1
|
Johansen KH, Golec DP, Okkenhaug K, Schwartzberg PL. Mind the GAP: RASA2 and RASA3 GTPase-activating proteins as gatekeepers of T cell activation and adhesion. Trends Immunol 2023; 44:917-931. [PMID: 37858490 PMCID: PMC10621891 DOI: 10.1016/j.it.2023.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Following stimulation, the T cell receptor (TCR) and its coreceptors integrate multiple intracellular signals to initiate T cell proliferation, migration, gene expression, and metabolism. Among these signaling molecules are the small GTPases RAS and RAP1, which induce MAPK pathways and cellular adhesion to activate downstream effector functions. Although many studies have helped to elucidate the signaling intermediates that mediate T cell activation, the molecules and pathways that keep naive T cells in check are less understood. Several recent studies provide evidence that RASA2 and RASA3, which are GAP1-family GTPase-activating proteins (GAPs) that inactivate RAS and RAP1, respectively, are crucial molecules that limit T cell activation and adhesion. In this review we describe recent data on the roles of RASA2 and RASA3 as gatekeepers of T cell activation and migration.
Collapse
Affiliation(s)
- Kristoffer H Johansen
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Dominic P Golec
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Ueda Y, Higasa K, Kamioka Y, Kondo N, Horitani S, Ikeda Y, Bergmeier W, Fukui Y, Kinashi T. Rap1 organizes lymphocyte front-back polarity via RhoA signaling and talin1. iScience 2023; 26:107292. [PMID: 37520697 PMCID: PMC10374465 DOI: 10.1016/j.isci.2023.107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Lymphocyte trafficking requires fine-tuning of chemokine-mediated cell migration. This process depends on cytoskeletal dynamics and polarity, but its regulation remains elusive. We quantitatively measured cell polarity and revealed critical roles performed by integrin activator Rap1 in this process, independent of substrate adhesion. Rap1-deficient naive T cells exhibited impaired abilities to reorganize the actin cytoskeleton into pseudopods and actomyosin-rich uropods. Rap1-GTPase activating proteins (GAPs), Rasa3 and Sipa1, maintained an unpolarized shape; deletion of these GAPs spontaneously induced cell polarization, indicative of the polarizing effect of Rap1. Rap1 activation required F-actin scaffolds, and stimulated RhoA activation and actomyosin contractility at the rear. Furthermore, talin1 acted on Rap1 downstream effectors to promote actomyosin contractility in the uropod, which occurred independently of substrate adhesion and talin1 binding to integrins. These findings indicate that Rap1 signaling to RhoA and talin1 regulates chemokine-stimulated lymphocyte polarization and chemotaxis in a manner independent of adhesion.
Collapse
Affiliation(s)
- Yoshihiro Ueda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Koichiro Higasa
- The Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yuji Kamioka
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Naoyuki Kondo
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Shunsuke Horitani
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yoshiki Ikeda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tatsuo Kinashi
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
3
|
Horitani S, Ueda Y, Kamioka Y, Kondo N, Ikeda Y, Naganuma M, Kinashi T. The critical role of Rap1-GAPs Rasa3 and Sipa1 in T cells for pulmonary transit and egress from the lymph nodes. Front Immunol 2023; 14:1234747. [PMID: 37545505 PMCID: PMC10399222 DOI: 10.3389/fimmu.2023.1234747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Rap1-GTPase activates integrins and plays an indispensable role in lymphocyte trafficking, but the importance of Rap1 inactivation in this process remains unknown. Here we identified the Rap1-inactivating proteins Rasa3 and Sipa1 as critical regulators of lymphocyte trafficking. The loss of Rasa3 and Sipa1 in T cells induced spontaneous Rap1 activation and adhesion. As a consequence, T cells deficient in Rasa3 and Sipa1 were trapped in the lung due to firm attachment to capillary beds, while administration of LFA1 antibodies or loss of talin1 or Rap1 rescued lung sequestration. Unexpectedly, mutant T cells exhibited normal extravasation into lymph nodes, fast interstitial migration, even greater chemotactic responses to chemokines and sphingosine-1-phosphate, and entrance into lymphatic sinuses but severely delayed exit: mutant T cells retained high motility in lymphatic sinuses and frequently returned to the lymph node parenchyma, resulting in defective egress. These results reveal the critical trafficking processes that require Rap1 inactivation.
Collapse
Affiliation(s)
- Shunsuke Horitani
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
- Division of Gastroenterology and Hepatology, the Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yoshihiro Ueda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yuji Kamioka
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Naoyuki Kondo
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yoshiki Ikeda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Makoto Naganuma
- Division of Gastroenterology and Hepatology, the Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Tatsuo Kinashi
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
4
|
Wu Z, Hu Z, Gao Y, Xia Y, Zhang X, Jiang Z. A computational approach based on weighted gene co-expression network analysis for biomarkers analysis of Parkinson's disease and construction of diagnostic model. Front Comput Neurosci 2023; 16:1095676. [PMID: 36704228 PMCID: PMC9873349 DOI: 10.3389/fncom.2022.1095676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Background Parkinson's disease (PD) is a common age-related chronic neurodegenerative disease. There is currently no affordable, effective, and less invasive test for PD diagnosis. Metabolite profiling in blood and blood-based gene transcripts is thought to be an ideal method for diagnosing PD. Aim In this study, the objective is to identify the potential diagnostic biomarkers of PD by analyzing microarray gene expression data of samples from PD patients. Methods A computational approach, namely, Weighted Gene Co-expression Network Analysis (WGCNA) was used to construct co-expression gene networks and identify the key modules that were highly correlated with PD from the GSE99039 dataset. The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was performed to identify the hub genes in the key modules with strong association with PD. The selected hub genes were then used to construct a diagnostic model based on logistic regression analysis, and the Receiver Operating Characteristic (ROC) curves were used to evaluate the efficacy of the model using the GSE99039 dataset. Finally, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) was used to validate the hub genes. Results WGCNA identified two key modules associated with inflammation and immune response. Seven hub genes, LILRB1, LSP1, SIPA1, SLC15A3, MBOAT7, RNF24, and TLE3 were identified from the two modules and used to construct diagnostic models. ROC analysis showed that the diagnostic model had a good diagnostic performance for PD in the training and testing datasets. Results of the RT-PCR experiments showed that there were significant differences in the mRNA expression of LILRB1, LSP1, and MBOAT7 among the seven hub genes. Conclusion The 7-gene panel (LILRB1, LSP1, SIPA1, SLC15A3, MBOAT7, RNF24, and TLE3) will serve as a potential diagnostic signature for PD.
