1
|
Tong Q, Yao L, Su M, Yang YG, Sun L. Thymocyte migration and emigration. Immunol Lett 2024; 267:106861. [PMID: 38697225 DOI: 10.1016/j.imlet.2024.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Hematopoietic precursors (HPCs) entering into the thymus undergo a sequential process leading to the generation of a variety of T cell subsets. This developmental odyssey unfolds in distinct stages within the thymic cortex and medulla, shaping the landscape of T cell receptor (TCR) expression and guiding thymocytes through positive and negative selection. Initially, early thymic progenitors (ETPs) take residence in the thymic cortex, where thymocytes begin to express their TCR and undergo positive selection. Subsequently, thymocytes transition to the thymic medulla, where they undergo negative selection. Both murine and human thymocyte development can be broadly classified into distinct stages based on the expression of CD4 and CD8 coreceptors, resulting in categorizations as double negative (DN), double positive (DP) or single positive (SP) cells. Thymocyte migration to the appropriate thymic microenvironment at the right differentiation stage is pivotal for the development and the proper functioning of T cells, which is critical for adaptive immune responses. The journey of lymphoid progenitor cells into the T cell developmental pathway hinges on an ongoing dialogue between the differentiating cell and the signals emanating from the thymus niche. Herein, we review the contribution of the key factors mentioned above for the localization, migration and emigration of thymocytes.
Collapse
Affiliation(s)
- Qingyue Tong
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Liyu Yao
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, China
| | - Mengting Su
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.
| | - Liguang Sun
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.
| |
Collapse
|
2
|
Nagahashi M, Miyoshi Y. Targeting Sphingosine-1-Phosphate Signaling in Breast Cancer. Int J Mol Sci 2024; 25:3354. [PMID: 38542328 PMCID: PMC10970081 DOI: 10.3390/ijms25063354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 01/04/2025] Open
Abstract
In recent years, newly emerging therapies, such as immune checkpoint inhibitors and antibody-drug conjugates, have further improved outcomes for breast cancer patients. However, recurrent and metastatic breast cancer often eventually develops resistance to these drugs, and cure is still rare. As such, the development of new therapies for refractory breast cancer that differ from conventional mechanisms of action is necessary. Sphingosine-1-phosphate (S1P) is a key molecule with a variety of bioactive activities, including involvement in cancer cell proliferation, invasion, and metastasis. S1P also contributes to the formation of the cancer microenvironment by inducing surrounding vascular- and lymph-angiogenesis and regulating the immune system. In this article, we outline the basic mechanism of action of S1P, summarize previous findings on the function of S1P in cancer cells and the cancer microenvironment, and discuss the clinical significance of S1P in breast cancer and the therapeutic potential of targeting S1P signaling.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | | |
Collapse
|
3
|
Kihara Y, Chun J. Molecular and neuroimmune pharmacology of S1P receptor modulators and other disease-modifying therapies for multiple sclerosis. Pharmacol Ther 2023; 246:108432. [PMID: 37149155 DOI: 10.1016/j.pharmthera.2023.108432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Multiple sclerosis (MS) is a neurological, immune-mediated demyelinating disease that affects people in the prime of life. Environmental, infectious, and genetic factors have been implicated in its etiology, although a definitive cause has yet to be determined. Nevertheless, multiple disease-modifying therapies (DMTs: including interferons, glatiramer acetate, fumarates, cladribine, teriflunomide, fingolimod, siponimod, ozanimod, ponesimod, and monoclonal antibodies targeting ITGA4, CD20, and CD52) have been developed and approved for the treatment of MS. All the DMTs approved to date target immunomodulation as their mechanism of action (MOA); however, the direct effects of some DMTs on the central nervous system (CNS), particularly sphingosine 1-phosphate (S1P) receptor (S1PR) modulators, implicate a parallel MOA that may also reduce neurodegenerative sequelae. This review summarizes the currently approved DMTs for the treatment of MS and provides details and recent advances in the molecular pharmacology, immunopharmacology, and neuropharmacology of S1PR modulators, with a special focus on the CNS-oriented, astrocyte-centric MOA of fingolimod.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, United States of America.
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, United States of America
| |
Collapse
|
4
|
Liu Y, Yang CL, Yang B, Du T, Li XL, Zhang P, Ge MR, Lian Y, Li H, Liu YD, Duan RS. Prophylactic administration of fingolimod (FTY720) ameliorated experimental autoimmune myasthenia gravis by reducing the number of dendritic cells, follicular T helper cells and antibody-secreting cells. Int Immunopharmacol 2021; 96:107511. [PMID: 33915521 DOI: 10.1016/j.intimp.2021.107511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 11/28/2022]
Abstract
Fingolimod (FTY720), a sphingosine 1-phosphate (S1P) receptor antagonist, possesses potent immunomodulatory activity via lymphocyte homing. The effects of FTY720 have been widely studied in various T-cell-mediated autoimmune diseases, while the immunomodulatory effects on experimental autoimmune myasthenia gravis (EAMG), a typical disease model for antibody-mediated autoimmunity, remain elusive. In the present study, FTY720 was administered to EAMG rats as prophylaxis. The clinical scores were recorded every other day, and serum antibodies at different time points were measured by enzyme-linked immunosorbent assay (ELISA). The immune cell subsets in the spleen, bone marrow, circulation, and thymus were determined by flow cytometry. The prophylactic administration alleviated EAMG symptoms by reducing the level of serum antibodies IgG and its isotype IgG2b on days 30 and 46 post immunization, as well as IgG and Ig kappa antibody-secreting cells in the spleen and bone marrow. The mitigated humoral immune response can be attributed to the decreased dendritic cells, follicular T help cells (Tfh) and Tfh subsets (Tfh1, Tfh2, and Tfh17), and T helper cell subsets (Th1, Th2, and Th17) in the spleen. The promotion of lymphocyte homing and inhibition of thymocyte egress contribute to the effects of FTY720 on these effector T cell subsets. Overall, the prophylactic administration of FTY720 ameliorated EAMG partially by regulating humoral immune response,suggesting that FTY720 could be part of a pharmacological strategy for managing myasthenia gravis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China; Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, China.
| | - Chun-Lin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Bing Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Tong Du
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Meng-Ru Ge
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, China.
| | - Ying Lian
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Yu-Dong Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Rui-Sheng Duan
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China; Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, China; Shandong Institute of Neuroimmunology, China.
| |
Collapse
|
5
|
Dixit D, Okuniewska M, Schwab SR. Secrets and lyase: Control of sphingosine 1-phosphate distribution. Immunol Rev 2020; 289:173-185. [PMID: 30977198 DOI: 10.1111/imr.12760] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 12/26/2022]
Abstract
The signaling lipid sphingosine 1-phosphate (S1P) plays key roles in many physiological processes. In the immune system, S1P's best-described function is to draw cells out of tissues into circulation. Here, we will review models of S1P distribution in the thymus, lymph nodes, spleen, and nonlymphoid tissues. These models have been challenging to construct, because of the lack of tools to map lipid gradients. Nonetheless, evidence to date suggests that S1P distribution is exquisitely tightly controlled, and that concentrations of signaling-available S1P cannot be predicted by standard rules of thumb. The fine regulation of S1P gradients may explain how S1P can simultaneously direct multiple cell movements both between tissues and circulation and within tissues. It may also make it feasible to develop drugs that enable spatially specific modulation of S1P signaling.
Collapse
Affiliation(s)
- Dhaval Dixit
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York City, New York
| | - Martyna Okuniewska
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York City, New York
| | - Susan R Schwab
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York City, New York
| |
Collapse
|
6
|
Qi H, Cole J, Grambergs RC, Gillenwater JR, Mondal K, Khanam S, Dutta S, Stiles M, Proia RL, Allegood J, Mandal N. Sphingosine Kinase 2 Phosphorylation of FTY720 is Unnecessary for Prevention of Light-Induced Retinal Damage. Sci Rep 2019; 9:7771. [PMID: 31123291 PMCID: PMC6533254 DOI: 10.1038/s41598-019-44047-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian Sphingosine kinase 2 is the primary enzyme responsible for phosphorylating FTY720 to its active form, FTY720-P. Systemic FTY720 treatment confers significant protection to murine retinas from light- and disease-mediated photoreceptor cell death. It is not clear whether FTY720-P, FTY720, or both are responsible for this photoreceptor protection. We investigated Sphingosine kinase 2 knockout (Sphk2 KO) mouse retinas, tested their sensitivity to light, and measured what degree of protection from light-induced damage they receive from systemic FTY720 treatment. Sphk2 KO retinas were found to be similar to their wild-type counterparts in sensitivity to light damage. Additionally, FTY720 treatment protected Sphk2 KO retinas from light-induced damage despite significant retardation of FTY720 phosphorylation in Sphk2 KO mice. We conclude that FTY720 serves an active role in preventing photoreceptor cell death. Furthermore, we conclude that the phosphorylation of FTY720 is not necessary to provide this protective effect.
