1
|
Xue X, Qin Z, Gao P, Wang L, Su X, Wu L, Wang Z. Host-specific assembly of phycosphere microbiome and enrichment of the associated antibiotic resistance genes: Integrating species of microalgae hosts, developmental stages and water contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126392. [PMID: 40349825 DOI: 10.1016/j.envpol.2025.126392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Phytoplankton-bacteria interactions profoundly impact ecosystem function and biogeochemical cycling, while their substantial potential to carry and disseminate antibiotic resistance genes (ARGs) poses a significant threat to global One Health. However, the ecological paradigm behind the phycosphere assembly of microbiomes and the carrying antibiotic resistomes remains unclear. Our field investigation across various freshwater ecosystems revealed a substantial enrichment of bacteria and ARGs within microalgal niches. Taking account of the influence for species of microalgae hosts, their developmental stages and the stress of water pollution, we characterized the ecological processes governing phycosphere assembly of bacterial consortia and enrichment of the associated ARGs. By inoculating 6 axenic algal hosts with two distinct bacterial consortia from a natural river and the phycosphere of Scenedesmus acuminatus, we observed distinct phycosphere bacteria recruitment among different algal species, yet consistency within the same species. Notably, a convergent bacterial composition was established for the same algae species for two independent inoculations, demonstrating host specificity in phycosphere microbiome assembly. Host-specific signature was discernible as early as the algal lag phase and more pronounced as the algae developed, indicating species types of algae determined mutualism between the bacterial taxa and hosts. The bacteria community dominated the shaping of ARG profiles within the phycosphere and the host-specific phycosphere ARG enrichment was intensified with the algae development. The polluted water significantly stimulated host's directional selection on phycosphere bacterial consortia and increased the proliferation antibiotic resistome. These consortia manifested heightened beneficial functionality, enhancing microalgal adaptability to contamination stress.
Collapse
Affiliation(s)
- Xue Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ziwei Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peijie Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lijuan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoyue Su
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Pan X, Yue Y, Zhao F, Song T, Xu B, Li Z, Qi Z, Yu J, Cao H, Yu M, Shen Q, Xu J, Xiong W, Liu Y. Rhizosphere microbes facilitate the break of chlamydospore dormancy and root colonization of rice false smut fungi. Cell Host Microbe 2025; 33:731-744.e5. [PMID: 40306271 DOI: 10.1016/j.chom.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Dormant chlamydospore germination of fungal pathogens directly affects disease occurrence and severity. The rice false smut (RFS) fungus Ustilaginoidea virens produces abundant chlamydospores, but their germination process and roles in plant infection remain unclear. Here, we found that soil-borne chlamydospores are a major source of U. virens inoculum and impact RFS development. Rhizosphere microbiome analysis of high-susceptibility (HS) and low-susceptibility (LS) rice varieties revealed that HS varieties recruited bacteria from the Sphingomonadaceae family, thereby facilitating the breakdown of chlamydospore dormancy through secreted exopolysaccharides. Hyphae formed by germinating chlamydospores grew on the root surfaces, invaded the root cortex, and grew intercellularly, potentially spreading further to aboveground plant parts. Furthermore, field experiments confirmed that treating the root with 30% prothioconazole and 20% zinc thiazole effectively reduced RFS incidence. Overall, these findings enhance our understanding of chlamydospore germination in natural environments and inform strategies for disease control.
Collapse
Affiliation(s)
- Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Yang Yue
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fengjuan Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Boting Xu
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zhi Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China; College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jinrong Xu
- Purdue University Department of Botany and Plant Pathology, West Lafayette, IN 47907, USA
| | - Wu Xiong
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, P.R. China.
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China; College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China.
| |
Collapse
|
3
|
Garrido-Sanz D, Keel C. Seed-borne bacteria drive wheat rhizosphere microbiome assembly via niche partitioning and facilitation. Nat Microbiol 2025; 10:1130-1144. [PMID: 40140705 PMCID: PMC12055584 DOI: 10.1038/s41564-025-01973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
Microbial communities play a crucial role in supporting plant health and productivity. Reproducible, natural plant-associated microbiomes can help disentangle microbial dynamics across time and space. Here, using a sequential propagation strategy, we generated a complex and reproducible wheat rhizosphere microbiome (RhizCom) to study successional dynamics and interactions between the soil and heritable seed-borne rhizosphere microbiomes (SbRB) in a microcosm. Using 16S rRNA sequencing and genome-resolved shotgun metagenomics, we find that SbRB surpassed native soil microbes as the dominant rhizosphere-associated microbiome source. SbRB genomes were enriched in host-associated traits including degradation of key saccharide (niche partitioning) and cross-feeding interactions that supported partner strains (niche facilitation). In vitro co-culture experiments confirmed that helper SbRB strains facilitated the growth of partner bacteria on disaccharides as sole carbon source. These results reveal the importance of seed microbiota dynamics in microbial succession and community assembly, which could inform strategies for crop microbiome manipulation.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Bastías DA, Carvalho L, Jáuregui R, Johnson RD, Zhang W, Gundel PE. Is the endophyte-based plant protection against aphids mediated by changes in the insect microbiome? INSECT SCIENCE 2025. [PMID: 40123057 DOI: 10.1111/1744-7917.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/09/2025] [Accepted: 02/09/2025] [Indexed: 03/25/2025]
Abstract
Aphids are important herbivores in natural and managed environments. We studied the response of aphids and their associated microbiota to the presence of the fungal endophyte Epichloë sp. LpTG-3 strain AR37, and the AR37-derived alkaloids in plants. We hypothesized that AR37 and/or AR37-derived alkaloids would reduce the aphid performance, and that this reduction would be associated with endophyte-mediated changes in the abundance, composition, and diversity of beneficial bacterial endosymbionts of aphids (e.g., Buchnera). Plants of Lolium perenne associated with AR37 variants able (wild type and ∆idtA) and unable (∆idtM) to produce indole diterpene alkaloids were challenged with Rhopalosiphum padi aphids. We measured aphid population size, plant biomass, and the abundance, composition and diversity of the aphid's bacterial microbiota. The presence of AR37 increased the resistance of plants against R. padi aphids via the production of indole diterpene alkaloids, and this effect was independent of the plant biomass. The endophyte-mediated reduction in aphid performance was not associated with changes in the abundance, composition and diversity of the insect's bacterial microbiota. However, we cannot rule out that the reduction in aphid performance could be associated with a putative endophyte effect on the bacterial provision of benefits to aphids. Our study highlighted the protective role of endophyte-derived indole diterpene alkaloids against aphids. Further investigations will be needed to determine if there is a link between the endophyte-mediated aphid resistance and the integrity of the insect's bacterial microbiota.
Collapse
Affiliation(s)
- Daniel A Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Luis Carvalho
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Ruy Jáuregui
- Animal Health Laboratory, Biosecurity New Zealand, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - Richard D Johnson
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Wei Zhang
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Pedro E Gundel
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- IFEVA, CONICET, Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires, Argentina
| |
Collapse
|
5
|
Custódio V, Salas-González I, Gopaulchan D, Flis P, Amorós-Hernández R, Gao YQ, Jia X, Moreno Â, Carrera E, Marcon C, Hochholdinger F, Margarida Oliveira M, Salt DE, Castrillo G. Individual leaf microbiota tunes a genetic regulatory network to promote leaf growth. Cell Host Microbe 2025; 33:436-450.e15. [PMID: 40020663 DOI: 10.1016/j.chom.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/08/2024] [Accepted: 02/04/2025] [Indexed: 03/03/2025]
Abstract
In natural ecosystems, microbes have the ability to stably colonize plant leaves, overcoming the fluctuating environmental conditions that the leaves represent. How the phyllosphere microbiota influences the growth of individual leaves remains poorly understood. Here, we investigate the growth of Zea mays (maize/corn) leaves in plants grown in three soils with differing amounts of nutrients and water and identify a leaf-growth-promoting effect driven by the leaf microbiota, which we also validate in field studies. We built and used a bacterial strain collection for recolonization experiments to study the microbiota-mediated mechanisms involved in leaf growth promotion. We demonstrate that prevalent bacteria inhabiting young leaves promote individual leaf growth. Using transcriptomic analyses, we reveal a defense-related genetic network that integrates the beneficial effect of the phyllosphere microbiota into the leaf development program. We demonstrate that the individual leaf microbiota differentially represses this genetic network to modulate the growth-defense trade-off at single-leaf resolution.
Collapse
Affiliation(s)
- Valéria Custódio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough LE12 5RD, UK; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Isai Salas-González
- Center for Genomics Sciences, Universidad Nacional Autónoma de México, Cuernavaca Campus, Morelos 62210, México
| | - David Gopaulchan
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough LE12 5RD, UK
| | - Paulina Flis
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough LE12 5RD, UK
| | - Regla Amorós-Hernández
- Instituto Nacional de Investigação e Desenvolvimento Agrário (INIDA), São Jorge dos Orgãos 84, Cabo Verde
| | - Yi-Qun Gao
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough LE12 5RD, UK
| | - Xianqing Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sceinces, Northwest University, Xi'an 710069, China
| | - Ângela Moreno
- Instituto Nacional de Investigação e Desenvolvimento Agrário (INIDA), São Jorge dos Orgãos 84, Cabo Verde
| | - Esther Carrera
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP) CSIC-UPV, Valencia 46022, Spain
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany; INRES, Institute of Crop Science and Resource Conservation, BonnMu:Reverse Genetic Resources, University of Bonn, Bonn 53113, Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - David E Salt
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough LE12 5RD, UK
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough LE12 5RD, UK.
| |
Collapse
|
6
|
Hu X, Claerbout J, Vandecasteele B, Craeye S, Geelen D. The bacterial and fungal strawberry root-associated microbiome in reused peat-based substrate. BMC PLANT BIOLOGY 2025; 25:245. [PMID: 39994558 PMCID: PMC11849140 DOI: 10.1186/s12870-025-06217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Reuse of plant growing substrate can contribute to lowering the carbon footprint of horticulture production systems. Here, we assessed the impact of substrate reusing on the root-associated microbiome of strawberries. The cultivars Elsanta and Malling Centenary were grown in a substrate-based hydroponic system using either fresh peat-based substrate or substrate reused up to three times, with comparisons made between not steamed and steam-treated substrate. The root-associated microbiome was analyzed using 16S rRNA gene and ITS1 DNA sequencing to determine bacterial and fungal communities. RESULTS Substrate reusing without steaming increased the bacterial and fungal community diversity whereas steaming reduced the bacterial diversity and increased fungal diversity in the root-associated microbiome. The root-associated bacterial communities recruited by the two cultivars were diverse, even more so than the diversity recorded for the different times of reused substrate. CONCLUSION These observations demonstrate the ability of strawberry to establish a genotype-specific root-associated microbiome when plants are cultured on reused substrate. The bacterial microbiome showed a higher consistency over the times substrate was reused, while the fungal community composition showed stronger adaptation to the substrate reusing. Pathogenic fungi accumulated over the reusing times, underscoring the necessity of substrate sanitation through steaming to minimize the risk of pathogen infections. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Xinquan Hu
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | | | - Bart Vandecasteele
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burg. Van Gansberghelaan 109, Merelbeke, 9820, Belgium
| | - Simon Craeye
- Inagro vzw, Ieperseweg 87, Rumbeke-Beitem, 8800, Belgium
| | - Danny Geelen
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium.
