1
|
Erdmann É, Agolli S, Fix S, Cottard F, Keyser C, Zvenigorosky V, Gonzalez A, Haili Z, Kieffer B, Céraline J. Human-specific genomic evolution of a regulatory network enables fine-tuning of N-cadherin gene expression. Cell Mol Life Sci 2025; 82:196. [PMID: 40343501 PMCID: PMC12064536 DOI: 10.1007/s00018-025-05725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Androgen receptor (AR), a member of the nuclear receptor superfamily controls prostate epithelial cell plasticity by repressing a panel of genes involved in epithelial-mesenchymal transition (EMT), including the human CDH2 gene encoding N-cadherin. At the opposite, pathological AR variants such as AR-V7 associated with prostate tumor progression upregulate those EMT genes. Here, focusing on the human CDH2 gene, we show that this duality between AR and AR-V7 relies on a potential human accelerated region present in the intron 1. This fastest-evolving region of the human genome is actually a variable number tandem repeat (VNTR) comprising 24 repetitions of a DNA sequence that englobes binding sites for steroid hormone receptors, recombination signal binding protein for immunoglobulin kappa j region (RBPJ) an effector of the Notch pathway, and zinc finger e-box binding homeobox 1 (ZEB1). Genomic DNA sequencing, multiple sequence alignment, data mining, as well as protein-DNA interaction and gene expression analyses indicate that this VNTR constitutes a potential transcriptional hub for different transcription factors to control human CDH2 expression. Also, our data suggest that prostate tumor cells may unlock an up to now unknown molecular mechanism associated with a fine-tuned control of human CDH2 gene expression.
Collapse
Affiliation(s)
- Éva Erdmann
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Savera Agolli
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Simon Fix
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Félicie Cottard
- CNRS UMR 7242, ESBS, Université de Strasbourg, Illkirch, 67404, France
| | | | | | - Angéla Gonzalez
- Strasbourg Institute of Legal Medicine, Strasbourg, 67085, France
| | - Zakary Haili
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Bruno Kieffer
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Jocelyn Céraline
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France.
- Hôpitaux Universitaires de Strasbourg, Strasbourg, 67091, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, Strasbourg, 67085, France.
- CNRS UMR 7104, INSERM U1258, IGBMC, 1, rue Laurent Fries, Illkirch, 67404, France.
| |
Collapse
|
2
|
Yang Y, Wang TY, Li Q, Lu J, Ren Y, Weiner AB, Fry J, Liu Q, Yum C, Wang R, Guo Q, Wan Y, Ji Z, Dong X, Lotan TL, Schaeffer EM, Yang R, Cao Q. Androgen receptor-regulated lncRNA PRCAT71 promotes AR signaling through the interaction with KHSRP in prostate cancer. SCIENCE ADVANCES 2025; 11:eadk6989. [PMID: 40203114 PMCID: PMC11980854 DOI: 10.1126/sciadv.adk6989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Mounting evidence indicates that long noncoding RNAs (lncRNAs) play vital roles in tumorigenesis and progression of cancers. However, the functions and regulatory mechanisms of lncRNAs in prostate cancer (PCa) are still largely unknown. In this study, we found an lncRNA, PCa-associated transcript 71 (PRCAT71), highly expressed in metastatic and primary PCa compared to benign prostate tissues. Silencing PRCAT71 inhibited cancerous properties of PCa cells and androgen receptor (AR) signaling. Mechanistically, PRCAT71 acts as a scaffold to recruit K homology (KH)-type splicing regulatory protein (KHSRP) to AR messenger RNA (mRNA) and stabilize AR mRNA, leading to activated AR signaling. KHSRP plays a critical role in PCa progression. PRCAT71 is transcriptionally regulated by AR-driven enhancers, forming a positive regulatory loop between AR and PRCAT71 in PCa. Our study demonstrates a coordinated regulation of AR mRNA by lncRNA PRCAT71 and RNA binding protein KHSRP and provides insight that the PRCAT71-KHSRP-AR axis is a promising therapeutic target for treating PCa.
Collapse
Affiliation(s)
- Yongyong Yang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ting-You Wang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qianru Li
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jiawen Lu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yanan Ren
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Adam B. Weiner
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua Fry
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qi Liu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chaehyun Yum
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rui Wang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qingxiang Guo
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yu Wan
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL 60628, USA
| | - Zhe Ji
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL 60628, USA
| | - Xuesen Dong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Edward M. Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rendong Yang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qi Cao
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Pandey SK, Sabharwal U, Tripathi S, Mishra A, Yadav N, Dwivedi-Agnihotri H. Androgen Signaling in Prostate Cancer: When a Friend Turns Foe. Endocr Metab Immune Disord Drug Targets 2025; 25:37-56. [PMID: 38831575 DOI: 10.2174/0118715303313528240523101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
Androgen (AR) signaling is the main signaling for the development of the prostate and its normal functioning. AR is highly specific for testosterone and dihydrotestosterone, significantly contributing to prostate development, physiology, and cancer. All these receptors have emerged as crucial therapeutic targets for PCa. In the year 1966, the Noble prize was awarded to Huggins and Hodge for their groundbreaking discovery of AR. As it is a pioneer transcription factor, it belongs to the steroid hormone receptor family and consists of domains, including DNA binding domain (DBD), hormone response elements (HRE), C-terminal ligand binding domain (LBD), and N-terminal regulatory domains. Structural variations in AR, such as AR gene amplification, LBD mutations, alternative splicing of exons, hypermethylation of AR, and co- regulators, are major contributors to PCa. It's signaling is crucial for the development and functioning of the prostate gland, with the AR being the key player. The specificity of AR for testosterone and dihydrotestosterone is important in prostate physiology. However, when it is dysregulated, AR contributes significantly to PCa. However, the structural variations in AR, such as gene amplification, mutations, alternative splicing, and epigenetic modifications, drive the PCa progression. Therefore, understanding AR function and dysregulation is essential for developing effective therapeutic strategies. Thus, the aim of this review was to examine how AR was initially pivotal for prostate development and how it turned out to show both positive and detrimental implications for the prostate.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Usha Sabharwal
- P. G. Department of Biosciences, Centre of Advanced Studies, Satellite Campus, Sardar Patel Maidan, 388120, Gujarat, India
| | - Swati Tripathi
- Section of Electron Microscopy, Supportive Centre for Brain Research, National Institute for Physiological Sciences (NIPS) Okazaki, 444-8787, Japan
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Neha Yadav
- Department of Biophysics, University of Delhi, South Campus, New Delhi, 110021, India
| | | |
Collapse
|
4
|
Lu T, Liao B, Lin R, Meng C, Huang P, Wang C, Liu F, Xia C. 18β-Glycyrrhetinic acid synergizes with enzalutamide to counteract castration-resistant prostate cancer by inhibiting OATP2B1 uptake of dehydroepiandrosterone sulfate. Eur J Pharmacol 2024; 983:176995. [PMID: 39277096 DOI: 10.1016/j.ejphar.2024.176995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Androgen dependence is a key feature of prostate cancer, and androgen deprivation is effective in treating prostate cancer. However, the disease often worsens and develops into castration-resistant prostate cancer after short-term control. The current study aimed to explore the mechanism of the synergistic action of 18β-glycyrrhetinic acid (18β-GA) and enzalutamide (ENZ) against prostate cancer. Our findings showed that 18β-GA significantly inhibited the expression of OATP2B1 and the transport of dehydroepiandrosterone sulfate (DHEAS) in LNCap and 22RV1 cells. It also downregulated the expression of androgen receptor (AR) to some extent. ENZ strongly inhibited AR expression, but it did not affect OATP2B1-mediated uptake of DHEAS. Compared to the effects of 18β-GA and ENZ alone, the combination of 18β-GA and ENZ significantly enhanced the inhibitory effects on AR, prostate-specific antigen (PSA) expression, tumor cell proliferation, and migration. The results obtained in castrated model mice matched the findings of in vitro experiments. 18β-GA significantly reduced the uptake of DHEAS mediated by OATP2B1 in mouse tumor tissues and cooperated with ENZ to further inhibit the expression of AR and PSA, combat the growth of tumor cells, and promote the apoptosis of tumor cells. In conclusion, 18β-GA considerably decreased the uptake of DHEAS and androgen production in cells by inhibiting the transport function of OATP2B1, while ENZ inhibited the nuclear translocation of AR and reduced the expression of AR. The combination of 18β-GA and ENZ can simultaneously inhibit androgen production and AR expression and exhibit a synergistic effect against castration and prostate cancer progression.
Collapse
Affiliation(s)
- Ting Lu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, PR China
| | - Bin Liao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, PR China
| | - Ronghe Lin
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, PR China
| | - Chao Meng
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, PR China
| | - Ping Huang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, PR China
| | - Cheng Wang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of New Drug Transformation and Evaluation of Jiangxi Province, Nanchang, 330031, PR China
| | - Fanglan Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of New Drug Transformation and Evaluation of Jiangxi Province, Nanchang, 330031, PR China.
| | - Chunhua Xia
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of New Drug Transformation and Evaluation of Jiangxi Province, Nanchang, 330031, PR China.
| |
Collapse
|
5
|
Altıntaş UB, Seo JH, Giambartolomei C, Ozturan D, Fortunato BJ, Nelson GM, Goldman SR, Adelman K, Hach F, Freedman ML, Lack NA. Decoding the epigenetics and chromatin loop dynamics of androgen receptor-mediated transcription. Nat Commun 2024; 15:9494. [PMID: 39489778 PMCID: PMC11532539 DOI: 10.1038/s41467-024-53758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Androgen receptor (AR)-mediated transcription plays a critical role in development and prostate cancer growth. AR drives gene expression by binding to thousands of cis-regulatory elements (CRE) that loop to hundreds of target promoters. With multiple CREs interacting with a single promoter, it remains unclear how individual AR bound CREs contribute to gene expression. To characterize the involvement of these CREs, we investigate the AR-driven epigenetic and chromosomal chromatin looping changes by generating a kinetic multi-omic dataset comprised of steady-state mRNA, chromatin accessibility, transcription factor binding, histone modifications, chromatin looping, and nascent RNA. Using an integrated regulatory network, we find that AR binding induces sequential changes in the epigenetic features at CREs, independent of gene expression. Further, we show that binding of AR does not result in a substantial rewiring of chromatin loops, but instead increases the contact frequency of pre-existing loops to target promoters. Our results show that gene expression strongly correlates to the changes in contact frequency. We then propose and experimentally validate an unbalanced multi-enhancer model where the impact on gene expression of AR-bound enhancers is heterogeneous, and is proportional to their contact frequency with target gene promoters. Overall, these findings provide insights into AR-mediated gene expression upon acute androgen simulation and develop a mechanistic framework to investigate nuclear receptor mediated perturbations.
Collapse
Grants
- 221Z116 Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (Scientific and Technological Research Council of Turkey)
- R01 CA259058 NCI NIH HHS
- R01 CA227237 NCI NIH HHS
- W81XWH-21-1-0339 U.S. Department of Defense (United States Department of Defense)
- R01 CA251555 NCI NIH HHS
- W81XWH-21-1-0234 U.S. Department of Defense (United States Department of Defense)
- PJT-173331 Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
- W81XWH-22-1-0951 U.S. Department of Defense (United States Department of Defense)
- R01 CA262577 NCI NIH HHS
- N.A.L. was supported by funding from TUBITAK (221Z116), W81XWH-21-1-0234 (DoD), and CIHR PJT-173331.
- M.L.F. was supported by the Claudia Adams Barr Program for Innovative Cancer Research, the Dana-Farber Cancer Institute Presidential Initiatives Fund, the H.L. Snyder Medical Research Foundation, the Cutler Family Fund for Prevention and Early Detection, the Donahue Family Fund, W81XWH-21-1-0339, W81XWH-22-1-0951 (DoD), NIH Awards R01CA251555, R01CA227237, R01CA262577, R01CA259058 and a Movember PCF Challenge Award.
Collapse
Affiliation(s)
- Umut Berkay Altıntaş
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Ji-Heui Seo
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Claudia Giambartolomei
- Integrative Data Analysis Unit, Health Data Science Centre, Human Technopole, Milan, 20157, Italy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Dogancan Ozturan
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Brad J Fortunato
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Geoffrey M Nelson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth R Goldman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- The Eli and Edythe L. Broad Institute, Boston, MA, 02142, USA
| | - Faraz Hach
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Matthew L Freedman
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- The Eli and Edythe L. Broad Institute, Boston, MA, 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Nathan A Lack
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada.
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
- Department of Medical Pharmacology, School of Medicine, Koç University, Istanbul, 34450, Turkey.
