1
|
Jamal S, Moin ST, Haider S. Exploring the structural and functional dynamics of trimeric and tetrameric states of influenza encoded PB1-F2 viroporin through molecular dynamics simulations. J Mol Graph Model 2025; 137:108983. [PMID: 40015017 DOI: 10.1016/j.jmgm.2025.108983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/05/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Influenza Viruses have always been a major health concern due to their highly contagious nature. The PB1-F2 viroporin encoded by the influenza A virus is known to be a pro-apoptotic protein involved in cell death induction of the host immune cells. The structural arrangement and the mode of action of PB1-F2 viroporin have not been fully understood yet. Nonetheless, there is limited information on the oligomeric state of PB1-F2 and its possible role in the pore formation which could act as a channel for ion transport. The probable oligomeric structural existences of the viroporin and their channel-like behavior need to be explored in light of experimental reports cited in the literature. In our study, we report on the structural and dynamical properties of the trimeric and tetrameric state of PB1-F2, investigated by molecular dynamics simulations with improved sampling of conformational states as the initial focus of the study is to establish a rationale for their existence in a lipid environment. The simulation study provides detailed information on the mitochondrial membrane permeation pathway which causes the leakage of mitochondrial contents like cytochrome C and induces apoptosis. By focusing on low-order oligomers, trimer, and tetramer, we have identified key pore-forming characteristics that serve as a foundation for understanding the pro-apoptotic activity of PB1-F2. The structural and dynamical properties of these states were evaluated in the light of experimental reports, which reveal the tetrameric form to be the preferable state in the lipid environment, demonstrating superior structural stability, effective channel symmetry, and ion permeation compared to the higher-order oligomers besides trimer including pentameric and hexameric assemblies. The simulation results also explore the typical ion transportation criteria based on finding a less energetic barrier for ions/water molecules crossing the membrane.
Collapse
Affiliation(s)
- Sehrish Jamal
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Syed Tarique Moin
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Shozeb Haider
- UCL School of Pharmacy, London, WC1N 1AX, United Kingdom; UCL Centre for Advanced Research Computing, University College London, WC1H 9RL, United Kingdom.
| |
Collapse
|
2
|
Karimullina E, Guo Y, Khan HM, Emde T, Quade B, Di Leo R, Otwinowski Z, Tieleman DP, Borek D, Savchenko A. Structural architecture of TolQ-TolR inner membrane protein complex from opportunistic pathogen Acinetobacter baumannii. SCIENCE ADVANCES 2025; 11:eadq9845. [PMID: 40184442 PMCID: PMC11970459 DOI: 10.1126/sciadv.adq9845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
Gram-negative bacteria harness the proton motive force (PMF) within their inner membrane (IM) to uphold cell envelope integrity, an indispensable aspect for both division and survival. The IM TolQ-TolR complex is the essential part of the Tol-Pal system, serving as a conduit for PMF energy transfer to the outer membrane. Here we present cryo-electron microscopy reconstructions of Acinetobacter baumannii TolQ in apo and TolR-bound forms at atomic resolution. The apo TolQ configuration manifests as a symmetric pentameric pore, featuring a transmembrane funnel leading toward a cytoplasmic chamber. In contrast, the TolQ-TolR complex assumes a proton nonpermeable stance, characterized by the TolQ pentamer's flexure to accommodate the TolR dimer, where two protomers undergo a translation-based relationship. Our structure-guided analysis and simulations support the rotor-stator mechanism of action, wherein the rotation of the TolQ pentamer harmonizes with the TolR protomers' interplay. These findings broaden our mechanistic comprehension of molecular stator units empowering critical functions within the Gram-negative bacterial cell envelope.
Collapse
Affiliation(s)
- Elina Karimullina
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
| | - Yirui Guo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Ligo Analytics, 2207 Chunk Ct., Dallas, TX 75206, USA
| | - Hanif M. Khan
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary T2N 1N4, Canada
| | - Tabitha Emde
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bradley Quade
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rosa Di Leo
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
- Department of Chemical Engineering and Applied Sciences, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Zbyszek Otwinowski
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - D. Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary T2N 1N4, Canada
| | - Dominika Borek
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alexei Savchenko
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
| |
Collapse
|
3
|
Liu S, Yang X, Chen X, Zhang X, Jiang J, Yuan J, Liu W, Wang L, Zhou H, Wu K, Tian B, Li X, Xiao B. An intermediate open structure reveals the gating transition of the mechanically activated PIEZO1 channel. Neuron 2025; 113:590-604.e6. [PMID: 39719701 DOI: 10.1016/j.neuron.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
PIEZO1 is a mechanically activated cation channel that undergoes force-induced activation and inactivation. However, its distinct structural states remain undefined. Here, we employed an open-prone PIEZO1-S2472E mutant to capture an intermediate open structure. Compared with the curved and flattened structures of PIEZO1, the S2472E-Intermediate structure displays partially flattened blades, a downward and rotational motion of the top cap, and a spring-like compression of the linker connecting the cap to the pore-lining inner helix. These conformational changes open the cap gate and the hydrophobic transmembrane gate, whereas the intracellular lateral plug gate remains closed. The flattened structure of PIEZO1 with an up-state cap and closed cap gate might represent an inactivated state. Molecular dynamics (MD) simulations of ion conduction support the closed, intermediate open, and inactivated structural states. Mutagenesis and electrophysiological studies identified key domains and residues critical for the mechanical activation of PIEZO1. These studies collectively define the distinct structural states and gating transitions of PIEZO1.
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuzhong Yang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Xudong Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Xiaochun Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jinghui Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Jingyi Yuan
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Wenhao Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Li Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Heng Zhou
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kun Wu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| | - Xueming Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Bailong Xiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Yamamoto E, Joo K, Lee J, Sansom MSP, Yasui M. Molecular mechanism of anion permeation through aquaporin 6. Biophys J 2024; 123:2496-2505. [PMID: 38894539 PMCID: PMC11365104 DOI: 10.1016/j.bpj.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/07/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Aquaporins (AQPs) are recognized as transmembrane water channels that facilitate selective water permeation through their monomeric pores. Among the AQP family, AQP6 has an intriguing characteristic as an anion channel, which is allosterically controlled by pH conditions and is eliminated by a single amino acid mutation. However, the molecular mechanism of anion permeation through AQP6 remains unclear. Using molecular dynamics simulations in the presence of a transmembrane voltage utilizing an ion concentration gradient, we show that chloride ions permeate through the pore corresponding to the central axis of the AQP6 homotetramer. Under low pH conditions, a subtle opening of the hydrophobic selectivity filter (SF), located near the extracellular part of the central pore, becomes wetted and enables anion permeation. Our simulations also indicate that a single mutation (N63G) in human AQP6, located at the central pore, significantly reduces anion conduction, consistent with experimental data. Moreover, we demonstrate that the pH-sensing mechanism in which the protonation of H184 and H189 under low pH conditions allosterically triggers the gating of the SF region. These results suggest a unique pH-dependent allosteric anion permeation mechanism in AQP6 and could clarify the role of the central pore in some of the AQP tetramers.
Collapse
Affiliation(s)
- Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa, Japan.
| | - Keehyoung Joo
- Center for Advanced Computation, Korea Institute for Advanced Study, Seoul, Korea
| | - Jooyoung Lee
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Karimullina E, Guo Y, Khan HM, Emde T, Quade B, Leo RD, Otwinowski Z, Tieleman Peter D, Borek D, Savchenko A. Structural architecture of TolQ-TolR inner membrane protein complex from opportunistic pathogen Acinetobacter baumannii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599759. [PMID: 38948712 PMCID: PMC11212960 DOI: 10.1101/2024.06.19.599759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Gram-negative bacteria harness the proton motive force (PMF) within their inner membrane (IM) to uphold the integrity of their cell envelope, an indispensable aspect for both division and survival. The IM TolQ-TolR complex is the essential part of the Tol-Pal system, serving as a conduit for PMF energy transfer to the outer membrane. Here we present cryo-EM reconstructions of Acinetobacter baumannii TolQ in apo and TolR- bound forms at atomic resolution. The apo TolQ configuration manifests as a symmetric pentameric pore, featuring a trans-membrane funnel leading towards a cytoplasmic chamber. In contrast, the TolQ-TolR complex assumes a proton non-permeable stance, characterized by the TolQ pentamer's flexure to accommodate the TolR dimer, where two protomers undergo a translation-based relationship. Our structure-guided analysis and simulations support the rotor-stator mechanism of action, wherein the rotation of the TolQ pentamer harmonizes with the TolR protomers' interplay. These findings broaden our mechanistic comprehension of molecular stator units empowering critical functions within the Gram-negative bacterial cell envelope. Teaser Apo TolQ and TolQ-TolR structures depict structural rearrangements required for cell envelope organization in bacterial cell division.
Collapse
|
6
|
Trofimov YA, Krylov NA, Minakov AS, Nadezhdin KD, Neuberger A, Sobolevsky AI, Efremov RG. Dynamic molecular portraits of ion-conducting pores characterize functional states of TRPV channels. Commun Chem 2024; 7:119. [PMID: 38824263 PMCID: PMC11144267 DOI: 10.1038/s42004-024-01198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024] Open
Abstract
Structural biology is solving an ever-increasing number of snapshots of ion channel conformational ensembles. Deciphering ion channel mechanisms, however, requires understanding the ensemble dynamics beyond the static structures. Here, we present a molecular modeling-based approach characterizing the ion channel structural intermediates, or their "dynamic molecular portraits", by assessing water and ion conductivity along with the detailed evaluation of pore hydrophobicity and residue packing. We illustrate the power of this approach by analyzing structures of few vanilloid-subfamily transient receptor potential (TRPV) channels. Based on the pore architecture, there are three major states that are common for TRPVs, which we call α-closed, π-closed, and π-open. We show that the pore hydrophobicity and residue packing for the open state is most favorable for the pore conductance. On the contrary, the α-closed state is the most hydrophobic and always non-conducting. Our approach can also be used for structural and functional classification of ion channels.