Collapse
Affiliation(s)
- Zhaoping Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunchun Gao
- Department of Neurology, The First People’s Hospital of Changde City, Changde, Hunan, China
| | - Yuechong Xia
- Department of Respiratory Medicine, Central South University, Changsha, Hunan, China
| | - Xiaobo Zhang
- Department of Neurology, The First People’s Hospital of Changde City, Changde, Hunan, China
| | - Zheng Jiang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Zheng Jiang,
| |
Collapse
|
5
|
C3G Regulates STAT3, ERK, Adhesion Signaling, and Is Essential for Differentiation of Embryonic Stem Cells. Stem Cell Rev Rep 2021; 17:1465-1477. [PMID: 33624208 PMCID: PMC8372029 DOI: 10.1007/s12015-021-10136-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
C3G (RAPGEF1), engaged in multiple signaling pathways, is essential for the early development of the mouse. In this study, we have examined its role in mouse embryonic stem cell self-renewal and differentiation. C3G null cells generated by CRISPR mediated knock-in of a targeting vector exhibited enhanced clonogenicity and long-term self-renewal. They did not differentiate in response to LIF withdrawal when compared to the wild type ES cells and were defective for lineage commitment upon teratoma formation in vivo. Gene expression analysis of C3G KO cells showed misregulated expression of a large number of genes compared with WT cells. They express higher levels of self-renewal factors like KLF4 and ESRRB and show high STAT3 activity, and very low ERK activity compared to WT cells. Reintroduction of C3G expression in a KO line partially reverted expression of ESRRB, and KLF4, and ERK activity similar to that seen in WT cells. The expression of self-renewal factors was persistent for a longer time, and induction of lineage-specific markers was not seen when C3G KO cells were induced to form embryoid bodies. C3G KO cells showed poor adhesion and significantly reduced levels of pFAK, pPaxillin, and Integrin-β1, in addition to downregulation of the cluster of genes involved in cell adhesion, compared to WT cells. Our results show that C3G is essential for the regulation of STAT3, ERK, and adhesion signaling, to maintain pluripotency of mouse embryonic stem cells and enable their lineage commitment for differentiation. ![]()
Collapse
|
6
|
Looi CK, Hii LW, Ngai SC, Leong CO, Mai CW. The Role of Ras-Associated Protein 1 (Rap1) in Cancer: Bad Actor or Good Player? Biomedicines 2020; 8:334. [PMID: 32906721 PMCID: PMC7555474 DOI: 10.3390/biomedicines8090334] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 02/05/2023] Open
Abstract
Metastasis is known as the most life-threatening event in cancer patients. In principle, the immune system can prevent tumor development. However, dysfunctional T cells may fail to eliminate the tumor cells effectively and provide additional survival advantages for tumor proliferation and metastasis. Constitutive activation of Ras-associated protein1 (Rap1) has not only led to T cell anergy, but also inhibited autophagy and supported cancer progression through various oncogenic events. Inhibition of Rap1 activity with its negative regulator, Rap1GAP, impairs tumor progression. However, active Rap1 reduces tumor invasion in some cancers, indicating that the pleiotropic effects of Rap1 signaling in cancers could be cancer-specific. All in all, targeting Rap1 signaling and its regulators could potentially control carcinogenesis, metastasis, chemoresistance and immune evasion. Rap1GAP could be a promising therapeutic target in combating cancer.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Study, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-W.H.)
| | - Ling-Wei Hii
- School of Postgraduate Study, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-W.H.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia;
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development, and Innovation (IRDI), International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development, and Innovation (IRDI), International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
7
|
Xu Y, Ikeda S, Sumida K, Yamamoto R, Tanaka H, Minato N. Sipa1 deficiency unleashes a host-immune mechanism eradicating chronic myelogenous leukemia-initiating cells. Nat Commun 2018; 9:914. [PMID: 29500416 PMCID: PMC5834470 DOI: 10.1038/s41467-018-03307-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic myelogenous leukemia (CML) caused by hematopoietic stem cells expressing the Bcr-Abl fusion gene may be controlled by Bcr-Abl tyrosine kinase inhibitors (TKIs). However, CML-initiating cells are resistant to TKIs and may persist as minimal residual disease. We demonstrate that mice deficient in Sipa1, which encodes Rap1 GTPase-activating protein, rarely develop CML upon transfer of primary hematopoietic progenitor cells (HPCs) expressing Bcr-Abl, which cause lethal CML disease in wild-type mice. Resistance requires both T cells and nonhematopoietic cells. Sipa1−/− mesenchymal stroma cells (MSCs) show enhanced activation and directed migration to Bcr-Abl+ cells in tumor tissue and preferentially produce Cxcl9, which in turn recruits Sipa1−/− memory T cells that have markedly augmented chemotactic activity. Thus, Sipa1 deficiency uncovers a host immune mechanism potentially capable of eradicating Bcr-Abl+ HPCs via coordinated interplay between MSCs and immune T cells, which may provide a clue for radical control of human CML. Chronic myelogenous leukemia (CML)-initiating cells are resistant to kinase inhibitors. Here the authors show that deficiency of the Rap1 GTPase-activating protein Sipa1 in the tumor microenvironment releases an immune response that eradicates CML-initiating cells via interplay between stromal and T cells.
Collapse
Affiliation(s)
- Yan Xu
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Satoshi Ikeda
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kentaro Sumida
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Ryusuke Yamamoto
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroki Tanaka
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan. .,DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
8
|
Tang S, Chen T, Yang M, Wang L, Yu Z, Xie B, Qian C, Xu S, Li N, Cao X, Wang J. Extracellular calcium elicits feedforward regulation of the Toll-like receptor-triggered innate immune response. Cell Mol Immunol 2015; 14:180-191. [PMID: 26277896 DOI: 10.1038/cmi.2015.59] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/30/2015] [Accepted: 05/31/2015] [Indexed: 12/13/2022] Open
Abstract
Despite the expanding knowledge on feedback regulation of Toll-like receptor (TLR) signaling, the feedforward regulation of TLR signaling for the proper innate response to invading microbes is not fully understood. Here, we report that extracellular calcium can coordinate the activation of the small GTPases Ras and Ras-proximate-1 (Rap1) upon TLR stimulation which favors activation of macrophages through a feedforward mechanism. We show that different doses of TLR agonists can trigger different levels of cytokine production, which can be potentiated by extracellular calcium but are impaired by the chelating reagent ethylene glycol tetraacetic acid (EGTA) or by knockdown of stromal interaction molecule 1 (STIM1). Upon TLR engagement, GTP-bound Ras levels are increased and GTP-bound Rap1 is decreased, which can be reversed by EGTA-mediated removal of extracellular calcium. Furthermore, we demonstrate that Rap1 knockdown rescues the inhibitory effects of EGTA on the TLR-triggered innate response. Examination of the TLR signaling pathway reveals that extracellular calcium may regulate the TLR response via feedforward activation of the extracellular signal-regulated kinase signaling pathway. Our data suggest that an influx of extracellular calcium, mediated by STIM1-operated calcium channels, may transmit the information about the intensity of extracellular TLR stimuli to initiate innate responses at an appropriate level. Our study may provide mechanistic insight into the feedforward regulation of the TLR-triggered innate immune response.
