
| | - Lei Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Mindi He
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yonghui Lu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Zhou Zhou
- Department of Environmental Medicine, and Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Miazek A, Zalas M, Skrzymowska J, Bogin BA, Grzymajło K, Goszczynski TM, Levine ZA, Morrow JS, Stankewich MC. Age-dependent ataxia and neurodegeneration caused by an αII spectrin mutation with impaired regulation of its calpain sensitivity. Sci Rep 2021; 11:7312. [PMID: 33790315 PMCID: PMC8012654 DOI: 10.1038/s41598-021-86470-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
The neuronal membrane-associated periodic spectrin skeleton (MPS) contributes to neuronal development, remodeling, and organization. Post-translational modifications impinge on spectrin, the major component of the MPS, but their role remains poorly understood. One modification targeting spectrin is cleavage by calpains, a family of calcium-activated proteases. Spectrin cleavage is regulated by activated calpain, but also by the calcium-dependent binding of calmodulin (CaM) to spectrin. The physiologic significance of this balance between calpain activation and substrate-level regulation of spectrin cleavage is unknown. We report a strain of C57BL/6J mice harboring a single αII spectrin point mutation (Sptan1 c.3293G > A:p.R1098Q) with reduced CaM affinity and intrinsically enhanced sensitivity to calpain proteolysis. Homozygotes are embryonic lethal. Newborn heterozygotes of either gender appear normal, but soon develop a progressive ataxia characterized biochemically by accelerated calpain-mediated spectrin cleavage and morphologically by disruption of axonal and dendritic integrity and global neurodegeneration. Molecular modeling predicts unconstrained exposure of the mutant spectrin's calpain-cleavage site. These results reveal the critical importance of substrate-level regulation of spectrin cleavage for the maintenance of neuronal integrity. Given that excessive activation of calpain proteases is a common feature of neurodegenerative disease and traumatic encephalopathy, we propose that damage to the spectrin MPS may contribute to the neuropathology of many disorders.
Collapse
Affiliation(s)
- Arkadiusz Miazek
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Michał Zalas
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Joanna Skrzymowska
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Bryan A Bogin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Krzysztof Grzymajło
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Tomasz M Goszczynski
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Zachary A Levine
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, LH108, New Haven, CT, 06520, USA
| | - Jon S Morrow
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, LH108, New Haven, CT, 06520, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Michael C Stankewich
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, LH108, New Haven, CT, 06520, USA.
| |
Collapse
|
33
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
34
|
Joseph NF, Swarnkar S, Puthanveettil SV. Double Duty: Mitotic Kinesins and Their Post-Mitotic Functions in Neurons. Cells 2021; 10:cells10010136. [PMID: 33445569 PMCID: PMC7827351 DOI: 10.3390/cells10010136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 01/23/2023] Open
Abstract
Neurons, regarded as post-mitotic cells, are characterized by their extensive dendritic and axonal arborization. This unique architecture imposes challenges to how to supply materials required at distal neuronal components. Kinesins are molecular motor proteins that mediate the active delivery of cellular materials along the microtubule cytoskeleton for facilitating the local biochemical and structural changes at the synapse. Recent studies have made intriguing observations that some kinesins that function during neuronal mitosis also have a critical role in post-mitotic neurons. However, we know very little about the function and regulation of such kinesins. Here, we summarize the known cellular and biochemical functions of mitotic kinesins in post-mitotic neurons.