| |
Collapse
|
7
|
Noble AS, Abbaszadeh J, Lee CK. Host selection is not a universal driver of phyllosphere community assembly among ecologically similar native New Zealand plant species. MICROBIOME 2025; 13:35. [PMID: 39891234 PMCID: PMC11786578 DOI: 10.1186/s40168-024-02000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/06/2024] [Indexed: 02/03/2025]
Abstract
BACKGROUND A growing body of evidence demonstrates that host-associated microbial communities of plant leaf surfaces (i.e. the phyllosphere) can influence host functional traits. However, it remains unclear whether host selection is a universal driver of phyllosphere community assembly. We targeted mānuka (Leptospermum scoparium) and three neighbouring non-mānuka plant species along an 1800-m transect in a New Zealand native bush to conduct a hypothesis-driven investigation of the relative influence of host species identity and stochastic dispersal on the composition of natural phyllosphere bacterial communities. RESULTS We detected significant correlations between host species identity and mānuka phyllosphere communities that are consistent with a dominant role of host selection in the assembly of the mānuka phyllosphere microbiome. In contrast, the phyllosphere community compositions of neighbouring, ecologically similar native plants were highly variable, suggesting that stochastic processes, such as dispersal, had a stronger influence on the phyllosphere microbiomes of those non-mānuka plants compared to the phyllosphere microbiome of mānuka. Furthermore, the distribution of phyllosphere taxa among plant species was congruent with a scenario in which microorganisms had dispersed from mānuka to non-mānuka phyllosphere microbiomes. CONCLUSIONS We conclude that host selection of phyllosphere communities is not and should not be presumed to be a universal trait across plant species. The specificity of the mānuka phyllosphere microbiome suggests the presence of functionally significant bacteria that are under direct, possibly chemically mediated, selection by the host. Furthermore, we propose that phyllosphere microbiomes under strong host selection, such as that of mānuka, may act as a source of microorganisms for the phyllosphere microbiomes of neighbouring plants. Video Abstract.
Collapse
Affiliation(s)
- Anya S Noble
- School of Science, University of Waikato, Hamilton, New Zealand
| | | | - Charles K Lee
- School of Science, University of Waikato, Hamilton, New Zealand.
| |
Collapse
|
8
|
Unzueta-Martínez A, Girguis PR. Taxonomic diversity and functional potential of microbial communities in oyster calcifying fluid. Appl Environ Microbiol 2025; 91:e0109424. [PMID: 39665561 PMCID: PMC11784444 DOI: 10.1128/aem.01094-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024] Open
Abstract
Creating and maintaining an appropriate chemical environment is essential for biomineralization, the process by which organisms precipitate minerals to form their shells or skeletons, yet the mechanisms involved in maintaining calcifying fluid chemistry are not fully defined. In particular, the role of microorganisms in facilitating or hindering animal biomineralization is poorly understood. Here, we investigated the taxonomic diversity and functional potential of microbial communities inhabiting oyster calcifying fluid. We used shotgun metagenomics to survey calcifying fluid microbial communities from three different oyster harvesting sites. There was a striking consistency in taxonomic composition across the three collection sites. We also observed archaea and viruses that had not been previously identified in oyster calcifying fluid. Furthermore, we identified microbial energy-conserving metabolisms that could influence the host's calcification, including genes involved in sulfate reduction and denitrification that are thought to play pivotal roles in inorganic carbon chemistry and calcification in microbial biofilms. These findings provide new insights into the taxonomy and functional capacity of oyster calcifying fluid microbiomes, highlighting their potential contributions to shell biomineralization, and contribute to a deeper understanding of the interplay between microbial ecology and biogeochemistry that could potentially bolster oyster calcification. IMPORTANCE Previous research has underscored the influence of microbial metabolisms in carbonate deposition throughout the geological record. Despite the ecological importance of microbes to animals and inorganic carbon transformations, there have been limited studies characterizing the potential role of microbiomes in calcification by animals such as bivalves. Here, we use metagenomics to investigate the taxonomic diversity and functional potential of microbial communities in calcifying fluids from oysters collected at three different locations. We show a diverse microbial community that includes bacteria, archaea, and viruses, and we discuss their functional potential to influence calcifying fluid chemistry via reactions like sulfate reduction and denitrification. We also report the presence of carbonic anhydrase and urease, both of which are critical in microbial biofilm calcification. Our findings have broader implications in understanding what regulates calcifying fluid chemistry and consequentially the resilience of calcifying organisms to 21st century acidifying oceans.
Collapse
Affiliation(s)
- Andrea Unzueta-Martínez
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Peter R. Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Bresciani L, Custer GF, Koslicki D, Dini-Andreote F. Interplay of ecological processes modulates microbial community reassembly following coalescence. THE ISME JOURNAL 2025; 19:wraf041. [PMID: 40178128 PMCID: PMC11971568 DOI: 10.1093/ismejo/wraf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025]
Abstract
Microbial community coalescence refers to the mixing of entire microbial communities and their environments. Despite conceptually analogous to a multispecies invasion, the ecological processes driving this phenomenon remain poorly understood. Here, we developed and implemented a beta-diversity-based statistical framework to quantify the contribution of distinct donor communities to community reassembly dynamics over time following coalescence. We conducted a microcosm experiment with soils manipulated at varying levels of community structure (via dilution-to-extinction) and subjected these to pairwise coalescence scenarios. Overall, our results revealed variable patterns of abiotic and biotic donor dominance across distinct treatment sets. First, we show the occasional presence of an upfront stringent abiotic filter to disproportionally favor a donor biotic dominance through a "home-field advantage" mechanism, with abiotic factors explaining >90% of the variance in community structure. Functional community metrics (i.e. carbon metabolism and extracellular enzymatic activities) were significantly linked to donor contributions in these cases. Second, in the absence of abiotic dominance, interspecific interactions gained importance, with abiotic variables explaining <40% of the variance. Here, functional redundancy in donor communities (e.g. lower dilution) led to nonsignificant relationships between donor contributions and functional metrics. Collectively, this study advances the integration of coalescence with well-established fundamentals of invasion biology theory, highlighting the interplay of abiotic and biotic factors structuring community reassembly following coalescence. Last, we propose that our beta-diversity-based framework is widely applicable across various microbial systems. We believe this approach will promote research advances by offering a unified method for analyzing and quantifying coalescence.
Collapse
Affiliation(s)
- Luana Bresciani
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA 16802, United States
| | - Gordon F Custer
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA 16802, United States
- Department of Natural Sciences, The University of Maryland Eastern Shore, Princess Anne, MD 21853, United States
| | - David Koslicki
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA 16802, United States
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, United States
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Francisco Dini-Andreote
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
10
|
Li J, Petticord DF, Jin M, Huang L, Hui D, Sardans J, Peñuelas J, Yang X, Zhu YG. From nature to urbanity: exploring phyllosphere microbiome and functional gene responses to the Anthropocene. THE NEW PHYTOLOGIST 2025; 245:591-606. [PMID: 39511922 DOI: 10.1111/nph.20255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The Anthropocene exerts various pressures and influences on the stability and function of the Earth's ecosystems. However, our understanding of how the microbiome responds in form and function to these disturbances is still limited, particularly when considering the phyllosphere, which represents one of the largest microbial reservoirs in the terrestrial ecosystem. In this study, we comprehensively characterized tree phyllosphere bacteria and associated nutrient-cycling genes in natural, rural, suburban, and urban habitats in China. Results revealed that phyllosphere bacterial community diversity, richness, stability, and composition heterogeneity were greatest at the most disturbed sites. Stochastic processes primarily governed the assembly of phyllosphere bacterial communities, although the role of deterministic processes (environmental selection) in shaping these communities gradually increased as we moved from rural to urban sites. Our findings also suggest that human disturbance is associated with the reduced influence of drift as increasingly layered environmental filters deterministically constrain phyllosphere bacterial communities. The intensification of human activity was mirrored in changes in functional gene expression within the phyllosphere microbiome, resulting in enhanced gene abundance, diversity, and compositional variation in highly human-driven disturbed environments. Furthermore, we found that while the relative proportion of core microbial taxa decreased in disturbed habitats, a core set of microbial taxa shaped the distributional characteristics of both microbiomes and functional genes at all levels of disturbance. In sum, this study offers valuable insights into how anthropogenic disturbance may influence phyllosphere microbial dynamics and improves our understanding of the intricate relationship between environmental stressors, microbial communities, and plant function within the Anthropocene.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Daniel F Petticord
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Mingkang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lijie Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, 08193, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, 08193, Spain
| | - Xiaoru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
11
|
O'Connor E, Vieira FR, Di Tomassi I, Richardson R, Hockett KL, Bull CT, Pecchia JA. Manipulating button mushroom casing affects the disease dynamics of blotch and green mold disease. Fungal Biol 2024; 128:2266-2273. [PMID: 39643393 DOI: 10.1016/j.funbio.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
Productive cultivation of the button mushroom (Agaricus bisporus) relies on the use of selective substrates and effective disease management. In extending our previous work on manipulating the developmental microbiome (devome), this study employs the strategy of substrate passaging to explore its effects on crop outcomes and disease dynamics. Here we subjected the casing substrate to ten cycles of passaging. This manipulated substrate stimulated early pinning (primordia formation) by at least three days. Passaged casing also altered disease dynamics when challenged with two commercially important A. bisporus pathogens, Pseudomonas tolaasii (causing bacterial blotch) and Trichoderma aggressivum f. aggressivum (responsible for green mold). Passaged casing had a suppressive effect on blotch disease and a conducive effect on green mold disease. Blotch suppression resulted in a significantly higher yield of asymptomatic mushrooms in all three mushroom harvests (flushes) and in the overall crop yield. Blotch severity was also significantly reduced in passaged casing compared to standard casing due to a lower yield of mushrooms with the highest degree of blotch disease expression. Green mold disease expression was markedly higher in passaged casing, leading to lower numbers of asymptomatic mushrooms. Zones where no growth of hyphae or mushrooms were also observed in passaged casing due to green mold disease pressure. The stimulating effect of passaged casing on mushroom development and the dynamic outcomes for disease challenge from two distinct, commercially damaging diseases, demonstrates the potential for passaged casing to be used as material to study more sustainable mushroom production and disease management practices.
Collapse
Affiliation(s)
- Eoin O'Connor
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA.
| | - Fabricio Rocha Vieira
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Isako Di Tomassi
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Rachel Richardson
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA
| | - Kevin L Hockett
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Carolee T Bull
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - John A Pecchia
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA
| |
Collapse
|
12
|
Gomes WDS, Partelli FL, Veloso TGR, da Silva MDCS, Moreli AP, Moreira TR, Pereira LL. Effects of Coffea canephora genotypes on the microbial community of soil and fruit. Sci Rep 2024; 14:29035. [PMID: 39580566 PMCID: PMC11585534 DOI: 10.1038/s41598-024-80403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024] Open
Abstract
In recent years, the role of microbial communities in agricultural systems has received increasing attention, particularly concerning their impact on plant health and productivity. However, the influence of host plant genetic factors on the microbial composition of coffee plants remains largely unexplored. This study provides the first comprehensive investigation into how genotype affects the microbial communities present in the rhizosphere and fruits of Coffea canephora. Conducted on a commercial coffee farm in Brazil, we analyzed six genotypes of C. canephora var. Conilon. Soil and fruit samples were collected from which microbial DNA was extracted and sequenced, targeting the V3-V4 region of the 16 S rDNA and the ITS1 region for fungi. A total of 12,239,769 reads were generated from the 16 S rDNA and ITS1 regions. The PCoA revealed distinct patterns of beta diversity, with genotype 153 exhibiting significant isolation in soil bacterial communities. The dominant bacterial orders included Rhizobiales and Rhodobacterales, while the fungal community comprised diverse taxa from Saccharomycetales and Hypocreales. LEfSe analysis identified key metagenomic biomarkers, highlighting genotype Baiano 4 for its richness in fruit-associated taxa, whereas genotype 153 exhibited lower diversity in both soil and fruit samples. This work enhances our understanding of the microbiomes associated with different coffee genotypes, providing evidence of how host genetic variation influences microbial community composition. Our findings indicate that specific microbial taxa are enriched in the fruits and soil of various genotypes. Future research should focus on identifying these microorganisms and elucidating their specific functions within the rhizosphere and coffee fruits.