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, 34450, Istanbul, Turkey.
| |
Collapse
|
6
|
Obst JK, Tien AH, Setiawan JC, Deneault LF, Sadar MD. Inhibitors of the transactivation domain of androgen receptor as a therapy for prostate cancer. Steroids 2024; 210:109482. [PMID: 39053630 PMCID: PMC11364166 DOI: 10.1016/j.steroids.2024.109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
The androgen receptor (AR) is a modular transcription factor which functions as a master regulator of gene expression. AR protein is composed of three functional domains; the ligand-binding domain (LBD); DNA-binding domain (DBD); and the intrinsically disordered N-terminal transactivation domain (TAD). AR is transactivated upon binding to the male sex hormone testosterone and other androgens. While the AR may tolerate loss of its LBD, the TAD contains activation function-1 (AF-1) that is essential for all AR transcriptional activity. AR is frequently over-expressed in most prostate cancer. Currently, androgen deprivation therapy (ADT) in the form of surgical or chemical castration remains the standard of care for patients with high risk localized disease, advanced and metastatic disease, and those patients that experience biochemical relapse following definitive primary treatment. Patients with recurrent disease that receive ADT will ultimately progress to lethal metastatic castration-resistant prostate cancer. In addition to ADT not providing a cure, it is associated with numerous adverse effects including cardiovascular disease, osteoporosis and sexual dysfunction. Recently there has been a renewed interest in investigating the possibility of using antiandrogens which competitively bind the AR-LBD without ADT for patients with hormone sensitive, non-metastatic prostate cancer. Here we describe a class of compounds termed AR transactivation domain inhibitors (ARTADI) and their mechanism of action. These compounds bind to the AR-TAD to inhibit AR transcriptional activity in the absence and presence of androgens. Thus these inhibitors may have utility in preventing prostate cancer growth in the non-castrate setting.
Collapse
Affiliation(s)
- Jon K Obst
- Department of Genome Sciences, BC Cancer Research Institute, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Amy H Tien
- Department of Genome Sciences, BC Cancer Research Institute, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Josie C Setiawan
- Department of Genome Sciences, BC Cancer Research Institute, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Lauren F Deneault
- Department of Genome Sciences, BC Cancer Research Institute, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Marianne D Sadar
- Department of Genome Sciences, BC Cancer Research Institute, BC Cancer, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
7
|
Liu YN, Liu MK, Wen YC, Li CH, Yeh HL, Dung PVT, Jiang KC, Chen WH, Li HR, Huang J, Chen WY. Binding of interleukin-1 receptor antagonist to cholinergic receptor muscarinic 4 promotes immunosuppression and neuroendocrine differentiation in prostate cancer. Cancer Lett 2024; 598:217090. [PMID: 38945201 DOI: 10.1016/j.canlet.2024.217090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The tumor microenvironment (TME) of prostate cancer (PCa) is characterized by high levels of immunosuppressive molecules, including cytokines and chemokines. This creates a hostile immune landscape that impedes effective immune responses. The interleukin-1 (IL-1) receptor antagonist (IL1RN), a key anti-inflammatory molecule, plays a significant role in suppressing IL-1-related immune and inflammatory responses. Our research investigates the oncogenic role of IL1RN in PCa, particularly its interactions with muscarinic acetylcholine receptor 4 (CHRM4), and its involvement in driving immunosuppressive pathways and M2-like macrophage polarization within the PCa TME. We demonstrate that following androgen deprivation therapy (ADT), the IL1RN-CHRM4 interaction in PCa activates the MAPK/AKT signaling pathway. This activation upregulates the transcription factors E2F1 and MYCN, stimulating IL1RN production and creating a positive feedback loop that increases CHRM4 abundance in both PCa cells and M2-like macrophages. This ADT-driven IL1RN/CHRM4 axis significantly enhances immune checkpoint markers associated with neuroendocrine differentiation and treatment-resistant outcomes. Higher serum IL1RN levels are associated with increased disease aggressiveness and M2-like macrophage markers in advanced PCa patients. Additionally, elevated IL1RN levels correlate with better clinical outcomes following immunotherapy. Clinical correlations between IL1RN and CHRM4 expression in advanced PCa patients and neuroendocrine PCa organoid models highlight their potential as therapeutic targets. Our data suggest that targeting the IL1RN/CHRM4 signaling could be a promising strategy for managing PCa progression and enhancing treatment responses.
Collapse
Affiliation(s)
- Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Kun Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hsiu Li
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Lien Yeh
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Ru Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Ng RR, Lin Z, Zhang Y, Ti SC, Javed A, Wong JWH, Fang Q, Leung JWC, Tang AHN, Huen MSY. R-loop resolution by ARIP4 helicase promotes androgen-mediated transcription induction. SCIENCE ADVANCES 2024; 10:eadm9577. [PMID: 39028815 PMCID: PMC11259169 DOI: 10.1126/sciadv.adm9577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Pausing of RNA polymerase II (Pol II) at transcription start sites (TSSs) primes target genes for productive elongation. Coincidentally, DNA double-strand breaks (DSBs) enrich at highly transcribed and Pol II-paused genes, although their interplay remains undefined. Using androgen receptor (AR) signaling as a model, we have uncovered AR-interacting protein 4 (ARIP4) helicase as a driver of androgen-dependent transcription induction. Chromatin immunoprecipitation sequencing analysis revealed that ARIP4 preferentially co-occupies TSSs with paused Pol II. Moreover, we found that ARIP4 complexes with topoisomerase II beta and mediates transient DSB formation upon hormone stimulation. Accordingly, ARIP4 deficiency compromised release of paused Pol II and resulted in R-loop accumulation at a panel of highly transcribed AR target genes. Last, we showed that ARIP4 binds and unwinds R-loops in vitro and that its expression positively correlates with prostate cancer progression. We propose that androgen stimulation triggers ARIP4-mediated unwinding of R-loops at TSSs, enforcing Pol II pause release to effectively drive an androgen-dependent expression program.
Collapse
Affiliation(s)
- Raissa Regina Ng
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Zhongyang Lin
- Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Yanmin Zhang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Shih Chieh Ti
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Asif Javed
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Jason Wing Hon Wong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Qingming Fang
- Department of Biochemistry and Structural Biology and Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Justin Wai Chung Leung
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alex Hin Ning Tang
- Department of Pathology, School of Clinical Medicine LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Michael Shing Yan Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| |
Collapse
|
9
|
Shrestha RK, Nassar ZD, Hanson AR, Iggo R, Townley SL, Dehairs J, Mah CY, Helm M, Alizadeh-Ghodsi M, Pickering M, Ghesquière B, Watt MJ, Quek LE, Hoy AJ, Tilley WD, Swinnen JV, Butler LM, Selth LA. ACSM1 and ACSM3 Regulate Fatty Acid Metabolism to Support Prostate Cancer Growth and Constrain Ferroptosis. Cancer Res 2024; 84:2313-2332. [PMID: 38657108 DOI: 10.1158/0008-5472.can-23-1489] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Solid tumors are highly reliant on lipids for energy, growth, and survival. In prostate cancer, the activity of the androgen receptor (AR) is associated with reprogramming of lipid metabolic processes. Here, we identified acyl-CoA synthetase medium chain family members 1 and 3 (ACSM1 and ACSM3) as AR-regulated mediators of prostate cancer metabolism and growth. ACSM1 and ACSM3 were upregulated in prostate tumors compared with nonmalignant tissues and other cancer types. Both enzymes enhanced proliferation and protected prostate cancer cells from death in vitro, whereas silencing ACSM3 led to reduced tumor growth in an orthotopic xenograft model. ACSM1 and ACSM3 were major regulators of the prostate cancer lipidome and enhanced energy production via fatty acid oxidation. Metabolic dysregulation caused by loss of ACSM1/3 led to mitochondrial oxidative stress, lipid peroxidation, and cell death by ferroptosis. Conversely, elevated ACSM1/3 activity enabled prostate cancer cells to survive toxic levels of medium chain fatty acids and promoted resistance to ferroptosis-inducing drugs and AR antagonists. Collectively, this study reveals a tumor-promoting function of medium chain acyl-CoA synthetases and positions ACSM1 and ACSM3 as key players in prostate cancer progression and therapy resistance. Significance: Androgen receptor-induced ACSM1 and ACSM3 mediate a metabolic pathway in prostate cancer that enables the utilization of medium chain fatty acids for energy production, blocks ferroptosis, and drives resistance to clinically approved antiandrogens.
Collapse
Affiliation(s)
- Raj K Shrestha
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, Australia
| | - Zeyad D Nassar
- South Australian Health and Medical Research Institute, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, Australia
| | - Adrienne R Hanson
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, Australia
| | - Richard Iggo
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Institut Bergonié Unicancer, INSERM, Bordeaux, France
| | - Scott L Townley
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, Australia
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Chui Y Mah
- South Australian Health and Medical Research Institute, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, Australia
| | - Madison Helm
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Mohammadreza Alizadeh-Ghodsi
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Marie Pickering
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Bart Ghesquière
- Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Matthew J Watt
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, Charles Perkins Centre, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lisa M Butler
- South Australian Health and Medical Research Institute, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, Australia
| |
Collapse
|
10
|
Casanova-Salas I, Aguilar D, Cordoba-Terreros S, Agundez L, Brandariz J, Herranz N, Mas A, Gonzalez M, Morales-Barrera R, Sierra A, Soriano-Navarro M, Cresta P, Mir G, Simonetti S, Rodrigues G, Arce-Gallego S, Delgado-Serrano L, Agustí I, Castellano-Sanz E, Mast R, de Albert M, Celma A, Santamaria A, Gonzalez L, Castro N, Suanes MDM, Hernández-Losa J, Nonell L, Peinado H, Carles J, Mateo J. Circulating tumor extracellular vesicles to monitor metastatic prostate cancer genomics and transcriptomic evolution. Cancer Cell 2024; 42:1301-1312.e7. [PMID: 38981440 DOI: 10.1016/j.ccell.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/11/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024]
Abstract
Extracellular vesicles (EVs) secreted by tumors are abundant in plasma, but their potential for interrogating the molecular features of tumors through multi-omic profiling remains widely unexplored. Genomic and transcriptomic profiling of circulating EV-DNA and EV-RNA isolated from in vitro and in vivo models of metastatic prostate cancer (mPC) reveal a high contribution of tumor material to EV-loaded DNA/RNA, validating the findings in two cohorts of longitudinal plasma samples collected from patients during androgen receptor signaling inhibitor (ARSI) or taxane-based therapy. EV-DNA genomic features recapitulate matched-patient biopsies and circulating tumor DNA (ctDNA) and associate with clinical progression. We develop a novel approach to enable transcriptomic profiling of EV-RNA (RExCuE). We report how the transcriptome of circulating EVs is enriched for tumor-associated transcripts, captures certain patient and tumor features, and reflects on-therapy tumor adaptation changes. Altogether, we show that EV profiling enables longitudinal transcriptomic and genomic profiling of mPC in liquid biopsy.
Collapse
Affiliation(s)
- Irene Casanova-Salas
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Daniel Aguilar
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sarai Cordoba-Terreros
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Laura Agundez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Julian Brandariz
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Nicolas Herranz
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alba Mas
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Macarena Gonzalez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Rafael Morales-Barrera
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Alexandre Sierra
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Pablo Cresta
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Gisela Mir
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sara Simonetti
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Gonçalo Rodrigues
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sara Arce-Gallego
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Luisa Delgado-Serrano
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Irene Agustí
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Elena Castellano-Sanz
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Richard Mast
- Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Ana Celma
- Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Anna Santamaria
- Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lucila Gonzalez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Natalia Castro
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maria Del Mar Suanes
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Javier Hernández-Losa
- Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lara Nonell
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Hector Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Joan Carles
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain.
| |
Collapse
|
11
|
Rapuano R, Riccio A, Mercuri A, Madera JR, Dallavalle S, Moricca S, Lupo A. Proliferation and migration of PC-3 prostate cancer cells is counteracted by PPARγ-cladosporol binding-mediated apoptosis and a decreased lipid biosynthesis and accumulation. Biochem Pharmacol 2024; 222:116097. [PMID: 38428827 DOI: 10.1016/j.bcp.2024.116097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVES Chemoprevention, consisting of the administration of natural and/or synthetic compounds, appears to be an alternative way to common therapeutical approaches to preventing the occurrence of various cancers. Cladosporols, secondary metabolites from Cladosporium tenuissimum, showed a powerful ability in controlling human colon cancer cell proliferation through a peroxisome proliferator-activated receptor gamma (PPARγ)-mediated modulation of gene expression. Hence, we carried out experiments to verify the anticancer properties of cladosporols in human prostate cancer cells. Prostate cancer represents one of the most widespread tumors in which several risk factors play a role in determining its high mortality rate in men. MATERIALS AND METHODS We assessed, by viability assays, PPARγ silencing and overexpression experiments and western blotting analysis, the anticancer properties of cladosporols in cancer prostate cell lines. RESULTS Cladosporols A and B selectively inhibited the proliferation of human prostate PNT-1A, LNCaP and PC-3 cells and their most impactful antiproliferative ability towards PC-3 prostate cancer cells, was mediated by PPARγ modulation. Moreover, the anticancer ability of cladosporols implied a sustained apoptosis. Finally, cladosporols negatively regulated the expression of enzymes involved in the biosynthesis of fatty acids and cholesterol, thus enforcing the relationship between prostate cancer development and lipid metabolism dysregulation. CONCLUSION This is the first work, to our knowledge, in which the role of cladosporols A and B was disclosed in prostate cancer cells. Importantly, the present study highlighted the potential of cladosporols as new therapeutical tools, which, interfering with cell proliferation and lipid pathway dysregulation, may control prostate cancer initiation and progression.