Collapse
Affiliation(s)
- Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
7
|
Jojoa-Cruz S, Dubin AE, Lee WH, Ward AB. Structure-guided mutagenesis of OSCAs reveals differential activation to mechanical stimuli. eLife 2024; 12:RP93147. [PMID: 38592763 PMCID: PMC11003742 DOI: 10.7554/elife.93147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.
Collapse
Affiliation(s)
- Sebastian Jojoa-Cruz
- Department of Integrative Structural and Computational Biology, Scripps ResearchLa JollaUnited States
| | - Adrienne E Dubin
- Department of Integrative Structural and Computational Biology, Scripps ResearchLa JollaUnited States
- Department of Neuroscience, Scripps ResearchLa JollaUnited States
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, Scripps ResearchLa JollaUnited States
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps ResearchLa JollaUnited States
| |
Collapse
|
8
|
Jojoa-Cruz S, Dubin AE, Lee WH, Ward A. Structure-guided mutagenesis of OSCAs reveals differential activation to mechanical stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560740. [PMID: 37873218 PMCID: PMC10592937 DOI: 10.1101/2023.10.03.560740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension1. Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e., they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). In an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization2. Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.
Collapse
Affiliation(s)
- Sebastian Jojoa-Cruz
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, USA
| | - Adrienne E. Dubin
- Department of Neuroscience, Scripps Research, La Jolla, California 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, USA
| | - Andrew Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, USA
| |
Collapse
|
9
|
Kumari M, Khatoon N, Sharma R, Adusumilli S, Auerbach A, Kashyap HK, Nayak TK. Mechanism of hydrophobic gating in the acetylcholine receptor channel pore. J Gen Physiol 2024; 156:e202213189. [PMID: 38153395 PMCID: PMC10757554 DOI: 10.1085/jgp.202213189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
Neuromuscular acetylcholine receptors (AChRs) are hetero-pentameric, ligand-gated ion channels. The binding of the neurotransmitter acetylcholine (ACh) to two target sites promotes a global conformational change of the receptor that opens the channel and allows ion conduction through the channel pore. Here, by measuring free-energy changes from single-channel current recordings and using molecular dynamics simulations, we elucidate how a constricted hydrophobic region acts as a "gate" to regulate the channel opening in the pore of AChRs. Mutations of gate residues, including those implicated in congenital myasthenia syndrome, lower the permeation barrier of the channel substantially and increase the unliganded gating equilibrium constant (constitutive channel openings). Correlations between hydrophobicity and the observed free-energy changes, supported by calculations of water densities in the wild-type versus mutant channel pores, provide evidence for hydrophobic wetting-dewetting transition at the gate. The analysis of a coupled interaction network provides insight into the molecular mechanism of closed- versus open-state conformational changes at the gate. Studies of the transition state by "phi"(φ)-value analysis indicate that agonist binding serves to stabilize both the transition and the open state. Intersubunit interaction energy measurements and molecular dynamics simulations suggest that channel opening involves tilting of the pore-lining M2 helices, asymmetric outward rotation of amino acid side chains, and wetting transition of the gate region that lowers the barrier to ion permeation and stabilizes the channel open conformation. Our work provides new insight into the hydrophobic gate opening and shows why the gate mutations result in constitutive AChR channel activity.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Nadira Khatoon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Rachita Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Sushanth Adusumilli
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Anthony Auerbach
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Tapan K. Nayak
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
10
|
Melancon K, Pliushcheuskaya P, Meiler J, Künze G. Targeting ion channels with ultra-large library screening for hit discovery. Front Mol Neurosci 2024; 16:1336004. [PMID: 38249296 PMCID: PMC10796734 DOI: 10.3389/fnmol.2023.1336004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Ion channels play a crucial role in a variety of physiological and pathological processes, making them attractive targets for drug development in diseases such as diabetes, epilepsy, hypertension, cancer, and chronic pain. Despite the importance of ion channels in drug discovery, the vastness of chemical space and the complexity of ion channels pose significant challenges for identifying drug candidates. The use of in silico methods in drug discovery has dramatically reduced the time and cost of drug development and has the potential to revolutionize the field of medicine. Recent advances in computer hardware and software have enabled the screening of ultra-large compound libraries. Integration of different methods at various scales and dimensions is becoming an inevitable trend in drug development. In this review, we provide an overview of current state-of-the-art computational chemistry methodologies for ultra-large compound library screening and their application to ion channel drug discovery research. We discuss the advantages and limitations of various in silico techniques, including virtual screening, molecular mechanics/dynamics simulations, and machine learning-based approaches. We also highlight several successful applications of computational chemistry methodologies in ion channel drug discovery and provide insights into future directions and challenges in this field.
Collapse
Affiliation(s)
- Kortney Melancon
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | | | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Medical Faculty, Institute for Drug Discovery, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
| | - Georg Künze
- Medical Faculty, Institute for Drug Discovery, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| |
Collapse
|
11
|
Huang J, Chen J. Hydrophobic gating in bundle-crossing ion channels: a case study of TRPV4. Commun Biol 2023; 6:1094. [PMID: 37891195 PMCID: PMC10611814 DOI: 10.1038/s42003-023-05471-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Transmembrane ion channels frequently regulate ion permeation by forming bundle crossing of the pore-lining helices when deactivated. The resulting physical constriction is believed to serve as the de facto gate that imposes the major free energy barrier to ion permeation. Intriguingly, many ion channels also contain highly hydrophobic inner pores enclosed by bundle crossing, which can undergo spontaneous dewetting and give rise to a "vapor barrier" to block ion flow even in the absence of physical constriction. Using atomistic simulations, we show that hydrophobic gating and bundle-crossing mechanisms co-exist and complement one and another in the human TRPV4 channel. In particular, a single hydrophilic mutation in the lower pore can increase pore hydration and reduce the ion permeation free energy barrier by about half without affecting the bundle crossing. We believe that hydrophobic gating may play a key role in other bundle-crossing ion channels with hydrophobic inner pores.
Collapse
Affiliation(s)
- Jian Huang
- Department of Chemistry University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Jianhan Chen
- Department of Chemistry University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
12
|
Medeiros-Silva J, Dregni AJ, Somberg NH, Duan P, Hong M. Atomic structure of the open SARS-CoV-2 E viroporin. SCIENCE ADVANCES 2023; 9:eadi9007. [PMID: 37831764 PMCID: PMC10575589 DOI: 10.1126/sciadv.adi9007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
The envelope (E) protein of the SARS-CoV-2 virus forms cation-conducting channels in the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of infected cells. The calcium channel activity of E is associated with the inflammatory responses of COVID-19. Using solid-state NMR (ssNMR) spectroscopy, we have determined the open-state structure of E's transmembrane domain (ETM) in lipid bilayers. Compared to the closed state, open ETM has an expansive water-filled amino-terminal chamber capped by key glutamate and threonine residues, a loose phenylalanine aromatic belt in the middle, and a constricted polar carboxyl-terminal pore filled with an arginine and a threonine residue. This structure gives insights into how protons and calcium ions are selected by ETM and how they permeate across the hydrophobic gate of this viroporin.
Collapse
Affiliation(s)
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
13
|
Giacomello A. What keeps nanopores boiling. J Chem Phys 2023; 159:110902. [PMID: 37724724 DOI: 10.1063/5.0167530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
The liquid-to-vapor transition can occur under unexpected conditions in nanopores, opening the door to fundamental questions and new technologies. The physics of boiling in confinement is progressively introduced, starting from classical nucleation theory, passing through nanoscale effects, and terminating with the material and external parameters that affect the boiling conditions. The relevance of boiling in specific nanoconfined systems is discussed, focusing on heterogeneous lyophobic systems, chromatographic columns, and ion channels. The current level of control of boiling in nanopores enabled by microporous materials such as metal organic frameworks and biological nanopores paves the way to thrilling theoretical challenges and to new technological opportunities in the fields of energy, neuromorphic computing, and sensing.
Collapse
Affiliation(s)
- Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy
| |
Collapse
|
14
|
Hu Z, Zheng X, Yang J. Conformational trajectory of allosteric gating of the human cone photoreceptor cyclic nucleotide-gated channel. Nat Commun 2023; 14:4284. [PMID: 37463923 DOI: 10.1038/s41467-023-39971-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) channels transduce chemical signals into electrical signals in sensory receptors and neurons. They are activated by cGMP or cAMP, which bind to the cyclic nucleotide-binding domain (CNBD) to open a gate located 50-60 Å away in the central cavity. Structures of closed and open vertebrate CNG channels have been solved, but the conformational landscape of this allosteric gating remains to be elucidated and enriched. Here, we report structures of the cGMP-activated human cone photoreceptor CNGA3/CNGB3 channel in closed, intermediate, pre-open and open states in detergent or lipid nanodisc, all with fully bound cGMP. The pre-open and open states are obtained only in the lipid nanodisc, suggesting a critical role of lipids in tuning the energetic landscape of CNGA3/CNGB3 activation. The different states exhibit subunit-unique, incremental and distinct conformational rearrangements that originate in the CNBD, propagate through the gating ring to the transmembrane domain, and gradually open the S6 cavity gate. Our work illustrates a spatial conformational-change wave of allosteric gating of a vertebrate CNG channel by its natural ligand and provides an expanded framework for studying CNG properties and channelopathy.