Collapse
Affiliation(s)
| | | | | | | | - Aldemar Polonini Moreli
- Federal Institute of Education, Science and Technology of Espírito Santo, Venda Nova do Imigrante, Vitória, Espírito Santo, Brazil
| | | | - Lucas Louzada Pereira
- Federal Institute of Education, Science and Technology of Espírito Santo, Venda Nova do Imigrante, Vitória, Espírito Santo, Brazil.
| |
Collapse
|
13
|
Sanjenbam P, Agashe D. Divergence and convergence in epiphytic and endophytic phyllosphere bacterial communities of rice landraces. mSphere 2024; 9:e0076524. [PMID: 39475315 PMCID: PMC11580439 DOI: 10.1128/msphere.00765-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
Phyllosphere-associated microbes can significantly alter host plant fitness, with distinct functions provided by bacteria inhabiting the epiphytic (external surface) vs endophytic niches (internal leaf tissue). Hence, it is important to understand the assembly and stability of these phyllosphere communities, especially in field conditions. Broadly, epiphytic communities should encounter more environmental fluctuations and frequent immigration, whereas endophytic microbiota should face stronger host selection. As a result, we expect greater variability in epiphytic than endophytic communities. We analyzed the structure and stability of leaf phyllosphere microbiota of four traditionally cultivated rice landraces and one commercial variety from northeast India grown in the field for 3 consecutive years, supplemented with opportunistic sampling of eight other landraces. Epiphytic and endophytic bacterial communities shared dominant core genera such as Methylobacterium and Sphingomonas. Consistent with an overall strong environmental effect, both communities varied more across sampling years than across host landraces. Seeds sampled from a focal landrace did not support vertical transmission of phyllosphere bacteria, suggesting that both types of communities are assembled anew each generation. Despite these points of convergence, epiphytic communities had distinct composition and significantly higher microbial load and were more rich, diverse, modular, and unstable than endophytic communities. Finally, focused sampling of one landrace across developmental stages showed that the divergence between the two types of communities arose primarily at the flowering stage. Thus, our results show both convergent and divergent patterns of community assembly and composition in distinct phyllosphere niches in rice, identifying key bacterial genera and host developmental stages that may aid agricultural interventions to increase rice yield.IMPORTANCEPhyllosphere (leaf-associated) microbes significantly impact plant fitness, making it crucial to understand how these communities are assembled and maintained. While many studies have analyzed epiphytic (surface) phyllosphere communities, we have a relatively poor understanding of endophytic communities which colonize the very distinct niche formed inside leaf tissues. We found that across several rice landraces, both communities are largely colonized by the same core genera, indicating divergence at the species level across the two leaf niches and highlighting the need to understand the mechanisms underlying this divergence. Surprisingly, both epiphytic and endophytic communities were only weakly shaped by the host landrace, with a much greater role for environmental factors that likely vary over time. Thus, microbiome-based agricultural interventions for increasing productivity could perhaps be generalized across rice varieties but would need to account for the temporal instability of the microbiota. Our results thus highlight the importance of data sets such as ours-with extensive sampling across landraces and years-for understanding phyllosphere microbiota and their applications in the field.
Collapse
Affiliation(s)
- Pratibha Sanjenbam
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary road, Bengaluru, India
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary road, Bengaluru, India
| |
Collapse
|
14
|
Yang M, Zhao Y, Li L, Qi Y, Gao P, Guo J, Liu J, Chen Z, Zhao J, Yu L. Functional dynamics analysis of endophytic microbial communities during Amorphophallus muelleri seed maturation. Sci Rep 2024; 14:28432. [PMID: 39558081 PMCID: PMC11574185 DOI: 10.1038/s41598-024-79850-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
Konjac seeds of Amorphophallus muelleri are produced through a unique form of apomixis in triploid parthenogenesis, and typically require a longer maturation period (approximately 8 months). To date, the relevant functions of endophytic microbial taxa during A. muelleri seed development and maturation remain largely unexplored. In this study, we analyzed the functional adaptability and temporal dynamics of endophytic microbial communities during three stages of A. muelleri seed maturation. Through metagenomic sequencing, we determined that the functions of the endophytic microbiome in A. muelleri seeds were driven by the seed maturation status, and the functions of the microbial communities in the seed coats and seeds differed significantly. The species annotation results show that Proteobacteria, Actinobacteria, Ascomycota, and Basidiomycota were the dominant bacterial and fungal communities in A. muelleri seeds at different maturation stages. The KEGG and COG functional gene annotation results revealed that the seed samples during the three maturation stages had higher KO functional diversity than the seed coat samples, and the COG functional diversity of the green and red seed samples was also significantly higher than that of the seed coat samples. At different maturation stages, microbial functional genes involved in energy production and conversion as well as carbon fixation were enriched in the A. muelleri seed coats, while microbial functional genes involved in signal transduction mechanisms, amino acid transport and metabolism, carbohydrate metabolism, and lipid metabolism were more highly expressed in the seeds. Moreover, in the middle to late stages of seed maturation, the microbial functional genes involved in the biosynthesis of resistant compounds such as phenols, flavonoids, and alkaloids were significantly enriched to enhance the resistance and environmental adaptation of A. muelleri seeds. The results verified that the functions of the endophytic microbial communities change dynamically during A. muelleri seed maturation to adapt to the current needs of the host plant, which has significant implications for the exploration and utilization of functional microbial resources in A. muelleri seeds.
Collapse
Affiliation(s)
- Min Yang
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Yongteng Zhao
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Lifang Li
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Ying Qi
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Penghua Gao
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Jianwei Guo
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Jiani Liu
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Zebin Chen
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Jianrong Zhao
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Lei Yu
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China.
| |
Collapse
|
15
|
Meng Y, Li P, Liu X, Xiao L, Liu J, Zhang C, Yang S, Zhang X, Wang Y, Wang B. Variability in the home-field advantage of litter decomposition mediates alterations in soil CO 2 and CH 4 fluxes: A transplantation experiment study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175685. [PMID: 39182774 DOI: 10.1016/j.scitotenv.2024.175685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The decomposition of litter is susceptible to the influence of climate change and soil conditions, which can subsequently impact the release of carbon dioxide (CO2) from forest soils and the absorption of methane (CH4). Ecological theory proposes the existence of a home-field advantage (HFA) in litter decomposition, suggesting that the decomposition rate of litter (such as fallen leaves, twigs, and roots) may be faster in their native habitat than in foreign environments. Therefore, we selected litter from Pinus tabuliformis (PT) and Quercus acutissima Carruth (QC) in the field and conducted a 439-day litter transplant experiment to test the magnitude and direction of the HFA of these two litter types in three forest stands. During this experiment, we monitored the changes in soil CO2 and CH4 fluxes associated with the decomposition of PT and QC leaf litter in their native and foreign sites. Furthermore, we measured various soil physical, chemical, and biological indicators. The results indicated that the decomposition rate of QC leaf litter was faster in its native habitat, demonstrating a clear HFA effect. Conversely, the decomposition of PT leaf litter was observed to be more rapid in away soil, suggesting a pronounced home-field disadvantage (HFD). The study found that PT leaf litter exhibited greater CO2 release when decomposing in away soil, demonstrating 43 % and 32 % increases compared to bare soil, respectively. Conversely, QC leaf litter was observed to release more CO2 in its home soil. Additionally, the bare soils of the PT and QC home sites were found to absorb more CH4 compared to leaf litter coverage, with increases of 37.8 % and 31.2 %, respectively. The partial least squares model indicated that the litter attributes had a significant direct effect on soil temperature and enzyme activity. Soil temperature and enzyme activity further directly influenced the soil CO2 and CH4 fluxes. The results of our study indicate that the HFA of litter is dependent on litter type, and that litter transplantation can impact soil greenhouse gas exchange. This research provides a theoretical foundation for forest management and conservation strategies, as well as valuable data for global carbon neutrality efforts.
Collapse
Affiliation(s)
- Yongxia Meng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Peng Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| | - Xiaohuang Liu
- Key Laboratory of Natural Resource Element Coupling and Effects, Ministry of Natural Resources, Natural Resources and Earth System Science, Beijing 100812, China
| | - Lie Xiao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Jialiang Liu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Chaoya Zhang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Shutong Yang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaoming Zhang
- China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Yunqi Wang
- Jinyun Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Bo Wang
- Xi'an Mineral Resources Survey Center, China Geological Survey, Xi'an 710100, China
| |
Collapse
|
16
|
Wang K, Wang Q, Hong L, Liu Y, Yang J, Asiegbu FO, Wu P, Huang L, Ma X. Distribution and characterization of endophytic and rhizosphere bacteriome of below-ground tissues in Chinese fir plantation. TREE PHYSIOLOGY 2024; 44:tpae137. [PMID: 39423250 DOI: 10.1093/treephys/tpae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Plantations of Chinese fir, a popular woody tree species, face sustainable issues, such as nutrient deficiency and increasing disease threat. Rhizosphere and endophytic bacteria play important roles in plants' nutrient absorption and stress alleviation. Our understanding of the microbiome structure and functions is proceeding rapidly in model plants and some crop species. Yet, the spatial distribution and functional patterns of the bacteriome for the woody trees remain largely unexplored. In this study, we collected rhizosphere soil, non-rhizosphere soil, fine root, thick root and primary root samples of Chinese fir and investigated the structure and distribution of bacteriome, as well as the beneficial effects of endophytic bacterial isolates. We discovered that Burkholderia and Paraburkholderia genera were overwhelmingly enriched in rhizosphere soil, and the abundance of Pseudomonas genus was significantly enhanced in fine root. By isolating and testing the nutrient absorption and pathogen antagonism functions of representative endophytic bacteria species in Pseudomonas and Burkholderia, we noticed that phosphorus-solubilizing functional isolates were enriched in fine root, while pathogen antagonism isolates were enriched in thick root. As a conclusion, our study revealed that the endophytic and rhizosphere environments of Chinese fir hold distinct structure and abundance of bacteriomes, with potential specific functional enrichment of some bacterial clades. These findings assist us to further study the potential regulation mechanism of endophytic functional bacteria by the host tree, which will contribute to beneficial microbe application in forestry plantations and sustainable development.