Collapse
Affiliation(s)
- Roberta Rapuano
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 42, 82100 Benevento, Italy
| | - Alessio Riccio
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 42, 82100 Benevento, Italy
| | - Antonella Mercuri
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 42, 82100 Benevento, Italy
| | - Jessica Raffaella Madera
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 42, 82100 Benevento, Italy
| | - Sabrina Dallavalle
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Salvatore Moricca
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Piazzale delle Cascine 28, 50144 Firenze, Italy
| | - Angelo Lupo
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 42, 82100 Benevento, Italy.
| |
Collapse
|
12
|
Ogunjinmi OD, Abdullahi T, Somji RA, Bevan CL, Barclay WS, Temperton N, Brooke GN, Giotis ES. The antiviral potential of the antiandrogen enzalutamide and the viral-androgen signaling interplay in seasonal coronaviruses. J Med Virol 2024; 96:e29540. [PMID: 38529542 DOI: 10.1002/jmv.29540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024]
Abstract
The sex disparity in COVID-19 outcomes with males generally faring worse than females has been associated with the androgen-regulated expression of the protease TMPRSS2 and the cell receptor ACE2 in the lung and fueled interest in antiandrogens as potential antivirals. In this study, we explored enzalutamide, an antiandrogen used commonly to treat prostate cancer, as a potential antiviral against the human coronaviruses which cause seasonal respiratory infections (HCoV-NL63, -229E, and -OC43). Using lentivirus-pseudotyped and authentic HCoV, we report that enzalutamide reduced 229E and NL63 entry and infection in both TMPRSS2- and nonexpressing immortalized cells, suggesting a TMPRSS2-independent mechanism. However, no effect was observed against OC43. To decipher this distinction, we performed RNA-sequencing analysis on 229E- and OC43-infected primary human airway cells. Our results show a significant induction of androgen-responsive genes by 229E compared to OC43 at 24 and 72 h postinfection. The virus-mediated effect on AR-signaling was further confirmed with a consensus androgen response element-driven luciferase assay in androgen-depleted MRC-5 cells. Specifically, 229E induced luciferase-reporter activity in the presence and absence of the synthetic androgen mibolerone, while OC43 inhibited induction. These findings highlight a complex interplay between viral infections and androgen-signaling, offering insights for disparities in viral outcomes and antiviral interventions.
Collapse
Affiliation(s)
| | - Tukur Abdullahi
- School of Life Sciences, University of Essex, Colchester, UK
| | - Riaz-Ali Somji
- School of Life Sciences, University of Essex, Colchester, UK
| | - Charlotte L Bevan
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Wendy S Barclay
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham, UK
| | - Greg N Brooke
- School of Life Sciences, University of Essex, Colchester, UK
| | - Efstathios S Giotis
- School of Life Sciences, University of Essex, Colchester, UK
- Department of Infectious Diseases, Imperial College London, London, UK
| |
Collapse
|
13
|
Lack N, Altintas UB, Seo JH, Giambartolomei C, Ozturan D, Fortunato B, Nelson G, Goldman S, Adelman K, Hach F, Freedman M. Decoding the Epigenetics and Chromatin Loop Dynamics of Androgen Receptor-Mediated Transcription. RESEARCH SQUARE 2024:rs.3.rs-3854707. [PMID: 38352568 PMCID: PMC10862967 DOI: 10.21203/rs.3.rs-3854707/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Androgen receptor (AR)-mediated transcription plays a critical role in normal prostate development and prostate cancer growth. AR drives gene expression by binding to thousands of cis-regulatory elements (CRE) that loop to hundreds of target promoters. With multiple CREs interacting with a single promoter, it remains unclear how individual AR bound CREs contribute to gene expression. To characterize the involvement of these CREs, we investigated the AR-driven epigenetic and chromosomal chromatin looping changes. We collected a kinetic multi-omic dataset comprised of steady-state mRNA, chromatin accessibility, transcription factor binding, histone modifications, chromatin looping, and nascent RNA. Using an integrated regulatory network, we found that AR binding induces sequential changes in the epigenetic features at CREs, independent of gene expression. Further, we showed that binding of AR does not result in a substantial rewiring of chromatin loops, but instead increases the contact frequency of pre-existing loops to target promoters. Our results show that gene expression strongly correlates to the changes in contact frequency. We then proposed and experimentally validated an unbalanced multi-enhancer model where the impact on gene expression of AR-bound enhancers is heterogeneous, and is proportional to their contact frequency with target gene promoters. Overall, these findings provide new insight into AR-mediated gene expression upon acute androgen simulation and develop a mechanistic framework to investigate nuclear receptor mediated perturbations.
Collapse
|
14
|
Fariña-Jerónimo H, Martín-Ramírez R, González-Fernández R, Medina L, de Vera A, Martín-Vasallo P, Plata-Bello J. Androgen deficiency is associated with a better prognosis in glioblastoma. Eur J Med Res 2024; 29:57. [PMID: 38233838 DOI: 10.1186/s40001-024-01648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/07/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND The androgen receptor (AR) has been demonstrated to play a role in the pathogenesis of glioblastoma; however, the implications of circulating testosterone levels in the biology of glioblastoma remain unknown. AIM This study aimed to analyze the association between circulating testosterone levels and the prognosis of patients with glioblastoma. METHODS Forty patients with primary glioblastoma were included in the study. The main prognostic endpoint was progression-free survival (PFS). Circulating testosterone levels were used to determine the state of androgen deficiency (AD). AR expression was analyzed by reverse-transcriptase polymerase chain reaction, Western blot, and immunofluorescence. Survival analysis was performed using the log-rank test and univariate and multivariate Cox regression analysis. RESULTS Most of the patients showed AR expression, and it was mainly located in the cytoplasm, as well as in the nucleus of tumor cells. Patients with AD presented a better PFS than those patients with normal levels (252.0 vs. 135.0 days; p = 0.041). Furthermore, normal androgenic status was an independent risk factor for progression in a multivariate regression model (hazard ratio = 6.346; p = 0.004). CONCLUSION Circulating testosterone levels are associated with the prognosis of glioblastoma because patients with AD show a better prognosis than those with normal androgenic status.
Collapse
Affiliation(s)
- Helga Fariña-Jerónimo
- Neurosurgery Department, Hospital Universitario de Canarias, Calle Ofra s/n La Cuesta, CP 38320, La Laguna, S/C de Tenerife, Spain
| | | | | | - Lilian Medina
- Biochemistry Laboratory, Hospital Universitario de Canarias, La Laguna, Spain
| | - Antonia de Vera
- Biochemistry Laboratory, Hospital Universitario de Canarias, La Laguna, Spain
| | | | - Julio Plata-Bello
- Neurosurgery Department, Hospital Universitario de Canarias, Calle Ofra s/n La Cuesta, CP 38320, La Laguna, S/C de Tenerife, Spain.
| |
Collapse
|
15
|
Fu X, Wang Z. DHCR24 in Tumor Diagnosis and Treatment: A Comprehensive Review. Technol Cancer Res Treat 2024; 23:15330338241259780. [PMID: 38847653 PMCID: PMC11162140 DOI: 10.1177/15330338241259780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
As an important nutrient in the human body, cholesterol can not only provide structural components for the body's cells, but also can be transformed into a variety of active substances to regulate cell signaling pathways. As an important cholesterol synthase, DHCR24 participates in important regulatory processes in the body. The application of DHCR24 in tumor clinical diagnosis and treatment also attracts much attention. This article reviews the structure and regulatory characteristics of DHCR24, and the research of DHCR24 on tumor progression. We summarize the possible mechanisms of DHCR24 promoting tumor progression through reactive oxygen species (ROS), p53, Ras and PI3K-AKT pathways. Through our review, we hope to provide more research ideas and reference value for the application of DHCR24 in tumor prevention and treatment.
Collapse
Affiliation(s)
- Xin Fu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhaosong Wang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
16
|
Bharati J, Kumar S, Kumar S, Mohan NH, Islam R, Pegu SR, Banik S, Das BC, Borah S, Sarkar M. Androgen receptor gene deficiency results in the reduction of steroidogenic potential in porcine luteal cells. Anim Biotechnol 2023; 34:2183-2196. [PMID: 35678291 DOI: 10.1080/10495398.2022.2079517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Luteal steroidogenesis is critical to implantation and pregnancy maintenance in mammals. The role of androgen receptors (AR) in the progesterone (P4) producing luteal cells of porcine corpus luteum (CL) remains unexplored. The aim of the present study was to establish AR gene knock out (KO) porcine luteal cell culture system model by CRISPR/Cas9 genome editing technology and to study the downstream effects of AR gene deficiency on steroidogenic potential and viability of luteal cells. For this purpose, genomic cleavage detection assay, microscopy, RT-qPCR, ELISA, annexin, MTT, and viability assay complemented by bioinformatics analysis were employed. There was significant downregulation (p < 0.05) in the relative mRNA expression of steroidogenic marker genes STAR, CYP11A1, HSD3B1 in AR KO luteal cells as compared to the control group, which was further validated by the significant (p < 0.05) decrease in the P4 production. Significant decrease (p < 0.05) in relative viability on third passage were also observed. The relative mRNA expression of hypoxia related gene HIF1A was significantly (p < 0.05) downregulated in AR KO luteal cells. Protein-protein interaction analysis mapped AR to signaling pathways associated with luteal cell functionality. These findings suggests that AR gene functionality is critical to luteal cell steroidogenesis in porcine.
Collapse
Affiliation(s)
- Jaya Bharati
- Animal Physiology, ICAR-National Research Centre on Pig, Guwahati, India
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Satish Kumar
- Animal Genetics and Breeding, ICAR-National Research Centre on Pig, Guwahati, India
| | - Sunil Kumar
- Animal Reproduction, ICAR-National Research Centre on Pig, Guwahati, India
| | - N H Mohan
- Animal Physiology, ICAR-National Research Centre on Pig, Guwahati, India
| | - Rafiqul Islam
- Animal Reproduction, ICAR-National Research Centre on Pig, Guwahati, India
| | - Seema Rani Pegu
- Animal Health, ICAR-National Research Centre on Pig, Guwahati, India
| | - Santanu Banik
- Animal Genetics and Breeding, ICAR-National Research Centre on Pig, Guwahati, India
| | - Bikash Chandra Das
- Animal Physiology, ICAR-National Research Centre on Pig, Guwahati, India
| | - Sanjib Borah
- Lakhimpur College of Veterinary Science, Assam Agricultural University, North Lakhimpur, India
| | - Mihir Sarkar
- Director, ICAR-National Research Centre on Yak, Dirang, India
| |
Collapse
|
17
|
Miles HN, Tomlin D, Ricke WA, Li L. Integrating intracellular and extracellular proteomic profiling for in-depth investigations of cellular communication in a model of prostate cancer. Proteomics 2023; 23:e2200287. [PMID: 37226375 PMCID: PMC10667563 DOI: 10.1002/pmic.202200287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Cellular communication is essential for cell-cell interactions, maintaining homeostasis and progression of certain disease states. While many studies examine extracellular proteins, the holistic extracellular proteome is often left uncaptured, leaving gaps in our understanding of how all extracellular proteins may impact communication and interaction. We used a cellular-based proteomics approach to more holistically profile both the intracellular and extracellular proteome of prostate cancer. Our workflow was generated in such a manner that multiple experimental conditions can be observed with the opportunity for high throughput integration. Additionally, this workflow is not limited to a proteomic aspect, as metabolomic and lipidomic studies can be integrated for a multi-omics workflow. Our analysis showed coverage of over 8000 proteins while also garnering insights into cellular communication in the context of prostate cancer development and progression. Identified proteins covered a variety of cellular processes and pathways, allowing for the investigation of multiple aspects into cellular biology. This workflow demonstrates advantages for integrating intra- and extracellular proteomic analyses as well as potential for multi-omics researchers. This approach possesses great value for future investigations into the systems biology aspects of disease development and progression.
Collapse
Affiliation(s)
- Hannah N. Miles
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Devin Tomlin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William A. Ricke
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- George M. O’Brien Urology Research Center of Excellence, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
18
|
Janaththani P, Tevz G, Fernando A, Malik A, Rockstroh A, Kryza T, Walpole C, Moya L, Lehman M, Nelson C, The Australian Prostate Cancer BioResource, The Practical Consortium, Srinivasan S, Clements J, Batra J. Unravelling the Role of Iroquois Homeobox 4 and its Interplay with Androgen Receptor in Prostate Cancer. RESEARCH SQUARE 2023:rs.3.rs-3295914. [PMID: 38076926 PMCID: PMC10705702 DOI: 10.21203/rs.3.rs-3295914/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Genome-wide association studies have linked Iroquois-Homeobox 4 (IRX4) as a robust expression quantitative-trait locus associated with prostate cancer (PCa) risk. However, the intricate mechanism and regulatory factors governing IRX4 expression in PCa remain poorly understood. Here, we unveil enrichment of androgen-responsive gene signatures in metastatic prostate tumors exhibiting heightened IRX4 expression. Furthermore, we uncover a novel interaction between IRX4 and the androgen receptor (AR) co-factor, FOXA1, suggesting that IRX4 modulates PCa cell behavior through AR cistrome alteration. Remarkably, we identified a distinctive short insertion-deletion polymorphism (INDEL), upstream of the IRX4 gene that differentially regulates IRX4 expression through the disruption of AR binding. This INDEL emerges as the most significant PCa risk-associated variant within the 5p15 locus, in a genetic analysis involving 82,591 PCa cases and 61,213 controls and was associated with PCa survival in patients undergoing androgen-deprivation therapy. These studies suggest the potential of this INDEL as a prognostic biomarker for androgen therapy in PCa and IRX4 as a potential therapeutic target in combination with current clinical management.