Collapse
Affiliation(s)
- Nadine F. Joseph
- The Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research Institute, La Jolla, CA 92037, USA;
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA;
| | - Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA;
| | - Sathyanarayanan V Puthanveettil
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA;
- Correspondence: ; Tel.: +1-561-228-3504; Fax: +1-568-228-2249
| |
Collapse
|
35
|
Hrstka SCL, Ankam S, Agac B, Klein JP, Moore RA, Narapureddy B, Schneider I, Hrstka RF, Dasari S, Staff NP. Proteomic analysis of human iPSC-derived sensory neurons implicates cell stress and microtubule dynamics dysfunction in bortezomib-induced peripheral neurotoxicity. Exp Neurol 2021; 335:113520. [PMID: 33129842 PMCID: PMC7750199 DOI: 10.1016/j.expneurol.2020.113520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/26/2022]
Abstract
The neurotoxic effects of the chemotherapeutic agent bortezomib on dorsal root ganglia sensory neurons are well documented, yet the mechanistic underpinnings that govern these cellular processes remain incompletely understood. In this study, system-wide proteomic changes were identified in human induced pluripotent stem cell-derived sensory neurons (iSNs) exposed to a clinically relevant dose of bortezomib. Label-free mass spectrometry facilitated the identification of approximately 2800 iSN proteins that exhibited differential levels in the setting of bortezomib. A significant proportion of these proteins affect the cellular processes of microtubule dynamics, cytoskeletal and cytoplasmic organization, and molecular transport, and pathway analysis revealed an enrichment of proteins in signaling pathways attributable to the unfolded protein response and the integrated stress response. Alterations in microtubule-associated proteins suggest a multifaceted relationship exists between bortezomib-induced proteotoxicity and microtubule cytoskeletal architecture, and MAP2 was prioritized as a topmost influential candidate. We observed a significant reduction in the overall levels of MAP2c in somata without discernable changes in neurites. As MAP2 is known to affect cellular processes including axonogenesis, neurite extension and branching, and neurite morphology, its altered levels are suggestive of a prominent role in bortezomib-induced neurotoxicity.
Collapse
Affiliation(s)
- Sybil C L Hrstka
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Soneela Ankam
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Busranur Agac
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Jon P Klein
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Raymond A Moore
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Bhavya Narapureddy
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Isabella Schneider
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Ronald F Hrstka
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
36
|
Yang P, Yang Y, Sun P, Tian Y, Gao F, Wang C, Zong T, Li M, Zhang Y, Yu T, Jiang Z. βII spectrin (SPTBN1): biological function and clinical potential in cancer and other diseases. Int J Biol Sci 2021; 17:32-49. [PMID: 33390831 PMCID: PMC7757025 DOI: 10.7150/ijbs.52375] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
βII spectrin, the most common isoform of non-erythrocyte spectrin, is a cytoskeleton protein present in all nucleated cells. Interestingly, βII spectrin is essential for the development of various organs such as nerve, epithelium, inner ear, liver and heart. The functions of βII spectrin include not only establishing and maintaining the cell structure but also regulating a variety of cellular functions, such as cell apoptosis, cell adhesion, cell spreading and cell cycle regulation. Notably, βII spectrin dysfunction is associated with embryonic lethality and the DNA damage response. More recently, the detection of altered βII spectrin expression in tumors indicated that βII spectrin might be involved in the development and progression of cancer. Its mutations and disorders could result in developmental disabilities and various diseases. The versatile roles of βII spectrin in disease have been examined in an increasing number of studies; nonetheless, the exact mechanisms of βII spectrin are still poorly understood. Thus, we summarize the structural features and biological roles of βII spectrin and discuss its molecular mechanisms and functions in development, homeostasis, regeneration and differentiation. This review highlight the potential effects of βII spectrin dysfunction in cancer and other diseases, outstanding questions for the future investigation of therapeutic targets. The investigation of the regulatory mechanism of βII spectrin signal inactivation and recovery may bring hope for future therapy of related diseases.