Collapse
Affiliation(s)
- Songqing Tang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Taoyong Chen
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Mingjin Yang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China.,National Key Laboratory of Medical Molecular Biology & Department of Immunology, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Lei Wang
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Zhou Yu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Bin Xie
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Cheng Qian
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Sheng Xu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Nan Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China.,National Key Laboratory of Medical Molecular Biology & Department of Immunology, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jianli Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
9
|
Minato N. Rap G protein signal in normal and disordered lymphohematopoiesis. Exp Cell Res 2013; 319:2323-8. [PMID: 23603280 DOI: 10.1016/j.yexcr.2013.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
Abstract
Rap proteins (Rap1, Rap2a, b, c) are small molecular weight GTPases of the Ras family. Rap G proteins mediate diverse cellular events such as cell adhesion, proliferation, and gene activation through various signaling pathways. Activation of Rap signal is regulated tightly by several specific regulatory proteins including guanine nucleotide exchange factors and GTPase-activating proteins. Beyond cell biological studies, increasing attempts have been made in the past decade to define the roles of Rap signal in specific functions of normal tissue systems as well as in cancer. In the immune and hematopoietic systems, Rap signal plays crucial roles in the development and function of essentially all lineages of lymphocytes and hematopoietic cells, and importantly, deregulated Rap signal may lead to unique pathological conditions depending on the affected cell types, including various types of leukemia and autoimmunity. The phenotypical studies have unveiled novel, even unexpected functional aspects of Rap signal in cells from a variety of tissues, providing potentially important clues for controlling human diseases, including malignancy.
Collapse
Affiliation(s)
- Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan. :
| |
Collapse
|
10
|
Reedquist KA, Tak PP. Signal transduction pathways in chronic inflammatory autoimmune disease: small GTPases. Open Rheumatol J 2012; 6:259-72. [PMID: 23028410 PMCID: PMC3460313 DOI: 10.2174/1874312901206010259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 01/28/2023] Open
Abstract
Ras superfamily small GTPases represent a wide and diverse class of intracellular signaling proteins that are highly conserved during evolution. These enzymes serve as key checkpoints in coupling antigen receptor, growth factor, cytokine and chemokine stimulation to cellular responses. Once activated, via their ability to regulate multiple downstream signaling pathways, small GTPases amplify and diversify signaling cascades which regulate cellular proliferation, survival, cytokine expression, trafficking and retention. Small GTPases, particularly members of the Ras, Rap, and Rho family, critically coordinate the function and interplay of immune and stromal cells during inflammatory respones, and increasing evidence indicates that alterations in small GTPase signaling contribute to the pathological behavior of these cell populations in human chronic inflammatory diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Here, we review how Ras, Rap, and Rho family GTPases contribute to the biology of cell populations relevant to human chronic inflammatory disease, highlight recent advances in understanding how alterations in these pathways contribute to pathology in RA and SLE, and discuss new therapeutic strategies that may allow specific targeting of small GTPases in the clinic.
Collapse
Affiliation(s)
- Kris A Reedquist
- Division of Clinical Immunology and Rheumatology, Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | |
Collapse
|
11
|
Sustained Rap1 activation in autoantigen-specific T lymphocytes attenuates experimental autoimmune encephalomyelitis. J Neuroimmunol 2012; 250:35-43. [PMID: 22688423 DOI: 10.1016/j.jneuroim.2012.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/14/2012] [Accepted: 05/18/2012] [Indexed: 11/21/2022]
Abstract
Altered Ras superfamily guanine nucleotide triphosphatase signaling may contribute to the activation of autoreactive T cells in diseases such as rheumatoid arthritis and systemic lupus erythematosus. Here, we show that transgenic expression of activated Rap1, a Ras-related protein which is protective in murine arthritis, in both wildtype (WT) and 2D2 mice, enhances autoreactive T cell activation by myelin oligodendrocyte glycoprotein peptide in vitro and in vivo. However, RapV12 reduces the number of autoreactive T cells in both WT and 2D2 mice, and increases murine survival in experimental autoimmune encephalitis, suggesting Rap1 activation restricts autoimmune T cell-mediated pathology through enhancing tolerance.
Collapse
|
12
|
Qiu T, Qi X, Cen J, Chen Z. Rap1GAP alters leukemia cell differentiation, apoptosis and invasion in vitro. Oncol Rep 2012; 28:622-8. [PMID: 22614916 DOI: 10.3892/or.2012.1825] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/17/2012] [Indexed: 11/06/2022] Open
Abstract
Rap1GAP which regulates the GTP-GDP form switch of Rap1 is a member of the GTPase-activating protein (GAP) family and has recently received substantial attention. Rap1GAP is thought of as a putative tumor suppressor gene and plays an important role in human tumor progression including pancreatic cancer, thyroid cancer and melanoma. In the current study, we found that the expression of Rap1GAP was lower in acute myeloid leukemia (AML) patients compared to non-malignant blood disease patients. The expression of Rap1GAP was also low in HL-60, NB4, U937 and SHI-1 myeloid leukemia cell lines. Upregulated Rap1GAP in NB4 and HL-60 cells promoted cell differentiation induced by ATRA or TPA compared to the empty vector control cells. Furthermore, Rap1GAP-transfected cells also showed a higher rate of apoptosis in response to arsenic trioxide compared to the control counterpart cells. In addition, we found that increased expression of Rap1GAP promoted leukemia cell invasion may be due to matrix metalloproteinase 9 (MMP9). In conclusion, these results demonstrated that Rap1GAP promoted leukemia cell differentiation and apoptosis, but increased leukemia cell invasion in vitro.
Collapse
Affiliation(s)
- Tingting Qiu
- Leukemia Research Unit, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou 215006, PR China
| | | | | | | |
Collapse
|
13
|
Abreu JRF, Krausz S, Dontje W, Grabiec AM, de Launay D, Nolte MA, Tak PP, Reedquist KA. Sustained T cell Rap1 signaling is protective in the collagen-induced arthritis model of rheumatoid arthritis. ACTA ACUST UNITED AC 2010; 62:3289-99. [PMID: 20662068 DOI: 10.1002/art.27656] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Defective activation of T cell receptor-proximal signaling proteins, such as the small GTPase Rap1, is thought to contribute to the pathologic behavior of rheumatoid arthritis (RA) synovial T cells. This study was undertaken to determine whether maintaining Rap1 signaling in murine T cells modifies disease onset or severity in collagen-induced arthritis (CIA). METHODS CIA experiments were conducted using wild-type and RapV12-transgenic mice, which express an active mutant of Rap1 in the T cell compartment. Mice were assessed using macroscopic, microscopic, and radiologic measures, and serum levels of anticollagen antibodies were measured by enzyme-linked immunosorbent assay. Phenotypic and functional characterization of wild-type and RapV12-transgenic T cells under homeostatic conditions and during disease onset was performed by flow cytometry. RESULTS Disease incidence and severity, synovial infiltration, joint destruction, and anticollagen antibody production were significantly reduced in RapV12-transgenic mice. Although the numbers and percentages of CD3+, CD4+, and CD8+ (naive, effector, and memory) T cells, Treg cells, and Th17 cells were equivalent in wild-type and RapV12-transgenic mice, a significant decrease in the percentage of tumor necrosis factor α-secreting CD8+ T cells was observed in RapV12-transgenic mice during CIA. RapV12-transgenic T cells also inefficiently expressed inducible costimulator and CD40L costimulatory proteins involved in B cell immunoglobulin class switching. CONCLUSION Our findings indicate that maintenance of T cell Rap1 signaling in murine T cells reduces disease incidence and severity in CIA, which are associated with specific defects in T cell effector function. Therefore, the restoration of Rap1 function in RA synovial T cells may have therapeutic benefit in RA.