Collapse
Affiliation(s)
- Kai Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Qingao Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Liang Hong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Yuxin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Jiyun Yang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
| | - Pengfei Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Lin Huang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| |
Collapse
|
17
|
Liu J, Zhou L, Lan Y, Fan J. Breed Selection of Poplars Imposes Greater Selection Pressure on the Rhizosphere Bacterial Community. Microorganisms 2024; 12:2176. [PMID: 39597565 PMCID: PMC11596835 DOI: 10.3390/microorganisms12112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Breed selection alters the coevolution of plant-microbiome associations that have developed over long periods of natural evolution. We investigated the effects of breed selection on the rhizosphere microbiomes and metabolites of hybrid parents (I101 and 84K) and their offspring (Q1-Q5) using metagenomics and untargeted metabolomics. Rhizosphere archaeal, bacterial and fungal community β-diversity significantly differed among hybrid parents and offspring, but only the dominant bacterial phyla and bacterial community α-diversity revealed significant differences. Approximately 5.49%, 14.90% and 7.86% of the archaeal, bacterial and fungal species significantly differed among the poplar hybrid parents and offspring. Rhizosphere microbial functional genes and metabolites were both clustered into the following three groups: I101 and 84K; Q2 and Q4; and Q1, Q3 and Q5. Compared with the hybrid parents, 15 phytochemical compounds were enriched in the hybrid offspring and explained 7.15%, 18.24% and 6.68% of the total variation in the archaeal, bacterial and fungal community compositions, respectively. Rhizosphere metabolites significantly affected the bacterial community, rather than the archaeal and fungal communities. Our observations suggested that poplar breed selection imposed greater selection pressure on the rhizosphere bacterial community, which was mainly driven by metabolites.
Collapse
Affiliation(s)
- Jinliang Liu
- Key Laboratory of Silviculture on the Loess Plateau State Forestry Administration, College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.Z.)
- Forest Ecosystem National Observation and Research Station of Huanglong Mountains, Yanan 715700, China
| | - Long Zhou
- Key Laboratory of Silviculture on the Loess Plateau State Forestry Administration, College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.Z.)
| | - Yan Lan
- Key Laboratory of Silviculture on the Loess Plateau State Forestry Administration, College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.Z.)
| | - Junfeng Fan
- Key Laboratory of Silviculture on the Loess Plateau State Forestry Administration, College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.Z.)
| |
Collapse
|
18
|
McEnany J, Good BH. Predicting the first steps of evolution in randomly assembled communities. Nat Commun 2024; 15:8495. [PMID: 39353888 PMCID: PMC11445446 DOI: 10.1038/s41467-024-52467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/07/2024] [Indexed: 10/03/2024] Open
Abstract
Microbial communities can self-assemble into highly diverse states with predictable statistical properties. However, these initial states can be disrupted by rapid evolution of the resident strains. When a new mutation arises, it competes for resources with its parent strain and with the other species in the community. This interplay between ecology and evolution is difficult to capture with existing community assembly theory. Here, we introduce a mathematical framework for predicting the first steps of evolution in large randomly assembled communities that compete for substitutable resources. We show how the fitness effects of new mutations and the probability that they coexist with their parent depends on the size of the community, the saturation of its niches, and the metabolic overlap between its members. We find that successful mutations are often able to coexist with their parent strains, even in saturated communities with low niche availability. At the same time, these invading mutants often cause extinctions of metabolically distant species. Our results suggest that even small amounts of evolution can produce distinct genetic signatures in natural microbial communities.
Collapse
Affiliation(s)
- John McEnany
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Almeida BK, Tran EH, Afkhami ME. Phyllosphere fungal diversity generates pervasive nonadditive effects on plant performance. THE NEW PHYTOLOGIST 2024; 243:2416-2429. [PMID: 38719779 DOI: 10.1111/nph.19792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/01/2024] [Indexed: 08/23/2024]
Abstract
Plants naturally harbor diverse microbiomes that can dramatically impact their health and productivity. However, it remains unclear how fungal microbiome diversity, especially in the phyllosphere, impacts intermicrobial interactions and consequent nonadditive effects on plant productivity. Combining manipulative experiments, field collections, culturing, microbiome sequencing, and synthetic consortia, we experimentally tested for the first time how foliar fungal community diversity impacts plant productivity. We inoculated morning glories (Ipomoea hederifolia L.) with 32 phyllosphere consortia of either low or high diversity or with single fungal taxa, and measured effects on plant productivity and allocation. We found the following: (1) nonadditive effects were pervasive with 56% of fungal consortia interacting synergistically or antagonistically to impact plant productivity, including some consortia capable of generating acute synergism (e.g. > 1000% increase in productivity above the additive expectation), (2) interactions among 'commensal' fungi were responsible for this nonadditivity in diverse consortia, (3) synergistic interactions were approximately four times stronger than antagonistic effects, (4) fungal diversity affected the magnitude but not frequency or direction of nonadditivity, and (5) diversity affected plant performance nonlinearly with the highest performance in low-diversity treatments. These findings highlight the importance of interpreting plant-microbiome interactions under a framework that incorporates intermicrobial interactions and nonadditive outcomes to understand natural complexity.
Collapse
Affiliation(s)
- Brianna K Almeida
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Elan H Tran
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Michelle E Afkhami
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| |
Collapse
|
20
|
Ginnan NA, Custódio V, Gopaulchan D, Ford N, Salas-González I, Jones DD, Wells DM, Moreno Â, Castrillo G, Wagner MR. Persistent legacy effects on soil metagenomes facilitate plant adaptive responses to drought. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609769. [PMID: 39253412 PMCID: PMC11383273 DOI: 10.1101/2024.08.26.609769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Both chronic and acute drought alter the composition and physiology of soil microbiomes, with implications for globally important processes including carbon cycling and plant productivity. When water is scarce, selection favors microbes with thicker peptidoglycan cell walls, sporulation ability, and constitutive osmolyte production (Schimel, Balser, and Wallenstein 2007)-but also the ability to degrade complex plant-derived polysaccharides, suggesting that the success of plants and microbes during drought are inextricably linked. However, communities vary enormously in their drought responses and subsequent interactions with plants. Hypothesized causes of this variation in drought resilience include soil texture, soil chemistry, and historical precipitation patterns that shaped the starting communities and their constituent species (Evans, Allison, and Hawkes 2022). Currently, the physiological and molecular mechanisms of microbial drought responses and microbe-dependent plant drought responses in diverse natural soils are largely unknown (de Vries et al. 2023). Here, we identify numerous microbial taxa, genes, and functions that characterize soil microbiomes with legacies of chronic water limitation. Soil microbiota from historically dry climates buffered plants from the negative effects of subsequent acute drought, but only for a wild grass species native to the same region, and not for domesticated maize. In particular, microbiota with a legacy of chronic water limitation altered the expression of a small subset of host genes in crown roots, which mediated the effect of acute drought on transpiration and intrinsic water use efficiency. Our results reveal how long-term exposure to water stress alters soil microbial communities at the metagenomic level, and demonstrate the resulting "legacy effects" on neighboring plants in unprecedented molecular and physiological detail.
Collapse
|
21
|
Zhang W, Gundel PE, Jáuregui R, Card SD, Mace WJ, Johnson RD, Bastías DA. The growth promotion in endophyte symbiotic plants does not penalise the resistance to herbivores and bacterial microbiota. PLANT, CELL & ENVIRONMENT 2024; 47:2865-2878. [PMID: 38616528 DOI: 10.1111/pce.14912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
A trade-off between growth and defence against biotic stresses is common in plants. Fungal endophytes of the genus Epichloë may relieve this trade-off in their host grasses since they can simultaneously induce plant growth and produce antiherbivore alkaloids that circumvent the need for host defence. The Epichloë ability to decouple the growth-defence trade-off was evaluated by subjecting ryegrass with and without Epichloë endophytes to an exogenous treatment with gibberellin (GA) followed by a challenge with Rhopalosiphum padi aphids. In agreement with the endophyte-mediated trade-off decoupling hypothesis, the GA-derived promotion of plant growth increased the susceptibility to aphids in endophyte-free plants but did not affect the insect resistance in endophyte-symbiotic plants. In line with the unaltered insect resistance, the GA treatment did not reduce the concentration of Epichloë-derived alkaloids. The Epichloë mycelial biomass was transiently increased by the GA treatment but at the expense of hyphal integrity. The response of the phyllosphere bacterial microbiota to both GA treatment and Epichloë was also evaluated. Only Epichloë, and not the GA treatment, altered the composition of the phyllosphere microbiota and the abundance of certain bacterial taxa. Our findings clearly demonstrate that Epichloë does indeed relieve the plant growth-defence trade-off.
Collapse
Affiliation(s)
- Wei Zhang
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Pedro E Gundel
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ruy Jáuregui
- Animal Health Laboratory, Biosecurity New Zealand, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - Stuart D Card
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Wade J Mace
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Richard D Johnson
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Daniel A Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
22
|
McEnany J, Good BH. Predicting the First Steps of Evolution in Randomly Assembled Communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.15.571925. [PMID: 38168431 PMCID: PMC10760118 DOI: 10.1101/2023.12.15.571925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Microbial communities can self-assemble into highly diverse states with predictable statistical properties. However, these initial states can be disrupted by rapid evolution of the resident strains. When a new mutation arises, it competes for resources with its parent strain and with the other species in the community. This interplay between ecology and evolution is difficult to capture with existing community assembly theory. Here, we introduce a mathematical framework for predicting the first steps of evolution in large randomly assembled communities that compete for substitutable resources. We show how the fitness effects of new mutations and the probability that they coexist with their parent depends on the size of the community, the saturation of its niches, and the metabolic overlap between its members. We find that successful mutations are often able to coexist with their parent strains, even in saturated communities with low niche availability. At the same time, these invading mutants often cause extinctions of metabolically distant species. Our results suggest that even small amounts of evolution can produce distinct genetic signatures in natural microbial communities.
Collapse
Affiliation(s)
- John McEnany
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Benjamin H. Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
23
|
Duckett M, Taylor MN, Bowman C, Vega NM. Parallel evolution of alternate morphotypes of Chryseobacterium gleum during experimental evolution with Caenorhabditis elegans. FEMS Microbiol Ecol 2024; 100:fiae039. [PMID: 38549432 PMCID: PMC11004935 DOI: 10.1093/femsec/fiae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Microbial evolution within polymicrobial communities is a complex process. Here, we report within-species diversification within multispecies microbial communities during experimental evolution with the nematode Caenorhabditis elegans. We describe morphological diversity in the target species Chryseobacterium gleum, which developed a novel colony morphotype in a small number of replicate communities. Alternate morphotypes coexisted with original morphotypes in communities, as well as in single-species experiments using evolved isolates. We found that the original and alternate morphotypes differed in motility and in spatial expansion in the presence of C. elegans. This study provides insight into the emergence and maintenance of intraspecies diversity in the context of microbial communities.