Collapse
Affiliation(s)
- Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Pin Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Fang Gao
- Department of Physical Medicine and Rehabiliation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chen Wang
- Department of Physical Medicine and Rehabiliation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
37
|
Yong Y, Gamage K, Cushman C, Spano A, Deppmann C. Regulation of degenerative spheroids after injury. Sci Rep 2020; 10:15472. [PMID: 32963272 PMCID: PMC7508847 DOI: 10.1038/s41598-020-71906-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/05/2020] [Indexed: 12/26/2022] Open
Abstract
Neuronal injury leads to rapid, programmed disintegration of axons distal to the site of lesion. Much like other forms of axon degeneration (e.g. developmental pruning, toxic insult from neurodegenerative disorder), Wallerian degeneration associated with injury is preceded by spheroid formation along axons. The mechanisms by which injury leads to formation of spheroids and whether these spheroids have a functional role in degeneration remain elusive. Here, using neonatal mouse primary sympathetic neurons, we investigate the roles of players previously implicated in the progression of Wallerian degeneration in injury-induced spheroid formation. We find that intra-axonal calcium flux is accompanied by actin-Rho dependent growth of calcium rich axonal spheroids that eventually rupture, releasing material to the extracellular space prior to catastrophic axon degeneration. Importantly, after injury, Sarm1-/- and DR6-/-, but not Wlds (excess NAD+) neurons, are capable of forming spheroids that eventually rupture, releasing their contents to the extracellular space to promote degeneration. Supplementation of exogenous NAD+ or expressing WLDs suppresses Rho-dependent spheroid formation and degeneration in response to injury. Moreover, injured or trophically deprived Sarm1-/- and DR6-/-, but not Wlds neurons, are resistant to degeneration induced by conditioned media collected from wild-type axons after spheroid rupture. Taken together, these findings place Rho-actin and NAD+ upstream of spheroid formation and may suggest that other mediators of degeneration, such as DR6 and SARM1, mediate post-spheroid rupture events that lead to catastrophic axon disassembly.
Collapse
Affiliation(s)
- Yu Yong
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Kanchana Gamage
- Amgen, Massachusetts and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Courtny Cushman
- Department of Neuroscience and Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Anthony Spano
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA.
- Department of Neuroscience and Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904-4328, USA.
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA.
| |
Collapse
|
38
|
Jia R, Chai Y, Xie C, Liu G, Zhu Z, Huang K, Li W, Ou G. The spectrin-based membrane skeleton is asymmetric and remodels during neural development in C. elegans. J Cell Sci 2020; 133:jcs248583. [PMID: 32620698 DOI: 10.1242/jcs.248583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/25/2020] [Indexed: 01/22/2023] Open
Abstract
Perturbation of spectrin-based membrane mechanics causes hereditary elliptocytosis and spinocerebellar ataxia, but the underlying cellular basis of pathogenesis remains unclear. Here, we introduced conserved disease-associated spectrin mutations into the Caenorhabditis elegans genome and studied the contribution of spectrin to neuronal migration and dendrite formation in developing larvae. The loss of spectrin resulted in ectopic actin polymerization outside of the existing front and secondary membrane protrusions, leading to defective neuronal positioning and dendrite morphology in adult animals. Spectrin accumulated in the lateral region and rear of migrating neuroblasts and redistributes from the soma into the newly formed dendrites, indicating that the spectrin-based membrane skeleton is asymmetric and remodels to regulate actin assembly and cell shape during development. We affinity-purified spectrin from C. elegans and showed that its binding partner ankyrin functions with spectrin. Asymmetry and remodeling of the membrane skeleton might enable spatiotemporal modulation of membrane mechanics for distinct developmental events.