Collapse
Affiliation(s)
- Joana R F Abreu
- Academic Medical Center and University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
PD-1+ memory phenotype CD4+ T cells expressing C/EBPalpha underlie T cell immunodepression in senescence and leukemia. Proc Natl Acad Sci U S A 2009; 106:15807-12. [PMID: 19805226 DOI: 10.1073/pnas.0908805106] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although altered T cell function plays a part in immunosenescence, the mechanisms remain uncertain. Here we identify a bona fide age-dependent PD-1(+) memory phenotype (MP) CD4(+) T cell subpopulation that hardly proliferates in response to T cell receptor (TCR) stimulation and produces abundant osteopontin at the cost of typical T cell lymphokines. These T cells demonstrate impaired repopulation in Rag2(-/-) mice, but a homeostatic proliferation in gamma-ray-irradiated mice. These T cells also reveal a unique molecular signature, including a strong expression of C/EBPalpha normally expressed in myeloid-lineage cells, with diminished c-Myc and cyclin D1. Transduction of Cebpa in regular CD4(+) T cells inhibited the TCR-mediated proliferation with c-Myc and cyclin D1 repression and caused a striking activation of Spp1 encoding osteopontin along with concomitant repression of T cell lymphokine genes. Although these T cells gradually increase in number with age and become predominant at the senescent stage in normal mice, the generation is robustly accelerated during leukemia. In both conditions, their predominance is associated with the diminution of specific CD4(+) T cell response. The results suggest that global T cell immunodepression in senescence and leukemia is attributable to the increase in PD-1(+) MP CD4(+) T cells expressing C/EBPalpha.
Collapse
|
15
|
An enteric pathogen Salmonella enterica serovar Typhimurium suppresses tumor growth by downregulating CD44high and CD4T regulatory (Treg) cell expression in mice: the critical role of lipopolysaccharide and Braun lipoprotein in modulating tumor growth. Cancer Gene Ther 2009; 17:97-108. [PMID: 19713997 PMCID: PMC2808459 DOI: 10.1038/cgt.2009.58] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An antitumor activity associated with several bacterial pathogens, including Salmonella enterica serovar Typhimurium, has been reported; however, the underlying immunological mechanism(s) that lead to an antitumor effect are currently unclear. Furthermore, such pathogens cannot be used to suppress tumor growth because of their potential for causing sepsis. Recently, we reported the characterization of S. Typhimurium isogenic mutants from which Braun lipoprotein genes (lppA and B) and the multicopy repressor of high temperature requirement (msbB) gene were deleted. In a mouse infection model, two mutants, namely, lppB/msbB and lppAB/msbB, minimally induced proinflammatory cytokine production at high doses and were nonlethal to animals. We showed that immunization of mice with these mutants, followed by challenge with the wild-type S. Typhimurium, could significantly suppress tumor growth, as evidenced by an 88% regression in tumor size in lppB/msbB mutant-immunized animals over a 24-day period. However, the lppAB/msbB mutant alone was not effective in modulating tumor growth in mice, although the lppB/msbB mutant alone caused marginal regression in tumor size. Importantly, we showed that CD44(+) cells grew much faster than CD44(-) cells from human liver tumors in mice, leading us to examine the possibility that S. Typhimurium might downregulate CD44 in tumors and splenocytes of mice. Consequently, we found in S. Typhimurium-infected mice that tumor size regression could indeed be related to the downregulation of CD44(high) and CD4(+)CD25(+) T(reg) cells. Importantly, the role of lipopolysaccharide and Braun lipoprotein was critical in S. Typhimurium-induced antitumor immune responses. Taken together, we have defined new immune mechanisms leading to tumor suppression in mice by S. Typhimurium.
Collapse
|
16
|
Minato N, Hattori M. Spa-1 (Sipa1) and Rap signaling in leukemia and cancer metastasis. Cancer Sci 2009; 100:17-23. [PMID: 19037996 PMCID: PMC11158263 DOI: 10.1111/j.1349-7006.2008.01011.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/03/2008] [Accepted: 09/16/2008] [Indexed: 01/15/2023] Open
Abstract
Although Rap GTPases of the Ras family remained enigmatic for years, extensive studies in this decade have revealed diverse functions of Rap in the control of cell proliferation, differentiation, survival, adhesion, and movement. With the use of genetic engineering strategies, we have uncovered essential roles of Rap signaling in normal lymphohematopoietic cell development as well as its crucial involvement in the development of a wide spectrum of leukemia in manners highly dependent on the contexts of cell lineages. Incidentally, recent results also indicate an important role of Spa-1, a Rap GTPase-activating protein, in invasion and metastasis in human cancers. While it is unlikely that Rap can function as a classic oncogene by itself, like Ras, emerging findings unveil crucial involvements of Rap GTPases in the distinct aspects of malignancy, including leukemia genesis and cancer metastasis.
Collapse
Affiliation(s)
- Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|
17
|
Essential role of Rap signal in pre-TCR-mediated beta-selection checkpoint in alphabeta T-cell development. Blood 2008; 112:4565-73. [PMID: 18802005 DOI: 10.1182/blood-2008-06-164517] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We demonstrate that lck promoter-driven conditional expression of transgenic SPA-1, a Rap GTPase-activation protein, causes a profound defect of alphabeta T-cell development at the CD4/CD8 double-negative (DN) stage due to enhanced cell death without affecting gammadelta T-cell development. The effect was specific to the DN stage, because CD4 promoter-driven SPA-1 expression hardly affected T-cell development. Rap1A17, a dominant-negative Rap mutant, interfered with the generation of double-positive (DP) cells from Rag2(-/-) fetal thymocytes in vitro in the presence of anti-CD3epsilon antibody and Notch ligand. Rap GTPases were activated in a DN cell line by the expression of self-oligomerizing CD3 (CD8:CD3epsilon chimera), which substituted autonomous pre-T-cell receptor (TCR) signal, inducing CD69 expression and CD25 down-regulation. Reciprocally, expression of C3G, a Rap guanine nucleotide exchange factor, in both normal and Rag2(-/-) DN cells markedly enhanced Notch-dependent generation and expansion of DP cells without additional anti-CD3epsilon antibody, thus bypassing pre-TCR. Defective alphabeta T-cell development in the conditional SPA-1-transgenic mice was restored completely by introducing a p53(-/-) mutation. These results suggest that endogenous Rap GTPases downstream of pre-TCR play an essential role in rescuing pre-T cells from the p53-mediated checkpoint response, thus allowing Notch-mediated expansion and differentiation.