Collapse
Affiliation(s)
- Hui Qi
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73104, USA
| | - Jerome Cole
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Richard C Grambergs
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - John R Gillenwater
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Koushik Mondal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sufiya Khanam
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Soma Dutta
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Megan Stiles
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73104, USA
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 2329, USA
| | - Nawajes Mandal
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73104, USA. .,Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
7
|
Cancer-induced inflammation and inflammation-induced cancer in colon: a role for S1P lyase. Oncogene 2019; 38:4788-4803. [PMID: 30816345 DOI: 10.1038/s41388-019-0758-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 12/14/2022]
Abstract
A role of sphingolipids for inflammatory bowel disease and cancer is evident. However, the relative and separate contribution of sphingolipid deterioration in inflammation versus carcinogenesis for the pathophysiology of colitis-associated colon cancer (CAC) was unknown and therefore examined in this study. We performed isogenic bone marrow transplantation of inducible sphingosine-1-phosphate (S1P) lyase knockout mice to specifically modulate sphingolipids and associated genes and proteins in a compartment-specific way in a DSS/AOM mediated CAC model. 3D organoid cultures were used in vitro. S1P lyase (SGPL1) knockout in either immune cells or tissue, caused local sphingolipid accumulation leading to a dichotomic development of CAC: Immune cell SGPL1 knockout (I-SGPL-/-) augmented massive immune cell infiltration initiating colitis with lesions and calprotectin increase. Pathological crypt remodeling plus extracellular S1P-signaling caused delayed tumor formation characterized by S1P receptor 1, STAT3 mRNA increase, as well as programmed cell death ligand 1 expression, accompanied by a putatively counter regulatory STAT1S727 phosphorylation. In contrast, tissue SGPL1 knockout (T-SGPL-/-) provoked immediate occurrence of epithelial-driven tumors with upregulated sphingosine kinase 1, S1P receptor 2 and epidermal growth factor receptor. Here, progressing carcinogenesis was accompanied by an IL-12 to IL-23 shift with a consecutive development of a Th2/GATA3-driven, tumor-favoring microenvironment. Moreover, the knockout models showed distinct lymphopenia and neutrophilia, different from the full SGPL1 knockout. This study shows that depending on the initiating cellular S1P source, the pathophysiology of inflammation-induced cancer versus cancer-induced inflammation develops through separate, discernible molecular steps.
Collapse
|
8
|
Majumdar S, Adiga V, Raghavan A, Rananaware SR, Nandi D. Comparative analysis of thymic subpopulations during different modes of atrophy identifies the reactive oxygen species scavenger, N-acetyl cysteine, to increase the survival of thymocytes during infection-induced and lipopolysaccharide-induced thymic atrophy. Immunology 2019; 157:21-36. [PMID: 30659606 DOI: 10.1111/imm.13043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
The development of immunocompetent T cells entails a complex pathway of differentiation in the thymus. Thymic atrophy occurs with ageing and during conditions such as malnutrition, infections and cancer chemotherapy. The comparative changes in thymic subsets under different modes of thymic atrophy and the mechanisms involved are not well characterized. These aspects were investigated, using mice infected with Salmonella Typhimurium, injection with lipopolysaccharide (LPS), an inflammatory but non-infectious stimulus, etoposide (Eto), a drug used to treat some cancers, and dexamethasone (Dex), a steroid used in some inflammatory diseases. The effects on the major subpopulations of thymocytes based on multicolour flow cytometry studies were, first, the CD4- CD8- double-negative (DN) cells, mainly DN2-4, were reduced with infection, LPS and Eto treatment, but not with Dex. Second, the CD8+ CD3lo immature single-positive cells (ISPs) were highly sensitive to infection, LPS and Eto, but not Dex. Third, treatment with LPS, Eto and Dex reduced all three subpopulations of CD4+ CD8+ double-positive (DP) thymocytes, i.e. DP1, DP2 and DP3, but the DP3 subset was relatively more resistant during infection. Fourth, both CD4+ and CD8+ single-positive (SP) thymocytes were lowered by Eto and Dex, but not during infection. Notably, LPS lowered CD4+ SP subsets, whereas the CD8+ SP subsets were relatively more resistant. Interestingly, the reactive oxygen species quencher, N-acetyl cysteine, greatly improved the survival of thymocytes, especially DNs, ISPs and DPs, during infection and LPS treatment. The implications of these observations for the development of potential thymopoietic drugs are discussed.
Collapse
Affiliation(s)
- Shamik Majumdar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Abinaya Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
9
|
Nagahashi M, Abe M, Sakimura K, Takabe K, Wakai T. The role of sphingosine-1-phosphate in inflammation and cancer progression. Cancer Sci 2018; 109:3671-3678. [PMID: 30238699 PMCID: PMC6272099 DOI: 10.1111/cas.13802] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/04/2018] [Accepted: 09/15/2018] [Indexed: 12/20/2022] Open
Abstract
Many inflammatory mediators are involved in the process of carcinogenesis and cancer progression. In addition to cytokines and chemokines, lipid mediators have recently attracted attention as signaling molecules associated with inflammatory diseases. Sphingosine-1-phosphate (S1P) is a pleiotropic lipid mediator that regulates cell survival and migration, immune cell recruitment, angiogenesis and lymphangiogenesis. S1P also plays a significant role in inflammation and cancer. The gradation of S1P concentration in the blood, lymph and tissue regulates lymphocyte trafficking, an important component of inflammation. Furthermore, cancer cells produce elevated levels of S1P, contributing to the tumor microenvironment and linking cancer and inflammation. Future technological advances may reveal greater detail about the mechanisms of S1P regulation in the tumor microenvironment and the contribution of S1P to cancer progression. Considering the critical role of S1P in linking inflammation and cancer, it is possible that the S1P signaling pathway could be a novel therapeutic target for cancers with chronic inflammation.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Digestive and General SurgeryNiigata University Graduate School of Medical and Dental SciencesNiigata CityJapan
| | - Manabu Abe
- Department of Animal Model DevelopmentBrain Research InstituteNiigata UniversityNiigata CityJapan
| | - Kenji Sakimura
- Department of Animal Model DevelopmentBrain Research InstituteNiigata UniversityNiigata CityJapan
| | - Kazuaki Takabe
- Division of Digestive and General SurgeryNiigata University Graduate School of Medical and Dental SciencesNiigata CityJapan
- Breast SurgeryRoswell Park Cancer InstituteBuffaloNew York
- Department of SurgeryUniversity at BuffaloThe State University of New York Jacobs School of Medicine and Biomedical SciencesBuffaloNew York
| | - Toshifumi Wakai
- Division of Digestive and General SurgeryNiigata University Graduate School of Medical and Dental SciencesNiigata CityJapan
| |
Collapse
|
10
|
James KD, Jenkinson WE, Anderson G. T-cell egress from the thymus: Should I stay or should I go? J Leukoc Biol 2018; 104:275-284. [PMID: 29485734 PMCID: PMC6174998 DOI: 10.1002/jlb.1mr1217-496r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 02/02/2023] Open
Abstract
T‐cells bearing the αβTCR play a vital role in defending the host against foreign pathogens and malignant transformation of self. Importantly, T‐cells are required to remain tolerant to the host's own cells and tissues in order to prevent self‐reactive responses that can lead to autoimmune disease. T‐cells achieve the capacity for self/nonself discrimination by undergoing a highly selective and rigorous developmental program during their maturation in the thymus. This organ is unique in its ability to support a program of T‐cell development that ensures the establishment of a functionally diverse αβTCR repertoire within the peripheral T‐cell pool. The thymus achieves this by virtue of specialized stromal microenvironments that contain heterogeneous cell types, whose organization and function underpins their ability to educate, support, and screen different thymocyte subsets through various stages of development. These stages range from the entry of early T‐cell progenitors into the thymus, through to the positive and negative selection of the αβTCR repertoire. The importance of the thymus medulla as a site for T‐cell tolerance and the exit of newly generated T‐cells into the periphery is well established. In this review, we summarize current knowledge on the developmental pathways that take place during αβT‐cell development in the thymus. In addition, we focus on the mechanisms that regulate thymic egress and contribute to the seeding of peripheral tissues with newly selected self‐tolerant αβT‐cells. Review on thymic microenvironments regulation of thymocyte maturation and egress of mature self‐tolerant T cells.
Collapse
Affiliation(s)
- Kieran D James
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - William E Jenkinson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
S1P Lyase Regulation of Thymic Egress and Oncogenic Inflammatory Signaling. Mediators Inflamm 2017; 2017:7685142. [PMID: 29333002 PMCID: PMC5733215 DOI: 10.1155/2017/7685142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a potent lipid signaling molecule that regulates pleiotropic biological functions including cell migration, survival, angiogenesis, immune cell trafficking, inflammation, and carcinogenesis. It acts as a ligand for a family of cell surface receptors. S1P concentrations are high in blood and lymph but low in tissues, especially the thymus and lymphoid organs. S1P chemotactic gradients are essential for lymphocyte egress and other aspects of physiological cell trafficking. S1P is irreversibly degraded by S1P lyase (SPL). SPL regulates lymphocyte trafficking, inflammation and other physiological and pathological processes. For example, SPL located in thymic dendritic cells acts as a metabolic gatekeeper that controls the normal egress of mature T lymphocytes from the thymus into the circulation, whereas SPL deficiency in gut epithelial cells promotes colitis and colitis-associated carcinogenesis (CAC). Recently, we identified a complex syndrome comprised of nephrosis, adrenal insufficiency, and immunological defects caused by inherited mutations in human SGPL1, the gene encoding SPL. In the present article, we review current evidence supporting the role of SPL in thymic egress, inflammation, and cancer. Lastly, we summarize recent progress in understanding other SPL functions, its role in inherited disease, and SPL targeting for therapeutic purposes.
Collapse
|
12
|
Molino S, Tate E, McKillop WM, Medin JA. Sphingolipid pathway enzymes modulate cell fate and immune responses. Immunotherapy 2017; 9:1185-1198. [DOI: 10.2217/imt-2017-0089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sphingolipids (SLs) are a class of essential, bioactive lipids. The SL family includes over 4000 distinct molecules, characterized by their sphingoid base (long-chain aliphatic amine) backbone. SLs are key components of cell membranes, yet their roles go well beyond structure. SLs are involved in many cellular processes including cell differentiation, apoptosis, growth arrest and senescence. As cancer cells routinely display increased growth properties and escape from cell death, it has been suggested that enzymes involved in SL synthesis or catabolism may be altered in cancer cells. In this review, we discuss the role of SL pathway enzymes in cancer, and in acquired resistance to therapy. The use of inhibitors and gene silencing approaches targeting these SL pathways is also explored. Finally, we elaborate on the role of SL pathway enzymes in the tumor microenvironment and their effect on immune cell function.