Collapse
Affiliation(s)
- Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Xiangdong Zheng
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
15
|
Chu Y, Zhang H, Yang M, Yu R. Molecular Dynamic Simulations Reveal the Activation Mechanisms of Oxidation-Induced TRPV1. Int J Mol Sci 2023; 24:ijms24119553. [PMID: 37298504 DOI: 10.3390/ijms24119553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel, can be directly activated by oxidants through cysteine modification. However, the patterns of cysteine modification are unclear. Structural analysis showed that the free sulfhydryl groups of residue pairs C387 and C391 were potentially oxidized to form a disulfide bond, which is expected to be closely related to the redox sensing of TRPV1. To investigate if and how the redox states of C387 and C391 activate TRPV1, homology modeling and accelerated molecular dynamic simulations were performed. The simulation revealed the conformational transfer during the opening or closing of the channel. The formation of a disulfide bond between C387 and C391 leads to the motion of pre-S1, which further propagates conformational change to TRP, S6, and the pore helix from near to far. Residues D389, K426, E685-Q691, T642, and T671 contribute to the hydrogen bond transfer and play essential roles in the opening of the channel. The reduced TRPV1 was inactivated mainly by stabilizing the closed conformation. Our study elucidated the redox state of C387-C391 mediated long-range allostery of TRPV1, which provided new insights into the activation mechanism of TRPV1 and is crucial for making significant advances in the treatment of human diseases.
Collapse
Affiliation(s)
- Yanyan Chu
- Marine Biomedical Research Institute of Qingdao, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China
| | - Huanhuan Zhang
- Marine Biomedical Research Institute of Qingdao, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Mengke Yang
- Marine Biomedical Research Institute of Qingdao, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Rilei Yu
- Marine Biomedical Research Institute of Qingdao, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China
| |
Collapse
|
16
|
Arai N, Yamamoto E, Koishi T, Hirano Y, Yasuoka K, Ebisuzaki T. Wetting hysteresis induces effective unidirectional water transport through a fluctuating nanochannel. NANOSCALE HORIZONS 2023; 8:652-661. [PMID: 36883765 DOI: 10.1039/d2nh00563h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We propose a water pump that actively transports water molecules through nanochannels. Spatially asymmetric noise fluctuations imposed on the channel radius cause unidirectional water flow without osmotic pressure, which can be attributed to hysteresis in the cyclic transition between the wetting/drying states. We show that the water transport depends on fluctuations, such as white, Brownian, and pink noises. Because of the high-frequency components in white noise, fast switching of open and closed states inhibits channel wetting. Conversely, pink and Brownian noises generate high-pass filtered net flow. Brownian fluctuation leads to a faster water transport rate, whereas pink noise has a higher capability to overcome pressure differences in the opposite direction. A trade-off relationship exists between the resonant frequency of the fluctuation and the flow amplification. The proposed pump can be considered as an analogy for the reversed Carnot cycle, which is the upper limit of the energy conversion efficiency.
Collapse
Affiliation(s)
- Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
- Computational Astrophysics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, 223-8522, Japan
| | - Takahiro Koishi
- Department of Applied Physics, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Yoshinori Hirano
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
| | | |
Collapse
|
17
|
Gu RX, de Groot BL. Central cavity dehydration as a gating mechanism of potassium channels. Nat Commun 2023; 14:2178. [PMID: 37069187 PMCID: PMC10110622 DOI: 10.1038/s41467-023-37531-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/21/2023] [Indexed: 04/19/2023] Open
Abstract
The hydrophobic gating model, in which ion permeation is inhibited by the hydrophobicity, rather than a physical occlusion of the nanopore, functions in various ion channels including potassium channels. Available research focused on the energy barriers for ion/water conduction due to the hydrophobicity, whereas how hydrophobic gating affects the function and structure of channels remains unclear. Here, we use potassium channels as examples and conduct molecular dynamics simulations to investigate this problem. Our simulations find channel activities (ion currents) highly correlated with cavity hydration level, implying insufficient hydration as a barrier for ion permeation. Enforced cavity dehydration successfully induces conformational transitions between known channel states, further implying cavity dewetting as a key step in the gating procedure of potassium channels utilizing different activation mechanisms. Our work reveals how the cavity dewetting is coupled to structural changes of potassium channels and how it affects channel activity. The conclusion may also apply to other ion channels.
Collapse
Affiliation(s)
- Ruo-Xu Gu
- School of Life Sciences and Biotechnology, Shanghai Jia Tong University, 800 Dongchuan Road, 200240, Shanghai, China
- Department of Theoretical and Computational Biophysics, Max-Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Bert L de Groot
- Department of Theoretical and Computational Biophysics, Max-Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
18
|
Gibbs E, Klemm E, Seiferth D, Kumar A, Ilca SL, Biggin PC, Chakrapani S. Conformational transitions and allosteric modulation in a heteromeric glycine receptor. Nat Commun 2023; 14:1363. [PMID: 36914669 PMCID: PMC10011588 DOI: 10.1038/s41467-023-37106-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Glycine Receptors (GlyRs) provide inhibitory neuronal input in the spinal cord and brainstem, which is critical for muscle coordination and sensory perception. Synaptic GlyRs are a heteromeric assembly of α and β subunits. Here we present cryo-EM structures of full-length zebrafish α1βBGlyR in the presence of an antagonist (strychnine), agonist (glycine), or agonist with a positive allosteric modulator (glycine/ivermectin). Each structure shows a distinct pore conformation with varying degrees of asymmetry. Molecular dynamic simulations found the structures were in a closed (strychnine) and desensitized states (glycine and glycine/ivermectin). Ivermectin binds at all five interfaces, but in a distinct binding pose at the β-α interface. Subunit-specific features were sufficient to solve structures without a fiduciary marker and to confirm the 4α:1β stoichiometry recently observed. We also report features of the extracellular and intracellular domains. Together, our results show distinct compositional and conformational properties of α1βGlyR and provide a framework for further study of this physiologically important channel.
Collapse
Affiliation(s)
- Eric Gibbs
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Emily Klemm
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - David Seiferth
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Arvind Kumar
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Serban L Ilca
- New York Structural Biology Center, New York, NY, 10027, USA
- Simons Electron Microscopy Center, New York, NY, 10027, USA
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
19
|
Brünger T, Pérez-Palma E, Montanucci L, Nothnagel M, Møller RS, Schorge S, Zuberi S, Symonds J, Lemke JR, Brunklaus A, Traynelis SF, May P, Lal D. Conserved patterns across ion channels correlate with variant pathogenicity and clinical phenotypes. Brain 2023; 146:923-934. [PMID: 36036558 PMCID: PMC9976975 DOI: 10.1093/brain/awac305] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Clinically identified genetic variants in ion channels can be benign or cause disease by increasing or decreasing the protein function. As a consequence, therapeutic decision-making is challenging without molecular testing of each variant. Our biophysical knowledge of ion-channel structures and function is just emerging, and it is currently not well understood which amino acid residues cause disease when mutated. We sought to systematically identify biological properties associated with variant pathogenicity across all major voltage and ligand-gated ion-channel families. We collected and curated 3049 pathogenic variants from hundreds of neurodevelopmental and other disorders and 12 546 population variants for 30 ion channel or channel subunits for which a high-quality protein structure was available. Using a wide range of bioinformatics approaches, we computed 163 structural features and tested them for pathogenic variant enrichment. We developed a novel 3D spatial distance scoring approach that enables comparisons of pathogenic and population variant distribution across protein structures. We discovered and independently replicated that several pore residue properties and proximity to the pore axis were most significantly enriched for pathogenic variants compared to population variants. Using our 3D scoring approach, we showed that the strongest pathogenic variant enrichment was observed for pore-lining residues and alpha-helix residues within 5Å distance from the pore axis centre and not involved in gating. Within the subset of residues located at the pore, the hydrophobicity of the pore was the feature most strongly associated with variant pathogenicity. We also found an association between the identified properties and both clinical phenotypes and functional in vitro assays for voltage-gated sodium channels (SCN1A, SCN2A, SCN8A) and N-methyl-D-aspartate receptor (GRIN1, GRIN2A, GRIN2B) encoding genes. In an independent expert-curated dataset of 1422 neurodevelopmental disorder pathogenic patient variants and 679 electrophysiological experiments, we show that pore axis distance is associated with seizure age of onset and cognitive performance as well as differential gain versus loss-of-channel function. In summary, we identified biological properties associated with ion-channel malfunction and show that these are correlated with in vitro functional readouts and clinical phenotypes in patients with neurodevelopmental disorders. Our results suggest that clinical decision support algorithms that predict variant pathogenicity and function are feasible in the future.
Collapse
Affiliation(s)
- Tobias Brünger
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Eduardo Pérez-Palma
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago 7590943, Chile
| | - Ludovica Montanucci
- Lerner Research Institute Cleveland Clinic, Genomic Medicine Institute, Cleveland, OH 44195, USA
| | - Michael Nothnagel
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
- University Hospital Cologne, 50937 Cologne, Germany
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, the Danish Epilepsy Center, DK 4293 Dianalund, Denmark
| | - Stephanie Schorge
- Department of Neuroscience, Physiology and Pharmacology, UCL, London WC1E 6BT, UK
| | - Sameer Zuberi
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, UK
| | - Joseph Symonds
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, UK
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Andreas Brunklaus
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, UK
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322-3090, USA
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
- Lerner Research Institute Cleveland Clinic, Genomic Medicine Institute, Cleveland, OH 44195, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
20
|
Trofimov YA, Minakov AS, Krylov NA, Efremov RG. Structural Mechanism of Ionic Conductivity of the TRPV1 Channel. DOKL BIOCHEM BIOPHYS 2023; 508:1-5. [PMID: 36653581 PMCID: PMC10042956 DOI: 10.1134/s1607672922600245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023]
Abstract
The so-called "hydrophobic gating" is widely discussed as a putative mechanism to control water and ion conduction via ion channels. This effect can occur in narrow areas of the channels pore lined by non-polar residues. In the closed state of the channel, such regions may spontaneously transit to a dehydrated state to block water and ions transport without full pore occlusion. In the open state, the hydrophobic gate is wide enough to provide sustainable hydration and conduction. Apparently, the transport through the open hydrophobic gate may by facilitated by some polar residues that assist polar/charged substances to overcome the energy barrier created by nonpolar environment. In this work, we investigated the behavior of Na+ ions and their hydration shells in the open pore of the rat TRPV1 ion channel by molecular dynamics simulations. We show that polar protein groups coordinate water molecules in such a way as to restore the hydration shell of ions in the hydrophobic gate that ensures ion transport through the gate in a fully hydrated state.