Collapse
|
18
|
Chu H, Awasthi A, White GC, Chrzanowska-Wodnicka M, Malarkannan S. Rap1b regulates B cell development, homing, and T cell-dependent humoral immunity. THE JOURNAL OF IMMUNOLOGY 2008; 181:3373-83. [PMID: 18714009 DOI: 10.4049/jimmunol.181.5.3373] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rap1 is a small GTPase that belongs to Ras superfamily. This ubiquitously expressed GTPase is a key regulator of integrin functions. Rap1 exists in two isoforms: Rap1a and Rap1b. Although Rap1 has been extensively studied, its isoform-specific functions in B cells have not been elucidated. In this study, using gene knockout mice, we show that Rap1b is the dominant isoform in B cells. Lack of Rap1b significantly reduced the absolute number of B220(+)IgM(-) pro/pre-B cells and B220(+)IgM(+) immature B cells in bone marrow. In vitro culture of bone marrow-derived Rap1b(-/-) pro/pre-B cells with IL-7 showed similar proliferation levels but reduced adhesion to stromal cell line compared with wild type. Rap1b(-/-) mice displayed reduced splenic marginal zone (MZ) B cells, and increased newly forming B cells, whereas the number of follicular B cells was normal. Functionally, Rap1b(-/-) mice showed reduced T-dependent but normal T-independent humoral responses. B cells from Rap1b(-/-) mice showed reduced migration to SDF-1, CXCL13 and in vivo homing to lymph nodes. MZ B cells showed reduced sphingosine-1-phosphate-induced migration and adhesion to ICAM-1. However, absence of Rap1b did not affect splenic B cell proliferation, BCR-mediated activation of Erk1/2, p38 MAPKs, and AKT. Thus, Rap1b is crucial for early B cell development, MZ B cell homeostasis and T-dependent humoral immunity.
Collapse
Affiliation(s)
- Haiyan Chu
- Laboratory of Molecular Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
SPA-1 (signal-induced proliferation associated gene-1) functions as a suppressor of myeloid leukemia by negatively regulating Rap1 signaling in hematopoietic progenitor cells (HPCs). Herein, we showed that transplantation of HPCs expressing farnesylated C3G (C3G-F), a Rap1 guanine nucleotide exchange factor, resulted in a marked expansion of thymocytes bearing unique phenotypes (CD4/CD8 double positive [DP] CD3− TCRβ−) in irradiated recipients. SPA-1−/− HPCs expressing C3G-F caused a more extensive expansion of DP thymocytes, resulting in lethal T-cell acute lymphoblastic leukemia (T-ALL) with massive invasion of clonal T-cell blasts into vital organs. The C3G-F+ blastic thymocytes exhibited constitutive Rap1 activation and markedly enhanced expression of Notch1, 3 as well as the target genes, Hes1, pTα, and c-Myc. All the T-ALL cell lines from C3G-F+ SPA-1−/− HPC recipients expressed high levels of Notch1 with characteristic mutations resulting in the C-terminal truncation. This proliferation was inhibited completely in the presence of a γ-secretase inhibitor. Transplantation of Rag2−/− SPA-1−/− HPCs expressing C3G-F also resulted in a marked expansion and transformation of DP thymocytes. The results suggested that deregulated constitutive Rap1 activation caused abnormal expansion of DP thymocytes, bypassing the pre-T-cell receptor and eventually leading to Notch1 mutations and Notch-dependent T-ALL.
Collapse
|
20
|
Abstract
The Ras superfamily consists of over 50 low-molecular-weight proteins that cycle between an inactive guanosine diphosphate-bound state and an active guanosine triphosphate (GTP)-bound state. They are involved in a variety of signal transduction pathways that regulate cell growth, intracellular trafficking, cell migration, and apoptosis. Several methods have been devised to measure the activation state of Ras proteins, defined as the percent of Ras molecules in the active GTP-bound state. We have previously developed a quantitative biochemical method that can be applied to animal and human tissues and have used it to measure the activation state of Ras, Rap1, Rheb, and Rho proteins in cultured cells and in animal and human tumors. Ras, Rac, and Rho all play roles in regulating the functions of T and B lymphocytes and dendritic cells, and these proteins are clearly important in maintaining normal immune system function.
Collapse
Affiliation(s)
- Juergen S Scheele
- Co-ordinating Center for Clinical Trials, Martin Luther University, Halle, Germany
| | | | | |
Collapse
|
21
|
Reichardt P, Dornbach B, Gunzer M. The molecular makeup and function of regulatory and effector synapses. Immunol Rev 2007; 218:165-77. [PMID: 17624952 DOI: 10.1111/j.1600-065x.2007.00526.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Physical interactions between T cells and antigen-presenting cells (APCs) form the basis of any specific immune response. Upon cognate contacts, a multimolecular assembly of receptors and adhesion molecules on both cells is created, termed the immunological synapse (IS). Very diverse structures of ISs have been described, yet the functional importance for T-cell differentiation is largely unclear. Here we discuss the principal structure and function of ISs. We then focus on two characteristic T-cell-APC pairs, namely T cells contacting dendritic cells (DCs) or naive B cells, for which extremely different patterns of the IS have been observed as well as fundamentally different effects on the function of the activated T cells. We provide a model on how differences in signaling and the involvement of adhesion molecules might lead to diverse interaction kinetics and, eventually, diverse T-cell differentiation. We hypothesize that the preferred activation of the adhesion molecule leukocyte function-associated antigen-1 (LFA-1) and of the negative regulator for T-cell activation, cytotoxic T-lymphocyte antigen-4 (CTLA-4), through contact with naive B cells, lead to prolonged cell-cell contacts and the generation of T cells with regulatory capacity. In contrast, DCs might have evolved mechanisms to avoid LFA-1 overactivation and CTLA-4 triggering, thereby promoting more dynamic contacts that lead to the preferential generation of effector cells.
Collapse
Affiliation(s)
- Peter Reichardt
- Junior Research Group Immunodynamics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | |
Collapse
|
22
|
Abstract
Rap1 (Ras-proximity 1), a member of the Ras family of small guanine triphosphatases (GTPases), is activated by diverse extracellular stimuli. While Rap1 has been discovered originally as a potential Ras antagonist, accumulating evidence indicates that Rap1 per se mediates unique signals and exerts biological functions distinctly different from Ras. Rap1 plays a dominant role in the control of cell-cell and cell-matrix interactions by regulating the function of integrins and other adhesion molecules in various cell types. Rap1 also regulates MAP kinase (MAPK) activity in a manner highly dependent on the context of cell types. Recent studies (including gene-targeting analysis) have uncovered that the Rap1 signal is integrated crucially and unpredictably in the diverse aspects of comprehensive biological systems. This review summarizes the role of the Rap1 signal in developments and functions of the immune and hematopoietic systems as well as in malignancy. Importantly, Rap1 activation is tightly regulated in tissue cells, and dysregulations of the Rap1 signal in specific tissues result in certain disorders, including myeloproliferative disorders and leukemia, platelet dysfunction with defective hemostasis, leukocyte adhesion-deficiency syndrome, lupus-like systemic autoimmune disease, and T cell anergy. Many of these disorders resemble human diseases, and the Rap1 signal with its regulators may provide rational molecular targets for controlling certain human diseases including malignancy.