Collapse
Affiliation(s)
- S Molino
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - E Tate
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - WM McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - JA Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medical Biophysics & the Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Netzer C, Knape T, Kuchler L, Weigert A, Zacharowski K, Pfeilschifter W, Sempowski G, Brüne B, von Knethen A. Apoptotic Diminution of Immature Single and Double Positive Thymocyte Subpopulations Contributes to Thymus Involution During Murine Polymicrobial Sepsis. Shock 2017; 48:215-226. [PMID: 28708784 PMCID: PMC6263038 DOI: 10.1097/shk.0000000000000842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To generate and maintain functional T-cell receptor diversity, thymocyte development is tightly organized. Errors in this process may have dramatic consequences, provoking, for example, autoimmune diseases. Probably for this reason, the thymus reacts to septic stress with involution, decreasing the numbers of thymocytes. Because it is still unclear which thymocyte subpopulation contributes to thymus involution and whether thymocyte emigration is altered, we were interested to clarify this question in detail. Here, we show, using the cecal ligation and puncture (CLP) mouse model of polymicrobial sepsis, that predominantly immature thymocytes are reduced. The number of immature single positive thymocytes was most marked diminished (CLP: 6.54 × 10 ± 3.79 × 10 vs. sham: 4.54 × 10 ± 7.66 × 10 cells/thymus [24 h], CLP: 2.60 × 10 ± 2.14 × 10 vs. sham: 2.17 × 10 ± 1.90 × 10 cells/thymus [48 h]), and was consequently associated with the highest rate of apoptosis (8.4 [CLP] vs. 2.2% [sham]), the reduction in double positive thymocytes being associated with a smaller apoptotic response (number, CLP: 2.33 × 10 ± 1.38 × 10 vs. sham: 1.07 × 10 ± 2.72 × 10 cells/thymus [24 h], CLP: 2.34 × 10 ± 9.08 × 10 vs. sham: 3.5 × 10 ± 9.62 × 10 cells/thymus [48 h]; apoptosis: 2.5% [CLP] vs. 0.7% [sham]). Analysis of T-cell receptor excision circles revealed that the emigration of mature thymocytes was not inhibited. Real-time qPCR analysis revealed upregulation of pro-apoptotic Bim expression and suggested interference between Notch receptor expression on thymocytes and the respective ligands on thymic stromal cells during CLP-dependent sepsis, which might be responsible for the altered thymocyte viability in CLP-dependent sepsis.
Collapse
Affiliation(s)
- Christoph Netzer
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Tilo Knape
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Laura Kuchler
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Waltraud Pfeilschifter
- Department of Neurology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Gregory Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, 909 S. Lasall St, Durham, NC 27705
| | - Bernhard Brüne
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Andreas von Knethen
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
14
|
Peripheral Leukocyte Migration in Ferrets in Response to Infection with Seasonal Influenza Virus. PLoS One 2016; 11:e0157903. [PMID: 27315117 PMCID: PMC4912066 DOI: 10.1371/journal.pone.0157903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022] Open
Abstract
In order to better understand inflammation associated with influenza virus infection, we measured cell trafficking, via flow cytometry, to various tissues in the ferret model following infection with an A(H3N2) human seasonal influenza virus (A/Perth/16/2009). Changes in immune cells were observed in the blood, bronchoalveolar lavage fluid, and spleen, as well as lymph nodes associated with the site of infection or distant from the respiratory system. Nevertheless clinical symptoms were mild, with circulating leukocytes exhibiting rapid, dynamic, and profound changes in response to infection. Each of the biological compartments examined responded differently to influenza infection. Two days after infection, when infected ferrets showed peak fever, a marked, transient lymphopenia and granulocytosis were apparent in all infected animals. Both draining and distal lymph nodes demonstrated significant accumulation of T cells, B cells, and granulocytes at days 2 and 5 post-infection. CD8+ T cells significantly increased in spleen at days 2 and 5 post-infection; CD4+ T cells, B cells and granulocytes significantly increased at day 5. We interpret our findings as showing that lymphocytes exit the peripheral blood and differentially home to lymph nodes and tissues based on cell type and proximity to the site of infection. Monitoring leukocyte homing and trafficking will aid in providing a more detailed view of the inflammatory impact of influenza virus infection.
Collapse
|
15
|
Kumar A, Saba JD. Regulation of Immune Cell Migration by Sphingosine-1-Phosphate. CELLULAR AND MOLECULAR BIOLOGY (OMICS) 2015; 61:121. [PMID: 30294722 PMCID: PMC6169313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sphingosine-1-phosphate [S1P] is a potent bioactive sphingolipid molecule. In response to a stimulus, S1P is produced intracellularly by the action of two sphingosine kinases, and then it is exported to the extracellular environment or acts as an intracellular second messenger. S1P binds to its cognate G-protein coupled receptors, which are known as S1P receptors. There are five S1P receptors that have been identified in vertebrates. By activating S1P receptors, S1P controls a variety of physiological and pathological processes including cell migration, angiogenesis, vascular maturation, inflammation, and invasion, metastasis, and chemoresistance in cancer. S1P has emerged as a critical regulator of leukocyte migration and plays a central role in lymphocyte egress from the thymus and secondary lymphoid organs. In the current review article, we summarize the current understanding of the emigration of lymphocytes and other leukocytes from bone marrow, thymus and secondary lymphoid organs to the circulation, as well as the clinical implications of modulating the activity of the major S1P receptor, S1PR1.
Collapse
Affiliation(s)
- A. Kumar
- Department of Biochemistry, All India Institute of Medical Sciences [AIIMS], Saket Nagar, Bhopal 462 020, India
| | - JD. Saba
- Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609, USA
| |
Collapse
|
16
|
Xu X, Ge Q. Maturation and migration of murine CD4 single positive thymocytes and thymic emigrants. Comput Struct Biotechnol J 2014; 9:e201403003. [PMID: 24757506 PMCID: PMC3995209 DOI: 10.5936/csbj.201403003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 11/22/2022] Open
Abstract
T lymphopoiesis in the thymus was thought to be completed once they reach the single positive (SP) stage, when they are “fully mature” and wait to be exported at random or follow a “first in-first out” manner. Recently, accumulating evidence has revealed that newly generated SP thymocytes undergo further maturation in the thymic medulla before they follow a tightly regulated emigrating process to become recent thymic emigrants (RTEs). RTEs in the periphery then experience a post-thymic maturation and peripheral tolerance and eventually become licensed as mature naïve T cells. This review summarizes the recent progress in the late stage T cell development in and outside of the thymus. The regulation of this developmental process is also discussed.
Collapse
Affiliation(s)
- Xi Xu
- Key Laboratory of Medical Immunology, Ministry of Health. Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, P R China
| | - Qing Ge
- Key Laboratory of Medical Immunology, Ministry of Health. Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, P R China
| |
Collapse
|
17
|
Maeda Y, Yagi H, Takemoto K, Utsumi H, Fukunari A, Sugahara K, Masuko T, Chiba K. S1P lyase in thymic perivascular spaces promotes egress of mature thymocytes via up-regulation of S1P receptor 1. Int Immunol 2013; 26:245-55. [PMID: 24343820 DOI: 10.1093/intimm/dxt069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) and S1P receptor 1 (S1P1) play an important role in the egress of mature CD4 or CD8 single-positive (SP) thymocytes from the thymus. Fingolimod hydrochloride (FTY720), an S1P1 functional antagonist, induced significant accumulation of CD62L(high)CD69(low) mature SP thymocytes in the thymic medulla. Immunohistochemical staining using anti-S1P1 antibody revealed that S1P1 is predominantly expressed on thymocytes in the thymic medulla and is strongly down-regulated even at 3h after FTY720 administration. 2-Acetyl-4-tetrahydroxybutylimidazole (THI), an S1P lyase inhibitor, also induced accumulation of mature SP thymocytes in the thymic medulla with an enlargement of the perivascular spaces (PVS). At 6h after THI administration, S1P1-expressing thymocytes reduced partially as if to form clusters and hardly existed in the proximity of CD31-expressing blood vessels in the thymic medulla, suggesting S1P lyase expression in the cells constructing thymic medullary PVS. To determine the cells expressing S1P lyase in the thymus, we newly established a mAb (YK19-2) specific for mouse S1P lyase. Immunohistochemical staining with YK19-2 revealed that S1P lyase is predominantly expressed in non-lymphoid thymic stromal cells in the thymic medulla. In the thymic medullary PVS, S1P lyase was expressed in ER-TR7-positive cells (reticular fibroblasts and pericytes) and CD31-positive vascular endothelial cells. Our findings suggest that S1P lyase expressed in the thymic medullary PVS keeps the tissue S1P concentration low around the vessels and promotes thymic egress via up-regulation of S1P1.
Collapse
Affiliation(s)
- Yasuhiro Maeda
- Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa 227-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
The expression of netrin-1 in the thymus and its effects on thymocyte adhesion and migration. Clin Dev Immunol 2013; 2013:462152. [PMID: 24369474 PMCID: PMC3863506 DOI: 10.1155/2013/462152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/13/2013] [Indexed: 01/26/2023]
Abstract
Netrin-1, a known axon guidance molecule, being a secreted laminin-related molecule, has been suggested to be involved in multiple physiological and pathological conditions, such as organogenesis, angiogenesis, tumorigenesis, and inflammation-mediated tissue injury. However, its function in thymocyte development is still unknown. Here, we demonstrate that Netrin-1 is expressed in mouse thymus tissue and is primarily expressed in thymic stromal cells, and the expression of Netrin-1 in thymocytes can be induced by anti-CD3 antibody or IL-7 treatment. Importantly, Netrin-1 mediates the adhesion of thymocytes, and this effect is comparable to or greater than that of fibronectin. Furthermore, Netrin-1 specifically promotes the chemotaxis of CXCL12. These suggest that Netrin-1 may play an important role in thymocyte development.