Collapse
Affiliation(s)
- Yu A Trofimov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia. .,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia.
| | | | - N A Krylov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,National Research University Higher School of Economics, Moscow, Russia
| | - R G Efremov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,National Research University Higher School of Economics, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
21
|
Zeng ZW, Linsdell P, Pomès R. Molecular dynamics study of Cl - permeation through cystic fibrosis transmembrane conductance regulator (CFTR). Cell Mol Life Sci 2023; 80:51. [PMID: 36694009 PMCID: PMC9873711 DOI: 10.1007/s00018-022-04621-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 01/25/2023]
Abstract
The recent elucidation of atomistic structures of Cl- channel CFTR provides opportunities for understanding the molecular basis of cystic fibrosis. Despite having been activated through phosphorylation and provided with ATP ligands, several near-atomistic cryo-EM structures of CFTR are in a closed state, as inferred from the lack of a continuous passage through a hydrophobic bottleneck region located in the extracellular portion of the pore. Here, we present repeated, microsecond-long molecular dynamics simulations of human CFTR solvated in a lipid bilayer and aqueous NaCl. At equilibrium, Cl- ions enter the channel through a lateral intracellular portal and bind to two distinct cationic sites inside the channel pore but do not traverse the narrow, de-wetted bottleneck. Simulations conducted in the presence of a strong hyperpolarizing electric field led to spontaneous Cl- translocation events through the bottleneck region of the channel, suggesting that the protein relaxed to a functionally open state. Conformational changes of small magnitude involving transmembrane helices 1 and 6 preceded ion permeation through diverging exit routes at the extracellular end of the pore. The pore bottleneck undergoes wetting prior to Cl- translocation, suggesting that it acts as a hydrophobic gate. Although permeating Cl- ions remain mostly hydrated, partial dehydration occurs at the binding sites and in the bottleneck. The observed Cl- pathway is largely consistent with the loci of mutations that alter channel conductance, anion binding, and ion selectivity, supporting the model of the open state of CFTR obtained in the present study.
Collapse
Affiliation(s)
- Zhi Wei Zeng
- Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 1X5, Canada
| | - Régis Pomès
- Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
22
|
Abstract
The flux of ions through a channel is most commonly regulated by changes that result in steric occlusion of its pore. However, ion permeation can also be prevented by formation of a desolvation barrier created by hydrophobic residues that line the pore. As a result of relatively minor structural changes, confined hydrophobic regions in channels may undergo transitions between wet and dry states to gate the pore closed without physical constriction of the permeation pathway. This concept is referred to as hydrophobic gating, and many examples of this process have been demonstrated. However, the term is also now being used in a much broader context that often deviates from its original meaning. In this Viewpoint, we explore the formal definition of a hydrophobic gate, discuss examples of this process compared with other gating mechanisms that simply exploit hydrophobic residues and/or lipids in steric closure of the pore, and describe the best practice for identification of a hydrophobic gate.
Collapse
Affiliation(s)
- David Seiferth
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Yin Y, Zhang F, Feng S, Butay KJ, Borgnia MJ, Im W, Lee SY. Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP 2. Science 2022; 378:eadd1268. [PMID: 36227998 PMCID: PMC9795508 DOI: 10.1126/science.add1268] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The transient receptor potential melastatin 8 (TRPM8) channel is the primary molecular transducer responsible for the cool sensation elicited by menthol and cold in mammals. TRPM8 activation is controlled by cooling compounds together with the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Our knowledge of cold sensation and the therapeutic potential of TRPM8 for neuroinflammatory diseases and pain will be enhanced by understanding the structural basis of cooling agonist- and PIP2-dependent TRPM8 activation. We present cryo-electron microscopy structures of mouse TRPM8 in closed, intermediate, and open states along the ligand- and PIP2-dependent gating pathway. Our results uncover two discrete agonist sites, state-dependent rearrangements in the gate positions, and a disordered-to-ordered transition of the gate-forming S6-elucidating the molecular basis of chemically induced cool sensation in mammals.
Collapse
Affiliation(s)
- Ying Yin
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Feng Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shasha Feng
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Kevin John Butay
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Mario J. Borgnia
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.,Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.,Correspondence to: S.-Y. Lee, , telephone: 919-684-1005
| |
Collapse
|
24
|
Structural model for ligand binding and channel opening of an insect gustatory receptor. J Biol Chem 2022; 298:102573. [PMID: 36209821 PMCID: PMC9643425 DOI: 10.1016/j.jbc.2022.102573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Insect gustatory receptors play roles in sensing tastants, such as sugars and bitter substances. We previously demonstrated that the BmGr9 silkworm gustatory receptor is a d-fructose–gated ion channel receptor. However, the molecular mechanism of how d-fructose could initiate channel opening were unclear. Herein, we present a structural model for a channel pore and a d-fructose–binding site in BmGr9. Since the membrane topology and oligomeric state of BmGr9 appeared to be similar to those of an insect odorant receptor coreceptor, Orco, we constructed a structural model of BmGr9 based on the cryo-EM Orco structure. Our site-directed mutagenesis data suggested that the transmembrane region 7 forms channel pore and controls channel gating. This model also suggested that a pocket formed by transmembrane helices 2 to 4 and 6 binds d-fructose. Using mutagenesis experiments in combination with docking simulations, we were able to determine the potent binding mode of d-fructose. Finally, based on these data, we propose a conformational change that leads to channel opening upon d-fructose binding. Taken together, these findings detail the molecular mechanism by which an insect gustatory receptor can be activated by its ligand molecule.
Collapse
|
25
|
Nordquist EB, Schultz SA, Chen J. Using Metadynamics To Explore the Free Energy of Dewetting in Biologically Relevant Nanopores. J Phys Chem B 2022; 126:6428-6437. [PMID: 35998613 PMCID: PMC9932947 DOI: 10.1021/acs.jpcb.2c04157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Water confined within hydrophobic spaces can undergo cooperative dewetting transitions due to slight changes in water density and pressure that push water toward the vapor phase. Many transmembrane protein ion channels contain nanoscale hydrophobic pores that could undergo dewetting transitions, sometimes blocking the flow of ions without physical blockages. Standard molecular dynamics simulations have been extensively applied to study the behavior of water in nanoscale pores, but the large free energy barriers of dewetting often prevent direct sampling of both wet and dry states and quantitative studies of the hydration thermodynamics of biologically relevant pores. Here, we describe a metadynamics protocol that uses the number of waters within the pore as the collective variable to drive many reversible transitions between relevant hydration states and calculate well-converged free energy profiles of pore hydration. By creating model nanopore systems and changing their radius and morphology and including various cosolvents, we quantify how these pore properties and cosolvents affect the dewetting transition. The results reveal that the dewetting free energy of nanoscale pores is determined by two key thermodynamic parameters, namely, the effective surface tension coefficients of water-air and water-pore interfaces. Importantly, while the effect of salt can be fully captured in the water activity dependence, amphipathic cosolvents such as alcohols modify both dry and wet states of the pore and dramatically shift the wet-dry equilibrium. The metadynamics approach could be applied to studies of dewetting transitions within nanoscale pores of proteins and provide new insights into why different pore properties evolved in biological systems.
Collapse
Affiliation(s)
- Erik B. Nordquist
- Department of Chemistry, University of Massachusetts, Amherst Massachusetts, USA 01003
| | - Samantha A. Schultz
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst Massachusetts, USA 01003
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst Massachusetts, USA 01003
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst Massachusetts, USA 01003
| |
Collapse
|
26
|
Kumar A, Kindig K, Rao S, Zaki AM, Basak S, Sansom MSP, Biggin PC, Chakrapani S. Structural basis for cannabinoid-induced potentiation of alpha1-glycine receptors in lipid nanodiscs. Nat Commun 2022; 13:4862. [PMID: 35982060 PMCID: PMC9388682 DOI: 10.1038/s41467-022-32594-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Nociception and motor coordination are critically governed by glycine receptor (GlyR) function at inhibitory synapses. Consequentially, GlyRs are attractive targets in the management of chronic pain and in the treatment of several neurological disorders. High-resolution mechanistic details of GlyR function and its modulation are just emerging. While it has been known that cannabinoids such as Δ9-tetrahydrocannabinol (THC), the principal psychoactive constituent in marijuana, potentiate GlyR in the therapeutically relevant concentration range, the molecular mechanism underlying this effect is still not understood. Here, we present Cryo-EM structures of full-length GlyR reconstituted into lipid nanodisc in complex with THC under varying concentrations of glycine. The GlyR-THC complexes are captured in multiple conformational states that reveal the basis for THC-mediated potentiation, manifested as different extents of opening at the level of the channel pore. Taken together, these structural findings, combined with molecular dynamics simulations and functional analysis, provide insights into the potential THC binding site and the allosteric coupling to the channel pore.