Collapse
Affiliation(s)
- Panchadsaram Janaththani
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Victoria
| | - Gregor Tevz
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Achala Fernando
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Adil Malik
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Anja Rockstroh
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Thomas Kryza
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Mater Research UQ, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Carina Walpole
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Mater Research UQ, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Leire Moya
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Melanie Lehman
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada
| | - Colleen Nelson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - The Australian Prostate Cancer BioResource
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | | | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Vaiana AM, Chen Y, Gelfond J, Johnson-Pais TL, Leach RJ, Ramamurthy C, Thompson IM, Morilak DA. Effects of vortioxetine on hippocampal-related cognitive impairment induced in rats by androgen deprivation as a model of prostate cancer treatment. Transl Psychiatry 2023; 13:307. [PMID: 37788996 PMCID: PMC10547695 DOI: 10.1038/s41398-023-02600-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Advances in prostate cancer treatment have significantly improved survival, but quality of life for survivors remains an under-studied area of research. Androgen deprivation therapy (ADT) is a foundational treatment for advanced prostate cancer and is used as an adjuvant for prolonged periods in many high-risk, localized tumors. More than half of patients treated with ADT experience debilitating cognitive impairments in domains such as spatial learning and working memory. In this study, we investigated the effects of androgen deprivation on hippocampal-mediated cognition in rats. Vortioxetine, a multimodal antidepressant, has been shown to improve cognition in depressed patients. Thus, we also tested the potential efficacy of vortioxetine in restoring impaired cognition after ADT. We further investigated mechanisms that might contribute to these effects, measuring changes in the circuitry and gene expression within the dorsal hippocampus. ADT via surgical castration induced impairments in visuospatial cognition on the novel object location test and attenuated afferent-evoked local field potentials recorded in the CA1 region of the dorsal hippocampus. Chronic dietary administration of vortioxetine effectively reversed these deficits. Castration significantly altered gene expression in the hippocampus, whereas vortioxetine had little effect. Pathway analysis revealed that androgen depletion altered pathways related to synaptic plasticity. These results suggest that the hippocampus may be vulnerable to ADT, contributing to cognitive impairment in prostate cancer patients. Further, vortioxetine may be a candidate to improve cognition in patients who experience cognitive decline after androgen deprivation therapy for prostate cancer and may do so by restoring molecular and circuit-level plasticity-related mechanisms compromised by ADT.
Collapse
Affiliation(s)
- Alexandra M Vaiana
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Jonathan Gelfond
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Teresa L Johnson-Pais
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Robin J Leach
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Chethan Ramamurthy
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Ian M Thompson
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
20
|
Nyquist MD, Coleman IM, Lucas JM, Li D, Hanratty B, Meade H, Mostaghel EA, Plymate SR, Corey E, Haffner MC, Nelson PS. Supraphysiological Androgens Promote the Tumor Suppressive Activity of the Androgen Receptor through cMYC Repression and Recruitment of the DREAM Complex. Cancer Res 2023; 83:2938-2951. [PMID: 37352376 PMCID: PMC10472100 DOI: 10.1158/0008-5472.can-22-2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/24/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The androgen receptor (AR) pathway regulates key cell survival programs in prostate epithelium. The AR represents a near-universal driver and therapeutic vulnerability in metastatic prostate cancer, and targeting AR has a remarkable therapeutic index. Though most approaches directed toward AR focus on inhibiting AR signaling, laboratory and now clinical data have shown that high dose, supraphysiological androgen treatment (SPA) results in growth repression and improved outcomes in subsets of patients with prostate cancer. A better understanding of the mechanisms contributing to SPA response and resistance could help guide patient selection and combination therapies to improve efficacy. To characterize SPA signaling, we integrated metrics of gene expression changes induced by SPA together with cistrome data and protein-interactomes. These analyses indicated that the dimerization partner, RB-like, E2F, and multivulval class B (DREAM) complex mediates growth repression and downregulation of E2F targets in response to SPA. Notably, prostate cancers with complete genomic loss of RB1 responded to SPA treatment, whereas loss of DREAM complex components such as RBL1/2 promoted resistance. Overexpression of MYC resulted in complete resistance to SPA and attenuated the SPA/AR-mediated repression of E2F target genes. These findings support a model of SPA-mediated growth repression that relies on the negative regulation of MYC by AR leading to repression of E2F1 signaling via the DREAM complex. The integrity of MYC signaling and DREAM complex assembly may consequently serve as determinants of SPA responses and as pathways mediating SPA resistance. SIGNIFICANCE Determining the molecular pathways by which supraphysiological androgens promote growth arrest and treatment responses in prostate cancer provides opportunities for biomarker-selected clinical trials and the development of strategies to augment responses.
Collapse
Affiliation(s)
- Michael D. Nyquist
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ilsa M. Coleman
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jared M. Lucas
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Dapei Li
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Brian Hanratty
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Hannah Meade
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Elahe A. Mostaghel
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Stephen R. Plymate
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Urology, University of Washington, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
21
|
White RE, Bannister M, Day A, Bergom HE, Tan VM, Hwang J, Dang Nguyen H, Drake JM. Saracatinib synergizes with enzalutamide to downregulate AR activity in CRPC. Front Oncol 2023; 13:1210487. [PMID: 37456235 PMCID: PMC10348659 DOI: 10.3389/fonc.2023.1210487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Prostate cancer (PCa) remains the most diagnosed non-skin cancer amongst the American male population. Treatment for localized prostate cancer consists of androgen deprivation therapies (ADTs), which typically inhibit androgen production and the androgen receptor (AR). Though initially effective, a subset of patients will develop resistance to ADTs and the tumors will transition to castration-resistant prostate cancer (CRPC). Second generation hormonal therapies such as abiraterone acetate and enzalutamide are typically given to men with CRPC. However, these treatments are not curative and typically prolong survival only by a few months. Several resistance mechanisms contribute to this lack of efficacy such as the emergence of AR mutations, AR amplification, lineage plasticity, AR splice variants (AR-Vs) and increased kinase signaling. Having identified SRC kinase as a key tyrosine kinase enriched in CRPC patient tumors from our previous work, we evaluated whether inhibition of SRC kinase synergizes with enzalutamide or chemotherapy in several prostate cancer cell lines expressing variable AR isoforms. We observed robust synergy between the SRC kinase inhibitor, saracatinib, and enzalutamide, in the AR-FL+/AR-V+ CRPC cell lines, LNCaP95 and 22Rv1. We also observed that saracatinib significantly decreases AR Y534 phosphorylation, a key SRC kinase substrate residue, on AR-FL and AR-Vs, along with the AR regulome, supporting key mechanisms of synergy with enzalutamide. Lastly, we also found that the saracatinib-enzalutamide combination reduced DNA replication compared to the saracatinib-docetaxel combination, resulting in marked increased apoptosis. By elucidating this combination strategy, we provide pre-clinical data that suggests combining SRC kinase inhibitors with enzalutamide in select patients that express both AR-FL and AR-Vs.
Collapse
Affiliation(s)
- Ralph E. White
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Maxwell Bannister
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Abderrahman Day
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Hannah E. Bergom
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Victor M. Tan
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Department of Pharmacology, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Justin Hwang
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, United States
- Department of Urology, University of Minnesota, Minneapolis, MN, United States
| | - Hai Dang Nguyen
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
- Member, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Justin M. Drake
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
- Department of Urology, University of Minnesota, Minneapolis, MN, United States
- Member, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
22
|
Wen YC, Tram VTN, Chen WH, Li CH, Yeh HL, Thuy Dung PV, Jiang KC, Li HR, Huang J, Hsiao M, Chen WY, Liu YN. CHRM4/AKT/MYCN upregulates interferon alpha-17 in the tumor microenvironment to promote neuroendocrine differentiation of prostate cancer. Cell Death Dis 2023; 14:304. [PMID: 37142586 PMCID: PMC10160040 DOI: 10.1038/s41419-023-05836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Current treatment options for prostate cancer focus on targeting androgen receptor (AR) signaling. Inhibiting effects of AR may activate neuroendocrine differentiation and lineage plasticity pathways, thereby promoting the development of neuroendocrine prostate cancer (NEPC). Understanding the regulatory mechanisms of AR has important clinical implications for this most aggressive type of prostate cancer. Here, we demonstrated the tumor-suppressive role of the AR and found that activated AR could directly bind to the regulatory sequence of muscarinic acetylcholine receptor 4 (CHRM4) and downregulate its expression. CHRM4 was highly expressed in prostate cancer cells after androgen-deprivation therapy (ADT). CHRM4 overexpression may drive neuroendocrine differentiation of prostate cancer cells and is associated with immunosuppressive cytokine responses in the tumor microenvironment (TME) of prostate cancer. Mechanistically, CHRM4-driven AKT/MYCN signaling upregulated the interferon alpha 17 (IFNA17) cytokine in the prostate cancer TME after ADT. IFNA17 mediates a feedback mechanism in the TME by activating the CHRM4/AKT/MYCN signaling-driven immune checkpoint pathway and neuroendocrine differentiation of prostate cancer cells. We explored the therapeutic efficacy of targeting CHRM4 as a potential treatment for NEPC and evaluated IFNA17 secretion in the TME as a possible predictive prognostic biomarker for NEPC.
Collapse
Affiliation(s)
- Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
| | - Van Thi Ngoc Tram
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsiu-Lien Yeh
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Han-Ru Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan.
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
23
|
White RE, Bannister M, Day A, Bergom HE, Tan VM, Hwang J, Nguyen HD, Drake JM. Saracatinib synergizes with enzalutamide to downregulate androgen receptor activity in castration resistant prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537922. [PMID: 37163118 PMCID: PMC10168214 DOI: 10.1101/2023.04.22.537922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Prostate cancer (PCa) remains the most diagnosed non-skin cancer amongst the American male population. Treatment for localized prostate cancer consists of androgen deprivation therapies (ADTs), which typically inhibit androgen production and the androgen receptor (AR). Though initially effective, a subset of patients will develop resistance to ADTs and the tumors will transition to castration-resistant prostate cancer (CRPC). Second generation hormonal therapies such as abiraterone acetate and enzalutamide are typically given to men with CRPC. However, these treatments are not curative and typically prolong survival only by a few months. Several resistance mechanisms contribute to this lack of efficacy such as the emergence of AR mutations, AR amplification, lineage plasticity, AR splice variants (AR-Vs) and increased kinase signaling. Having identified SRC kinase as a key tyrosine kinase enriched in CRPC patient tumors from our previous work, we evaluated whether inhibition of SRC kinase synergizes with enzalutamide or chemotherapy in several prostate cancer cell lines expressing variable AR isoforms. We observed robust synergy between the SRC kinase inhibitor, saracatinib, and enzalutamide, in the AR-FL+/AR-V+ CRPC cell lines, LNCaP95 and 22Rv1. We also observed that saracatinib significantly decreases AR Y 534 phosphorylation, a key SRC kinase substrate residue, on AR-FL and AR-Vs, along with the AR regulome, supporting key mechanisms of synergy with enzalutamide. Lastly, we also found that the saracatinib-enzalutamide combination reduced DNA replication compared to the saracatinib-docetaxel combination, resulting in marked increased apoptosis. By elucidating this combination strategy, we provide pre-clinical data that suggests combining SRC kinase inhibitors with enzalutamide in select patients that express both AR-FL and AR-Vs.
Collapse
|
24
|
Bergom HE, Shabaneh A, Day A, Ali A, Boytim E, Tape S, Lozada JR, Shi X, Kerkvliet CP, McSweeney S, Pitzen SP, Ludwig M, Antonarakis ES, Drake JM, Dehm SM, Ryan CJ, Wang J, Hwang J. ALAN is a computational approach that interprets genomic findings in the context of tumor ecosystems. Commun Biol 2023; 6:417. [PMID: 37059746 PMCID: PMC10104859 DOI: 10.1038/s42003-023-04795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
Gene behavior is governed by activity of other genes in an ecosystem as well as context-specific cues including cell type, microenvironment, and prior exposure to therapy. Here, we developed the Algorithm for Linking Activity Networks (ALAN) to compare gene behavior purely based on patient -omic data. The types of gene behaviors identifiable by ALAN include co-regulators of a signaling pathway, protein-protein interactions, or any set of genes that function similarly. ALAN identified direct protein-protein interactions in prostate cancer (AR, HOXB13, and FOXA1). We found differential and complex ALAN networks associated with the proto-oncogene MYC as prostate tumors develop and become metastatic, between different cancer types, and within cancer subtypes. We discovered that resistant genes in prostate cancer shared an ALAN ecosystem and activated similar oncogenic signaling pathways. Altogether, ALAN represents an informatics approach for developing gene signatures, identifying gene targets, and interpreting mechanisms of progression or therapy resistance.