Collapse
Affiliation(s)
- Marissa Duckett
- Department of Biology, Emory University, 1510 Clifton Road NE #2006, Atlanta, GA 30322, United States
| | - Megan N Taylor
- Department of Biology, Emory University, 1510 Clifton Road NE #2006, Atlanta, GA 30322, United States
| | - Claire Bowman
- Department of Biology, Emory University, 1510 Clifton Road NE #2006, Atlanta, GA 30322, United States
| | - Nic M Vega
- Department of Biology, Emory University, 1510 Clifton Road NE #2006, Atlanta, GA 30322, United States
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA 30322, United States
| |
Collapse
|
24
|
Pacheco-Moreno A, Bollmann-Giolai A, Chandra G, Brett P, Davies J, Thornton O, Poole P, Ramachandran V, Brown JKM, Nicholson P, Ridout C, DeVos S, Malone JG. The genotype of barley cultivars influences multiple aspects of their associated microbiota via differential root exudate secretion. PLoS Biol 2024; 22:e3002232. [PMID: 38662644 PMCID: PMC11045101 DOI: 10.1371/journal.pbio.3002232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Plant-associated microbes play vital roles in promoting plant growth and health, with plants secreting root exudates into the rhizosphere to attract beneficial microbes. Exudate composition defines the nature of microbial recruitment, with different plant species attracting distinct microbiota to enable optimal adaptation to the soil environment. To more closely examine the relationship between plant genotype and microbial recruitment, we analysed the rhizosphere microbiomes of landrace (Chevallier) and modern (NFC Tipple) barley (Hordeum vulgare) cultivars. Distinct differences were observed between the plant-associated microbiomes of the 2 cultivars, with the plant-growth promoting rhizobacterial genus Pseudomonas substantially more abundant in the Tipple rhizosphere. Striking differences were also observed between the phenotypes of recruited Pseudomonas populations, alongside distinct genotypic clustering by cultivar. Cultivar-driven Pseudomonas selection was driven by root exudate composition, with the greater abundance of hexose sugars secreted from Tipple roots attracting microbes better adapted to growth on these metabolites and vice versa. Cultivar-driven selection also operates at the molecular level, with both gene expression and the abundance of ecologically relevant loci differing between Tipple and Chevallier Pseudomonas isolates. Finally, cultivar-driven selection is important for plant health, with both cultivars showing a distinct preference for microbes selected by their genetic siblings in rhizosphere transplantation assays.
Collapse
Affiliation(s)
- Alba Pacheco-Moreno
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | | | - Govind Chandra
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Paul Brett
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Jack Davies
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Owen Thornton
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Philip Poole
- Department of Biology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Vinoy Ramachandran
- Department of Biology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - James K. M. Brown
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Paul Nicholson
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Chris Ridout
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- New Heritage Barley, Norwich Research Park, Norwich, United Kingdom
| | - Sarah DeVos
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- New Heritage Barley, Norwich Research Park, Norwich, United Kingdom
| | - Jacob G. Malone
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
25
|
Yue H, Sun X, Wang T, Zhang A, Han D, Wei G, Song W, Shu D. Host genotype-specific rhizosphere fungus enhances drought resistance in wheat. MICROBIOME 2024; 12:44. [PMID: 38433268 PMCID: PMC10910722 DOI: 10.1186/s40168-024-01770-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND The severity and frequency of drought are expected to increase substantially in the coming century and dramatically reduce crop yields. Manipulation of rhizosphere microbiomes is an emerging strategy for mitigating drought stress in agroecosystems. However, little is known about the mechanisms underlying how drought-resistant plant recruitment of specific rhizosphere fungi enhances drought adaptation of drought-sensitive wheats. Here, we investigated microbial community assembly features and functional profiles of rhizosphere microbiomes related to drought-resistant and drought-sensitive wheats by amplicon and shotgun metagenome sequencing techniques. We then established evident linkages between root morphology traits and putative keystone taxa based on microbial inoculation experiments. Furthermore, root RNA sequencing and RT-qPCR were employed to explore the mechanisms how rhizosphere microbes modify plant response traits to drought stresses. RESULTS Our results indicated that host plant signature, plant niche compartment, and planting site jointly contribute to the variation of soil microbiome assembly and functional adaptation, with a relatively greater effect of host plant signature observed for the rhizosphere fungi community. Importantly, drought-resistant wheat (Yunhan 618) possessed more diverse bacterial and fungal taxa than that of the drought-sensitive wheat (Chinese Spring), particularly for specific fungal species. In terms of microbial interkingdom association networks, the drought-resistant variety possessed more complex microbial networks. Metagenomics analyses further suggested that the enriched rhizosphere microbiomes belonging to the drought-resistant cultivar had a higher investment in energy metabolism, particularly in carbon cycling, that shaped their distinctive drought tolerance via the mediation of drought-induced feedback functional pathways. Furthermore, we observed that host plant signature drives the differentiation in the ecological role of the cultivable fungal species Mortierella alpine (M. alpina) and Epicoccum nigrum (E. nigrum). The successful colonization of M. alpina on the root surface enhanced the resistance of wheats in response to drought stresses via activation of drought-responsive genes (e.g., CIPK9 and PP2C30). Notably, we found that lateral roots and root hairs were significantly suppressed by co-colonization of a drought-enriched fungus (M. alpina) and a drought-depleted fungus (E. nigrum). CONCLUSIONS Collectively, our findings revealed host genotypes profoundly influence rhizosphere microbiome assembly and functional adaptation, as well as it provides evidence that drought-resistant plant recruitment of specific rhizosphere fungi enhances drought tolerance of drought-sensitive wheats. These findings significantly underpin our understanding of the complex feedbacks between plants and microbes during drought, and lay a foundation for steering "beneficial keystone biome" to develop more resilient and productive crops under climate change. Video Abstract.
Collapse
Affiliation(s)
- Hong Yue
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuming Sun
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingting Wang
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ali Zhang
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dejun Han
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gehong Wei
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| | - Weining Song
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Duntao Shu
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
26
|
Dijamentiuk A, Mangavel C, Gapp C, Elfassy A, Revol-Junelles AM, Borges F. Serial cultures in invert emulsion and monophase systems for microbial community shaping and propagation. Microb Cell Fact 2024; 23:50. [PMID: 38355580 PMCID: PMC10865683 DOI: 10.1186/s12934-024-02322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Microbial communities harbor important biotechnological potential in diverse domains, however, the engineering and propagation of such communities still face both knowledge and know-how gaps. More specifically, culturing tools are needed to propagate and shape microbial communities, to obtain desired properties, and to exploit them. Previous work suggested that micro-confinement and segregation of microorganisms using invert (water-in-oil, w/o) emulsion broth can shape communities during propagation, by alleviating biotic interactions and inducing physiological changes in cultured bacteria. The present work aimed at evaluating invert emulsion and simple broth monophasic cultures for the propagation and shaping of bacterial communities derived from raw milk in a serial propagation design. RESULTS The monophasic setup resulted in stable community structures during serial propagation, whereas the invert emulsion system resulted in only transiently stable structures. In addition, different communities with different taxonomic compositions could be obtained from a single inoculum. Furthermore, the implementation of invert emulsion systems has allowed for the enrichment of less abundant microorganisms and consequently facilitated their isolation on culture agar plates. CONCLUSIONS The monophasic system enables communities to be propagated in a stable manner, whereas the invert emulsion system allowed for the isolation of less abundant microorganisms and the generation of diverse taxonomic compositions from a single inoculum.
Collapse
Affiliation(s)
- Alexis Dijamentiuk
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, Nancy, France
| | - Cécile Mangavel
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, Nancy, France
| | - Chloé Gapp
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, Nancy, France
| | - Annelore Elfassy
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, Nancy, France
| | | | - Frédéric Borges
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, Nancy, France.
| |
Collapse
|
27
|
Smee MR, Herr KL, Abdul-Khaliq S, Cadet CEA, Hendry TA. Draft genome sequences of eight bacterial isolates from Pisum sativum leaf surfaces. Microbiol Resour Announc 2024; 13:e0081323. [PMID: 38117066 DOI: 10.1128/mra.00813-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Bacterial communities in the phyllosphere, the above-ground parts of plants, are diverse yet understudied. These bacteria are important for plant health and also for inter-kingdom interactions with beneficial and pest insect species. Here, we present draft genomes of eight culturable bacterial isolates from leaf surfaces in the Pisum sativum phyllosphere.
Collapse
Affiliation(s)
- Melanie R Smee
- Department of Microbiology, Cornell University , Ithaca, New York, USA
| | - Kathryn L Herr
- Department of Microbiology, Cornell University , Ithaca, New York, USA
| | | | - Chris E A Cadet
- Department of Microbiology, Cornell University , Ithaca, New York, USA
| | - Tory A Hendry
- Department of Microbiology, Cornell University , Ithaca, New York, USA
| |
Collapse
|
28
|
Yan K, Lu DS, Ding CJ, Wang Y, Tian YR, Su XH, Dong YF, Wang YP. Rare and abundant bacterial communities in poplar rhizosphere soils respond differently to genetic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168216. [PMID: 37923276 DOI: 10.1016/j.scitotenv.2023.168216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Interactions between plants and soil microbes are important to plant hybrid breeding under global change. However, the relationship between host plants and rhizosphere soil microorganisms has not been fully elucidated. Understanding the rhizosphere microbial structure of parents and progenies would provide a deeper insight into how genetic effects modulate the relationship between plants and soil. In this study, two family groups of poplar trees (A: parents and their two progenies; B: parents and their one progeny) with different genetic backgrounds (including seven genotypes) were selected from a common garden, and their rhizobacterial communities were analyzed to explore parent-progeny relationships. Our results showed significant differences in phylogenetic diversity, the number of 16S genes and the structure of rhizosphere bacterial communities (Adonis: R2 = 0.166, P < 0.01) between different family groups. Rhizosphere bacterial community structure was significantly dominated by genetic effects. Compared with abundant taxa, genetic effects were more powerful drivers of rare taxa. In addition, bacterial communities of hybrid progenies were all significantly more similar to their parents compared to the other group of parents, especially among rare taxa. The two poplar family groups exhibited differences between their rhizosphere bacterial co-occurrence networks. Group B had a relatively complex network with 2380 edges and 468 nodes, while group A had 1829 edges and 304 nodes. Soil organic carbon and carbon to nitrogen ratio (C/N) also influenced the rhizosphere bacterial community assembly. This was especially true for soil C/N, which explained 23 % of the β-nearest taxon index (βNTI) variation in rare taxa. Our results reveal the relationship of rhizosphere microorganisms between parents and progenies. This can help facilitate an understanding of the combination of plant breeding with microbes resource utilization and provide a theoretical basis for scientific advancement to support the development of forestry industry.
Collapse
Affiliation(s)
- Kun Yan
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - De Shan Lu
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Chang Jun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yan Wang
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yong Ren Tian
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Hua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | | | - Yan Ping Wang
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
29
|
Xiang Q, Lin D, Yang ZJ, Han RX, Zhang TL, Chen QL, Zhu D, Penuelas J, Zhu YG. Host genetic variation and specialized metabolites from wheat leaves enriches for phyllosphere Pseudomonas spp. with enriched antibiotic resistomes. THE ISME JOURNAL 2024; 18:wrae144. [PMID: 39073904 PMCID: PMC11334211 DOI: 10.1093/ismejo/wrae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Antibiotic resistance in plant-associated microbiomes poses significant risks for agricultural ecosystems and human health. Although accumulating evidence suggests a role for plant genotypes in shaping their microbiome, almost nothing is known about how the changes of plant genetic information affect the co-evolved plant microbiome carrying antibiotic resistance genes (ARGs). Here, we selected 16 wheat cultivars and experimentally explored the impact of host genetic variation on phyllosphere microbiome, ARGs, and metabolites. Our results demonstrated that host genetic variation significantly influenced the phyllosphere resistomes. Wheat genotypes exhibiting high phyllosphere ARGs were linked to elevated Pseudomonas populations, along with increased abundances of Pseudomonas aeruginosa biofilm formation genes. Further analysis of 350 Pseudomonas spp. genomes from diverse habitats at a global scale revealed that nearly all strains possess multiple ARGs, virulence factor genes (VFGs), and mobile genetic elements (MGEs) on their genomes, albeit with lower nucleotide diversity compared to other species. These findings suggested that the proliferation of Pseudomonas spp. in the phyllosphere significantly contributed to antibiotic resistance. We further observed direct links between the upregulated leaf metabolite DIMBOA-Glc, Pseudomonas spp., and enrichment of phyllosphere ARGs, which were corroborated by microcosm experiments demonstrating that DIMBOA-Glc significantly enhanced the relative abundance of Pseudomonas spp. Overall, alterations in leaf metabolites resulting from genetic variation throughout plant evolution may drive the development of highly specialized microbial communities capable of enriching phyllosphere ARGs. This study enhances our understanding of how plants actively shape microbial communities and clarifies the impact of host genetic variation on the plant resistomes.