Collapse
Affiliation(s)
- Arvind Kumar
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kayla Kindig
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Sandip Basak
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
27
|
Acharya A, Prajapati JD, Kleinekathöfer U. Atomistic Simulation of Molecules Interacting with Biological Nanopores: From Current Understanding to Future Directions. J Phys Chem B 2022; 126:3995-4008. [PMID: 35616602 DOI: 10.1021/acs.jpcb.2c01173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological nanopores have been at the focus of numerous studies due to their role in many biological processes as well as their (prospective) technological applications. Among many other topics, recent studies on nanopores have addressed two key areas: antibiotic permeation through bacterial channels and sensing of analytes. Although the two areas are quite far apart in terms of their objectives, in both cases atomistic simulations attempt to understand the solute dynamics and the solute-protein interactions within the channel lumen. While decades of studies on various channels have culminated in an improved understanding of the key molecular factors and led to practical applications in some cases, successful utilization is limited. In this Perspective we summarize recent progress in understanding key issues in molecular simulations of antibiotic translocation and in the development of nanopore sensors. Moreover, we comment on possible advancements in computational algorithms that can potentially resolve some of the issues.
Collapse
Affiliation(s)
- Abhishek Acharya
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | | | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
28
|
Kwon DH, Zhang F, Fedor JG, Suo Y, Lee SY. Vanilloid-dependent TRPV1 opening trajectory from cryoEM ensemble analysis. Nat Commun 2022; 13:2874. [PMID: 35610228 PMCID: PMC9130279 DOI: 10.1038/s41467-022-30602-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
Single particle cryo-EM often yields multiple protein conformations within a single dataset, but experimentally deducing the temporal relationship of these conformers within a conformational trajectory is not trivial. Here, we use thermal titration methods and cryo-EM in an attempt to obtain temporal resolution of the conformational trajectory of the vanilloid receptor TRPV1 with resiniferatoxin (RTx) bound. Based on our cryo-EM ensemble analysis, RTx binding to TRPV1 appears to induce intracellular gate opening first, followed by selectivity filter dilation, then pore loop rearrangement to reach the final open state. This apparent conformational wave likely arises from the concerted, stepwise, additive structural changes of TRPV1 over many subdomains. Greater understanding of the RTx-mediated long-range allostery of TRPV1 could help further the therapeutic potential of RTx, which is a promising drug candidate for pain relief associated with advanced cancer or knee arthritis.
Collapse
Affiliation(s)
- Do Hoon Kwon
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Feng Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Justin G Fedor
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yang Suo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
29
|
Nawafleh S, Qaswal AB, Alali O, Zayed FM, Al-Azzam AM, Al-Kharouf K, Ali MB, Albliwi MA, Al-Hamarsheh R, Iswaid M, Albanna A, Enjadat A, Al-Adwan MAO, Dibbeh K, Shareah EAA, Hamdan A, Suleiman A. Quantum Mechanical Aspects in the Pathophysiology of Neuropathic Pain. Brain Sci 2022; 12:brainsci12050658. [PMID: 35625044 PMCID: PMC9140023 DOI: 10.3390/brainsci12050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Neuropathic pain is a challenging complaint for patients and clinicians since there are no effective agents available to get satisfactory outcomes even though the pharmacological agents target reasonable pathophysiological mechanisms. This may indicate that other aspects in these mechanisms should be unveiled to comprehend the pathogenesis of neuropathic pain and thus find more effective treatments. Therefore, in the present study, several mechanisms are chosen to be reconsidered in the pathophysiology of neuropathic pain from a quantum mechanical perspective. The mathematical model of the ions quantum tunneling model is used to provide quantum aspects in the pathophysiology of neuropathic pain. Three major pathophysiological mechanisms are revisited in the context of the quantum tunneling model. These include: (1) the depolarized membrane potential of neurons; (2) the cross-talk or the ephaptic coupling between the neurons; and (3) the spontaneous neuronal activity and the emergence of ectopic action potentials. We will show mathematically that the quantum tunneling model can predict the occurrence of neuronal membrane depolarization attributed to the quantum tunneling current of sodium ions. Moreover, the probability of inducing an ectopic action potential in the axons of neurons will be calculated and will be shown to be significant and influential. These ectopic action potentials are generated due to the formation of quantum synapses which are assumed to be the mechanism behind the ephaptic transmission. Furthermore, the spontaneous neuronal activity and the emergence of ectopic action potentials independently from any adjacent stimulated neurons are predicted to occur according to the quantum tunneling model. All these quantum mechanical aspects contribute to the overall hyperexcitability of the neurons and to the pathogenesis of neuropathic pain. Additionally, providing a new perspective in the pathophysiology of neuropathic pain may improve our understanding of how the neuropathic pain is generated and maintained and may offer new effective agents that can improve the overall clinical outcomes of the patients.
Collapse
Affiliation(s)
- Sager Nawafleh
- Department of Anesthesia and Intensive Care Unit, The Hashemite University, Zarqa 13115, Jordan;
| | - Abdallah Barjas Qaswal
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
- Correspondence:
| | - Obada Alali
- Department of Anesthesia and Intensive Care, Alabdali Clemenceau Hospital, Amman 11190, Jordan;
| | - Fuad Mohammed Zayed
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | | | - Khaled Al-Kharouf
- Southampton Orthopedics: Centre for Arthroplasty and Revision Surgery, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK;
| | - Mo’ath Bani Ali
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Moath Ahmad Albliwi
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Rawan Al-Hamarsheh
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Mohammad Iswaid
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Ahmad Albanna
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Ahmad Enjadat
- Department of Internship Program, Jordan University Hospital, Amman 11942, Jordan;
| | - Mohammad Abu Orabi Al-Adwan
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Khaled Dibbeh
- Leicester University Hospitals, P.O. Box 7853, Leicester LE1 9WW, UK;
| | - Ez-Aldeen Abu Shareah
- Accident and Emergency Department, The Princess Alexandra Hospital NHS Trust, Hamstel Road, Harlow CM20 1QX, UK;
| | - Anas Hamdan
- Department of Anesthesia and Intensive Care Unit, Istishari Hospital, Amman 11184, Jordan;
| | - Aiman Suleiman
- Department of Anesthesia, Intensive Care and Pain Management, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
| |
Collapse
|
30
|
Phan LX, Lynch CI, Crain J, Sansom MS, Tucker SJ. Influence of effective polarization on ion and water interactions within a biomimetic nanopore. Biophys J 2022; 121:2014-2026. [DOI: 10.1016/j.bpj.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/25/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
|
31
|
The Quantum Tunneling of Ions Model Can Explain the Pathophysiology of Tinnitus. Brain Sci 2022; 12:brainsci12040426. [PMID: 35447958 PMCID: PMC9025927 DOI: 10.3390/brainsci12040426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Tinnitus is a well-known pathological entity in clinical practice. However, the pathophysiological mechanisms behind tinnitus seem to be elusive and cannot provide a comprehensive understanding of its pathogenesis and clinical manifestations. Hence, in the present study, we explore the mathematical model of ions’ quantum tunneling to propose an original pathophysiological mechanism for the sensation of tinnitus. The present model focuses on two major aspects: The first aspect is the ability of ions, including sodium, potassium, and calcium, to depolarize the membrane potential of inner hair cells and the neurons of the auditory pathway. This membrane depolarization is induced via the quantum tunneling of ions through closed voltage-gated channels. The state of membrane depolarization can be a state of hyper-excitability or hypo-excitability, depending on the degree of depolarization. Both of these states aid in understanding the pathophysiology of tinnitus. The second aspect is the quantum tunneling signals between the demyelinated neurons of the auditory pathway. These signals are mediated via the quantum tunneling of potassium ions, which exit to the extracellular fluid during an action potential event. These quantum signals can be viewed as a “quantum synapse” between neurons. The formation of quantum synapses results in hyper-excitability among the demyelinated neurons of the auditory pathway. Both of these aspects augment and amplify the electrical signals in the auditory pathway and result in a loss of the spatiotemporal fidelity of sound signals going to the brain centers. The brain interprets this hyper-excitability and loss of spatiotemporal fidelity as tinnitus. Herein, we show mathematically that the quantum tunneling of ions can depolarize the membrane potential of the inner hair cells and neurons of the auditory pathway. Moreover, we calculate the probability of action potential induction in the neurons of the auditory pathway generated by the quantum tunneling signals of potassium ions.
Collapse
|
32
|
Structural insights into the Venus flytrap mechanosensitive ion channel Flycatcher1. Nat Commun 2022; 13:850. [PMID: 35165281 PMCID: PMC8844309 DOI: 10.1038/s41467-022-28511-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/27/2022] [Indexed: 12/23/2022] Open
Abstract
Flycatcher1 (FLYC1), a MscS homolog, has recently been identified as a candidate mechanosensitive (MS) ion channel involved in Venus flytrap prey recognition. FLYC1 is a larger protein and its sequence diverges from previously studied MscS homologs, suggesting it has unique structural features that contribute to its function. Here, we characterize FLYC1 by cryo-electron microscopy, molecular dynamics simulations, and electrophysiology. Akin to bacterial MscS and plant MSL1 channels, we find that FLYC1 central core includes side portals in the cytoplasmic cage that regulate ion preference and conduction, by identifying critical residues that modulate channel conductance. Topologically unique cytoplasmic flanking regions can adopt ‘up’ or ‘down’ conformations, making the channel asymmetric. Disruption of an up conformation-specific interaction severely delays channel deactivation by 40-fold likely due to stabilization of the channel open state. Our results illustrate novel structural features and likely conformational transitions that regulate mechano-gating of FLYC1. Flycatcher1 (FLYC1) is a candidate mechanosensitive channel involved in Venus flytrap touch-induced prey capture. Here, the authors report structural and functional details of FLYC1, with insights into gating conformational transitions.