Collapse
Affiliation(s)
- Ru Jia
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Chao Xie
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Gai Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
39
|
Bednarz K, Alshafie W, Aufmkolk S, Desserteaux T, Markam PS, Storch KF, Stroh T. Ultradian Secretion of Growth Hormone in Mice: Linking Physiology With Changes in Synapse Parameters Using Super-Resolution Microscopy. Front Neural Circuits 2020; 14:21. [PMID: 32523515 PMCID: PMC7261915 DOI: 10.3389/fncir.2020.00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/14/2020] [Indexed: 01/19/2023] Open
Abstract
Neuroendocrine circuits are orchestrated by the pituitary gland in response to hypothalamic hormone-releasing and inhibiting factors to generate an ultradian and/or circadian rhythm of hormone secretion. However, mechanisms that govern this rhythmicity are not fully understood. It has been shown that synaptic transmission in the rodent hypothalamus undergoes cyclical changes in parallel with rhythmic hormone secretion and a growing body of evidence suggests that rapid rewiring of hypothalamic neurons may be the source of these changes. For decades, structural synaptic studies have been utilizing electron microscopy, which provides the resolution suitable for visualizing synapses. However, the small field of view, limited specificity and manual analysis susceptible to bias fuel the search for a more quantitative approach. Here, we apply the fluorescence super-resolution microscopy approach direct Stochastic Optical Reconstruction Microscopy (dSTORM) to quantify and structurally characterize excitatory and inhibitory synapses that contact growth hormone-releasing-hormone (GHRH) neurons during peak and trough values of growth hormone (GH) concentration in mice. This approach relies on a three-color immunofluorescence staining of GHRH and pre- and post-synaptic markers, and a quantitative analysis with a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. With this method we confirm our previous findings, using electron microscopy, of increased excitatory synaptic input to GHRH neurons during peak levels of GH. Additionally, we find a shift in synapse numbers during low GH levels, where more inhibitory synaptic inputs are detected. Lastly, we utilize dSTORM to study novel aspects of synaptic structure. We show that more excitatory (but not inhibitory) pre-synaptic clusters associate with excitatory post-synaptic clusters during peaks of GH secretion and that the numbers of post-synaptic clusters increase during high hormone levels. The results presented here provide an opportunity to highlight dSTORM as a valuable quantitative approach to study synaptic structure in the neuroendocrine circuit. Importantly, our analysis of GH circuitry sheds light on the potential mechanism that drives ultradian changes in synaptic transmission and possibly aids in GH pulse generation in mice.
Collapse
Affiliation(s)
- Klaudia Bednarz
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Walaa Alshafie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Sarah Aufmkolk
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Théotime Desserteaux
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Pratap Singh Markam
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Kai-Florian Storch
- Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Thomas Stroh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
40
|
Liu CH, Seo R, Ho TSY, Stankewich M, Mohler PJ, Hund TJ, Noebels JL, Rasband MN. β spectrin-dependent and domain specific mechanisms for Na + channel clustering. eLife 2020; 9:e56629. [PMID: 32425157 PMCID: PMC7237202 DOI: 10.7554/elife.56629] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022] Open
Abstract
Previously, we showed that a hierarchy of spectrin cytoskeletal proteins maintains nodal Na+ channels (Liu et al., 2020). Here, using mice lacking β1, β4, or β1/β4 spectrins, we show this hierarchy does not function at axon initial segments (AIS). Although β1 spectrin, together with AnkyrinR (AnkR), compensates for loss of nodal β4 spectrin, it cannot compensate at AIS. We show AnkR lacks the domain necessary for AIS localization. Whereas loss of β4 spectrin causes motor impairment and disrupts AIS, loss of β1 spectrin has no discernable effect on central nervous system structure or function. However, mice lacking both neuronal β1 and β4 spectrin show exacerbated nervous system dysfunction compared to mice lacking β1 or β4 spectrin alone, including profound disruption of AIS Na+ channel clustering, progressive loss of nodal Na+ channels, and seizures. These results further define the important role of AIS and nodal spectrins for nervous system function.