Collapse
Affiliation(s)
- Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Da Lin
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zai-Jun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (ministry of education), College of Life Science, China West Normal University, Nanchong, Sichuan 637009, China
| | - Rui-Xia Han
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Tian-Lun Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
30
|
Dooley KD, Henry LP, Bergelson J. Impact of timing on the invasion of synthetic bacterial communities. THE ISME JOURNAL 2024; 18:wrae220. [PMID: 39498487 PMCID: PMC11605641 DOI: 10.1093/ismejo/wrae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/12/2024] [Accepted: 11/03/2024] [Indexed: 11/30/2024]
Abstract
Microbial communities regularly experience ecological invasions that can lead to changes in composition and function. Factors thought to impact susceptibility to invasions, such as diversity and resource use, vary over the course of community assembly. We used synthetic bacterial communities to evaluate the success and impact of invasions occurring at different times during the community assembly process. Fifteen distinct communities were subjected to each of three bacterial invaders at the initial assembly of the community ("initial invasion"), 24 h into community assembly ("early invasion"), when the community was still undergoing transient dynamics, and 7 days into community assembly ("late invasion"), once the community had settled into its final composition. Communities were passaged daily and characterized through sequencing after reaching a stable composition. Invasions often failed to persist over time, particularly in higher richness communities. However, invasions had their largest effect on composition when they occurred before a community had settled into a stable composition. We found instances where an invader was ultimately excluded yet had profound and long-lasting effects on invaded communities. Invasion outcome was positively associated with lower community richness and resource use efficiency by the community, which varied throughout assembly. Our results demonstrate that microbial communities experiencing transient community dynamics are more affected by, and in some instances prone to, invasion, a finding relevant to efforts to modify the composition of microbial communities.
Collapse
Affiliation(s)
- Keven D Dooley
- Committee on Microbiology, University of Chicago, 924 East 57th Street, Chicago, IL 60637, United States
| | - Lucas P Henry
- Center for Genomics and System Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States
| | - Joy Bergelson
- Center for Genomics and System Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, United States
| |
Collapse
|
31
|
Carper DL, Lawrence TJ, Quiroz D, Kueppers LM, Frank AC. Needle bacterial community structure across the species range of limber pine. ISME COMMUNICATIONS 2024; 4:ycae062. [PMID: 38800125 PMCID: PMC11128189 DOI: 10.1093/ismeco/ycae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Bacteria on and inside leaves can influence forest tree health and resilience. The distribution and limits of a tree species' range can be influenced by various factors, with biological interactions among the most significant. We investigated the processes shaping the bacterial needle community across the species distribution of limber pine, a widespread Western conifer inhabiting a range of extreme habitats. We tested four hypotheses: (i) Needle community structure varies across sites, with site-specific factors more important to microbial assembly than host species selection; (ii) dispersal limitation structures foliar communities across the range of limber pine; (iii) the relative significance of dispersal and selection differs across sites in the tree species range; and (iv) needle age structures bacterial communities. We characterized needle communities from the needle surface and tissue of limber pine and co-occurring conifers across 16 sites in the limber pine distribution. Our findings confirmed that site characteristics shape the assembly of bacterial communities across the host species range and showed that these patterns are not driven by dispersal limitation. Furthermore, the strength of selection by the host varied by site, possibly due to differences in available microbes. Our study, by focusing on trees in their natural setting, reveals real needle bacterial dynamics in forests, which is key to understanding the balance between stochastic and deterministic processes in shaping forest tree-microbe interactions. Such understanding will be necessary to predict or manipulate these interactions to support forest ecosystem productivity or assist plant migration and adaptation in the face of global change.
Collapse
Affiliation(s)
- Dana L Carper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
- Quantitative and Systems Biology Program, University of California, Merced, Merced, CA 95343, United States
| | - Travis J Lawrence
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Dianne Quiroz
- Energy & Resources Group, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Lara M Kueppers
- Energy & Resources Group, University of California, Berkeley, Berkeley, CA 94720, United States
- Sierra Nevada Research Institute, University of California, Merced, Merced, CA 95353, United States
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - A Carolin Frank
- Sierra Nevada Research Institute, University of California, Merced, Merced, CA 95353, United States
- Life and Environmental Sciences Department, School of Natural Sciences, University of California, Merced, 5200 Lake Rd, Merced, CA 95343, United States
| |
Collapse
|
32
|
Meyer KM, Muscettola IE, Vasconcelos ALS, Sherman JK, Metcalf CJE, Lindow SE, Koskella B. Conspecific versus heterospecific transmission shapes host specialization of the phyllosphere microbiome. Cell Host Microbe 2023; 31:2067-2079.e5. [PMID: 38029741 DOI: 10.1016/j.chom.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/09/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
In disease ecology, pathogen transmission among conspecific versus heterospecific hosts is known to shape pathogen specialization and virulence, but we do not yet know if similar effects occur at the microbiome level. We tested this idea by experimentally passaging leaf-associated microbiomes either within conspecific or across heterospecific plant hosts. Although conspecific transmission results in persistent host-filtering effects and more within-microbiome network connections, heterospecific transmission results in weaker host-filtering effects but higher levels of interconnectivity. When transplanted onto novel plants, heterospecific lines are less differentiated by host species than conspecific lines, suggesting a shift toward microbiome generalism. Finally, conspecific lines from tomato exhibit a competitive advantage on tomato hosts against those passaged on bean or pepper, suggesting microbiome-level host specialization. Overall, we find that transmission mode and previous host history shape microbiome diversity, with repeated conspecific transmission driving microbiome specialization and repeated heterospecific transmission promoting microbiome generalism.
Collapse
Affiliation(s)
- Kyle M Meyer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Isabella E Muscettola
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ana Luisa S Vasconcelos
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Soil Science, College of Agriculture "Luiz de Queiroz", Universidade de São Paulo, Piracicaba 13418-900, Brazil
| | - Julia K Sherman
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
33
|
Mehlferber EC, Debray R, Conover AE, Sherman JK, Kaulbach G, Reed R, McCue KF, Ferrel JE, Khanna R, Koskella B. Phyllosphere microbial associations improve plant reproductive success. FRONTIERS IN PLANT SCIENCE 2023; 14:1273330. [PMID: 38143578 PMCID: PMC10739325 DOI: 10.3389/fpls.2023.1273330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023]
Abstract
The above-ground (phyllosphere) plant microbiome is increasingly recognized as an important component of plant health. We hypothesized that phyllosphere bacterial recruitment may be disrupted in a greenhouse setting, and that adding a bacterial amendment would therefore benefit the health and growth of host plants. Using a newly developed synthetic phyllosphere bacterial microbiome for tomato (Solanum lycopersicum), we tested this hypothesis across multiple trials by manipulating microbial inoculation of leaves and measuring subsequent plant growth and reproductive success, comparing results from plants grown in both greenhouse and field settings. We confirmed that greenhouse-grown plants have a relatively depauperate phyllosphere bacterial microbiome, which both makes them an ideal system for testing the impact of phyllosphere communities on plant health and important targets for microbial amendments as we move towards increased agricultural sustainability. We find that the addition of the synthetic microbial community early in greenhouse growth leads to an increase in fruit production in this setting, implicating the phyllosphere microbiome as a key component of plant fitness and emphasizing the role that these bacterial microbiomes likely play in the ecology and evolution of plant communities.
Collapse
Affiliation(s)
- Elijah C. Mehlferber
- Koskella Lab, University of California, Department of Integrative Biology, Berkeley, CA, United States
| | - Reena Debray
- Koskella Lab, University of California, Department of Integrative Biology, Berkeley, CA, United States
| | - Asa E. Conover
- Koskella Lab, University of California, Department of Integrative Biology, Berkeley, CA, United States
| | - Julia K. Sherman
- Koskella Lab, University of California, Department of Integrative Biology, Berkeley, CA, United States
| | - Griffin Kaulbach
- Department of Environmental Studies, Haverford College, PA, United States
| | - Robert Reed
- i-Cultiver, Inc., Manteca, CA, United States
| | - Kent F. McCue
- Crop Improvement and Genetics Research Unit, Agricultural Research Service, Western Regional Research Center, United States Department of Agriculture, Albany, CA, United States
| | - Jon E. Ferrel
- i-Cultiver, Inc., Manteca, CA, United States
- Azomite Mineral Products, Inc., Nephi, UT, United States
| | - Rajnish Khanna
- i-Cultiver, Inc., Manteca, CA, United States
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Britt Koskella
- Koskella Lab, University of California, Department of Integrative Biology, Berkeley, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
34
|
Shankar N, Shetty P, Melo TC, Kesseli R. Multi-Generation Ecosystem Selection of Rhizosphere Microbial Communities Associated with Plant Genotype and Biomass in Arabidopsis thaliana. Microorganisms 2023; 11:2932. [PMID: 38138075 PMCID: PMC10745315 DOI: 10.3390/microorganisms11122932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The role of the microbiome in shaping the host's phenotype has emerged as a critical area of investigation, with implications in ecology, evolution, and host health. The complex and dynamic interactions involving plants and their diverse rhizospheres' microbial communities are influenced by a multitude of factors, including but not limited to soil type, environment, and plant genotype. Understanding the impact of these factors on microbial community assembly is key to yielding host-specific and robust benefits for plants, yet it remains challenging. Here, we conducted an artificial ecosystem selection experiment for eight generations of Arabidopsis thaliana Ler and Cvi to select soil microbiomes associated with a higher or lower biomass of the host. This resulted in divergent microbial communities shaped by a complex interplay between random environmental variations, plant genotypes, and biomass selection pressures. In the initial phases of the experiment, the genotype and the biomass selection treatment had modest but significant impacts. Over time, the plant genotype and biomass treatments gained more influence, explaining ~40% of the variation in the microbial community's composition. Furthermore, a genotype-specific association of plant-growth-promoting rhizobacterial taxa, Labraceae with Ler and Rhizobiaceae with Cvi, was observed under selection for high biomass.
Collapse
Affiliation(s)
- Nachiket Shankar
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA (R.K.)
| | - Prateek Shetty
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary;
| | - Tatiana C. Melo
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA (R.K.)
| | - Rick Kesseli
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA (R.K.)
| |
Collapse
|
35
|
Graham NR, Krehenwinkel H, Lim JY, Staniczenko P, Callaghan J, Andersen JC, Gruner DS, Gillespie RG. Ecological network structure in response to community assembly processes over evolutionary time. Mol Ecol 2023; 32:6489-6506. [PMID: 36738159 DOI: 10.1111/mec.16873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 01/07/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
The dynamic structure of ecological communities results from interactions among taxa that change with shifts in species composition in space and time. However, our ability to study the interplay of ecological and evolutionary processes on community assembly remains relatively unexplored due to the difficulty of measuring community structure over long temporal scales. Here, we made use of a geological chronosequence across the Hawaiian Islands, representing 50 years to 4.15 million years of ecosystem development, to sample 11 communities of arthropods and their associated plant taxa using semiquantitative DNA metabarcoding. We then examined how ecological communities changed with community age by calculating quantitative network statistics for bipartite networks of arthropod-plant associations. The average number of interactions per species (linkage density), ratio of plant to arthropod species (vulnerability) and uniformity of energy flow (interaction evenness) increased significantly in concert with community age. The index of specializationH 2 ' has a curvilinear relationship with community age. Our analyses suggest that younger communities are characterized by fewer but stronger interactions, while biotic associations become more even and diverse as communities mature. These shifts in structure became especially prominent on East Maui (~0.5 million years old) and older volcanos, after enough time had elapsed for adaptation and specialization to act on populations in situ. Such natural progression of specialization during community assembly is probably impeded by the rapid infiltration of non-native species, with special risk to younger or more recently disturbed communities that are composed of fewer specialized relationships.