Collapse
|
33
|
Guardiani C, Cecconi F, Chiodo L, Cottone G, Malgaretti P, Maragliano L, Barabash ML, Camisasca G, Ceccarelli M, Corry B, Roth R, Giacomello A, Roux B. Computational methods and theory for ion channel research. ADVANCES IN PHYSICS: X 2022; 7:2080587. [PMID: 35874965 PMCID: PMC9302924 DOI: 10.1080/23746149.2022.2080587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023] Open
Abstract
Ion channels are fundamental biological devices that act as gates in order to ensure selective ion transport across cellular membranes; their operation constitutes the molecular mechanism through which basic biological functions, such as nerve signal transmission and muscle contraction, are carried out. Here, we review recent results in the field of computational research on ion channels, covering theoretical advances, state-of-the-art simulation approaches, and frontline modeling techniques. We also report on few selected applications of continuum and atomistic methods to characterize the mechanisms of permeation, selectivity, and gating in biological and model channels.
Collapse
Affiliation(s)
- C. Guardiani
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
| | - F. Cecconi
- CNR - Istituto dei Sistemi Complessi, Rome, Italy and Istituto Nazionale di Fisica Nucleare, INFN, Roma1 section. 00185, Roma, Italy
| | - L. Chiodo
- Department of Engineering, Campus Bio-Medico University, Rome, Italy
| | - G. Cottone
- Department of Physics and Chemistry-Emilio Segrè, University of Palermo, Palermo, Italy
| | - P. Malgaretti
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Erlangen, Germany
| | - L. Maragliano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy, and Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - M. L. Barabash
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
| | - G. Camisasca
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
- Dipartimento di Fisica, Università Roma Tre, Rome, Italy
| | - M. Ceccarelli
- Department of Physics and CNR-IOM, University of Cagliari, Monserrato 09042-IT, Italy
| | - B. Corry
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - R. Roth
- Institut Für Theoretische Physik, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - A. Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
| | - B. Roux
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago IL, USA
| |
Collapse
|
34
|
Lynch CI, Klesse G, Rao S, Tucker SJ, Sansom MSP. Water Nanoconfined in a Hydrophobic Pore: Molecular Dynamics Simulations of Transmembrane Protein 175 and the Influence of Water Models. ACS NANO 2021; 15:19098-19108. [PMID: 34784172 PMCID: PMC7612143 DOI: 10.1021/acsnano.1c06443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Water molecules within biological ion channels are in a nanoconfined environment and therefore exhibit behaviors which differ from that of bulk water. Here, we investigate the phenomenon of hydrophobic gating, the process by which a nanopore may spontaneously dewet to form a "vapor lock" if the pore is sufficiently hydrophobic and/or narrow. This occurs without steric occlusion of the pore. Using molecular dynamics simulations with both rigid fixed-charge and polarizable (AMOEBA) force fields, we investigate this wetting/dewetting behavior in the transmembrane protein 175 ion channel. We examine how a range of rigid fixed-charge and polarizable water models affect wetting/dewetting in both the wild-type structure and in mutants chosen to cover a range of nanopore radii and pore-lining hydrophobicities. Crucially, we find that the rigid fixed-charge water models lead to similar wetting/dewetting behaviors, but that the polarizable water model resulted in an increased wettability of the hydrophobic gating region of the pore. This has significant implications for molecular simulations of nanoconfined water, as it implies that polarizability may need to be included if we are to gain detailed mechanistic insights into wetting/dewetting processes. These findings are of importance for the design of functionalized biomimetic nanopores (e.g., sensing or desalination) as well as for furthering our understanding of the mechanistic processes underlying biological ion channel function.
Collapse
Affiliation(s)
- Charlotte I. Lynch
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK, OX1 3QU
| | - Gianni Klesse
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, UK, OX1 3PU
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK, OX1 3QU
| | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, UK, OX1 3PU
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK, OX1 3QU
| |
Collapse
|
35
|
Guardiani C, Sun D, Giacomello A. Unveiling the Gating Mechanism of CRAC Channel: A Computational Study. Front Mol Biosci 2021; 8:773388. [PMID: 34970596 PMCID: PMC8712694 DOI: 10.3389/fmolb.2021.773388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
CRAC channel is ubiquitous and its importance in the regulation of the immune system is testified by the severe immunodeficiencies caused by its mutations. In this work we took advantage of the availability of open and closed structures of this channel to run for the first time simulations of the whole gating process reaching the relevant time-scale with an enhanced sampling technique, Targeted Molecular Dynamics. Our simulations highlighted a complex allosteric propagation of the conformational change from peripheral helices, where the activator STIM1 binds, to the central pore helices. In agreement with mutagenesis data, our simulations revealed the key role of residue H206 whose displacement creates an empty space behind the hydrophobic region of the pore, thus releasing a steric brake and allowing the opening of the channel. Conversely, the process of pore closing culminates with the formation of a bubble that occludes the pore even in the absence of steric block. This mechanism, known as "hydrophobic gating", has been observed in an increasing number of biological ion channels and also in artificial nanopores. Our study therefore shows promise not only to better understand the molecular origin of diseases caused by disrupted calcium signaling, but also to clarify the mode of action of hydrophobically gated ion channels, possibly even suggesting strategies for the biomimetic design of synthetic nanopores.
Collapse
Affiliation(s)
| | | | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
36
|
Rovšnik U, Zhuang Y, Forsberg BO, Carroni M, Yvonnesdotter L, Howard RJ, Lindahl E. Dynamic closed states of a ligand-gated ion channel captured by cryo-EM and simulations. Life Sci Alliance 2021; 4:e202101011. [PMID: 34210687 PMCID: PMC8326787 DOI: 10.26508/lsa.202101011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022] Open
Abstract
Ligand-gated ion channels are critical mediators of electrochemical signal transduction across evolution. Biophysical and pharmacological characterization of these receptor proteins relies on high-quality structures in multiple, subtly distinct functional states. However, structural data in this family remain limited, particularly for resting and intermediate states on the activation pathway. Here, we report cryo-electron microscopy (cryo-EM) structures of the proton-activated Gloeobacter violaceus ligand-gated ion channel (GLIC) under three pH conditions. Decreased pH was associated with improved resolution and side chain rearrangements at the subunit/domain interface, particularly involving functionally important residues in the β1-β2 and M2-M3 loops. Molecular dynamics simulations substantiated flexibility in the closed-channel extracellular domains relative to the transmembrane ones and supported electrostatic remodeling around E35 and E243 in proton-induced gating. Exploration of secondary cryo-EM classes further indicated a low-pH population with an expanded pore. These results allow us to define distinct protonation and activation steps in pH-stimulated conformational cycling in GLIC, including interfacial rearrangements largely conserved in the pentameric channel family.
Collapse
Affiliation(s)
- Urška Rovšnik
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Yuxuan Zhuang
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Björn O Forsberg
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Linnea Yvonnesdotter
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
- Department of Applied Physics, Science for Life Laboratory, Kungliga Tekniska Högskolan Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
37
|
Elephants in the Dark: Insights and Incongruities in Pentameric Ligand-gated Ion Channel Models. J Mol Biol 2021; 433:167128. [PMID: 34224751 DOI: 10.1016/j.jmb.2021.167128] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
The superfamily of pentameric ligand-gated ion channels (pLGICs) comprises key players in electrochemical signal transduction across evolution, including historic model systems for receptor allostery and targets for drug development. Accordingly, structural studies of these channels have steadily increased, and now approach 250 depositions in the protein data bank. This review contextualizes currently available structures in the pLGIC family, focusing on morphology, ligand binding, and gating in three model subfamilies: the prokaryotic channel GLIC, the cation-selective nicotinic acetylcholine receptor, and the anion-selective glycine receptor. Common themes include the challenging process of capturing and annotating channels in distinct functional states; partially conserved gating mechanisms, including remodeling at the extracellular/transmembrane-domain interface; and diversity beyond the protein level, arising from posttranslational modifications, ligands, lipids, and signaling partners. Interpreting pLGIC structures can be compared to describing an elephant in the dark, relying on touch alone to comprehend the many parts of a monumental beast: each structure represents a snapshot in time under specific experimental conditions, which must be integrated with further structure, function, and simulations data to build a comprehensive model, and understand how one channel may fundamentally differ from another.
Collapse
|
38
|
Yazdani M, Jia Z, Chen J. Hydrophobic dewetting in gating and regulation of transmembrane protein ion channels. J Chem Phys 2021; 153:110901. [PMID: 32962356 DOI: 10.1063/5.0017537] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Water is at the heart of almost all biological phenomena, without which no life that we know of would have been possible. It is a misleadingly complex liquid that exists in near coexistence with the vapor phase under ambient conditions. Confinement within a hydrophobic cavity can tip this balance enough to drive a cooperative dewetting transition. For a nanometer-scale pore, the dewetting transition leads to a stable dry state that is physically open but impermeable to ions. This phenomenon is often referred to as hydrophobic gating. Numerous transmembrane protein ion channels have now been observed to utilize hydrophobic gating in their activation and regulation. Here, we review recent theoretical, simulation, and experimental studies that together have started to establish the principles of hydrophobic gating and discuss how channels of various sizes, topologies, and biological functions can utilize these principles to control the thermodynamic properties of water within their interior pores for gating and regulation. Exciting opportunities remain in multiple areas, particularly on direct experimental detection of hydrophobic dewetting in biological channels and on understanding how the cell may control the hydrophobic gating in regulation of ion channels.