Collapse
Affiliation(s)
- Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
23
|
Ishida D, Su L, Tamura A, Katayama Y, Kawai Y, Wang SF, Taniwaki M, Hamazaki Y, Hattori M, Minato N. Rap1 signal controls B cell receptor repertoire and generation of self-reactive B1a cells. Immunity 2006; 24:417-27. [PMID: 16618600 DOI: 10.1016/j.immuni.2006.02.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 01/15/2006] [Accepted: 02/01/2006] [Indexed: 02/06/2023]
Abstract
We previously reported that the mice deficient for SPA-1, a Rap1 GTPase-activating protein, developed hematopoietic stem cell disorders. Here, we demonstrate that SPA-1(-/-) mice show an age-dependent increase in B220(high) B1a cells producing anti-dsDNA antibody and lupus-like nephritis. SPA-1(-/-) peritoneal B1 cells revealed the altered Vkappa gene repertoire, including skewed Vkappa4 usage and the significant Igkappa/Iglambda isotype inclusion indicative of extensive receptor editing. Rap1GTP induced OcaB gene activation via p38MAPK-dependent Creb phosphorylation, and consistently, SPA-1(-/-) immature BM B cells showing high Rap1GTP exhibited the augmented expression of OcaB and Vkappa4 genes. SPA-1(-/-) BM cells could transfer the autoimmunity in association with the generation of peritoneal B220(high) B1a cells in Rag-2(-/-) recipients. Finally, a portion of SPA-1(-/-) mice developed B1 cell leukemia with hemolytic autoantibody. Present results suggest that the regulated Rap1 signal in the immature B cells plays a role in modifying the B cell receptor repertoire and in maintaining the self-tolerance.
Collapse
Affiliation(s)
- Daisuke Ishida
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Duchniewicz M, Zemojtel T, Kolanczyk M, Grossmann S, Scheele JS, Zwartkruis FJT. Rap1A-deficient T and B cells show impaired integrin-mediated cell adhesion. Mol Cell Biol 2006; 26:643-53. [PMID: 16382154 PMCID: PMC1346907 DOI: 10.1128/mcb.26.2.643-653.2006] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Studies in tissue culture cells have demonstrated a role for the Ras-like GTPase Rap1 in the regulation of integrin-mediated cell-matrix and cadherin-mediated cell-cell contacts. To analyze the function of Rap1 in vivo, we have disrupted the Rap1A gene by homologous recombination. Mice homozygous for the deletion allele are viable and fertile. However, primary hematopoietic cells isolated from spleen or thymus have a diminished adhesive capacity on ICAM and fibronectin substrates. In addition, polarization of T cells from Rap1-/- cells after CD3 stimulation was impaired compared to that of wild-type cells. Despite this, these defects did not result in hematopoietic or cell homing abnormalities. Although it is possible that the relatively mild phenotype is a consequence of functional complementation by the Rap1B gene, our genetic studies confirm a role for Rap1A in the regulation of integrins.
Collapse
Affiliation(s)
- Marlena Duchniewicz
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Kinashi T, Katagiri K. Regulation of immune cell adhesion and migration by regulator of adhesion and cell polarization enriched in lymphoid tissues. Immunology 2005; 116:164-71. [PMID: 16162265 PMCID: PMC1817824 DOI: 10.1111/j.1365-2567.2005.02214.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Rap1 has emerged as an important regulator of adhesion in multicellular organisms. In the immune system, Rap1 functions as an inside-out signalling molecule for leucocyte integrins following stimulation with chemokines or antigens. Regulator of adhesion and cell polarization enriched in lymphoid tissues (RAPL) is a novel Rap1 effector molecule that mediates Rap1 signalling to integrins. The Rap1-RAPL complex regulates the spatial distribution of the integrin lymphocyte function-associated antigen-1 as well as cell polarization. The linking of inside-out signalling with polarization synergistically promotes highly efficient lymphocyte trafficking. Targeted deletion of RAPL in mice has demonstrated multiple indispensable roles for this protein in lymphocyte and dendritic cell trafficking critical for immunosurveillance.
Collapse
Affiliation(s)
- Tatsuo Kinashi
- Department of Molecular Genetics, Graduate School of Medicine, Institute of Live Research, Kansai Medical School, Osaka, Japan
| | | |
Collapse
|
26
|
Ise W, Nakamura K, Shimizu N, Goto H, Fujimoto K, Kaminogawa S, Hachimura S. Orally tolerized T cells can form conjugates with APCs but are defective in immunological synapse formation. THE JOURNAL OF IMMUNOLOGY 2005; 175:829-38. [PMID: 16002680 DOI: 10.4049/jimmunol.175.2.829] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oral tolerance is systemic immune hyporesponsiveness induced by the oral administration of soluble Ags. Hyporesponsiveness of Ag-specific CD4 T cells is responsible for this phenomenon. However, the molecular mechanisms underlying the hyporesponsive state of these T cells are not fully understood. In the present study, we investigated the ability of orally tolerized T cells to form conjugates with Ag-bearing APCs and to translocate TCR, protein kinase C-theta (PKC-theta), and lipid rafts into the interface between T cells and APCs. Orally tolerized T cells were prepared from the spleens of OVA-fed DO11.10 mice. Interestingly, the orally tolerized T cells did not show any impairment in the formation of conjugates with APCs. The conjugates were formed in a LFA-1-dependent manner. Upon antigenic stimulation, the tolerized T cells could indeed activate Rap1, which is critical for LFA-1 activation and thus cell adhesion. However, orally tolerized T cells showed defects in the translocation of TCR, PKC-theta, and lipid rafts into the interface between T cells and APCs. Translocation of TCR and PKC-theta to lipid raft fractions upon antigenic stimulation was also impaired in the tolerized T cells. Ag-induced activation of Vav, Rac1, and cdc42, which are essential for immunological synapse and raft aggregation, were down-regulated in orally tolerized T cells. These results demonstrate that orally tolerized T cells can respond to specific Ags in terms of conjugate formation but not with appropriate immunological synapse formation. This may account for the hyporesponsive state of orally tolerized T cells.