Collapse
Affiliation(s)
- Natalie R Graham
- Department of Environmental Sciences Policy and Management, University of California Berkeley, Berkeley, California, USA
| | - Henrik Krehenwinkel
- Department of Biogeography, Faculty of Regional and Environmental Sciences, Trier University, Trier, Germany
| | - Jun Ying Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Phillip Staniczenko
- Department of Biology, Brooklyn College, City University of New York, New York, New York, USA
| | - Jackson Callaghan
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| | - Jeremy C Andersen
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Daniel S Gruner
- Department of Entomology, University of Maryland, College Park, Maryland, USA
| | - Rosemary G Gillespie
- Department of Environmental Sciences Policy and Management, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
36
|
Wójcik M, Koper P, Żebracki K, Marczak M, Mazur A. Genomic and Metabolic Characterization of Plant Growth-Promoting Rhizobacteria Isolated from Nodules of Clovers Grown in Non-Farmed Soil. Int J Mol Sci 2023; 24:16679. [PMID: 38069003 PMCID: PMC10706249 DOI: 10.3390/ijms242316679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The rhizosphere microbiota, which includes plant growth-promoting rhizobacteria (PGPR), is essential for nutrient acquisition, protection against pathogens, and abiotic stress tolerance in plants. However, agricultural practices affect the composition and functions of microbiota, reducing their beneficial effects on plant growth and health. Among PGPR, rhizobia form mutually beneficial symbiosis with legumes. In this study, we characterized 16 clover nodule isolates from non-farmed soil to explore their plant growth-promoting (PGP) potential, hypothesizing that these bacteria may possess unique, unaltered PGP traits, compared to those affected by common agricultural practices. Biolog profiling revealed their versatile metabolic capabilities, enabling them to utilize a wide range of carbon and energy sources. All isolates were effective phosphate solubilizers, and individual strains exhibited 1-aminocyclopropane-1-carboxylate deaminase and metal ion chelation activities. Metabolically active strains showed improved performance in symbiotic interactions with plants. Comparative genomics revealed that the genomes of five nodule isolates contained a significantly enriched fraction of unique genes associated with quorum sensing and aromatic compound degradation. As the potential of PGPR in agriculture grows, we emphasize the importance of the molecular and metabolic characterization of PGP traits as a fundamental step towards their subsequent application in the field as an alternative to chemical fertilizers and supplements.
Collapse
Affiliation(s)
| | | | | | | | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (P.K.); (K.Ż.); (M.M.)
| |
Collapse
|
37
|
Hakobyan A, Velte S, Sickel W, Quandt D, Stoll A, Knief C. Tillandsia landbeckii phyllosphere and laimosphere as refugia for bacterial life in a hyperarid desert environment. MICROBIOME 2023; 11:246. [PMID: 37936139 PMCID: PMC10631034 DOI: 10.1186/s40168-023-01684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND The lack of water is a major constraint for microbial life in hyperarid deserts. Consequently, the abundance and diversity of microorganisms in common habitats such as soil are strongly reduced, and colonization occurs primarily by specifically adapted microorganisms that thrive in particular refugia to escape the harsh conditions that prevail in these deserts. We suggest that plants provide another refugium for microbial life in hyperarid deserts. We studied the bacterial colonization of Tillandsia landbeckii (Bromeliaceae) plants, which occur in the hyperarid regions of the Atacama Desert in Chile, one of the driest and oldest deserts on Earth. RESULTS We detected clear differences between the bacterial communities being plant associated to those of the bare soil surface (PERMANOVA, R2 = 0.187, p = 0.001), indicating that Tillandsia plants host a specific bacterial community, not only dust-deposited cells. Moreover, the bacterial communities in the phyllosphere were distinct from those in the laimosphere, i.e., on buried shoots (R2 = 0.108, p = 0.001), indicating further habitat differentiation within plant individuals. The bacterial taxa detected in the phyllosphere are partly well-known phyllosphere colonizers, but in addition, some rather unusual taxa (subgroup2 Acidobacteriae, Acidiphilum) and insect endosymbionts (Wolbachia, "Candidatus Uzinura") were found. The laimosphere hosted phyllosphere-associated as well as soil-derived taxa. The phyllosphere bacterial communities showed biogeographic patterns across the desert (R2 = 0.331, p = 0.001). These patterns were different and even more pronounced in the laimosphere (R2 = 0.467, p = 0.001), indicating that different factors determine community assembly in the two plant compartments. Furthermore, the phyllosphere microbiota underwent temporal changes (R2 = 0.064, p = 0.001). CONCLUSIONS Our data demonstrate that T. landbeckii plants host specific bacterial communities in the phyllosphere as well as in the laimosphere. Therewith, these plants provide compartment-specific refugia for microbial life in hyperarid desert environments. The bacterial communities show biogeographic patterns and temporal variation, as known from other plant microbiomes, demonstrating environmental responsiveness and suggesting that bacteria inhabit these plants as viable microorganisms. Video Abstract.
Collapse
Affiliation(s)
- Anna Hakobyan
- Molecular Biology of the Rhizosphere, Institute for Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany
| | - Stefanie Velte
- Molecular Biology of the Rhizosphere, Institute for Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany
| | - Wiebke Sickel
- Molecular Biology of the Rhizosphere, Institute for Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany
- Institute of Biodiversity, Johann Heinrich Von Thünen Institute, Brunswick, Germany
| | - Dietmar Quandt
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany
| | - Alexandra Stoll
- Centro de Estudios Avanzados en Zonas Áridas Ceaza, La Serena, Chile
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
| | - Claudia Knief
- Molecular Biology of the Rhizosphere, Institute for Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
38
|
De-la-Vega-Camarillo E, Hernández-García JA, Villa-Tanaca L, Hernández-Rodríguez C. Unlocking the hidden potential of Mexican teosinte seeds: revealing plant growth-promoting bacterial and fungal biocontrol agents. FRONTIERS IN PLANT SCIENCE 2023; 14:1247814. [PMID: 37860235 PMCID: PMC10582567 DOI: 10.3389/fpls.2023.1247814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
The bacterial component of plant holobiont maintains valuable interactions that contribute to plants' growth, adaptation, stress tolerance, and antagonism to some phytopathogens. Teosinte is the grass plant recognized as the progenitor of modern maize, domesticated by pre-Hispanic civilizations around 9,000 years ago. Three teosinte species are recognized: Zea diploperennis, Zea perennis, and Zea mays. In this work, the bacterial diversity of three species of Mexican teosinte seeds was explored by massive sequencing of 16S rRNA amplicons. Streptomyces, Acinetobacter, Olivibacter, Erwinia, Bacillus, Pseudomonas, Cellvibrio, Achromobacter, Devosia, Lysobacter, Sphingopyxis, Stenotrophomonas, Ochrobactrum, Delftia, Lactobacillus, among others, were the bacterial genera mainly represented. The bacterial alpha diversity in the seeds of Z. diploperennis was the highest, while the alpha diversity in Z. mays subsp. mexicana race was the lowest observed among the species and races. The Mexican teosintes analyzed had a core bacteriome of 38 bacterial genera, including several recognized plant growth promoters or fungal biocontrol agents such as Agrobacterium, Burkholderia, Erwinia, Lactobacillus, Ochrobactrum, Paenibacillus, Pseudomonas, Sphingomonas, Streptomyces, among other. Metabolic inference analysis by PICRUSt2 of bacterial genera showed several pathways related to plant growth promotion (PGP), biological control, and environmental adaptation. The implications of these findings are far-reaching, as they highlight the existence of an exceptional bacterial germplasm reservoir teeming with potential plant growth promotion bacteria (PGPB). This reserve holds the key to cultivating innovative bioinoculants and formidable fungal antagonistic strains, thereby paving the way for a more sustainable and eco-friendly approach to agriculture. Embracing these novel NGS-based techniques and understanding the profound impact of the vertical transference of microorganisms from seeds could revolutionize the future of agriculture and develop a new era of symbiotic harmony between plants and microbes.
Collapse
Affiliation(s)
| | | | | | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
39
|
Li X, Chou MY, Bonito GM, Last RL. Anti-fungal bioactive terpenoids in the bioenergy crop switchgrass (Panicum virgatum) may contribute to ecotype-specific microbiome composition. Commun Biol 2023; 6:917. [PMID: 37679469 PMCID: PMC10485007 DOI: 10.1038/s42003-023-05290-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Plant derived bioactive small molecules have attracted attention of scientists across fundamental and applied scientific disciplines. We seek to understand the influence of these phytochemicals on rhizosphere and root-associated fungi. We hypothesize that - consistent with accumulating evidence that switchgrass genotype impacts microbiome assembly - differential terpenoid accumulation contributes to switchgrass ecotype-specific microbiome composition. An initial in vitro Petri plate-based disc diffusion screen of 18 switchgrass root derived fungal isolates revealed differential responses to upland- and lowland-isolated metabolites. To identify specific fungal growth-modulating metabolites, we tested fractions from root extracts on three ecologically important fungal isolates - Linnemania elongata, Trichoderma sp. and Fusarium sp. Saponins and diterpenoids were identified as the most prominent antifungal metabolites. Finally, analysis of liquid chromatography-purified terpenoids revealed fungal inhibition structure - activity relationships (SAR). Saponin antifungal activity was primarily determined by the number of sugar moieties - saponins glycosylated at a single core position were inhibitory whereas saponins glycosylated at two core positions were inactive. Saponin core hydroxylation and acetylation were also associated with reduced activity. Diterpenoid activity required the presence of an intact furan ring for strong fungal growth inhibition. These results inform future breeding and biotechnology strategies for crop protection with reduced pesticide application.