Collapse
Affiliation(s)
- Mahdieh Yazdani
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
39
|
Rao S, Klesse G, Lynch CI, Tucker SJ, Sansom MSP. Molecular Simulations of Hydrophobic Gating of Pentameric Ligand Gated Ion Channels: Insights into Water and Ions. J Phys Chem B 2021; 125:981-994. [PMID: 33439645 PMCID: PMC7869105 DOI: 10.1021/acs.jpcb.0c09285] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/13/2020] [Indexed: 12/30/2022]
Abstract
Ion channels are proteins which form gated nanopores in biological membranes. Many channels exhibit hydrophobic gating, whereby functional closure of a pore occurs by local dewetting. The pentameric ligand gated ion channels (pLGICs) provide a biologically important example of hydrophobic gating. Molecular simulation studies comparing additive vs polarizable models indicate predictions of hydrophobic gating are robust to the model employed. However, polarizable models suggest favorable interactions of hydrophobic pore-lining regions with chloride ions, of relevance to both synthetic carriers and channel proteins. Electrowetting of a closed pLGIC hydrophobic gate requires too high a voltage to occur physiologically but may inform designs for switchable nanopores. Global analysis of ∼200 channels yields a simple heuristic for structure-based prediction of (closed) hydrophobic gates. Simulation-based analysis is shown to provide an aid to interpretation of functional states of new channel structures. These studies indicate the importance of understanding the behavior of water and ions within the nanoconfined environment presented by ion channels.
Collapse
Affiliation(s)
- Shanlin Rao
- Department
of Biochemistry, University of Oxford, Oxford, U.K.
| | - Gianni Klesse
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford, U.K.
| | | | - Stephen J. Tucker
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford, U.K.
| | | |
Collapse
|
40
|
Flegler VJ, Rasmussen A, Rao S, Wu N, Zenobi R, Sansom MSP, Hedrich R, Rasmussen T, Böttcher B. The MscS-like channel YnaI has a gating mechanism based on flexible pore helices. Proc Natl Acad Sci U S A 2020; 117:28754-28762. [PMID: 33148804 PMCID: PMC7682570 DOI: 10.1073/pnas.2005641117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanosensitive channel of small conductance (MscS) is the prototype of an evolutionarily diversified large family that fine-tunes osmoregulation but is likely to fulfill additional functions. Escherichia coli has six osmoprotective paralogs with different numbers of transmembrane helices. These helices are important for gating and sensing in MscS but the role of the additional helices in the paralogs is not understood. The medium-sized channel YnaI was extracted and delivered in native nanodiscs in closed-like and open-like conformations using the copolymer diisobutylene/maleic acid (DIBMA) for structural studies. Here we show by electron cryomicroscopy that YnaI has an extended sensor paddle that during gating relocates relative to the pore concomitant with bending of a GGxGG motif in the pore helices. YnaI is the only one of the six paralogs that has this GGxGG motif allowing the sensor paddle to move outward. Access to the pore is through a vestibule on the cytosolic side that is fenestrated by side portals. In YnaI, these portals are obstructed by aromatic side chains but are still fully hydrated and thus support conductance. For comparison with large-sized channels, we determined the structure of YbiO, which showed larger portals and a wider pore with no GGxGG motif. Further in silico comparison of MscS, YnaI, and YbiO highlighted differences in the hydrophobicity and wettability of their pores and vestibule interiors. Thus, MscS-like channels of different sizes have a common core architecture but show different gating mechanisms and fine-tuned conductive properties.
Collapse
Affiliation(s)
- Vanessa Judith Flegler
- Biocenter, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany
- Rudolf-Virchow-Center, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany
| | - Akiko Rasmussen
- Biocenter, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany
- Rudolf-Virchow-Center, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany
- Lehrstuhl für Botanik I, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom
| | - Na Wu
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom
| | - Rainer Hedrich
- Lehrstuhl für Botanik I, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Tim Rasmussen
- Biocenter, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany;
- Rudolf-Virchow-Center, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany
| | - Bettina Böttcher
- Biocenter, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany;
- Rudolf-Virchow-Center, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
41
|
Lynch C, Rao S, Sansom MSP. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective. Chem Rev 2020; 120:10298-10335. [PMID: 32841020 PMCID: PMC7517714 DOI: 10.1021/acs.chemrev.9b00830] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/18/2022]
Abstract
This Review explores the dynamic behavior of water within nanopores and biological channels in lipid bilayer membranes. We focus on molecular simulation studies, alongside selected structural and other experimental investigations. Structures of biological nanopores and channels are reviewed, emphasizing those high-resolution crystal structures, which reveal water molecules within the transmembrane pores, which can be used to aid the interpretation of simulation studies. Different levels of molecular simulations of water within nanopores are described, with a focus on molecular dynamics (MD). In particular, models of water for MD simulations are discussed in detail to provide an evaluation of their use in simulations of water in nanopores. Simulation studies of the behavior of water in idealized models of nanopores have revealed aspects of the organization and dynamics of nanoconfined water, including wetting/dewetting in narrow hydrophobic nanopores. A survey of simulation studies in a range of nonbiological nanopores is presented, including carbon nanotubes, synthetic nanopores, model peptide nanopores, track-etched nanopores in polymer membranes, and hydroxylated and functionalized nanoporous silica. These reveal a complex relationship between pore size/geometry, the nature of the pore lining, and rates of water transport. Wider nanopores with hydrophobic linings favor water flow whereas narrower hydrophobic pores may show dewetting. Simulation studies over the past decade of the behavior of water in a range of biological nanopores are described, including porins and β-barrel protein nanopores, aquaporins and related polar solute pores, and a number of different classes of ion channels. Water is shown to play a key role in proton transport in biological channels and in hydrophobic gating of ion channels. An overall picture emerges, whereby the behavior of water in a nanopore may be predicted as a function of its hydrophobicity and radius. This informs our understanding of the functions of diverse channel structures and will aid the design of novel nanopores. Thus, our current level of understanding allows for the design of a nanopore which promotes wetting over dewetting or vice versa. However, to design a novel nanopore, which enables fast, selective, and gated flow of water de novo would remain challenging, suggesting a need for further detailed simulations alongside experimental evaluation of more complex nanopore systems.
Collapse
Affiliation(s)
- Charlotte
I. Lynch
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| |
Collapse
|
42
|
Klesse G, Tucker SJ, Sansom MSP. Electric Field Induced Wetting of a Hydrophobic Gate in a Model Nanopore Based on the 5-HT 3 Receptor Channel. ACS NANO 2020; 14:10480-10491. [PMID: 32673478 PMCID: PMC7450702 DOI: 10.1021/acsnano.0c04387] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/16/2020] [Indexed: 05/14/2023]
Abstract
In this study we examined the influence of a transmembrane voltage on the hydrophobic gating of nanopores using molecular dynamics simulations. We observed electric field induced wetting of a hydrophobic gate in a biologically inspired model nanopore based on the 5-HT3 receptor in its closed state, with a field of at least ∼100 mV nm-1 (corresponding to a supra-physiological potential difference of ∼0.85 V across the membrane) required to hydrate the pore. We also found an unequal distribution of charged residues can generate an electric field intrinsic to the nanopore which, depending on its orientation, can alter the effect of the external field, thus making the wetting response asymmetric. This wetting response could be described by a simple model based on water surface tension, the volumetric energy contribution of the electric field, and the influence of charged amino acids lining the pore. Finally, the electric field response was used to determine time constants characterizing the phase transitions of water confined within the nanopore, revealing liquid-vapor oscillations on a time scale of ∼5 ns. This time scale was largely independent of the water model employed and was similar for different sized pores representative of the open and closed states of the pore. Furthermore, our finding that the threshold voltage required for hydrating a hydrophobic gate depends on the orientation of the electric field provides an attractive perspective for the design of rectifying artificial nanopores.
Collapse
Affiliation(s)
- Gianni Klesse
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United Kingdom
| | - Stephen J. Tucker
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United Kingdom
- OXION
Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Mark S. P. Sansom
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
43
|
Mechanisms of activation and desensitization of full-length glycine receptor in lipid nanodiscs. Nat Commun 2020; 11:3752. [PMID: 32719334 PMCID: PMC7385131 DOI: 10.1038/s41467-020-17364-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022] Open
Abstract
Glycinergic synapses play a central role in motor control and pain processing in the central nervous system. Glycine receptors (GlyRs) are key players in mediating fast inhibitory neurotransmission at these synapses. While previous high-resolution structures have provided insights into the molecular architecture of GlyR, several mechanistic questions pertaining to channel function are still unanswered. Here, we present Cryo-EM structures of the full-length GlyR protein complex reconstituted into lipid nanodiscs that are captured in the unliganded (closed), glycine-bound (open and desensitized), and allosteric modulator-bound conformations. A comparison of these states reveals global conformational changes underlying GlyR channel gating and modulation. The functional state assignments were validated by molecular dynamics simulations, and the observed permeation events are in agreement with the anion selectivity and conductance of GlyR. These studies provide the structural basis for gating, ion selectivity, and single-channel conductance properties of GlyR in a lipid environment. Glycinergic synapses play a central role in motor control and pain processing in the central nervous system. Here, authors present cryo-EM structures of the full-length glycine receptors (GlyRs) reconstituted into lipid nanodiscs in the unliganded, glycine-bound and allosteric modulator-bound conformations and reveal global conformational changes underlying GlyR channel gating and modulation.