Collapse
Affiliation(s)
- Hannah E Bergom
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Ashraf Shabaneh
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Abderrahman Day
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Atef Ali
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Ella Boytim
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Sydney Tape
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - John R Lozada
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Xiaolei Shi
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Carlos Perez Kerkvliet
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Sean McSweeney
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Samuel P Pitzen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Molecular, Cellular, and Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Megan Ludwig
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Justin M Drake
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Charles J Ryan
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Prostate Cancer Foundation, Santa Monica, CA, USA
| | - Jinhua Wang
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Justin Hwang
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA.
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
25
|
Osunaiye OI, Ramyil VM, Dakum NK, Akpayak IC, Shuaibu SI, Ofoha CG, Ogunmola AO, Agbo CA, Oyedeji AS. Correlation Between Serum Prostate-Specific Antigen and Testosterone Following Bilateral Total Orchidectomy for Patients with Advanced Prostate Cancer in Jos, Nigeria. JOURNAL OF THE WEST AFRICAN COLLEGE OF SURGEONS 2023; 13:82-89. [PMID: 37228874 PMCID: PMC10204912 DOI: 10.4103/jwas.jwas_274_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/09/2022] [Indexed: 05/27/2023]
Abstract
Background Prostate cancer is a common malignancy affecting men beyond the middle age. Monitoring of treatment of the disease using serum testosterone and prostate-specific antigen (PSA) offers an index of treatment efficacy and a reflection of disease progression, respectively. The objective of this study was to determine the relationship between changing values of serum PSA and serum testosterone in patients with advanced prostate cancer following bilateral total orchidectomy (BTO). Materials and Methods This was a prospective longitudinal study carried out over a 1-year period among patients who met the inclusion criteria. Each patient underwent detailed clinical evaluation including history, as well as physical examination with digital rectal examination of the prostate. Also, samples of serum PSA and testosterone were obtained and sent to the same chemical pathology laboratory before intervention with BTO, then at 2, 4, and 6 months. The values of serum PSA and testosterone were obtained and changes over this period were compared for both parameters. The analyses included independent inferential analysis of serum testosterone and serum PSA over a period of 6 months and a correlation of the two parameters over the same period. Results were analysed using SPSS version 23. P value of <0.05 was regarded significant. Charts and tables were used for data expression. Kruskal-Wallis and Wilcoxon tests were used for individual inferential analysis of serum testosterone and PSA. The Spearman ranked correlation coefficient test was used to determine the degree of correlation of serum testosterone and serum PSA levels while Pearson correlation coefficient test was used to determine the degree of correlation between the percentage changes in serum testosterone and PSA measured over the period of the study. Results A total of forty-two men with mean age of 68.49 ± 8.86 years who had advanced prostate cancer were recruited. The histologic type of prostate cancer diagnosed for all the patients was adenocarcinoma. The mean Gleason score was 7.98 ± 1.09, while the modal Gleason grade group represented was grade group 5. There were statistically significant changes in serum testosterone and PSA levels in response to bilateral total orchidectomy with P value of <0.001. However, there was no statistically significant correlation between serum testosterone and serum PSA levels following bilateral total orchidectomy with p values of 0.492, 0.358, 0.134, and 0.842 at baseline, 2, 4, and 6 months, respectively. There was a significant correlation between the percentage changes in serum testosterone and PSA measured between baseline and 2 months with P value of <0.001. However, there was no statistically significant correlation between the percentage changes in serum testosterone and PSA measured between baseline measured against 4 months and 6 months with P value of 0.998 and 0.638, respectively. Conclusion The study showed that reduction in serum levels of testosterone and PSA following BTO was significant. It also revealed no statistically significant correlation between serum testosterone and serum PSA measured over 6 months following bilateral total orchidectomy.
Collapse
Affiliation(s)
| | - Venyil Mamzhi Ramyil
- Department of Surgery, College of Medical Sciences, University of Jos, Jos, Nigeria
| | - Nuhu Kutan Dakum
- Department of Surgery, College of Medical Sciences, University of Jos, Jos, Nigeria
| | | | | | | | | | - Christian Agbo Agbo
- Urology Division, Department of Surgery, Jos University Teaching Hospital, Jos, Nigeria
| | | |
Collapse
|
26
|
Chen WY, Thuy Dung PV, Yeh HL, Chen WH, Jiang KC, Li HR, Chen ZQ, Hsiao M, Huang J, Wen YC, Liu YN. Targeting PKLR/MYCN/ROMO1 signaling suppresses neuroendocrine differentiation of castration-resistant prostate cancer. Redox Biol 2023; 62:102686. [PMID: 36963289 PMCID: PMC10060381 DOI: 10.1016/j.redox.2023.102686] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023] Open
Abstract
Conventional treatment of prostate cancer (PCa) uses androgen-deprivation therapy (ADT) to inhibit androgen receptor (AR) signaling-driven tumor progression. ADT-induced PCa recurrence may progress to an AR-negative phenotype with neuroendocrine (NE) histologic features, which are associated with metabolic disturbances and poor prognoses. However, the metabolic pathways that regulate NE differentiation (NED) in PCa remain unclear. Herein, we show a regulatory mechanism in NED-associated metabolism dysfunction induced by ADT, whereby overexpression of pyruvate kinase L/R (PKLR) mediates oxidative stress through upregulation of reactive oxygen species modulator 1 (ROMO1), thereby promoting NED and aggressiveness. ADT mediates the nuclear translocation of PKLR, which binds to the MYCN/MAX complex to upregulate ROMO1 and NE-related genes, leading to altered mitochondrial function and NED of PCa. Targeting nuclear PKLR/MYCN using bromodomain and extra-terminal motif (BET) inhibitors has the potential to reduce PKLR/MYCN-driven NED. Abundant ROMO1 in serum samples may provide prognostic information in patients with ADT. Our results suggest that ADT resistance leads to upregulation of PKLR/MYCN/ROMO1 signaling, which may drive metabolic reprogramming and NED in PCa. We further show that increased abundance of serum ROMO1 may be associated with the development of NE-like PCa.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Lien Yeh
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Ru Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Zi-Qing Chen
- Division of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan.
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
27
|
Gangurde R, Jagota V, Khan MS, Sakthi VS, Boppana UM, Osei B, Kishore KH. Developing an Efficient Cancer Detection and Prediction Tool Using Convolution Neural Network Integrated with Neural Pattern Recognition. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6970256. [PMID: 36760472 PMCID: PMC9904903 DOI: 10.1155/2023/6970256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 11/24/2022] [Indexed: 02/03/2023]
Abstract
The application of computational approaches in medical science for diagnosis is made possible by the development in technical advancements connected to computer and biological sciences. The current cancer diagnosis system is becoming outmoded due to the new and rapid growth in cancer cases, and new, effective, and efficient methodologies are now required. Accurate cancer-type prediction is essential for cancer diagnosis and treatment. Understanding, diagnosing, and identifying the various types of cancer can be greatly aided by knowledge of the cancer genes. The Convolution Neural Network (CNN) and neural pattern recognition (NPR) approaches are used in this study paper to detect and predict the type of cancer. Different Convolution Neural Networks (CNNs) have been proposed by various researchers up to this point. Each model concentrated on a certain set of parameters to simulate the expression of genes. We have developed a novel CNN-NPR architecture that predicts cancer type while accounting for the tissue of origin using high-dimensional gene expression inputs. The 5000-person sample of the 1-D CNN integrated with NPR is trained and tested on the gene profile, mapping with various cancer kinds. The proposed model's accuracy of 94% suggests that the suggested combination may be useful for long-term cancer diagnosis and detection. Fewer parameters are required for the suggested model to be efficiently trained before prediction.
Collapse
Affiliation(s)
- Roshan Gangurde
- School of Computer Science, MIT World Peace University, Pune, India
| | - Vishal Jagota
- Model Institute of Engineering and Technology, Jammu, J&K, India
| | | | - Viji Siva Sakthi
- Zoology Department and Research Centre, Sarah Tucker College (Autonomous), Affiliated to Manonmaniam Sundaranar University, Tirunelveli, India
| | | | - Bernard Osei
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kakarla Hari Kishore
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| |
Collapse
|
28
|
Chen M, Lingadahalli S, Narwade N, Lei KMK, Liu S, Zhao Z, Zheng Y, Lu Q, Tang AHN, Poon TCW, Cheung E. TRIM33 drives prostate tumor growth by stabilizing androgen receptor from Skp2-mediated degradation. EMBO Rep 2022; 23:e53468. [PMID: 35785414 DOI: 10.15252/embr.202153468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 12/23/2022] Open
Abstract
Androgen receptor (AR) is a master transcription factor that drives prostate cancer (PCa) development and progression. Alterations in the expression or activity of AR coregulators significantly impact the outcome of the disease. Using a proteomics approach, we identified the tripartite motif-containing 33 (TRIM33) as a novel transcriptional coactivator of AR. We demonstrate that TRIM33 facilitates AR chromatin binding to directly regulate a transcription program that promotes PCa progression. TRIM33 further stabilizes AR by protecting it from Skp2-mediated ubiquitination and proteasomal degradation. We also show that TRIM33 is essential for PCa tumor growth by avoiding cell-cycle arrest and apoptosis, and TRIM33 knockdown sensitizes PCa cells to AR antagonists. In clinical analyses, we find TRIM33 upregulated in multiple PCa patient cohorts. Finally, we uncover an AR-TRIM33-coactivated gene signature highly expressed in PCa tumors and predict disease recurrence. Overall, our results reveal that TRIM33 is an oncogenic AR coactivator in PCa and a potential therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Mi Chen
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Shreyas Lingadahalli
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Nitin Narwade
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Kate Man Kei Lei
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Pilot Laboratory, University of Macau, Taipa, Macau SAR.,Institute of Translational Medicine, University of Macau, Taipa, Macau SAR
| | | | - Zuxianglan Zhao
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Yimin Zheng
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Qian Lu
- Xuzhou Medical University, Xuzhou, China
| | | | - Terence Chuen Wai Poon
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR.,Pilot Laboratory, University of Macau, Taipa, Macau SAR.,Institute of Translational Medicine, University of Macau, Taipa, Macau SAR
| | - Edwin Cheung
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| |
Collapse
|
29
|
Poulose N, Forsythe N, Polonski A, Gregg G, Maguire S, Fuchs M, Minner S, Sauter G, McDade SS, Mills IG. VPRBP Functions Downstream of the Androgen Receptor and OGT to Restrict p53 Activation in Prostate Cancer. Mol Cancer Res 2022; 20:1047-1060. [PMID: 35348747 PMCID: PMC9381113 DOI: 10.1158/1541-7786.mcr-21-0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/13/2022] [Accepted: 03/23/2022] [Indexed: 01/07/2023]
Abstract
Androgen receptor (AR) is a major driver of prostate cancer initiation and progression. O-GlcNAc transferase (OGT), the enzyme that catalyzes the covalent addition of UDP-N-acetylglucosamine (UDP-GlcNAc) to serine and threonine residues of proteins, is often highly expressed in prostate cancer with its expression correlated with high Gleason score. In this study, we have identified an AR and OGT coregulated factor, Vpr (HIV-1) binding protein (VPRBP) also known as DDB1 and CUL4 Associated Factor 1 (DCAF1). We show that VPRBP is regulated by the AR at the transcript level, and stabilized by OGT at the protein level. VPRBP knockdown in prostate cancer cells led to a significant decrease in cell proliferation, p53 stabilization, nucleolar fragmentation, and increased p53 recruitment to the chromatin. In human prostate tumor samples, VPRBP protein overexpression correlated with AR amplification, OGT overexpression, a shorter time to postoperative biochemical progression and poor clinical outcome. In clinical transcriptomic data, VPRBP expression was positively correlated with the AR and also with AR activity gene signatures. IMPLICATIONS In conclusion, we have shown that VPRBP/DCAF1 promotes prostate cancer cell proliferation by restraining p53 activation under the influence of the AR and OGT.
Collapse
Affiliation(s)
- Ninu Poulose
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom.,Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Corresponding Authors: Ian G. Mills, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom. E-mail: ; and Ninu Poulose,
| | - Nicholas Forsythe
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Adam Polonski
- University Medical Center Hamburg-Eppendorf Department of Pathology, Hamburg, Germany
| | - Gemma Gregg
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Sarah Maguire
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Marc Fuchs
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Sarah Minner
- University Medical Center Hamburg-Eppendorf Department of Pathology, Hamburg, Germany
| | - Guido Sauter
- University Medical Center Hamburg-Eppendorf Department of Pathology, Hamburg, Germany
| | - Simon S. McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Ian G. Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom.,Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Corresponding Authors: Ian G. Mills, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom. E-mail: ; and Ninu Poulose,
| |
Collapse
|
30
|
Anderson AP, Jones AG. The relationship between sexual dimorphism and androgen response element proliferation in primate genomes. Evolution 2022; 76:1331-1346. [PMID: 35420699 PMCID: PMC9321733 DOI: 10.1111/evo.14483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 01/22/2023]
Abstract
In the males of many vertebrate species, sexual selection has led to the evolution of sexually dimorphic traits, which often are developmentally controlled by androgen signaling involving androgen response elements (AREs). Evolutionary changes in the number and genomic locations of AREs can modify patterns of receptor regulation and potentially alter gene expression. Here, we use recently sequenced primate genomes to evaluate the hypothesis that the strength of sexual selection is related to the genome-wide number of AREs in a diversifying lineage. In humans, we find a higher incidence of AREs near male-biased genes and androgen-responsive genes when compared to randomly selected genes from the genome. In a set of primates, we find that gains or losses of AREs proximal to genes are correlated with changes in male expression levels and the degree of sex-biased expression of those genes. In a larger set of primates, we find that increases in indicators of sexual selection are correlated with genome-wide ARE counts. Our results suggest that the responsiveness of the genome to androgens in humans and their close relatives has been shaped by sexual selection that arises from competition among males for mating access to females.