Collapse
Affiliation(s)
- Cheng-Hsin Liu
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| | - Ryan Seo
- Department of Neurology, Baylor College of MedicineHoustonUnited States
| | - Tammy Szu-Yu Ho
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | | | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State UniversityColumbusUnited States
| | - Thomas J Hund
- Department of Biomedical Engineering, The Ohio State UniversityColumbusUnited States
| | - Jeffrey L Noebels
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Neurology, Baylor College of MedicineHoustonUnited States
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
41
|
|
42
|
Venkatesh K, Mathew A, Koushika SP. Role of actin in organelle trafficking in neurons. Cytoskeleton (Hoboken) 2020; 77:97-109. [DOI: 10.1002/cm.21580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Keertana Venkatesh
- Department of Biological SciencesTata Institute of Fundamental Research Mumbai India
| | - Amal Mathew
- Department of Biological SciencesTata Institute of Fundamental Research Mumbai India
| | - Sandhya P. Koushika
- Department of Biological SciencesTata Institute of Fundamental Research Mumbai India
| |
Collapse
|
43
|
Lorenzo DN. Cargo hold and delivery: Ankyrins, spectrins, and their functional patterning of neurons. Cytoskeleton (Hoboken) 2020; 77:129-148. [PMID: 32034889 DOI: 10.1002/cm.21602] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
Abstract
The highly polarized, typically very long, and nonmitotic nature of neurons present them with unique challenges in the maintenance of their homeostasis. This architectural complexity serves a rich and tightly controlled set of functions that enables their fast communication with neighboring cells and endows them with exquisite plasticity. The submembrane neuronal cytoskeleton occupies a pivotal position in orchestrating the structural patterning that determines local and long-range subcellular specialization, membrane dynamics, and a wide range of signaling events. At its center is the partnership between ankyrins and spectrins, which self-assemble with both remarkable long-range regularity and micro- and nanoscale specificity to precisely position and stabilize cell adhesion molecules, membrane transporters, ion channels, and other cytoskeletal proteins. To accomplish these generally conserved, but often functionally divergent and spatially diverse, roles these partners use a combinatorial program of a couple of dozens interacting family members, whose code is not fully unraveled. In a departure from their scaffolding roles, ankyrins and spectrins also enable the delivery of material to the plasma membrane by facilitating intracellular transport. Thus, it is unsurprising that deficits in ankyrins and spectrins underlie several neurodevelopmental, neurodegenerative, and psychiatric disorders. Here, I summarize key aspects of the biology of spectrins and ankyrins in the mammalian neuron and provide a snapshot of the latest advances in decoding their roles in the nervous system.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
44
|
Mechanistic insights into the interactions of dynein regulator Ndel1 with neuronal ankyrins and implications in polarity maintenance. Proc Natl Acad Sci U S A 2019; 117:1207-1215. [PMID: 31889000 DOI: 10.1073/pnas.1916987117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ankyrin-G (AnkG), a highly enriched scaffold protein in the axon initial segment (AIS) of neurons, functions to maintain axonal polarity and the integrity of the AIS. At the AIS, AnkG regulates selective intracellular cargo trafficking between soma and axons via interaction with the dynein regulator protein Ndel1, but the molecular mechanism underlying this binding remains elusive. Here we report that Ndel1's C-terminal coiled-coil region (CT-CC) binds to giant neuron-specific insertion regions present in both AnkG and AnkB with 2:1 stoichiometry. The high-resolution crystal structure of AnkB in complex with Ndel1 CT-CC revealed the detailed molecular basis governing the AnkB/Ndel1 complex formation. Mechanistically, AnkB binds with Ndel1 by forming a stable 5-helix bundle dominated by hydrophobic interactions spread across 6 distinct interaction layers. Moreover, we found that AnkG is essential for Ndel1 accumulation at the AIS. Finally, we found that cargo sorting at the AIS can be disrupted by blocking the AnkG/Ndel1 complex formation using a peptide designed based on our structural data. Collectively, the atomic structure of the AnkB/Ndel1 complex together with studies of cargo sorting through the AIS establish the mechanistic basis for AnkG/Ndel1 complex formation and for the maintenance of axonal polarity. Our study will also be valuable for future studies of the interaction between AnkB and Ndel1 perhaps at distal axonal cargo transport.
Collapse
|
45
|
|