Collapse
|
44
|
Zheng X, Fu Z, Su D, Zhang Y, Li M, Pan Y, Li H, Li S, Grassucci RA, Ren Z, Hu Z, Li X, Zhou M, Li G, Frank J, Yang J. Mechanism of ligand activation of a eukaryotic cyclic nucleotide-gated channel. Nat Struct Mol Biol 2020; 27:625-634. [PMID: 32483338 PMCID: PMC7354226 DOI: 10.1038/s41594-020-0433-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/10/2020] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide-gated (CNG) channels convert cyclic nucleotide (CN) binding and unbinding into electrical signals in sensory receptors and neurons. The molecular conformational changes underpinning ligand activation are largely undefined. We report both closed- and open-state atomic cryo-EM structures of a full-length Caenorhabditis elegans cyclic GMP-activated channel TAX-4, reconstituted in lipid nanodiscs. These structures, together with computational and functional analyses and a mutant channel structure, reveal a double-barrier hydrophobic gate formed by two S6 amino acids in the central cavity. cGMP binding produces global conformational changes that open the cavity gate located ~52 Å away but do not alter the structure of the selectivity filter-the commonly presumed activation gate. Our work provides mechanistic insights into the allosteric gating and regulation of CN-gated and nucleotide-modulated channels and CNG channel-related channelopathies.
Collapse
Affiliation(s)
- Xiangdong Zheng
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,These authors contributed equally to this work
| | - Ziao Fu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA,These authors contributed equally to this work
| | - Deyuan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China,These authors contributed equally to this work
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Minghui Li
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Current address: HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yaping Pan
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huan Li
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Shufang Li
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Robert A. Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Zhenning Ren
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Xueming Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Zhou
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Joachim Frank
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
45
|
Klesse G, Rao S, Tucker SJ, Sansom MS. Induced Polarization in Molecular Dynamics Simulations of the 5-HT 3 Receptor Channel. J Am Chem Soc 2020; 142:9415-9427. [PMID: 32336093 PMCID: PMC7243253 DOI: 10.1021/jacs.0c02394] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Indexed: 12/30/2022]
Abstract
Ion channel proteins form water-filled nanoscale pores within lipid bilayers, and their properties are dependent on the complex behavior of water in a nanoconfined environment. Using a simplified model of the pore of the 5-HT3 receptor (5HT3R) which restrains the backbone structure to that of the parent channel protein from which it is derived, we compare additive with polarizable models in describing the behavior of water in nanopores. Molecular dynamics simulations were performed with four conformations of the channel: two closed state structures, an intermediate state, and an open state, each embedded in a phosphatidylcholine bilayer. Water density profiles revealed that for all water models, the closed and intermediate states exhibited strong dewetting within the central hydrophobic gate region of the pore. However, the open state conformation exhibited varying degrees of hydration, ranging from partial wetting for the TIP4P/2005 water model to complete wetting for the polarizable AMOEBA14 model. Water dipole moments calculated using polarizable force fields also revealed that water molecules remaining within dewetted sections of the pore resemble gas phase water. Free energy profiles for Na+ and for Cl- ions within the open state pore revealed more rugged energy landscapes using polarizable force fields, and the hydration number profiles of these ions were also sensitive to induced polarization resulting in a substantive reduction of the number of waters within the first hydration shell of Cl- while it permeates the pore. These results demonstrate that induced polarization can influence the complex behavior of water and ions within nanoscale pores and provides important new insights into their chemical properties.
Collapse
Affiliation(s)
- Gianni Klesse
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
- Clarendon
Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, U.K.
| | - Shanlin Rao
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Stephen J. Tucker
- Clarendon
Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, U.K.
- OXION
Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, U.K.
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| |
Collapse
|
46
|
Shiref H, Bergman S, Clivio S, Sahai MA. The fine art of preparing membrane transport proteins for biomolecular simulations: Concepts and practical considerations. Methods 2020; 185:3-14. [PMID: 32081744 PMCID: PMC10062712 DOI: 10.1016/j.ymeth.2020.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 10/25/2022] Open
Abstract
Molecular dynamics (MD) simulations have developed into an invaluable tool in bimolecular research, due to the capability of the method in capturing molecular events and structural transitions that describe the function as well as the physiochemical properties of biomolecular systems. Due to the progressive development of more efficient algorithms, expansion of the available computational resources, as well as the emergence of more advanced methodologies, the scope of computational studies has increased vastly over time. We now have access to a multitude of online databases, software packages, larger molecular systems and novel ligands due to the phenomenon of emerging novel psychoactive substances (NPS). With so many advances in the field, it is understandable that novices will no doubt find it challenging setting up a protein-ligand system even before they run their first MD simulation. These initial steps, such as homology modelling, ligand docking, parameterization, protein preparation and membrane setup have become a fundamental part of the drug discovery pipeline, and many areas of biomolecular sciences benefit from the applications provided by these technologies. However, there still remains no standard on their usage. Therefore, our aim within this review is to provide a clear overview of a variety of concepts and methodologies to consider, providing a workflow for a case study of a membrane transport protein, the full-length human dopamine transporter (hDAT) in complex with different stimulants, where MD simulations have recently been applied successfully.
Collapse
Affiliation(s)
- Hana Shiref
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Shana Bergman
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, NY 10065, USA
| | | | - Michelle A Sahai
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK.
| |
Collapse
|
47
|
Núñez E, Muguruza-Montero A, Villarroel A. Atomistic Insights of Calmodulin Gating of Complete Ion Channels. Int J Mol Sci 2020; 21:ijms21041285. [PMID: 32075037 PMCID: PMC7072864 DOI: 10.3390/ijms21041285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Intracellular calcium is essential for many physiological processes, from neuronal signaling and exocytosis to muscle contraction and bone formation. Ca2+ signaling from the extracellular medium depends both on membrane potential, especially controlled by ion channels selective to K+, and direct permeation of this cation through specialized channels. Calmodulin (CaM), through direct binding to these proteins, participates in setting the membrane potential and the overall permeability to Ca2+. Over the past years many structures of complete channels in complex with CaM at near atomic resolution have been resolved. In combination with mutagenesis-function, structural information of individual domains and functional studies, different mechanisms employed by CaM to control channel gating are starting to be understood at atomic detail. Here, new insights regarding four types of tetrameric channels with six transmembrane (6TM) architecture, Eag1, SK2/SK4, TRPV5/TRPV6 and KCNQ1–5, and its regulation by CaM are described structurally. Different CaM regions, N-lobe, C-lobe and EF3/EF4-linker play prominent signaling roles in different complexes, emerging the realization of crucial non-canonical interactions between CaM and its target that are only evidenced in the full-channel structure. Different mechanisms to control gating are used, including direct and indirect mechanical actuation over the pore, allosteric control, indirect effect through lipid binding, as well as direct plugging of the pore. Although each CaM lobe engages through apparently similar alpha-helices, they do so using different docking strategies. We discuss how this allows selective action of drugs with great therapeutic potential.
Collapse
|
48
|
Projective mechanisms subtending real world phenomena wipe away cause effect relationships. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 151:1-13. [PMID: 31838044 DOI: 10.1016/j.pbiomolbio.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/16/2019] [Accepted: 12/10/2019] [Indexed: 01/11/2023]
Abstract
Causal relationships lie at the very core of scientific description of biophysical phenomena. Nevertheless, observable facts involving changes in system shape, dimension and symmetry may elude simple cause and effect inductive explanations. Here we argue that numerous physical and biological phenomena such as chaotic dynamics, symmetry breaking, long-range collisionless neural interactions, zero-valued energy singularities, and particle/wave duality can be accounted for in terms of purely topological mechanisms devoid of causality. We illustrate how simple topological claims, seemingly far away from scientific inquiry (e.g., "given at least some wind on Earth, there must at all times be a cyclone or anticyclone somewhere"; "if one stirs to dissolve a lump of sugar in a cup of coffee, it appears there is always a point without motion"; "at any moment, there is always a pair of antipodal points on the Earth's surface with equal temperatures and barometric pressures") reflect the action of non-causal topological rules. To do so, we introduce some fundamental topological tools and illustrate how phenomena such as double slit experiments, cellular mechanisms and some aspects of brain function can be explained in terms of geometric projections and mappings, rather than local physical effects. We conclude that unavoidable, passive, spontaneous topological modifications may lead to novel functional biophysical features, independent of exerted physical forces, thermodynamic constraints, temporal correlations and probabilistic a priori knowledge of previous cases.
Collapse
|
49
|
Klesse G, Rao S, Sansom MSP, Tucker SJ. CHAP: A Versatile Tool for the Structural and Functional Annotation of Ion Channel Pores. J Mol Biol 2019; 431:3353-3365. [PMID: 31220459 PMCID: PMC6699600 DOI: 10.1016/j.jmb.2019.06.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 11/27/2022]
Abstract
The control of ion channel permeation requires the modulation of energetic barriers or “gates” within their pores. However, such barriers are often simply identified from the physical dimensions of the pore. Such approaches have worked well in the past, but there is now evidence that the unusual behavior of water within narrow hydrophobic pores can produce an energetic barrier to permeation without requiring steric occlusion of the pathway. Many different ion channels have now been shown to exploit “hydrophobic gating” to regulate ion flow, and it is clear that new tools are required for more accurate functional annotation of the increasing number of ion channel structures becoming available. We have previously shown how molecular dynamics simulations of water can be used as a proxy to predict hydrophobic gates, and we now present a new and highly versatile computational tool, the Channel Annotation Package (CHAP) that implements this methodology. Some ion channels exhibit hydrophobic gating via dewetting of the central pore. This cannot be predicted from their pore radius alone. The hydrophobicity of a pore contributes to this dewetting effect. We have developed a new tool (CHAP) that combines these measurements. CHAP now enables the rapid functional annotation of ion channel structures.
Collapse
Affiliation(s)
- Gianni Klesse
- Clarendon Laboratory, Department of Physics, University of Oxford, UK; Department of Biochemistry, University of Oxford, UK
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, UK
| | | | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, UK.
| |
Collapse
|