Collapse
Affiliation(s)
| | - Adam G. Jones
- Department of BiologyUniversity of IdahoMoscowIdaho83844
| |
Collapse
|
31
|
Qiu X, Brown LG, Conner JL, Nguyen HM, Boufaied N, Abou Alaiwi S, Seo JH, El Zarif T, Bell C, O’Connor E, Hanratty B, Pomerantz M, Freedman ML, Brown M, Haffner MC, Nelson PS, Feng FY, Labbé DP, Long HW, Corey E. Response to supraphysiological testosterone is predicted by a distinct androgen receptor cistrome. JCI Insight 2022; 7:157164. [PMID: 35603787 PMCID: PMC9220831 DOI: 10.1172/jci.insight.157164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The androgen receptor (AR) is a master transcription factor that regulates prostate cancer (PC) development and progression. Inhibition of AR signaling by androgen deprivation is the first-line therapy with initial efficacy for advanced and recurrent PC. Paradoxically, supraphysiological levels of testosterone (SPT) also inhibit PC progression. However, as with any therapy, not all patients show a therapeutic benefit, and responses differ widely in magnitude and duration. In this study, we evaluated whether differences in the AR cistrome before treatment can distinguish between SPT-responding (R) and -nonresponding (NR) tumors. We provide the first preclinical evidence to our knowledge that SPT-R tumors exhibit a distinct AR cistrome when compared with SPT-NR tumors, indicating a differential biological role of the AR. We applied an integrated analysis of ChIP-Seq and RNA-Seq to the pretreatment tumors and identified an SPT-R signature that distinguishes R and NR tumors. Because transcriptomes of SPT-treated clinical specimens are not available, we interrogated available castration-resistant PC (CRPC) transcriptomes and showed that the SPT-R signature is associated with improved survival and has the potential to identify patients who would respond to SPT. These findings provide an opportunity to identify the subset of patients with CRPC who would benefit from SPT therapy.
Collapse
Affiliation(s)
- Xintao Qiu
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Lisha G. Brown
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Jennifer L. Conner
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Holly M. Nguyen
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Sarah Abou Alaiwi
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ji-Heui Seo
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Talal El Zarif
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Connor Bell
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward O’Connor
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian Hanratty
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mark Pomerantz
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew L. Freedman
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Felix Y. Feng
- University of California at San Francisco, San Francisco, California, USA
| | - David P. Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Surgery, Division of Urology, McGill University, Montréal, Québec, Canada
| | - Henry W. Long
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Wong NKY, Dong X, Lin YY, Xue H, Wu R, Lin D, Collins C, Wang Y. Framework of Intrinsic Immune Landscape of Dormant Prostate Cancer. Cells 2022; 11:cells11091550. [PMID: 35563856 PMCID: PMC9105276 DOI: 10.3390/cells11091550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Androgen deprivation therapy (ADT) is the standard therapy for men with advanced prostate cancer (PCa). PCa often responds to ADT and enters a dormancy period, which can be recognized clinically as a minimal residual disease. However, the majority of these patients will eventually experience a relapse in the form of castration-resistant PCa with poor survival. Therefore, ADT-induced dormancy is a unique time window for treatment that can provide a cure. The study of this well-recognized phase of prostate cancer progression is largely hindered by the scarcity of appropriate clinical tissue and clinically relevant preclinical models. Here, we report the utility of unique and clinically relevant patient-derived xenograft models in the study of the intrinsic immune landscape of dormant PCa. Using data from RNA sequencing, we have reconstructed the immune evasion mechanisms that can be utilized by dormant PCa cells. Since dormant PCa cells need to evade the host immune surveillance for survival, our results provide a framework for further study and for devising immunomodulatory mechanisms that can eliminate dormant PCa cells.
Collapse
Affiliation(s)
- Nelson K. Y. Wong
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Yen-Yi Lin
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Dong Lin
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Colin Collins
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
- Correspondence: ; Tel.: +1-604-675-8013
| |
Collapse
|
33
|
Abstract
In 2011, CAMKK2, the gene encoding calcium/calmodulin-dependent kinase kinase 2 (CAMKK2), was demonstrated to be a direct target of the androgen receptor and a driver of prostate cancer progression. Results from multiple independent studies have confirmed these findings and demonstrated the potential role of CAMKK2 as a clinical biomarker and therapeutic target in advanced prostate cancer using a variety of preclinical models. Drug development efforts targeting CAMKK2 have begun accordingly. CAMKK2 regulation can vary across disease stages, which might have important implications in the use of CAMKK2 as a biomarker. Moreover, new non-cell-autonomous roles for CAMKK2 that could affect tumorigenesis, metastasis and possible comorbidities linked to disease and treatment have emerged and could present novel treatment opportunities for prostate cancer.
Collapse
|
34
|
Pyruvate kinase L/R links metabolism dysfunction to neuroendocrine differentiation of prostate cancer by ZBTB10 deficiency. Cell Death Dis 2022; 13:252. [PMID: 35306527 PMCID: PMC8934352 DOI: 10.1038/s41419-022-04694-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/05/2022]
Abstract
Neuroendocrine differentiation (NED) frequently occurs in androgen-deprivation therapy (ADT)-resistant prostate cancer (PCa) and is typically associated with metabolic pathway alterations, acquisition of lineage plasticity, and malignancy. There is no conventional therapeutic approach for PCa patients with NED pathologic features because the molecular targets are unknown. Here, we evaluated the regulatory mechanism of NED-associated metabolic reprogramming induced by ADT. We detected that the loss of the androgen-responsive transcription factor, zinc finger, and BTB domain containing 10 (ZBTB10), can activate pyruvate kinase L/R (PKLR) to enhance a NED response that is associated with glucose uptake by PCa cells. PKLR exhibits a tumor-promoting effect in PCa after ADT, but ZBTB10 can compensate for the glucose metabolism and NED capacity of PKLR through the direct transcriptional downregulation of PKLR. Targeting PKLR by drug repurposing with FDA-approved compounds can reduce the aggressiveness and NED of ADT-resistant PCa. We demonstrated that PKLR acts as a modulator to activate NED in PCa enhancement by loss of ZBTB10, thereby enabling PCa cells to mount a glycolysis response essential for therapeutic resistance. Our findings highlight the broad relation between NED and metabolic dysfunction to provide gene expression-based biomarkers for NEPC treatment.
Collapse
|
35
|
Analysis of Gene Expression Microarray Data Reveals Androgen-Responsive Genes of Muscles in Polycystic Ovarian Syndrome Patients. Processes (Basel) 2022. [DOI: 10.3390/pr10020387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is an endocrine disorder that is characterized by hyperandrogenism. Therefore, information about androgen-induced molecular changes can be obtained using the tissues of patients with PCOS. We analyzed two microarray datasets of normal and PCOS muscle samples (GSE8157 and GSE6798) to identify androgen-responsive genes (ARGs). Differentially expressed genes were determined using the t-test and a meta-analysis of the datasets. The overlap between significant results of the meta-analysis and ARGs predicted from an external database was determined, and differential coexpression analysis was then applied between these genes and the other genes. We found 313 significant genes in the meta-analysis using the Benjamini–Hochberg multiple testing correction. Of these genes, 61 were in the list of predicted ARGs. When the differential coexpression between these 61 genes and 13,545 genes filtered by variance was analyzed, 540 significant gene pairs were obtained using the Benjamini–Hochberg correction. While no significant results were obtained regarding the functional enrichment of the differentially expressed genes, top-level gene ontology terms were significantly enriched in the list of differentially coexpressed genes, which indicates that a broad range of cellular processes is affected by androgen administration. Our findings provide valuable information for the identification of ARGs.
Collapse
|
36
|
Differential Gene Expression Profiles between N-Terminal Domain and Ligand-Binding Domain Inhibitors of Androgen Receptor Reveal Ralaniten Induction of Metallothionein by a Mechanism Dependent on MTF1. Cancers (Basel) 2022; 14:cancers14020386. [PMID: 35053548 PMCID: PMC8773799 DOI: 10.3390/cancers14020386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Hormonal therapies for prostate cancer target the androgen receptor (AR) ligand-binding domain (LBD). Clinical development for inhibitors that bind to the N-terminal domain (NTD) of AR has yielded ralaniten and its analogues. Ralaniten acetate is well tolerated in patients at 3600 mgs/day. Clinical trials are ongoing with a second-generation analogue of ralaniten. Binding sites on different AR domains could result in differential effects on AR-regulated gene expression. Here, we provide the first comparison between AR-NTD inhibitors and AR-LBD inhibitors on androgen-regulated gene expression in prostate cancer cells using cDNA arrays, GSEA, and RT-PCR. LBD inhibitors and NTD inhibitors largely overlapped in the profile of androgen-induced genes that they each inhibited. However, androgen also represses gene expression by various mechanisms, many of which involve protein-protein interactions. De-repression of the transcriptome of androgen-repressed genes showed profound variance between these two classes of inhibitors. In addition, these studies revealed a unique and strong induction of expression of the metallothionein family of genes by ralaniten by a mechanism independent of AR and dependent on MTF1, thereby suggesting this may be an off-target. Due to the relatively high doses that may be encountered clinically with AR-NTD inhibitors, identification of off-targets may provide insight into potential adverse events, contraindications, or poor efficacy.
Collapse
|
37
|
Song H, Weinstein HNW, Allegakoen P, Wadsworth MH, Xie J, Yang H, Castro EA, Lu KL, Stohr BA, Feng FY, Carroll PR, Wang B, Cooperberg MR, Shalek AK, Huang FW. Single-cell analysis of human primary prostate cancer reveals the heterogeneity of tumor-associated epithelial cell states. Nat Commun 2022; 13:141. [PMID: 35013146 PMCID: PMC8748675 DOI: 10.1038/s41467-021-27322-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer is the second most common malignancy in men worldwide and consists of a mixture of tumor and non-tumor cell types. To characterize the prostate cancer tumor microenvironment, we perform single-cell RNA-sequencing on prostate biopsies, prostatectomy specimens, and patient-derived organoids from localized prostate cancer patients. We uncover heterogeneous cellular states in prostate epithelial cells marked by high androgen signaling states that are enriched in prostate cancer and identify a population of tumor-associated club cells that may be associated with prostate carcinogenesis. ERG-negative tumor cells, compared to ERG-positive cells, demonstrate shared heterogeneity with surrounding luminal epithelial cells and appear to give rise to common tumor microenvironment responses. Finally, we show that prostate epithelial organoids harbor tumor-associated epithelial cell states and are enriched with distinct cell types and states from their parent tissues. Our results provide diagnostically relevant insights and advance our understanding of the cellular states associated with prostate carcinogenesis.
Collapse
Affiliation(s)
- Hanbing Song
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Hannah N. W. Weinstein
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Paul Allegakoen
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Marc H. Wadsworth
- grid.116068.80000 0001 2341 2786The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142 USA
| | - Jamie Xie
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Heiko Yang
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Ethan A. Castro
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Kevin L. Lu
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Bradley A. Stohr
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Felix Y. Feng
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Departments of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Peter R. Carroll
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Bruce Wang
- grid.266102.10000 0001 2297 6811Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA 94143 USA
| | - Matthew R. Cooperberg
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.410372.30000 0004 0419 2775Division of Hematology and Oncology, Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121 USA
| | - Alex K. Shalek
- grid.116068.80000 0001 2341 2786The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142 USA
| | - Franklin W. Huang
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.410372.30000 0004 0419 2775Division of Hematology and Oncology, Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121 USA
| |
Collapse
|
38
|
Harris AE, Metzler VM, Lothion-Roy J, Varun D, Woodcock CL, Haigh DB, Endeley C, Haque M, Toss MS, Alsaleem M, Persson JL, Gudas LJ, Rakha E, Robinson BD, Khani F, Martin LM, Moyer JE, Brownlie J, Madhusudan S, Allegrucci C, James VH, Rutland CS, Fray RG, Ntekim A, de Brot S, Mongan NP, Jeyapalan JN. Exploring anti-androgen therapies in hormone dependent prostate cancer and new therapeutic routes for castration resistant prostate cancer. Front Endocrinol (Lausanne) 2022; 13:1006101. [PMID: 36263323 PMCID: PMC9575553 DOI: 10.3389/fendo.2022.1006101] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Androgen deprivation therapies (ADTs) are important treatments which inhibit androgen-induced prostate cancer (PCa) progression by either preventing androgen biosynthesis (e.g. abiraterone) or by antagonizing androgen receptor (AR) function (e.g. bicalutamide, enzalutamide, darolutamide). A major limitation of current ADTs is they often remain effective for limited durations after which patients commonly progress to a lethal and incurable form of PCa, called castration-resistant prostate cancer (CRPC) where the AR continues to orchestrate pro-oncogenic signalling. Indeed, the increasing numbers of ADT-related treatment-emergent neuroendocrine-like prostate cancers (NePC), which lack AR and are thus insensitive to ADT, represents a major therapeutic challenge. There is therefore an urgent need to better understand the mechanisms of AR action in hormone dependent disease and the progression to CRPC, to enable the development of new approaches to prevent, reverse or delay ADT-resistance. Interestingly the AR regulates distinct transcriptional networks in hormone dependent and CRPC, and this appears to be related to the aberrant function of key AR-epigenetic coregulator enzymes including the lysine demethylase 1 (LSD1/KDM1A). In this review we summarize the current best status of anti-androgen clinical trials, the potential for novel combination therapies and we explore recent advances in the development of novel epigenetic targeted therapies that may be relevant to prevent or reverse disease progression in patients with advanced CRPC.