Collapse
|
19
|
Bolli MH, Müller C, Mathys B, Abele S, Birker M, Bravo R, Bur D, Hess P, Kohl C, Lehmann D, Nayler O, Rey M, Meyer S, Scherz M, Schmidt G, Steiner B, Treiber A, Velker J, Weller T. Novel S1P1 Receptor Agonists – Part 1: From Pyrazoles to Thiophenes. J Med Chem 2013; 56:9737-55. [DOI: 10.1021/jm4014373] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin H. Bolli
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Claus Müller
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Boris Mathys
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Stefan Abele
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Magdalena Birker
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Roberto Bravo
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Daniel Bur
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Patrick Hess
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Christopher Kohl
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - David Lehmann
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Oliver Nayler
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Markus Rey
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Solange Meyer
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Michael Scherz
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Gunther Schmidt
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Beat Steiner
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Alexander Treiber
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Jörg Velker
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| | - Thomas Weller
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, Allschwil CH-4123, Switzerland
| |
Collapse
|
20
|
Jin R, Teng F, Xu X, Yao Y, Zhang S, Sun X, Zhang Y, Ge Q. Redox balance of mouse medullary CD4 single-positive thymocytes. Immunol Cell Biol 2013; 91:634-41. [PMID: 24100390 DOI: 10.1038/icb.2013.57] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/02/2013] [Accepted: 09/08/2013] [Indexed: 12/16/2022]
Abstract
After positive selection, the newly differentiated single-positive (SP) thymocytes undergo negative selection to eliminate autoreactive T cells, functional maturation to acquire immunocompetence and egress capability. To investigate whether the intracellular reduction/oxidation (redox) balance has an important role on SP maturation, the levels of intracellular reactive oxygen species (ROS) and the expression of proteins that regulate ROS were compared among the four subsets of mouse TCRαβ(+)CD4(+)CD8(-) thymocytes (SP1-SP4) that represent sequential stages of SP differentiation program. A gradual increase of ROS and a gradual decrease of thioredoxin were revealed along the SP maturation process. The high ROS level at the mature SP stage did not result from a specific enrichment at this stage of natural regulatory T cells and SP thymocytes undergoing negative selection (Helios positive). An increase of ROS in the most mature SP4 cells resulted in enhanced cytokine production upon stimulation, whereas an early increase of ROS in the immature SP1 thymocytes resulted in enhanced apoptosis. Aire(-/-) mice that have defects in negative selection and a developmental blockage at the SP3-SP4 transition showed significantly less ROS in SP3 thymocytes. Thymic epithelial cells that have been shown to promote SP maturation in vitro also increased the ROS level of SP thymocytes. These results suggest that ROS may be involved in promoting the functional maturation of CD4(+) SPs and thymic medullary microenvironment contributes to the pro-oxidant shift of SP thymocytes.
Collapse
Affiliation(s)
- Rong Jin
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Giannouli CC, Chandris P, Proia RL. Visualizing S1P-directed cellular egress by intravital imaging. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:738-44. [PMID: 24090699 DOI: 10.1016/j.bbalip.2013.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 12/12/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid that provides cellular signals through plasma membrane G protein-coupled receptors. The S1P receptor signaling system has a fundamental and widespread function in licensing the exit and release of hematopoietically derived cells from various tissues into the circulation. Although the outlines of the mechanism have been established through genetic and pharmacologic perturbations, the temporal and spatial dynamics of the cellular events involved have been unclear. Recently, two-photon intravital imaging has been applied to living tissues to visualize the cellular movements and interactions that occur during egress processes. Here we discuss how some of these recent findings provide a clearer picture regarding S1P receptor signaling in modulating cell egress into the circulation. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Christina C Giannouli
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Panagiotis Chandris
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Maturation and emigration of single-positive thymocytes. Clin Dev Immunol 2013; 2013:282870. [PMID: 24187562 PMCID: PMC3804360 DOI: 10.1155/2013/282870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/01/2013] [Indexed: 01/01/2023]
Abstract
T lymphopoiesis in the thymus was thought to be completed once it reaches the single positive (SP)
stage, a stage when T cells are “fully mature” and waiting to be exported at random or follow a “first-in-first-out” manner. Recent evidence, however, has revealed that the newly generated SP thymocytes undergo a multistage maturation program in the thymic medulla. Such maturation is followed by a tightly regulated emigration process and a further postthymic maturation of recent thymic emigrants (RTEs). This review summarizes recent progress in the late stage T cell development. The regulation of this developmental process is discussed.
Collapse
|
23
|
O'Sullivan C, Dev KK. The structure and function of the S1P1 receptor. Trends Pharmacol Sci 2013; 34:401-12. [PMID: 23763867 DOI: 10.1016/j.tips.2013.05.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/27/2013] [Accepted: 05/07/2013] [Indexed: 12/18/2022]
Abstract
Sphingosine 1-phosphate (S1P) receptors (S1PRs) belong to the class A family of G protein-coupled receptors (GPCRs). S1PRs are widely expressed on many cell types, including those of the immune, cardiovascular, and central nervous systems. The S1PR family is rapidly gaining attention as an important mediator of many cellular processes, including cell differentiation, migration, survival, angiogenesis, calcium homeostasis, inflammation and immunity. Importantly, S1PRs are known drug targets for multiple sclerosis (MS), for which the newly developed oral therapy fingolimod, an S1PR modulator, has recently been approved for clinical use. Much progress has also recently been made in the field of structural biology and in the modeling of heterotrimeric GPCRs allowing the crystal structure of the S1PR1 subtype to be elucidated and key interactions defined. Here, we outline the structure and function of S1PR1, highlighting the key residues involved in receptor activation, signaling, transmembrane interactions, ligand binding, post-translational modification, and protein-protein interactions.
Collapse
Affiliation(s)
- Catherine O'Sullivan
- Molecular Neuropharmacology, Department of Physiology, School of Medicine, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
24
|
Rosen H, Stevens RC, Hanson M, Roberts E, Oldstone MBA. Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annu Rev Biochem 2013; 82:637-62. [PMID: 23527695 DOI: 10.1146/annurev-biochem-062411-130916] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The sphingosine-1-phosphate (S1P) receptor signaling system has biological and medical importance and is the first lipid G protein-coupled receptor (GPCR) structure to be solved to 2.8-Å resolution. S1P binds to five high-affinity GPCRs generating multiple downstream signals that play essential roles in vascular development and endothelial integrity, control of cardiac rhythm, and routine oral treatment of multiple sclerosis. Genetics, chemistry, and now structural biology have advanced this integrated biochemical system. The S1P receptors have a novel N-terminal fold that occludes access to the binding pocket from the extracellular environment as well as orthosteric and bitopic ligands with very different physicochemical properties. S1P receptors and metabolizing enzymes have been deleted, inducibly deleted, and knocked in as tagged or altered receptors in mice. An array of genetic models allows analysis of integrated receptor function in vivo. We can now directly understand causal relationships among protein expression, signal, and control points in physiology and pathology.
Collapse
Affiliation(s)
- Hugh Rosen
- Department of Chemical Physiology and Immunology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | |
Collapse
|
25
|
Deng G, Meng Q, Liu Q, Xu X, Xu Q, Ren F, Guo TB, Lu H, Xiang JN, Elliott JD, Lin X. Identification of benzoxazole analogs as novel, S1P(3) sparing S1P(1) agonists. Bioorg Med Chem Lett 2012; 22:3973-7. [PMID: 22583616 DOI: 10.1016/j.bmcl.2012.04.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
A novel series of benzoxazole-derived S1P(1) agonists were designed based on scaffold hopping molecular design strategy combined with computational approaches. Extensive SAR studies led to the discovery of compound 17d as a selective S1P(1) agonist (over S1P(3)) with high CNS penetration and favorable DMPK properties. 17d also demonstrated in vivo pharmacological efficacy to reduce blood lymphocyte in mice after oral administration.
Collapse
Affiliation(s)
- Guanghui Deng
- Research and Development, GlaxoSmithKline Pharmaceuticals, 898 Halei Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201023, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fukuhara S, Simmons S, Kawamura S, Inoue A, Orba Y, Tokudome T, Sunden Y, Arai Y, Moriwaki K, Ishida J, Uemura A, Kiyonari H, Abe T, Fukamizu A, Hirashima M, Sawa H, Aoki J, Ishii M, Mochizuki N. The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 2012; 122:1416-26. [PMID: 22406534 DOI: 10.1172/jci60746] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/30/2012] [Indexed: 12/11/2022] Open
Abstract
The bioactive lysophospholipid mediator sphingosine-1-phosphate (S1P) promotes the egress of newly formed T cells from the thymus and the release of immature B cells from the bone marrow. It has remained unclear, however, where and how S1P is released. Here, we show that in mice, the S1P transporter spinster homolog 2 (Spns2) is responsible for the egress of mature T cells and immature B cells from the thymus and bone marrow, respectively. Global Spns2-KO mice exhibited marked accumulation of mature T cells in thymi and decreased numbers of peripheral T cells in blood and secondary lymphoid organs. Mature recirculating B cells were reduced in frequency in the bone marrow as well as in blood and secondary lymphoid organs. Bone marrow reconstitution studies revealed that Spns2 was not involved in S1P release from blood cells and suggested a role for Spns2 in other cells. Consistent with these data, endothelia-specific deletion of Spns2 resulted in defects of lymphocyte egress similar to those observed in the global Spns2-KO mice. These data suggest that Spns2 functions in ECs to establish the S1P gradient required for T and B cells to egress from their respective primary lymphoid organs. Furthermore, Spns2 could be a therapeutic target for a broad array of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zeng X, Wang T, Zhu C, Ye Y, Song B, Lai X, Zeng Y. FTY720 mediates activation suppression and G0/G1 cell cycle arrest in a concanavalin A-induced mouse lymphocyte pan-activation model. Inflamm Res 2012; 61:623-34. [DOI: 10.1007/s00011-012-0454-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/31/2011] [Accepted: 02/15/2012] [Indexed: 12/18/2022] Open
|
28
|
Mutoh T, Rivera R, Chun J. Insights into the pharmacological relevance of lysophospholipid receptors. Br J Pharmacol 2012; 165:829-44. [PMID: 21838759 PMCID: PMC3312481 DOI: 10.1111/j.1476-5381.2011.01622.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 12/22/2022] Open
Abstract
The discovery of lysophospholipid (LP) 7-transmembrane, G protein-coupled receptors (GPCRs) that began in the 1990s, together with research into the functional roles of the major LPs known as lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), have opened new research avenues into their biological processes and mechanisms. Major examples of LP signalling effects include embryogenesis, nervous system development, vascular development, uterine implantation, immune cell trafficking, and inflammatory reactions. LP signalling also influences the pathophysiology of many diseases including cancer, autoimmune and inflammatory diseases, which indicate that LP receptors may be attractive targets for pharmacological therapies. A key example of such a therapeutic agent is the S1P receptor modulator FTY720, which upon phosphorylation and continued drug exposure, acts as an S1P receptor functional antagonist. This compound (also known as fingolimod or Gilenya) has recently been approved by the FDA for the treatment of relapsing forms of multiple sclerosis. Continued basic and translational research on LP signalling should provide novel insights into both basic biological mechanisms, as well as novel therapeutic approaches to combat a range of human diseases.