Collapse
Affiliation(s)
- Wataru Ise
- Department of Applied Biological Chemistry, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Schneider H, Valk E, da Rocha Dias S, Wei B, Rudd CE. CTLA-4 up-regulation of lymphocyte function-associated antigen 1 adhesion and clustering as an alternate basis for coreceptor function. Proc Natl Acad Sci U S A 2005; 102:12861-6. [PMID: 16126897 PMCID: PMC1192824 DOI: 10.1073/pnas.0505802102] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although cytotoxic T lymphocyte antigen-4 (CTLA-4) negatively regulates T cell activation, the full range of functions mediated by this coreceptor has yet to be established. In this study, we report the surprising finding that CTLA-4 engagement by soluble antibody or CD80 potently up-regulates lymphocyte function-associated antigen 1 (LFA-1) adhesion to intercellular adhesion molecule-1 (ICAM-1) and receptor clustering concurrent with IL-2 inhibition. This effect was also observed with CTLA-4 ligation and not with other coreceptors. T cell antigen receptor (TcR)-induced lymphocyte function-associated antigen 1 function was also dependent on CTLA-4 expression as observed with reduced adhesion/clustering on CTLA-4(-/-) primary T cells. CTLA-4 up-regulated adhesion was mediated by regulator for cell adhesion and polarization type 1 (Rap-1) as shown by anti-CTLA-4-induced Rap-1 activation as well as Rap-1-N17 blockade and Rap-1-V12 mimicry of adhesion/clustering. Our findings identify a potent role for CTLA-4 in directing integrin adhesion and provide an alternate mechanism to account for aspects of CTLA-4 function in T cell immunity.
Collapse
Affiliation(s)
- Helga Schneider
- Molecular Immunology Section, Department of Immunology, Division of Investigative Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 ONN, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Li L, Greenwald RJ, Lafuente EM, Tzachanis D, Berezovskaya A, Freeman GJ, Sharpe AH, Boussiotis VA. Rap1-GTP Is a Negative Regulator of Th Cell Function and Promotes the Generation of CD4+CD103+ Regulatory T Cells In Vivo. THE JOURNAL OF IMMUNOLOGY 2005; 175:3133-9. [PMID: 16116203 DOI: 10.4049/jimmunol.175.5.3133] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The small GTPase Rap1 is transiently activated during TCR ligation and regulates integrin-mediated adhesion. To understand the in vivo functions of Rap1 in regulating T cell immune responses, we generated transgenic (Tg) mice, which express the active GTP-bound mutant Rap1E63 in their T lymphocytes. Although Rap1E63-Tg T cells exhibited increased LFA-1-mediated adhesion, ERK1/2 activation and proliferation of Rap1E63-Tg CD4+ T cells were defective. Rap1E63-Tg T cells primed in vivo and restimulated with specific Ag in vitro, exhibited reduced proliferation and produced reduced levels of IL-2. Rap1E63-Tg mice had severely deficient T cell-dependent B cell responses, as determined by impaired Ig class switching. Rap1E63-Tg mice had an increased fraction of CD4+CD103+ regulatory T cells (Treg), which exhibited enhanced suppressive efficiency as compared with CD4+CD103+ Treg from normal littermate control mice. Depletion of CD103+ Treg significantly restored the impaired responses of Rap1E63-Tg CD4+ T cells. Thus Rap1-GTP is a negative regulator of Th cell responses and one mechanism responsible for this effect involves the increase of CD103+ Treg cell fraction. Our results show that Rap1-GTP promotes the generation of CD103+ Treg and may have significant implications in the development of strategies for in vitro generation of Treg for the purpose of novel immunotherapeutic approaches geared toward tolerance induction.
Collapse
Affiliation(s)
- Lequn Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Stork PJS, Dillon TJ. Multiple roles of Rap1 in hematopoietic cells: complementary versus antagonistic functions. Blood 2005; 106:2952-61. [PMID: 16076873 PMCID: PMC1895320 DOI: 10.1182/blood-2005-03-1062] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Small G proteins serve as critical control points in signal transduction, integrating a wide range of stimuli to dictate discrete cellular outcomes. The outcomes of small G-protein signaling can both potentiate and antagonize one another. Studies in hematopoietic cells have uncovered multiple functions for the small G protein, Rap1 (Ras-proximate-1). Because Rap1 can regulate cell proliferation, differentiation, and adhesion through distinct mechanisms, it serves as a paradigm for the need for tight cellular control of small G-protein function. Rap1 has received recent attention for its role in enhancing integrin-dependent signals. This action of Rap1 augments a variety of processes that characterize hematopoietic-cell function, including aggregation, migration, extravasation, and homing to target tissues. Rap1 may also regulate cellular differentiation and proliferation via pathways that are distinct from those mediating adhesion, and involve regulation of the mitogen-activated protein (MAP) kinase or ERK (extracellular signal-regulated kinase) cascade. These actions of Rap1 occur in selected cell types to enhance or diminish ERK signaling, depending on the expression pattern of the MAP kinase kinase kinases of the Raf family: Raf-1 and B-Raf. This review will examine the functions of Rap1 in hematopoietic cells, and focus on 3 cellular scenarios where the multiple actions of Rap1 function have been proposed. Recent studies implicating Rap1 in the maturation of megakaryocytes, the pathogenesis of chronic myelogenous leukemia (CML), and activation of peripheral T cells will receive particular attention.
Collapse
Affiliation(s)
- Philip J S Stork
- Vollum Institute, L474, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | | |
Collapse
|
30
|
Dillon TJ, Carey KD, Wetzel SA, Parker DC, Stork PJS. Regulation of the small GTPase Rap1 and extracellular signal-regulated kinases by the costimulatory molecule CTLA-4. Mol Cell Biol 2005; 25:4117-28. [PMID: 15870282 PMCID: PMC1087740 DOI: 10.1128/mcb.25.10.4117-4128.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) is activated following engagement of the T-cell receptor and is required for interleukin 2 (IL-2) production and T-cell proliferation. This activation is enhanced by stimulation of the coreceptor CD28 and inhibited by the coreceptor CTLA-4. We show that the small G protein Rap1 is regulated in the opposite manner; it is inhibited by CD28 and activated by CTLA-4. Together, CD3 and CTLA-4 activate Rap1 in a sustained manner. To delineate T-cell function in the absence of Rap1 activity, we generated transgenic mice expressing Rap1GAP1, a Rap1-specific GTPase-activating protein. Transgenic mice showed lymphadenopathy, and transgenic T cells displayed increased ERK activation, proliferation, and IL-2 production. More significantly, the inhibitory effect of CTLA-4 on T-cell function in Rap1GAP1-transgenic T cells was reduced. We demonstrate that CTLA-4 activates Rap1, and we propose that intracellular signals from CTLA-4 antagonize CD28, at least in part, at the level of Rap1.
Collapse
Affiliation(s)
- Tara J Dillon
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Rap1 is a member of the Ras family of GTPases and, depending on the cellular context, has an important role in the regulation of proliferation or cell adhesion. In lymphohematopoietic tissues, SPA-1 is a principal Rap1 GTPase-activating protein. Mice that are deficient for the SPA-1 gene develop age-dependent progression of T-cell immunodeficiency followed by a spectrum of late onset myeloproliferative disorders, mimicking human chronic myeloid leukemia. Recent studies reveal that deregulated Rap1 activation in SPA-1-deficient mice causes enhanced expansion of the bone marrow hematopoietic progenitors, but induces progressive unresponsiveness or anergy in T cells. Rap1 and its regulator, SPA-1, could, therefore, provide unique molecular targets for the control of human hematologic malignancy.