Collapse
Affiliation(s)
- Anna E. Harris
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Veronika M. Metzler
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Jennifer Lothion-Roy
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Dhruvika Varun
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Corinne L. Woodcock
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Daisy B. Haigh
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Chantelle Endeley
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Maria Haque
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Michael S. Toss
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Mansour Alsaleem
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
- Department of Applied Medical Science, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Jenny L. Persson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Biomedical Sciences, Malmö Universitet, Malmö, Sweden
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Emad Rakha
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Brian D. Robinson
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Khani
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Laura M. Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Jenna E. Moyer
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Juliette Brownlie
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Cinzia Allegrucci
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Victoria H. James
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Catrin S. Rutland
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Rupert G. Fray
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Atara Ntekim
- Department of Oncology, University Hospital Ibadan, Ibadan, Nigeria
- *Correspondence: Jennie N. Jeyapalan, ; Nigel P. Mongan, ; ; Atara Ntekim,
| | - Simone de Brot
- Comparative Pathology Platform (COMPATH), Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Nigel P. Mongan
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Jennie N. Jeyapalan, ; Nigel P. Mongan, ; ; Atara Ntekim,
| | - Jennie N. Jeyapalan
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
- *Correspondence: Jennie N. Jeyapalan, ; Nigel P. Mongan, ; ; Atara Ntekim,
| |
Collapse
|
39
|
Tam N, Lai KP, Kong RYC. Comparative transcriptomic analysis reveals reproductive impairments caused by PCBs and OH-PCBs through the dysregulation of ER and AR signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149913. [PMID: 34474298 DOI: 10.1016/j.scitotenv.2021.149913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Reports have highlighted the presence of PCBs and their metabolites, OH-PCBs, in human serum as well as their endocrine-disrupting effects on reproductive function through direct interactions with the androgen receptor (AR) and estrogen receptor (ER). However, the molecular mechanisms directly linking the actions of PCBs and OH-PCBs on the AR and ER to induce reproductive impairment remain poorly understood. In this study, we characterized the cellular response to PCBs and OH-PCBs acting on AR and ER transactivation at the transcriptome level coupled with bioinformatics analysis to identify the downstream pathways of androgen and estrogen signaling that leads to reproductive dysfunction. We first confirmed the agonistic and antagonistic effects of several PCBs and OH-PCBs on AR- and ER-mediated reporter gene activity using the androgen-responsive LNCaP and estrogen-responsive MCF-7 cell lines, respectively. Anti-estrogenic activity was not detected among the tested compounds; however, we found that in addition to anti-androgenic and estrogenic activity, PCB 28 and PCB 138 exhibited androgenic activity, while most of the tested OH-PCBs showed a synergistic effect on DHT-mediated transactivation of the AR. Bioinformatics analysis of transcriptome profiles from selected PCBs and OH-PCBs revealed various pathways that were dysregulated depending on their agonistic, antagonistic, or synergistic effects. The OH-PCBs with estrogenic activity affected pathways including vitamin metabolism and calcium transport. Other notable dysregulated pathways include cholesterol transport in response to androgenic PCBs, thyroid hormone metabolism in response to anti-androgenic PCBs, and antioxidant pathways in response to androgen-synergistic OH-PCBs. Our results demonstrate that PCBs and OH-PCBs directly alter specific pathways through androgen- or estrogen-mediated signaling, thereby providing additional insights into the mechanisms by which these compounds cause reproductive dysfunction.
Collapse
Affiliation(s)
- Nathan Tam
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
40
|
Pang JP, Shen C, Zhou WF, Wang YX, Shan LH, Chai X, Shao Y, Hu XP, Zhu F, Zhu DY, Xiao L, Xu L, Xu XH, Li D, Hou TJ. Discovery of novel antagonists targeting the DNA binding domain of androgen receptor by integrated docking-based virtual screening and bioassays. Acta Pharmacol Sin 2022; 43:229-239. [PMID: 33767381 PMCID: PMC8724294 DOI: 10.1038/s41401-021-00632-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/24/2021] [Indexed: 02/01/2023]
Abstract
Androgen receptor (AR), a ligand-activated transcription factor, is a master regulator in the development and progress of prostate cancer (PCa). A major challenge for the clinically used AR antagonists is the rapid emergence of resistance induced by the mutations at AR ligand binding domain (LBD), and therefore the discovery of novel anti-AR therapeutics that can combat mutation-induced resistance is quite demanding. Therein, blocking the interaction between AR and DNA represents an innovative strategy. However, the hits confirmed targeting on it so far are all structurally based on a sole chemical scaffold. In this study, an integrated docking-based virtual screening (VS) strategy based on the crystal structure of the DNA binding domain (DBD) of AR was conducted to search for novel AR antagonists with new scaffolds and 2-(2-butyl-1,3-dioxoisoindoline-5-carboxamido)-4,5-dimethoxybenzoicacid (Cpd39) was identified as a potential hit, which was competent to block the binding of AR DBD to DNA and showed decent potency against AR transcriptional activity. Furthermore, Cpd39 was safe and capable of effectively inhibiting the proliferation of PCa cell lines (i.e., LNCaP, PC3, DU145, and 22RV1) and reducing the expression of the genes regulated by not only the full-length AR but also the splice variant AR-V7. The novel AR DBD-ARE blocker Cpd39 could serve as a starting point for the development of new therapeutics for castration-resistant PCa.
Collapse
Affiliation(s)
- Jin-Ping Pang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chao Shen
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Fang Zhou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Xia Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu-Hu Shan
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xin Chai
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Shao
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ping Hu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feng Zhu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dan-Yan Zhu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Xiao
- School of Life Science, Huzhou University, Huzhou, 313000, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Xiao-Hong Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Dan Li
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ting-Jun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Erdmann É, Ould Madi Berthélémy P, Cottard F, Angel CZ, Schreyer E, Ye T, Morlet B, Negroni L, Kieffer B, Céraline J. Androgen receptor-mediated transcriptional repression targets cell plasticity in prostate cancer. Mol Oncol 2021; 16:2518-2536. [PMID: 34919781 PMCID: PMC9462842 DOI: 10.1002/1878-0261.13164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
Androgen receptor (AR) signaling remains the key therapeutic target in the management of hormone‐naïve‐advanced prostate cancer (PCa) and castration‐resistant PCa (CRPC). Recently, landmark molecular features have been reported for CRPC, including the expression of constitutively active AR variants that lack the ligand‐binding domain. Besides their role in CRPC, AR variants lead to the expression of genes involved in tumor progression. However, little is known about the specificity of their mode of action compared with that of wild‐type AR (AR‐WT). We performed AR transcriptome analyses in an androgen‐dependent PCa cell line as well as cross‐analyses with publicly available RNA‐seq datasets and established that transcriptional repression capacity that was marked for AR‐WT was pathologically lost by AR variants. Functional enrichment analyses allowed us to associate AR‐WT repressive function to a panel of genes involved in cell adhesion and epithelial‐to‐mesenchymal transition. So, we postulate that a less documented AR‐WT normal function in prostate epithelial cells could be the repression of a panel of genes linked to cell plasticity and that this repressive function could be pathologically abrogated by AR variants in PCa.
Collapse
Affiliation(s)
- Éva Erdmann
- CNRS, UMR 7104, INSERM U1258 - IGBMC - University de Strasbourg, France
| | | | - Félicie Cottard
- University of Freiburg - Albert - Ludwigs - Universität Freiburg, Germany
| | | | - Edwige Schreyer
- CNRS, UMR 7104, INSERM U1258 - IGBMC - University de Strasbourg, France
| | - Tao Ye
- CNRS, UMR 7104, INSERM U1258 - IGBMC - University de Strasbourg, France
| | - Bastien Morlet
- CNRS, UMR 7104, INSERM U1258 - IGBMC - University de Strasbourg, France
| | - Luc Negroni
- CNRS, UMR 7104, INSERM U1258 - IGBMC - University de Strasbourg, France
| | - Bruno Kieffer
- CNRS, UMR 7104, INSERM U1258 - IGBMC - University de Strasbourg, France
| | - Jocelyn Céraline
- CNRS, UMR 7104, INSERM U1258 - IGBMC - University de Strasbourg, France.,Institut de Cancérologie de Strasbourg Europe (ICANS), Hôpitaux Universitaires de Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg - FMTS - Faculté de Médecine, Université de Strasbourg, France
| |
Collapse
|
42
|
PCK1 regulates neuroendocrine differentiation in a positive feedback loop of LIF/ZBTB46 signalling in castration-resistant prostate cancer. Br J Cancer 2021; 126:778-790. [PMID: 34815524 DOI: 10.1038/s41416-021-01631-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/24/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) patients frequently develop neuroendocrine differentiation, with high mortality and no effective treatment. However, the regulatory mechanism that connects neuroendocrine differentiation and metabolic adaptation in response to therapeutic resistance of prostate cancer remain to be unravelled. METHODS By unbiased cross-correlation between RNA-sequencing, database signatures, and ChIP analysis, combining in vitro cell lines and in vivo animal models, we identified that PCK1 is a pivotal regulator in therapy-induced neuroendocrine differentiation of prostate cancer through a LIF/ZBTB46-driven glucose metabolism pathway. RESULTS Upregulation of PCK1 supports cell proliferation and reciprocally increases ZBTB46 levels to promote the expression of neuroendocrine markers that are conducive to the development of neuroendocrine characteristic CRPC. PCK1 and neuroendocrine marker expressions are regulated by the ZBTB46 transcription factor upon activation of LIF signalling. Targeting PCK1 can reduce the neuroendocrine phenotype and decrease the growth of prostate cancer cells in vitro and in vivo. CONCLUSION Our study uncovers LIF/ZBTB46 signalling activation as a key mechanism for upregulating PCK1-driven glucose metabolism and neuroendocrine differentiation of CRPC, which may yield significant improvements in prostate cancer treatment after ADT using PCK1 inhibitors.
Collapse
|
43
|
Wen YC, Liu YN, Yeh HL, Chen WH, Jiang KC, Lin SR, Huang J, Hsiao M, Chen WY. TCF7L1 regulates cytokine response and neuroendocrine differentiation of prostate cancer. Oncogenesis 2021; 10:81. [PMID: 34799554 PMCID: PMC8604986 DOI: 10.1038/s41389-021-00371-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/01/2021] [Accepted: 11/03/2021] [Indexed: 01/07/2023] Open
Abstract
Neuroendocrine differentiation (NED) is associated with WNT signaling activation and can be significantly observed after failure of androgen-deprivation therapy (ADT) for prostatic adenocarcinomas. Cytokine signaling is stimulated in NED prostate cancer; however, how ADT-upregulated WNT signaling promotes activation of cytokine signaling and contributes to NED of prostate cancer is poorly understood. In this study, we identified ADT-mediated upregulation of transcription factor 7 like 1 (TCF7L1), which increases the cytokine response and enhances NED of prostate cancer through interleukin (IL)-8/C-X-C motif chemokine receptor type 2 (CXCR2) signaling activation. ADT induced the secretion of WNT4 which upon engagement of TCF7L1 in prostate cancer cells, enhanced IL-8 and CXCR2 expressions. TCF7L1 directly binds to the regulatory sequence region of IL-8 and CXCR2 through WNT4 activation, thus upregulating IL-8/CXCR2 signaling-driven NED and cell motility. Analysis of prostate tissue samples collected from small-cell neuroendocrine prostate cancer (SCPC) and castration-resistant prostate cancer (CRPC) tumors showed an increased intensity of nuclear TCF7L1 associated with CXCR2. Our results suggest that induction of WNT4/TCF7L1 results in increased NED and malignancy in prostate cancer that is linked to dysregulation of androgen receptor signaling and activation of the IL-8/CXCR2 pathway.