Collapse
Affiliation(s)
- Tetsuji Mutoh
- Department of Molecular Biology, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
- Gunma Kokusai AcademyGunma, Japan
| | - Richard Rivera
- Department of Molecular Biology, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| | - Jerold Chun
- Department of Molecular Biology, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| |
Collapse
|
29
|
Chitnis T, Tenembaum S, Banwell B, Krupp L, Pohl D, Rostasy K, Yeh EA, Bykova O, Wassmer E, Tardieu M, Kornberg A, Ghezzi A. Consensus statement: evaluation of new and existing therapeutics for pediatric multiple sclerosis. Mult Scler 2011; 18:116-27. [DOI: 10.1177/1352458511430704] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
New therapies are being evaluated by clinical trials and, if efficacious, introduced for the treatment of adult MS. The role of these new and existing agents in the management of pediatric MS has yet to be defined. Pediatric investigation plans are now required by the Food and Drug Administration and European Medicines Agency for approval of new biological agents, providing an important opportunity to gather much-needed data for clinicians caring for children and adolescents with MS. However, challenges include the small number of patients, and the need for efficient yet comprehensive study designs incorporating factors necessary to inform the clinical care of children with MS. The elected Steering committee of the International Pediatric MS Study Group (IPMSSG) conducted a structured review of existing data on the disease-modifying therapies in pediatric MS and developed a consensus statement, which was further modified by the IPMSSG general membership, using an online survey tool. Fifty-one IPMSSG members from 21 countries responded to the survey, and 50 approved the final statement. Consensus recommendations regarding use of existing first- and second-line therapies, as well as a proposed definition for inadequate treatment response, are presented. Recommendations for the use and evaluation of emerging therapies (currently in phase III clinical trials or recently approved for adult MS) are discussed. The IPMSSG endorses the inclusion of pediatric MS patients in trials evaluating appropriate new and emerging therapies. Mechanisms for conducting high-impact, multicenter studies, including long-term follow-up in pediatric MS, are required to ensure that all MS patients, irrespective of age, benefit from advances in MS therapeutics.
Collapse
Affiliation(s)
- T Chitnis
- Partners Pediatric Multiple Sclerosis Center, Massachusetts General Hospital, Boston, MA, USA
| | - S Tenembaum
- National Pediatric Hospital, Dr J P Garrahan, Buenos Aires, Argentina
| | - B Banwell
- The Hospital for Sick Children, University of Toronto, Canada
| | - L Krupp
- Stony Brook University Medical Center, Stony Brook, NY, USA
| | - D Pohl
- Children’s Hospital of Eastern Ontario, University of Ottawa, Canada
| | - K Rostasy
- Department of Pediatrics IV, Division of Pediatric Neurology and Inborn Errors of Metabolism, Innsbruck Medical University, Innsbruck, Austria
| | - E A Yeh
- Department of Neurology, SUNY Buffalo, Buffalo, NY, USA
| | - O Bykova
- Moscow Pediatric Psychoneurological Hospital, Moscow, Russia
| | - E Wassmer
- Birmingham Children’s Hospital, Birmingham, UK
| | - M Tardieu
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre and Université Paris-Sud, Paris, France
| | - A Kornberg
- Royal Children’s Hospital, Melbourne, Australia
| | - A Ghezzi
- Multiple Sclerosis Study Center, Hospital of Gallarate, Gallarate, Italy
| | | |
Collapse
|
30
|
Cyster JG, Schwab SR. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 2011; 30:69-94. [PMID: 22149932 DOI: 10.1146/annurev-immunol-020711-075011] [Citation(s) in RCA: 651] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Much has been learned about how cells enter lymphoid tissues. But how do they leave? Sphingosine-1-phosphate (S1P) has emerged over the past decade as a central mediator of lymphocyte egress. In this review, we summarize the current understanding of how S1P promotes exit from the secondary lymphoid organs and thymus. We review what is known about additional requirements for emigration and summarize the mostly distinct requirements for exit from the bone marrow. Egress from lymphoid organs is limited during immune responses, and we examine how this regulation works. There is accumulating evidence for roles of S1P in directing immune cell behavior within lymphoid tissues. How such actions can fit together with the egress-promoting role of S1P is discussed. Finally, we examine current understanding of how FTY720, a drug that targets S1P receptors and is approved for the treatment of multiple sclerosis, causes immune suppression.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California 94143-0414, USA.
| | | |
Collapse
|
31
|
Fujii Y, Hirayama T, Ohtake H, Ono N, Inoue T, Sakurai T, Takayama T, Matsumoto K, Tsukahara N, Hidano S, Harima N, Nakazawa K, Igarashi Y, Goitsuka R. Amelioration of collagen-induced arthritis by a novel S1P1 antagonist with immunomodulatory activities. THE JOURNAL OF IMMUNOLOGY 2011; 188:206-15. [PMID: 22131329 DOI: 10.4049/jimmunol.1101537] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sphingosine 1-phosphate (S1P) regulates lymphocyte trafficking through the type 1 sphingosine 1-phosphate receptor (S1P(1)) and participates in many pathological conditions, including autoimmune diseases. We developed a novel S1P(1)-selective antagonist, TASP0277308, which is structurally unrelated to S1P. This antagonist competitively inhibited S1P-induced cellular responses, such as chemotaxis and receptor internalization. Furthermore, differing from previously reported S1P(1) antagonists, TASP0277308 demonstrated in vivo activities to induce lymphopenia, a block in T cell egress from the thymus, displacement of marginal zone B cells, and upregulation of CD69 expression on both T and B cells, all of which recapitulate phenotypes of S1P(1)-deficient lymphocytes. In a mouse collagen-induced arthritis model, TASP0277308 significantly suppressed the development of arthritis, even after the onset of disease. These findings provide the first chemical evidence to our knowledge that S1P(1) antagonism is responsible for immunosuppression in the treatment of autoimmune diseases and also resolve the discrepancies between genetic and chemical studies on the functions of S1P(1) in lymphocytes.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co. Ltd., Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Teng F, Zhou Y, Jin R, Chen Y, Pei X, Liu Y, Dong J, Wang W, Pang X, Qian X, Chen WF, Zhang Y, Ge Q. The molecular signature underlying the thymic migration and maturation of TCRαβ+ CD4+ CD8 thymocytes. PLoS One 2011; 6:e25567. [PMID: 22022412 PMCID: PMC3192722 DOI: 10.1371/journal.pone.0025567] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/05/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND After positive selection, the newly generated single positive (SP) thymocytes migrate to the thymic medulla, where they undergo negative selection to eliminate autoreactive T cells and functional maturation to acquire immune competence and egress capability. METHODOLOGY/PRINCIPAL FINDINGS To elucidate the genetic program underlying this process, we analyzed changes in gene expression in four subsets of mouse TCRαβ(+)CD4(+)CD8(-) thymocytes (SP1 to SP4) representative of sequential stages in a previously defined differentiation program. A genetic signature of the migration of thymocytes was thus revealed. CCR7 and PlexinD1 are believed to be important for the medullary positioning of SP thymocytes. Intriguingly, their expression remains at low levels in the newly generated thymocytes, suggesting that the cortex-medulla migration may not occur until the SP2 stage. SP2 and SP3 cells gradually up-regulate transcripts involved in T cell functions and the Foxo1-KLF2-S1P(1) axis, but a number of immune function-associated genes are not highly expressed until cells reach the SP4 stage. Consistent with their critical role in thymic emigration, the expression of S1P(1) and CD62L are much enhanced in SP4 cells. CONCLUSIONS These results support at the molecular level that single positive thymocytes undergo a differentiation program and further demonstrate that SP4 is the stage at which thymocytes acquire the immunocompetence and the capability of emigration from the thymus.