Collapse
Affiliation(s)
- Kohei Kometani
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
32
|
Kinashi T, Katagiri K. Regulation of lymphocyte adhesion and migration by the small GTPase Rap1 and its effector molecule, RAPL. Immunol Lett 2004; 93:1-5. [PMID: 15134891 DOI: 10.1016/j.imlet.2004.02.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 02/25/2004] [Accepted: 02/26/2004] [Indexed: 11/21/2022]
Abstract
Dynamic regulation of integrin-mediated adhesion is central to lymphocyte trafficking and antigen recognition. The small GTPase Rap1 is a potent stimulator of leukocyte integrins through modulation of affinity and avidity. In addition, lymphocyte Rap1 has unique abilities to trigger cell polarization and enhance cell motility. These characteristics of Rap1 contribute to adhesive interactions with antigen-presenting cells (APC) and the vascular endothelium. In the process of elucidating the molecular mechanisms of Rap1-mediated integrin activation, we have identified a novel Rap1-binding molecule, regulator of adhesion and cell polarization enriched in lymphoid tissues (RAPL). RAPL is predominantly expressed in immune cells, and mediates Rap1-triggered integrin activation upon TCR engagement and chemokine stimulation. Importantly, Rap1/RAPL signaling cooperatively regulates cell polarization and integrin activation. The linkage between cell polarization and integrin activation through Rap1/RAPL signaling likely provides immune cells with their dynamic trafficking capability.
Collapse
Affiliation(s)
- Tatsuo Kinashi
- Bayer-chair Department of Molecular Immunology and Allergy, Graduate School of Medicine, Kyoto University Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|
33
|
Noda Y, Horikawa S, Furukawa T, Hirai K, Katayama Y, Asai T, Kuwahara M, Katagiri K, Kinashi T, Hattori M, Minato N, Sasaki S. Aquaporin-2 trafficking is regulated by PDZ-domain containing protein SPA-1. FEBS Lett 2004; 568:139-45. [PMID: 15196935 DOI: 10.1016/j.febslet.2004.05.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 05/10/2004] [Indexed: 12/01/2022]
Abstract
Targeted positioning of water channel aquaporin-2 (AQP2) strictly regulates body water homeostasis. Trafficking of AQP2 to the apical membrane is critical to the reabsorption of water in renal collecting ducts. Controlled apical positioning of AQP2 suggests the existence of proteins that interact with AQP2. A biochemical search for AQP2-interacting proteins led to the identification of PDZ-domain containing protein, signal-induced proliferation-associated gene-1 (SPA-1) which is a GTPase-activating protein (GAP) for Rap1. The distribution of SPA-1 coincided with that of AQP2 in renal collecting ducts. The site of colocalization was concomitantly relocated by hydration status. AQP2 trafficking to the apical membrane was inhibited by the SPA-1 mutant lacking Rap1GAP activity and by the constitutively active mutant of Rap1. AQP2 trafficking was impaired in SPA-1-deficient mice. Our results show that SPA-1 directly binds to AQP2 and regulates at least in part AQP2 trafficking.
Collapse
Affiliation(s)
- Yumi Noda
- Department of Homeostasis Medicine and Nephrology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Harazaki M, Kawai Y, Su L, Hamazaki Y, Nakahata T, Minato N, Hattori M. Specific recruitment of SPA-1 to the immunological synapse: involvement of actin-bundling protein actinin. Immunol Lett 2004; 92:221-6. [PMID: 15081616 DOI: 10.1016/j.imlet.2004.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2003] [Revised: 01/07/2004] [Accepted: 01/08/2004] [Indexed: 11/26/2022]
Abstract
SPA-1 is involved in the regulation of T cell activation in response to antigens through the control of Rap1 GTPase signaling. In this study, the subcellular localization of SPA-1 in the T cells was examined by using anti-SPA-1 antibody and GFP-SPA-1. While SPA-1 was detected diffusely at the surface cortical region in the floating unpolarized T cells, it was concentrated at the matrix-adhesion region with dense actin-cytoskeleton. Upon interaction with specific antigen-presenting cells, SPA-1 was highly concentrated at the immunological synapse closely co-localizing with actin. By yeast two-hybrid system, SPA-1 was shown to interact with an actin-bundling protein alpha-actinin, and it was indicated that SPA-1 co-localized with alpha-actinin at the immunological synapse. The results have suggested that SPA-1 in the T cells is selectively recruited to the immunological synapse with dense actin-cytoskeletal reorganization and keeps restraining the levels of Rap1GTP at the local TCR-signaling complex for the T cell activation.
Collapse
Affiliation(s)
- Masashi Harazaki
- Department of Pediatrics, Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Self-reactive T cells that escape negative selection in the thymus must be inactivated in the periphery. Anergy constitutes one means of imposing peripheral tolerance. Anergic T cells are functionally inactivated and unable to initiate a productive response even when antigen is encountered in the presence of full co-stimulation. Recent studies have provided new insights into the mechanisms responsible for the induction and maintenance of T-cell anergy. These studies have helped clarify the nature of the signals that induce tolerance, the cells able to deliver them and the molecular processes that underlie the unresponsive state.
Collapse
Affiliation(s)
- Fernando Macián
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
37
|
Heissmeyer V, Macián F, Im SH, Varma R, Feske S, Venuprasad K, Gu H, Liu YC, Dustin ML, Rao A. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat Immunol 2004; 5:255-65. [PMID: 14973438 DOI: 10.1038/ni1047] [Citation(s) in RCA: 423] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 01/22/2004] [Indexed: 12/12/2022]
Abstract
Sustained calcium signaling induces a state of anergy or antigen unresponsiveness in T cells, mediated through calcineurin and the transcription factor NFAT. We show here that Ca(2+)-induced anergy is a multistep program that is implemented at least partly through proteolytic degradation of specific signaling proteins. Calcineurin increased mRNA and protein of the E3 ubiquitin ligases Itch, Cbl-b and GRAIL and induced expression of Tsg101, the ubiquitin-binding component of the ESCRT-1 endosomal sorting complex. Subsequent stimulation or homotypic cell adhesion promoted membrane translocation of Itch and the related protein Nedd4, resulting in degradation of two key signaling proteins, PKC-theta and PLC-gamma1. T cells from Itch- and Cbl-b-deficient mice were resistant to anergy induction. Anergic T cells showed impaired calcium mobilization after TCR triggering and were unable to maintain a mature immunological synapse, instead showing late disorganization of the outer ring containing lymphocyte function-associated antigen 1. Our results define a complex molecular program that links gene transcription induced by calcium and calcineurin to a paradoxical impairment of signal transduction in anergic T cells.
Collapse
Affiliation(s)
- Vigo Heissmeyer
- Center for Blood Research and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|