Collapse
Affiliation(s)
- Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Lien Yeh
- General Education Development Center, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shian-Ren Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
44
|
Discovery proteomics defines androgen-regulated glycoprotein networks in prostate cancer cells, as well as putative biomarkers of prostatic diseases. Sci Rep 2021; 11:22208. [PMID: 34782677 PMCID: PMC8592995 DOI: 10.1038/s41598-021-01554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/20/2021] [Indexed: 12/05/2022] Open
Abstract
Supraphysiologic androgen (SPA) inhibits cell proliferation in prostate cancer (PCa) cells by transcriptional repression of DNA replication and cell-cycle genes. In this study, quantitative glycoprotein profiling identified androgen-regulated glycoprotein networks associated with SPA-mediated inhibition of PCa cell proliferation, and androgen-regulated glycoproteins in clinical prostate tissues. SPA-regulated glycoprotein networks were enriched for translation factors and ribosomal proteins, proteins that are known to be O-GlcNAcylated in response to various cellular stresses. Thus, androgen-regulated glycoproteins are likely to be targeted for O-GlcNAcylation. Comparative analysis of glycosylated proteins in PCa cells and clinical prostate tissue identified androgen-regulated glycoproteins that are differentially expressed prostate tissues at various stages of cancer. Notably, the enzyme ectonucleoside triphosphate diphosphohydrolase 5 was found to be an androgen-regulated glycoprotein in PCa cells, with higher expression in cancerous versus non-cancerous prostate tissue. Our glycoproteomics study provides an experimental framework for characterizing androgen-regulated proteins and glycoprotein networks, toward better understanding how this subproteome leads to physiologic and supraphysiologic proliferation responses in PCa cells, and their potential use as druggable biomarkers of dysregulated AR-dependent signaling in PCa cells.
Collapse
|
45
|
Single-cell analysis reveals androgen receptor regulates the ER-to-Golgi trafficking pathway with CREB3L2 to drive prostate cancer progression. Oncogene 2021; 40:6479-6493. [PMID: 34611310 DOI: 10.1038/s41388-021-02026-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/29/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023]
Abstract
Androgen receptor (AR) plays a central role in driving prostate cancer (PCa) progression. How AR promotes this process is still not completely clear. Herein, we used single-cell transcriptome analysis to reconstruct the transcriptional network of AR in PCa. Our work shows AR directly regulates a set of signature genes in the ER-to-Golgi protein vesicle-mediated transport pathway. The expression of these genes is required for maximum androgen-dependent ER-to-Golgi trafficking, cell growth, and survival. Our analyses also reveal the signature genes are associated with PCa progression and prognosis. Moreover, we find inhibition of the ER-to-Golgi transport process with a small molecule enhanced antiandrogen-mediated tumor suppression of hormone-sensitive and insensitive PCa. Finally, we demonstrate AR collaborates with CREB3L2 in mediating ER-to-Golgi trafficking in PCa. In summary, our findings uncover a critical role for dysregulation of ER-to-Golgi trafficking expression and function in PCa progression, provide detailed mechanistic insights for how AR tightly controls this process, and highlight the prospect of targeting the ER-to-Golgi pathway as a therapeutic strategy for advanced PCa.
Collapse
|
46
|
Wang N, Gong Z, Wang J, Xu W, Yang Q, Chen S. Characterization of Chinese tongue sole (Cynoglossus semilaevis) 24-dehydrocholesterol reductase: Expression profile, epigenetic modification, and its knock-down effect. Gen Comp Endocrinol 2021; 312:113870. [PMID: 34324841 DOI: 10.1016/j.ygcen.2021.113870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/27/2022]
Abstract
The sexual size dimorphism of the Chinese tongue sole (Cynoglossus semilaevis) has greatly obstructed its sustainable development; however, the underlying mechanism remains unclear. Based on C. semilaevis transcriptomic information, 24-dehydrocholesterol reductase (dhcr24) was identified in steroid biosynthesis, showing female-liver-biased expression. Dhcr24 has been reported to participate in various processes, such as cholesterol synthesis, oxidative stress response, neuroprotection, and cell survival. The present study assessed its role in the sexual size dimorphism in fish. First, detailed expression pattern analysis showed that dhcr24 mRNAs were extensively expressed in tissues and the highest levels were found in the liver and gonads of females. Analysis of the dhcr24 promoter region demonstrated different DNA methylation statuses in female, male, and pseudomale gonads with higher epigenetic modification in males. The confirmation of transcription activity of the dhcr24 promoter and putative transcription factors (e.g., ER, AR, SREBP, and POU1F1a) provides the foundation for studying its regulatory mechanism. Finally, dhcr24-siRNA mediated knock-down assay using C. semilaevis liver cells showed that steroid biosynthesis related genes (e.g., ebp, dhcr7, and sc5d), core component of PI3K/Akt pathway (e.g., pi3k), and igf1r exhibited different expression patterns. Further investigation on the interplay between steroid hormones, dhcr24, PI3K/Akt, and IGF-1 systems will be valuable to better understand the mechanism underlying the sexual size dimorphism in C. semilaevis.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Zhihong Gong
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jialin Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Wenteng Xu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qian Yang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Songlin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
47
|
HOXB5 Overexpression Is Associated with Neuroendocrine Differentiation and Poor Prognosis in Prostate Cancer. Biomedicines 2021; 9:biomedicines9080893. [PMID: 34440097 PMCID: PMC8389587 DOI: 10.3390/biomedicines9080893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022] Open
Abstract
Homeobox genes function as master regulatory transcription factors during embryogenesis. HOXB5 is known to play an important role in several cancers. However, the biological role of HOXB5 in prostate cancer (PCa) is not fully elucidated. This study aimed to analyze the expression and function of HOXB5 and involvement of HOXB5 in neuroendocrine differentiation in PCa. Immunohistochemistry showed that 56 (43.8%) of 128 cases of localized PCa were positive for HOXB5. HOXB5-positive cases were associated with poor prostate-specific antigen recurrence-free survival after prostatectomy. Among 74 cases of metastatic PCa, 43 (58.1%) were positive for HOXB5. HOXB5 expression was higher in metastatic PCa than that in localized PCa. HOXB5 knockdown suppressed cell growth and invasion, but HOXB5 overexpression increased cell growth and invasion in PCa cell lines. Furthermore, HOXB5 regulated RET expression. Gene set enrichment analysis revealed that Nelson androgen response gene set was enriched in low HOXB5 expression group. RB1 knockout increased HOXB5 expression. Of note, additional p53 knockdown further increased HOXB5 expression in RB1 knockout cells. In silico analysis showed that HOXB5 expression was increased in neuroendocrine PCa (NEPC). These results suggest that HOXB5 may be a promising prognostic marker after prostatectomy and is involved in progression to NEPC.
Collapse
|
48
|
Shabbir M, Mukhtar H, Syed D, Razak S, Afsar T, Almajwal A, Badshah Y, Aldisi D. Tissue microarray profiling and integrative proteomics indicate the modulatory potential of Maytenus royleanus in inhibition of overexpressed TPD52 in prostate cancers. Sci Rep 2021; 11:11935. [PMID: 34099820 PMCID: PMC8184821 DOI: 10.1038/s41598-021-91408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Maytenus roylanus (MEM) is a plant with anti-proliferative effects against prostate cancer. We aimed to explore the mechanism of action of MEM in prostate cancer (PCa) by employing an in vitro global proteome approach to get useful information of various signaling pathways and effected genes to define the mechanism of MEM action in prostate cancer. We conducted a global proteome analysis of CWR22Rv1after treatment with methanolic extract of MEM. The result of the proteomic profiling of in vitro PCa cells demonstrated the reduction in tumor protein D52 (TPD52) expression after treatment with methanolic extract of MEM. Down-regulation of TPD52 expression at mRNA level was observed by MEM treatment in CWR22Rν1 and C4-2 cells in a dose-dependent fashion probably by cleavage of Caspase 3 and PARP, or by modulation of cyclin-dependent kinases in CWR22Rν1 and C4-2 cells. The progressive character of the TRAMP model demonstrates a chance to evaluate the potential of chemo-preventive agents for both initial and late stages of prostate cancer development, and induction in TPD52 protein expression with development as well as the progression of prostate cancer was observed in the TRAMP model. Analyses of the tissue microarray collection of 25 specimens confirmed the clinical significance of our findings identifying TPD52 as a potential marker for PCa progression. We determined that knockdown of TPD52 (CWR22Rν1 cells), a considerable downregulation was seen at the protein level. Downregulation of TPD52 inhibited the migration and invasive behavior of prostate cancer cells as observed. Moreover, we observed that the siRNA-TPD52 transfection of CWR22Rν1 cells resulted in tumor growth inhibition with a marked reduction in the secretion of prostate-specific antigen (PSA) in the serum. Intraperitoneal injection of MEM considerably slowed tumor growth in athymic mice, inhibited TPD52 expression, and caused a marked reduction in PSA levels of serum as demonstrated by immunoblot screening and immune-histochemical staining. This report illustrates a molecular overview of pathological processes in PCa, indicating possible new disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Maria Shabbir
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, USA
| | - Deeba Syed
- Department of Dermatology, University of Wisconsin, Madison, USA
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, KSA, Riyadh, Saudi Arabia.
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, KSA, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, KSA, Riyadh, Saudi Arabia
| | - Yasmin Badshah
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Dara Aldisi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, KSA, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
Porter LH, Bakshi A, Pook D, Clark A, Clouston D, Kourambas J, Goode DL, Risbridger GP, Taylor RA, Lawrence MG. Androgen receptor enhancer amplification in matched patient-derived xenografts of primary and castrate-resistant prostate cancer. J Pathol 2021; 254:121-134. [PMID: 33620092 DOI: 10.1002/path.5652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/30/2022]
Abstract
Amplifications of the androgen receptor (AR) occur in up to 80% of men with castration-resistant prostate cancer (CRPC). Recent studies highlighted that these amplifications not only span the AR gene but usually encompass a distal enhancer. This represents a newly recognised, non-coding mechanism of resistance to AR-directed therapies, including enzalutamide. To study disease progression before and after AR amplification, we used tumour samples from a castrate-sensitive primary tumour and castrate-resistant metastasis of the same patient. For subsequent functional and genomic studies, we established serially transplantable patient-derived xenografts (PDXs). Whole genome sequencing showed that alterations associated with poor prognosis, such as TP53 and PTEN loss, existed before androgen deprivation therapy, followed by co-amplification of the AR gene and enhancer after the development of metastatic CRPC. The PDX of the primary tumour, without the AR amplification, was sensitive to AR-directed treatments, including castration, enzalutamide, and apalutamide. The PDX of the metastasis, with the AR amplification, had higher AR and AR-V7 expression in castrate conditions, and was resistant to castration, apalutamide, and enzalutamide in vivo. Treatment with a BET inhibitor outperformed the AR-directed therapies for the metastasis, resulting in tumour regression for some, but not all, grafts. Therefore, this study provides novel matched PDXs to test potential treatments that target the overabundance of AR in tumours with AR enhancer amplifications. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laura H Porter
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Andrew Bakshi
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - David Pook
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Medical Oncology, Monash Health, Clayton, VIC, Australia
| | - Ashlee Clark
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | | | - John Kourambas
- Department of Medicine, Monash Health, Casey Hospital, Berwick, VIC, Australia
| | -
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Melbourne Urological Research Alliance (MURAL), Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - David L Goode
- Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Renea A Taylor
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.,Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Mitchell G Lawrence
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
50
|
Brady L, Kriner M, Coleman I, Morrissey C, Roudier M, True LD, Gulati R, Plymate SR, Zhou Z, Birditt B, Meredith R, Geiss G, Hoang M, Beechem J, Nelson PS. Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nat Commun 2021; 12:1426. [PMID: 33658518 PMCID: PMC7930198 DOI: 10.1038/s41467-021-21615-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/04/2021] [Indexed: 02/08/2023] Open
Abstract
Metastatic prostate cancer (mPC) comprises a spectrum of diverse phenotypes. However, the extent of inter- and intra-tumor heterogeneity is not established. Here we use digital spatial profiling (DSP) technology to quantitate transcript and protein abundance in spatially-distinct regions of mPCs. By assessing multiple discrete areas across multiple metastases, we find a high level of intra-patient homogeneity with respect to tumor phenotype. However, there are notable exceptions including tumors comprised of regions with high and low androgen receptor (AR) and neuroendocrine activity. While the vast majority of metastases examined are devoid of significant inflammatory infiltrates and lack PD1, PD-L1 and CTLA4, the B7-H3/CD276 immune checkpoint protein is highly expressed, particularly in mPCs with high AR activity. Our results demonstrate the utility of DSP for accurately classifying tumor phenotype, assessing tumor heterogeneity, and identifying aspects of tumor biology involving the immunological composition of metastases. The inter- and intra-tumor heterogeneity of metastatic prostate cancer (mPC) is underexplored. Here the authors use Digital Spatial Profiling to study gene and protein expression heterogeneity in 27 mPC patients, finding variation in associated pathways and potential immunotherapy targets.
Collapse
Affiliation(s)
- Lauren Brady
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Ilsa Coleman
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | - Roman Gulati
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen R Plymate
- University of Washington, Seattle, WA, USA.,VAPSHCS-GRECC, Seattle, WA, USA
| | - Zoey Zhou
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | | | - Gary Geiss
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | | | - Peter S Nelson
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,University of Washington, Seattle, WA, USA.
| |
Collapse
|