Collapse
Affiliation(s)
- Fei Teng
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Yubin Zhou
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Rong Jin
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Yu Chen
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Xiaoyan Pei
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Yuanfeng Liu
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Jie Dong
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Wei Wang
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Xuewen Pang
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Xiaoping Qian
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Wei-Feng Chen
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Yu Zhang
- Department of Immunology, Peking University Health Science Center, Beijing, China
- * E-mail: (QG); (Y. Zhang)
| | - Qing Ge
- Department of Immunology, Peking University Health Science Center, Beijing, China
- * E-mail: (QG); (Y. Zhang)
| |
Collapse
|
33
|
Agonist-dependent effects of mutations in the sphingosine-1-phosphate type 1 receptor. Eur J Pharmacol 2011; 667:105-12. [DOI: 10.1016/j.ejphar.2011.05.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/05/2011] [Accepted: 05/22/2011] [Indexed: 11/17/2022]
|
34
|
Garcia F, Lepelletier Y, Smaniotto S, Hadj-Slimane R, Dardenne M, Hermine O, Savino W. Inhibitory effect of semaphorin-3A, a known axon guidance molecule, in the human thymocyte migration induced by CXCL12. J Leukoc Biol 2011; 91:7-13. [DOI: 10.1189/jlb.0111031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
35
|
Tarrasón G, Aulí M, Mustafa S, Dolgachev V, Domènech MT, Prats N, Domínguez M, López R, Aguilar N, Calbet M, Pont M, Milligan G, Kunkel SL, Godessart N. The sphingosine-1-phosphate receptor-1 antagonist, W146, causes early and short-lasting peripheral blood lymphopenia in mice. Int Immunopharmacol 2011; 11:1773-9. [PMID: 21798372 DOI: 10.1016/j.intimp.2011.07.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/23/2011] [Accepted: 07/06/2011] [Indexed: 01/21/2023]
Abstract
Agonists of the sphingosine-1-phosphate (S1P) receptors, like fingolimod (FTY720), are a novel class of immunomodulators. Administration of these compounds prevents the egress of lymphocytes from primary and secondary lymphoid organs causing peripheral blood lymphopenia. Although it is well established that lymphopenia is mediated by S1P receptor type 1 (S1P1), the exact mechanism is still controversial. The most favored hypothesis states that S1P1 agonists cause internalization and loss of the cell surface receptor on lymphocytes, preventing them to respond to S1P. Hence, S1P1 agonists would behave in vivo as functional antagonists of the receptor. For this hypothesis to be valid, a true S1P1 antagonist should also induce lymphopenia. However, it has been reported that S1P1 antagonists fail to show this effect, arguing against the concept. Our study demonstrates that a S1P1 antagonist, W146, induces a significant but transient blood lymphopenia in mice and a parallel increase in CD4+ and CD8+ lymphocytes in lymph nodes. Treatment with W146 also causes the accumulation of mature T cells in the medulla of the thymus and moreover, it induces lung edema. We show that both the S1P1 antagonist and a S1P1 agonist cause lymphopenia in vivo in spite of their different effects on receptor expression in vitro. Although the antagonist purely blocks the receptor and the agonist causes its disappearance from the cell surface, the response to the endogenous ligand is prevented in both cases. Our results support the hypothesis that lymphopenia evoked by S1P1 agonists is due to functional antagonism of S1P1 in lymphocytes.
Collapse
Affiliation(s)
- Gema Tarrasón
- Autoimmunity Department, R&D Center, Almirall laboratories S.A., Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The thymus produces self-tolerant functionally competent T cells. This process involves the import of multipotent haematopoietic progenitors that are then signalled to adopt the T cell fate. Expression of T cell-specific genes, including those encoding the T cell receptor (TCR), is followed by positive and negative selection and the eventual export of mature T cells. Significant progress has been made in elucidating the signals that direct progenitor cell trafficking to, within and out of the thymus. These advances are the subject of this Review, with a particular focus on the role of reciprocal cooperative and regulatory interactions between TCR- and chemokine receptor-mediated signalling.
Collapse
Affiliation(s)
- Paul E Love
- Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
37
|
Ettenger R, Schmouder R, Kovarik JM, Bastien MC, Hoyer PF. Pharmacokinetics, pharmacodynamics, safety, and tolerability of single-dose fingolimod (FTY720) in adolescents with stable renal transplants. Pediatr Transplant 2011; 15:406-13. [PMID: 21585629 DOI: 10.1111/j.1399-3046.2011.01498.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oral fingolimod signals the sphingosine 1-phosphate receptor and this in turn mediates immunomodulatory activity. No data of fingolimod in any pediatric population existed before this study. We put our study results in perspective against data from adult renal transplant patients. We investigated pharmacokinetics and pharmacodynamics of single-dose fingolimod (0.07 mg/kg) and its effects on lymphocytes and heart rate in seven adolescents (14.1 ± 1.6 yr) with stable renal transplants. Blood samples for pharmacokinetics and lymphocytes were collected at screening, baseline, and up to 28 days post-dosing. Cardiac monitoring included 12-lead ECG, 24-h Holter monitoring, and echocardiography. A fingolimod dose of 0.07 mg/kg resulted in mean AUC of 731 ± 240 ng·h/mL and C(max) of 3.6 ± 0.6 ng/mL. Drug exposure was nearly identical to adults receiving the same dose. Absolute lymphocyte count decreased 85% from baseline; average nadir occurred by six h post-dose. Heart rate decreased from 74 bpm (predose mean) to 53 bpm (nadir) three h post-dose. Mean heart rates recovered by Day 14 (75 bpm). Weight-adjusted doses of fingolimod in adolescents resulted in drug exposure similar to adults. Adolescents and adults shared comparable negative chronotropic effects and decreased lymphocyte count. Recovery trajectories of these parameters back to baseline were similar between age groups.
Collapse
Affiliation(s)
- R Ettenger
- Division of Pediatric Nephrology, Mattel Children's Hospital UCLA, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095-1752, USA.
| | | | | | | | | |
Collapse
|
38
|
Bréart B, Ramos-Perez WD, Mendoza A, Salous AK, Gobert M, Huang Y, Adams RH, Lafaille JJ, Escalante-Alcalde D, Morris AJ, Schwab SR. Lipid phosphate phosphatase 3 enables efficient thymic egress. ACTA ACUST UNITED AC 2011; 208:1267-78. [PMID: 21576386 PMCID: PMC3173249 DOI: 10.1084/jem.20102551] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lipid phosphate phosphatase 3 in endothelial and epithelial cells promotes efficient T cell emigration from the thymus to the periphery. The signaling lipid sphingosine-1-phosphate (S1P) stabilizes the vasculature, directs lymphocyte egress from lymphoid organs, and shapes inflammatory responses. However, little is known about how S1P distribution is controlled in vivo, and it is not clear how a ubiquitously made lipid functions as a signal that requires precise spatial and temporal control. We have found that lipid phosphate phosphatase 3 (LPP3) enables efficient export of mature T cells from the thymus into circulation, and several lines of evidence suggest that LPP3 promotes exit by destroying thymic S1P. Although five additional S1P-degrading enzymes are expressed in the thymus, they cannot compensate for the loss of LPP3. Moreover, conditional deletion of LPP3 in either epithelial cells or endothelial cells is sufficient to inhibit egress. These results suggest that S1P generation and destruction are tightly regulated and that LPP3 is essential to establish the balance.
Collapse
Affiliation(s)
- Béatrice Bréart
- Program in Molecular Pathogenesis and Department of Pathology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ikeda H, Ohkawa R, Watanabe N, Nakamura K, Kume Y, Nakagawa H, Yoshida H, Okubo S, Yokota H, Tomiya T, Inoue Y, Nishikawa T, Ohtomo N, Tanoue Y, Koike K, Yatomi Y. Plasma concentration of bioactive lipid mediator sphingosine 1-phosphate is reduced in patients with chronic hepatitis C. Clin Chim Acta 2010; 411:765-70. [PMID: 20188085 DOI: 10.1016/j.cca.2010.02.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/17/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Bioactive lipid mediator S1P has been suggested to play pathophysiological roles in various fields of clinical science as a circulating paracrine mediator. We previously established a reliable method of measuring plasma S1P concentration, and reported that the one in healthy subjects has a gender difference and a correlation with red blood cell (RBC)-parameters, however, the reports of S1P measurements in the blood in patients with a specific disease have been scarce. Because our previous evidence suggests that S1P is involved in liver pathophysiology, we examined plasma S1P concentration in chronic hepatitis C patients. METHODS S1P assay was performed using a high-performance liquid chromatography system. RESULTS Plasma S1P concentrations were reduced in chronic hepatitis C patients compared with in healthy subjects with the same hemoglobin concentration, irrespective of gender. Among the blood parameters, serum hyaluronic acid concentration, a surrogate marker for liver fibrosis, was most closely and inversely correlated with plasma S1P concentration. Furthermore, plasma S1P concentration decreased throughout the progression of carbon tetrachloride-induced liver fibrosis in rats. CONCLUSIONS Plasma S1P concentration was reduced in chronic hepatitis C patients, and liver fibrosis might be involved, at least in part, in the mechanism responsible for this reduction.
Collapse
Affiliation(s)
- Hitoshi Ikeda
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kovalovsky D, Pezzano M, Ortiz BD, Sant'Angelo DB. A novel TCR transgenic model reveals that negative selection involves an immediate, Bim-dependent pathway and a delayed, Bim-independent pathway. PLoS One 2010; 5:e8675. [PMID: 20072628 PMCID: PMC2800196 DOI: 10.1371/journal.pone.0008675] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/15/2009] [Indexed: 11/18/2022] Open
Abstract
A complete understanding of negative selection has been elusive due to the rapid apoptosis and clearance of thymocytes in vivo. We report a TCR transgenic model in which expression of the TCR during differentiation occurs only after V(D)J-like recombination. TCR expression from this transgene closely mimics expression of the endogenous TCRalpha locus allowing for development that is similar to wild type thymocytes. This model allowed us to characterize the phenotypic changes that occurred after TCR-mediated signaling in self-reactive thymocytes prior to their deletion in a highly physiological setting. Self-reactive thymocytes were identified as being immature, activated and CD4(lo)CD8(lo). These cells had upregulated markers of negative selection and were apoptotic. Elimination of Bim reduced the apoptosis of self-reactive thymocytes, but it did not rescue their differentiation and the cells remained at the immature CD4(lo)CD8(lo) stage of development. These cells upregulate Nur77 and do not contribute to the peripheral T cell repertoire in vivo. Remarkably, development past the CD4(lo)CD8(lo) stage was possible once the cells were removed from the negatively selecting thymic environment. In vitro development of these cells occurred despite their maintenance of high intracellular levels of Nur77. Therefore, in vivo, negatively selected Bim-deficient thymocytes are eliminated after prolonged developmental arrest via a Bim-independent pathway that is dependent on the thymic microenvironment. These data newly reveal a layering of immediate, Bim-dependent, and delayed Bim-independent pathways that both contribute to elimination of self-reactive thymocytes in vivo.
Collapse
Affiliation(s)
- Damian Kovalovsky
- Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Mark Pezzano
- Department of Biology, The City College of New York, New York, New York, United States of America
| | - Benjamin D. Ortiz
- Department of Biological Sciences, City University of New York, Hunter College, New York, New York, United States of America
| | - Derek B. Sant'Angelo
- Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Weill Graduate School of Medical Sciences of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
41
|
Qiu Q, Ravens I, Seth S, Rathinasamy A, Maier MK, Davalos-Misslitz A, Forster R, Bernhardt G. CD155 is involved in negative selection and is required to retain terminally maturing CD8 T cells in thymus. THE JOURNAL OF IMMUNOLOGY 2010; 184:1681-9. [PMID: 20048123 DOI: 10.4049/jimmunol.0900062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During their final maturation in the medulla, semimature single-positive (SP) thymocytes downregulate activation markers and subsequently exit into the periphery. Although semimature CD4(+) SP cells are sensitive to negative selection, the timing of when negative selection occurs in the CD8 lineage remains elusive. We show that the abundance of terminally matured CD8(+) SP cells in adult thymus is modulated by the genetic background. Moreover, in BALB/c mice, the frequency of terminally matured CD8(+) SP cells, but not that of CD4(+) SP cells present in thymus, varies depending on age. In mice lacking expression of the adhesion receptor CD155, a selective deficiency of mature CD8(+) SP thymocytes was observed, emerging first in adolescent animals at the age when these cells start to accumulate in wild-type thymus. Evidence is provided that the mature cells emigrate prematurely when CD155 is absent, cutting short their retention time in the medulla. Moreover, in nonmanipulated wild-type mice, semimature CD8(+) SP thymocytes are subjected to negative selection, as reflected by the diverging TCR repertoires present on semimature and mature CD8(+) T cells. In CD155-deficient animals, a shift was found in the TCR repertoire displayed by the pool of CD8(+) SP cells, demonstrating that CD155 is involved in negative selection.
Collapse
Affiliation(s)
- Quan Qiu
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Walsh KB, Marsolais D, Welch MJ, Rosen H, Oldstone MBA. Treatment with a sphingosine analog does not alter the outcome of a persistent virus infection. Virology 2009; 397:260-9. [PMID: 19962171 DOI: 10.1016/j.virol.2009.08.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/16/2009] [Accepted: 08/29/2009] [Indexed: 11/30/2022]
Abstract
There is no known antiviral drug treatment that routinely terminates persistent virus infections. A recent provocative report indicated that low dosage of the sphingosine analog FTY720 caused lymphopenia in mice persistently infected with lymphocytic choriomeningitis virus (LCMV)-clone 13 (Cl 13) and induced viral clearance within 30 days post-treatment (Premenko-Lanier et al., 2008). However, we find that low dosage of FTY720 fails to purge LCMV-Cl 13 infection and does not induce lymphopenia in LCMV-Cl 13-infected mice. In fact, infection with non-persistent LCMV-Arm53b or with persistent LCMV-Cl 13 induces an equivalent lymphopenia, demonstrating that the quantity of circulating cells has little bearing on viral persistence. In addition, treatment with FTY720 or the sphingosine-1-phosphate receptor 1 (S1P1)-specific agonist, AUY954, does not alleviate T cell exhaustion and exacerbates disruption of the CD8(+) T cells response following LCMV-Cl 13 infection. Therefore, treatment with a sphingosine analog does not ameliorate persistent LCMV-Cl 13 infection.
Collapse
Affiliation(s)
- Kevin B Walsh
- Department of Immunology and Microbial Science, The Scripps Research Institute, IMM-6, TSRI, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
43
|
Rosen H, Gonzalez-Cabrera PJ, Sanna MG, Brown S. Sphingosine 1-phosphate receptor signaling. Annu Rev Biochem 2009; 78:743-68. [PMID: 19231986 DOI: 10.1146/annurev.biochem.78.072407.103733] [Citation(s) in RCA: 328] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The sphingosine 1-phosphate (S1P) receptor signaling system is a productive model system. A hydrophobic zwitterionic lysophospholipid ligand with difficult physical properties interacts with five high-affinity G protein-coupled receptors to generate multiple downstream signals. These signals modulate homeostasis and pathology on a steep agonist concentration-response curve. Ligand presence is essential for vascular development and endothelial integrity, while acute increases in ligand concentrations result in cardiac death. Understanding this integrated biochemical system has exemplified the impact of both genetics and chemistry. Developing specific tools with defined biochemical properties for the reversible modulation of signals in real time has been essential to complement insights gained from genetic approaches that may be irreversible and compensated. Despite its knife-edge between life and death, this system, based in part on receptor subtype-selectivity and in part on differential attenuation of deleterious signals, now appears to be on the cusp of meaningful therapy for multiple sclerosis.
Collapse
Affiliation(s)
- Hugh Rosen
- Departments of Chemical Physiology and Immunology and The Scripps Research Institute Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
44
|
Drennan MB, Elewaut D, Hogquist KA. Thymic emigration: sphingosine-1-phosphate receptor-1-dependent models and beyond. Eur J Immunol 2009; 39:925-30. [PMID: 19224640 DOI: 10.1002/eji.200838912] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The thymus is a primary lymphoid organ supporting the development of self-tolerant T cells. Key events in T-cell development in the thymus include lineage commitment, selection events, and thymic emigration. This review discusses the proposed role of sphingosine-1-phosphate and its receptors in the emigration of both conventional and unconventional T-cell subsets from the thymus, and the molecular machinery currently understood to regulate this process. Furthermore, we highlight a role for chemokines and actin-associated proteins in T-cell motility as recent data suggest that T-cell emigration is regulated by more than just a sphingosine-1-phosphate receptor-1-dependent chemotactic axis.
Collapse
Affiliation(s)
- Michael B Drennan
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | | | | |
Collapse
|
45
|
Vogel P, Donoviel MS, Read R, Hansen GM, Hazlewood J, Anderson SJ, Sun W, Swaffield J, Oravecz T. Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and non-lymphoid lesions. PLoS One 2009; 4:e4112. [PMID: 19119317 PMCID: PMC2606024 DOI: 10.1371/journal.pone.0004112] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/04/2008] [Indexed: 11/18/2022] Open
Abstract
Background S1PL is an aldehyde-lyase that irreversibly cleaves sphingosine 1-phosphate (S1P) in the terminal step of sphingolipid catabolism. Because S1P modulates a wide range of physiological processes, its concentration must be tightly regulated within both intracellular and extracellular environments. Methodology In order to better understand the function of S1PL in this regulatory pathway, we assessed the in vivo effects of different levels of S1PL activity using knockout (KO) and humanized mouse models. Principal Findings Our analysis showed that all S1PL-deficient genetic models in this study displayed lymphopenia, with sequestration of mature T cells in the thymus and lymph nodes. In addition to the lymphoid phenotypes, S1PL KO mice (S1PL−/−) also developed myeloid cell hyperplasia and significant lesions in the lung, heart, urinary tract, and bone, and had a markedly reduced life span. The humanized knock-in mice harboring one allele (S1PLH/−) or two alleles (S1PLH/H) of human S1PL expressed less than 10 and 20% of normal S1PL activity, respectively. This partial restoration of S1PL activity was sufficient to fully protect both humanized mouse lines from the lethal non-lymphoid lesions that developed in S1PL−/− mice, but failed to restore normal T-cell development and trafficking. Detailed analysis of T-cell compartments indicated that complete absence of S1PL affected both maturation/development and egress of mature T cells from the thymus, whereas low level S1PL activity affected T-cell egress more than differentiation. Significance These findings demonstrate that lymphocyte trafficking is particularly sensitive to variations in S1PL activity and suggest that there is a window in which partial inhibition of S1PL could produce therapeutic levels of immunosuppression without causing clinically significant S1P-related lesions in non-lymphoid target organs.
Collapse
Affiliation(s)
- Peter Vogel
- Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
One of the major lipid biology discoveries in last decade was the broad range of physiological activities of lysophospholipids that have been attributed to the actions of lysophospholipid receptors. The most well characterized lysophospholipids are lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). Documented cellular effects of these lipid mediators include growth-factor-like effects on cells, such as proliferation, survival, migration, adhesion, and differentiation. The mechanisms for these actions are attributed to a growing family of 7-transmembrane, G protein-coupled receptors (GPCRs). Their pathophysiological actions include immune modulation, neuropathic pain modulation, platelet aggregation, wound healing, vasopressor activity, and angiogenesis. Here we provide a brief introduction to receptor-mediated lysophospholipid signaling and physiology, and then discuss potential therapeutic roles in human diseases.
Collapse
|
47
|
Gonzalez-Cabrera PJ, Jo E, Sanna MG, Brown S, Leaf N, Marsolais D, Schaeffer MT, Chapman J, Cameron M, Guerrero M, Roberts E, Rosen H. Full pharmacological efficacy of a novel S1P1 agonist that does not require S1P-like headgroup interactions. Mol Pharmacol 2008; 74:1308-18. [PMID: 18708635 PMCID: PMC2575047 DOI: 10.1124/mol.108.049783] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Strong evidence exists for interactions of zwitterionic phosphate and amine groups in sphingosine-1 phosphate (S1P) to conserved Arg and Glu residues present at the extracellular face of the third transmembrane domain of S1P receptors. The contribution of Arg(120) and Glu(121) for high-affinity ligand-receptor interactions is essential, because single-point R(120)A or E(121)A S1P(1) mutants neither bind S1P nor transduce S1P function. Because S1P receptors are therapeutically interesting, identifying potent selective agonists with different binding modes and in vivo efficacy is of pharmacological importance. Here we describe a modestly water-soluble highly selective S1P(1) agonist [2-(4-(5-(3,4-diethoxyphenyl)-1,2,4-oxadiazol-3-yl)-2,3-dihydro-1H-inden-1-yl amino) ethanol (CYM-5442)] that does not require Arg(120) or Glu(121) residues for activating S1P(1)-dependent p42/p44 mitogen-activated protein kinase phosphorylation, which defines a new hydrophobic pocket in S1P(1). CYM-5442 is a full agonist in vitro for S1P(1) internalization, phosphorylation, and ubiquitination. It is noteworthy that CYM-5442 was a full agonist for induction and maintenance of S1P(1)-dependent blood lymphopenia, decreasing B lymphocytes by 65% and T lymphocytes by 85% of vehicle. Induction of CYM-5442 lymphopenia was dose- and time-dependent, requiring serum concentrations in the 50 nM range. In vitro measures of S1P(1) activation by CYM-5442 were noncompetitively inhibited by a specific S1P(1) antagonist [(R)-3-amino-(3-hexylphenylamino)-4-oxobutylphosphonic acid (W146)], competitive for S1P, 2-amino-2-(4-octylphenethyl)propane-1,3-diol (FTY720-P), and 5-[4-phenyl-5-(trifluoromethyl)-2-thienyl]-3-[3-(trifluoromethyl)phenyl]-1,2, 4-oxadiazole (SEW2871). In addition, lymphopenia induced by CYM-5442 was reversed by W146 administration or upon pharmacokinetic agonist clearance. Pharmacokinetics in mice also indicated that CYM-5442 partitions significantly in central nervous tissue. These data show that CYM-5442 activates S1P(1)-dependent pathways in vitro and to levels of full efficacy in vivo through a hydrophobic pocket separate from the orthosteric site of S1P binding that is headgroup-dependent.
Collapse
Affiliation(s)
| | | | | | | | - Nora Leaf
- Departments of Chemical Physiology & Immunology (PJG-C, EJ, MGS, NL, DM, HR), Chemistry (MG, ER) and The Scripps Research Institute Molecular Screening Center (M-TS,JC,SB, HR), 10550 North Torrey Pines Rd, La Jolla, CA 92037, Translational Research Institute, Scripps Florida, 5353 Parkside Drive, Jupiter, FL 33458 (MC)
| | - David Marsolais
- Departments of Chemical Physiology & Immunology (PJG-C, EJ, MGS, NL, DM, HR), Chemistry (MG, ER) and The Scripps Research Institute Molecular Screening Center (M-TS,JC,SB, HR), 10550 North Torrey Pines Rd, La Jolla, CA 92037, Translational Research Institute, Scripps Florida, 5353 Parkside Drive, Jupiter, FL 33458 (MC)
| | - Marie-Therese Schaeffer
- Departments of Chemical Physiology & Immunology (PJG-C, EJ, MGS, NL, DM, HR), Chemistry (MG, ER) and The Scripps Research Institute Molecular Screening Center (M-TS,JC,SB, HR), 10550 North Torrey Pines Rd, La Jolla, CA 92037, Translational Research Institute, Scripps Florida, 5353 Parkside Drive, Jupiter, FL 33458 (MC)
| | - Jacqueline Chapman
- Departments of Chemical Physiology & Immunology (PJG-C, EJ, MGS, NL, DM, HR), Chemistry (MG, ER) and The Scripps Research Institute Molecular Screening Center (M-TS,JC,SB, HR), 10550 North Torrey Pines Rd, La Jolla, CA 92037, Translational Research Institute, Scripps Florida, 5353 Parkside Drive, Jupiter, FL 33458 (MC)
| | - Michael Cameron
- Departments of Chemical Physiology & Immunology (PJG-C, EJ, MGS, NL, DM, HR), Chemistry (MG, ER) and The Scripps Research Institute Molecular Screening Center (M-TS,JC,SB, HR), 10550 North Torrey Pines Rd, La Jolla, CA 92037, Translational Research Institute, Scripps Florida, 5353 Parkside Drive, Jupiter, FL 33458 (MC)
| | - Miguel Guerrero
- Departments of Chemical Physiology & Immunology (PJG-C, EJ, MGS, NL, DM, HR), Chemistry (MG, ER) and The Scripps Research Institute Molecular Screening Center (M-TS,JC,SB, HR), 10550 North Torrey Pines Rd, La Jolla, CA 92037, Translational Research Institute, Scripps Florida, 5353 Parkside Drive, Jupiter, FL 33458 (MC)
| | - Edward Roberts
- Departments of Chemical Physiology & Immunology (PJG-C, EJ, MGS, NL, DM, HR), Chemistry (MG, ER) and The Scripps Research Institute Molecular Screening Center (M-TS,JC,SB, HR), 10550 North Torrey Pines Rd, La Jolla, CA 92037, Translational Research Institute, Scripps Florida, 5353 Parkside Drive, Jupiter, FL 33458 (MC)
| | | |
Collapse
|
48
|
Marsolais D, Hahm B, Edelmann KH, Walsh KB, Guerrero M, Hatta Y, Kawaoka Y, Roberts E, Oldstone MBA, Rosen H. Local not systemic modulation of dendritic cell S1P receptors in lung blunts virus-specific immune responses to influenza. Mol Pharmacol 2008; 74:896-903. [PMID: 18577684 PMCID: PMC2574812 DOI: 10.1124/mol.108.048769] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism by which locally delivered sphingosine analogs regulate host response to localized viral infection has never been addressed. In this report, we show that intratracheal delivery of the chiral sphingosine analog (R)-2-amino-4-(4-heptyloxyphenyl)-2-methylbutanol (AAL-R) or its phosphate ester inhibits the T-cell response to influenza virus infection. In contrast, neither intraperitoneal delivery of AAL-R nor intratracheal instillation of the non-phosphorylatable stereoisomer AAL-S suppressed virus-specific T-cell response, indicating that in vivo phosphorylation of AAL-R and sphingosine 1-phosphate (S1P) receptor modulation in lungs is essential for immunomodulation. Intratracheal delivery of water-soluble S1P(1) receptor agonist at doses sufficient to induce systemic lymphopenia did not inhibit virus-specific T-cell response, indicating that S1P(1) is not involved in the immunosuppressive activities of AAL-R and that immunosuppression acts independently of naive lymphocyte recirculation. Accumulation of dendritic cells (DCs) in draining lymph nodes was inhibited by intratracheal but not intraperitoneal delivery of AAL-R. Direct modulation of DCs is demonstrated by the impaired ability of virus-infected bone marrow-derived DCs treated in vitro with AAL-R to trigger in vivo T-cell response after adoptive transfer to the airways. Thus, our results suggest that locally delivered sphingosine analogs induce immunosuppression by modulating S1P receptors other than S1P(1) or S1P(2) on dendritic cells in the lungs after influenza virus infection.
Collapse
Affiliation(s)
- David Marsolais
- Departments of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Weinreich MA, Hogquist KA. Thymic emigration: when and how T cells leave home. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:2265-70. [PMID: 18684914 PMCID: PMC2861282 DOI: 10.4049/jimmunol.181.4.2265] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The thymus supports the differentiation of multiple distinct T cell subsets that play unique roles in the immune system. CD4 and CD8 alpha/beta T cells, gamma/delta T cells, NKT cells, regulatory T cells, and intraepithelial lymphocytes all develop in the thymus and must leave it to provide their functions elsewhere in the body. This article will review recent research indicating differences in the time and migration patterns of T cell subsets found in the thymus. Additionally, we review current understanding of the molecules involved in thymocyte emigration, including the sphingolipid receptor S1P(1) and its regulation by the Krüppel-like transcription factor KLF2.
Collapse
Affiliation(s)
- Michael A. Weinreich
- Center for Immunology and Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Kristin A. Hogquist
- Center for Immunology and Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
50
|
Hiestand PC, Rausch M, Meier DP, Foster CA. Ascomycete derivative to MS therapeutic: S1P receptor modulator FTY720. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2008; 66:361, 363-81. [PMID: 18416311 DOI: 10.1007/978-3-7643-8595-8_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fingolimod (FTY720) represents the first in a new class of immune-modulators whose target is sphingosine-1-phosphate (S1P) receptors. It was first identified by researchers at Kyoto University and Yoshitomi Pharmaceutical as a chemical derivative of the ascomycete metabolite ISP-1 (myriocin). Unlike its natural product parent, FTY720 does not interfere with sphingolipid biosynthesis. Instead, its best characterized mechanism of action upon in vivo phosphorylation, leading to the active principle FTY720-P, is the rapid and reversible inhibition of lymphocyte egress from peripheral lymph nodes. As a consequence of S1P1 receptor internalization, tissue-damaging T-cells can not recirculate and infiltrate sites of inflammation such as the central nervous system (CNS). Furthermore, FTY720-P modulation of S1P receptor signaling also enhances endothelial barrier function. Due to its mode of action, FTY720 effectively prevents transplant rejection and is active in various autoimmune disease models. The most striking efficacy is in the multiple sclerosis (MS) model of experimental autoimmune encephalomyelitis, which has now been confirmed in the clinic. FTY720 demonstrated promising results in Phase II trials and recently entered Phase III in patients with relapsing MS. Emerging evidence suggests that its efficacy in the CNS extends beyond immunomodulation to encompass other aspects of MS pathophysiology, including an influence on the blood-brain-barrier and glial repair mechanisms that could ultimately contribute to restoration of nerve function. FTY720 may represent a potent new therapeutic modality in MS, combined with the benefit of oral administration.
Collapse
|