Collapse
Affiliation(s)
- Xingxing Li
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ming-Yi Chou
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Gregory M Bonito
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Robert L Last
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Department Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
40
|
Ahmed B, Beneš F, Hajšlová J, Fišarová L, Vosátka M, Hijri M. Enhanced production of select phytocannabinoids in medical Cannabis cultivars using microbial consortia. FRONTIERS IN PLANT SCIENCE 2023; 14:1219836. [PMID: 37719209 PMCID: PMC10502174 DOI: 10.3389/fpls.2023.1219836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023]
Abstract
The root microbiome of medical cannabis plants has been largely unexplored due to past legal restrictions in many countries. Microbes that live on and within the tissue of Cannabis sativa L. similar to other plants, provide advantages such as stimulating plant growth, helping it absorb minerals, providing protection against pathogen attacks, and influencing the production of secondary metabolites. To gain insight into the microbial communities of C. sativa cultivars with different tetrahydrocannabinol (THC) and cannabidiol (CBD) profiles, a greenhouse trial was carried out with and without inoculants added to the growth substrate. Illumina MiSeq metabarcoding was used to analyze the root and rhizosphere microbiomes of the five cultivars. Plant biomass production showed higher levels in three of five cultivars inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis and microbial suspension. The blossom dry weight of the cultivar THE was greater when inoculated with R. irregularis and microbial suspension than with no inoculation. Increasing plant biomass and blossom dry weight are two important parameters for producing cannabis for medical applications. In mature Cannabis, 12 phytocannabinoid compounds varied among cultivars and were affected by inoculants. Significant differences (p ≤ 0.01) in concentrations of cannabidivarinic acid (CBDVA), cannabidivarin (CBDV), cannabigerol (CBG), cannabidiol (CBD), and cannabigerolic acid (CBGA) were observed in all Cannabis cultivars when amended with F, K1, and K2 inoculants. We found microbes that were shared among cultivars. For example, Terrimicrobium sp., Actinoplanes sp., and Trichoderma reesei were shared by the cultivars ECC-EUS-THE, CCL-ECC, and EUS-THE, respectively. Actinoplanes sp. is a known species that produces phosphatase enzymes, while Trichoderma reesei is a fungal train that produces cellulase and contributes to organic matter mineralization. However, the role of Terrimicrobium sp. as an anaerobic bacterium remains unknown. This study demonstrated that the use of inoculants had an impact on the production of phytocannabinoids in five Cannabis cultivars. These inoculants could have useful applications for optimizing cannabis cultivation practices and increasing the production of phytocannabinoids.
Collapse
Affiliation(s)
- Bulbul Ahmed
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - František Beneš
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czechia
| | - Jana Hajšlová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czechia
| | - Lenka Fišarová
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Miroslav Vosátka
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Mohamed Hijri
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
41
|
Nadarajah K, Abdul Rahman NSN. The Microbial Connection to Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:2307. [PMID: 37375932 DOI: 10.3390/plants12122307] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Microorganisms are an important element in modeling sustainable agriculture. Their role in soil fertility and health is crucial in maintaining plants' growth, development, and yield. Further, microorganisms impact agriculture negatively through disease and emerging diseases. Deciphering the extensive functionality and structural diversity within the plant-soil microbiome is necessary to effectively deploy these organisms in sustainable agriculture. Although both the plant and soil microbiome have been studied over the decades, the efficiency of translating the laboratory and greenhouse findings to the field is largely dependent on the ability of the inoculants or beneficial microorganisms to colonize the soil and maintain stability in the ecosystem. Further, the plant and its environment are two variables that influence the plant and soil microbiome's diversity and structure. Thus, in recent years, researchers have looked into microbiome engineering that would enable them to modify the microbial communities in order to increase the efficiency and effectiveness of the inoculants. The engineering of environments is believed to support resistance to biotic and abiotic stressors, plant fitness, and productivity. Population characterization is crucial in microbiome manipulation, as well as in the identification of potential biofertilizers and biocontrol agents. Next-generation sequencing approaches that identify both culturable and non-culturable microbes associated with the soil and plant microbiome have expanded our knowledge in this area. Additionally, genome editing and multidisciplinary omics methods have provided scientists with a framework to engineer dependable and sustainable microbial communities that support high yield, disease resistance, nutrient cycling, and management of stressors. In this review, we present an overview of the role of beneficial microbes in sustainable agriculture, microbiome engineering, translation of this technology to the field, and the main approaches used by laboratories worldwide to study the plant-soil microbiome. These initiatives are important to the advancement of green technologies in agriculture.
Collapse
Affiliation(s)
- Kalaivani Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Sciences and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Nur Sabrina Natasha Abdul Rahman
- Department of Biological Sciences and Biotechnology, Faculty of Sciences and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
42
|
Zhang M, Wang Y, Hu Y, Wang H, Liu Y, Zhao B, Zhang J, Fang R, Yan Y. Heterosis in root microbiota inhibits growth of soil-borne fungal pathogens in hybrid rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1059-1076. [PMID: 36426878 DOI: 10.1111/jipb.13416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
In nature, plants are colonized by various microbes that play essential roles in their growth and health. Heterosis is a natural genetic phenomenon whereby first-generation hybrids exhibit superior phenotypic performance relative to their parents. It remains unclear whether this concept can be extended to the "hybridization" of microbiota from two parents in their descendants and what benefits the hybrid microbiota might convey. Here, we investigated the structure and function of the root microbiota from three hybrid rice varieties and their parents through amplicon sequencing analysis of bacterial 16S ribosomal DNA (rDNA) and fungal internal transcribed spacer (ITS) regions. We show that the bacterial and fungal root microbiota of the varieties are distinct from those of their parental lines and exhibit potential heterosis features in diversity and composition. Moreover, the root bacterial microbiota of hybrid variety LYP9 protects rice against soil-borne fungal pathogens. Systematic analysis of the protective capabilities of individual strains from a 30-member bacterial synthetic community derived from LYP9 roots indicated that community members have additive protective roles. Global transcription profiling analyses suggested that LYP9 root bacterial microbiota activate rice reactive oxygen species production and cell wall biogenesis, contributing to heterosis for protection. In addition, we demonstrate that the protection conferred by the LYP9 root microbiota is transferable to neighboring plants, potentially explaining the observed hybrid-mediated superior effects of mixed planting. Our findings suggest that some hybrids exhibit heterosis in their microbiota composition that promotes plant health, highlighting the potential for microbiota heterosis in breeding hybrid crops.
Collapse
Affiliation(s)
- Mengting Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yinyue Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyi Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Huacai Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yawen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongsheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
43
|
War AF, Bashir I, Reshi ZA, Kardol P, Rashid I. Insights into the seed microbiome and its ecological significance in plant life. Microbiol Res 2023; 269:127318. [PMID: 36753851 DOI: 10.1016/j.micres.2023.127318] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
In recent years, the microbiome has attracted much attention because of the multiple roles and functions that microbes play in plants, animals, and human beings. Seed-associated microbes are of particular interest in being the initial microbial inoculum that affects the critical early life stages of a plant. The seed-microbe interactions are also known to improve nutrient acquisition, resilience against pathogens, and resistance against abiotic stresses. Despite these diverse roles, the seed microbiome has received little attention in plant ecology. Thus, we review the current knowledge on seed microbial diversity, community structure, and functions obtained through culture-dependent and culture-independent approaches. Furthermore, we present a comprehensive synthesis of the ecological literature on seed-microbe interactions to better understand the impact of these interactions on plant health and productivity. We suggest that future research should focus on the role of the seed microbiome in the establishment, colonization and spread of plant species in their native and non-native ranges as it may provide new insights into conservation biology and invasion ecology.
Collapse
Affiliation(s)
- Aadil Farooq War
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India.
| | - Iqra Bashir
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, S 901 83 Umeå, Sweden
| | - Irfan Rashid
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
44
|
Mundra S, Shockey J, Morsy M. Editorial: Plant microbiome: Ecology, functions, and application trends. FRONTIERS IN PLANT SCIENCE 2023; 14:1175556. [PMID: 36959951 PMCID: PMC10029725 DOI: 10.3389/fpls.2023.1175556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Sunil Mundra
- Department of Biology, College of Science, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al−Ain, United Arab Emirates
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Mustafa Morsy
- Department of Biological and Environmental Sciences, University of West Alabama, Livingston, AL, United States
| |
Collapse
|
45
|
Anguita-Maeso M, Navas-Cortés JA, Landa BB. Insights into the Methodological, Biotic and Abiotic Factors Influencing the Characterization of Xylem-Inhabiting Microbial Communities of Olive Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:912. [PMID: 36840260 PMCID: PMC9967459 DOI: 10.3390/plants12040912] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Vascular pathogens are the causal agents of some of the most devastating plant diseases in the world, which can cause, under specific conditions, the destruction of entire crops. These plant pathogens activate a range of physiological and immune reactions in the host plant following infection, which may trigger the proliferation of a specific microbiome to combat them by, among others, inhibiting their growth and/or competing for space. Nowadays, it has been demonstrated that the plant microbiome can be modified by transplanting specific members of the microbiome, with exciting results for the control of plant diseases. However, its practical application in agriculture for the control of vascular plant pathogens is hampered by the limited knowledge of the plant endosphere, and, in particular, of the xylem niche. In this review, we present a comprehensive overview of how research on the plant microbiome has evolved during the last decades to unravel the factors and complex interactions that affect the associated microbial communities and their surrounding environment, focusing on the microbial communities inhabiting the xylem vessels of olive trees (Olea europaea subsp. europaea), the most ancient and important woody crop in the Mediterranean Basin. For that purpose, we have highlighted the role of xylem composition and its associated microorganisms in plants by describing the methodological approaches explored to study xylem microbiota, starting from the methods used to extract xylem microbial communities to their assessment by culture-dependent and next-generation sequencing approaches. Additionally, we have categorized some of the key biotic and abiotic factors, such as the host plant niche and genotype, the environment and the infection with vascular pathogens, that can be potential determinants to critically affect olive physiology and health status in a holobiont context (host and its associated organisms). Finally, we have outlined future directions and challenges for xylem microbiome studies based on the recent advances in molecular biology, focusing on metagenomics and culturomics, and bioinformatics network analysis. A better understanding of the xylem olive microbiome will contribute to facilitate the exploration and selection of specific keystone microorganisms that can live in close association with olives under a range of environmental/agronomic conditions. These microorganisms could be ideal targets for the design of microbial consortia that can be applied by endotherapy treatments to prevent or control diseases caused by vascular pathogens or modify the physiology and growth of olive trees.
Collapse
|
46
|
Yu Y, Zhang Q, Zhang Z, Zhou S, Jin M, Zhu D, Yang X, Qian H, Lu T. Plants select antibiotic resistome in rhizosphere in early stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159847. [PMID: 36461576 DOI: 10.1016/j.scitotenv.2022.159847] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Knowledge of the dissemination and emergence of antibiotic resistance genes (ARGs) in the plant rhizosphere is essential for evaluating the risk of the modern ARGs in soil planetary health. However, little is known about the selection mechanism in the plant rhizosphere. Here, we firstly analyzed the dynamic changes in the rhizosphere antibiotic resistome during the process of three passage enrichment of the rhizosphere microbiome in Arabidopsis thaliana (Col-0) and found evidence that plants directionally enriched levels of beneficial functional bacteria with many ARGs. Using the metagenome, we next evaluated the enrichment potential of the resistome in four common crops (barley, indica rice, japonica rice, and wheat) and found that the wheat rhizosphere harbored more abundant ARGs. Therefore, we finally cultivated the rhizosphere microbiome of wheat for three generations and found that approximately 60 % of ARGs were associated with beneficial bacteria enriched in the wheat rhizosphere, which might enter the soil food web and threaten human health, despite also performing beneficial functions in the plant rhizosphere. Our study provides new insights into the dissemination of ARGs in the plant rhizosphere, and the obtained data may be useful for sustainable and ecologically safe agricultural development.
Collapse
Affiliation(s)
- Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shuyidan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Mingkang Jin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Xiaoru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
47
|
Matros A, Schikora A, Ordon F, Wehner G. QTL for induced resistance against leaf rust in barley. FRONTIERS IN PLANT SCIENCE 2023; 13:1069087. [PMID: 36714737 PMCID: PMC9877528 DOI: 10.3389/fpls.2022.1069087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Leaf rust caused by Puccinia hordei is one of the major diseases of barley (Hordeum vulgare L.) leading to yield losses up to 60%. Even though, resistance genes Rph1 to Rph28 are known, most of these are already overcome. In this context, priming may promote enhanced resistance to P. hordei. Several bacterial communities such as the soil bacterium Ensifer (syn. Sinorhizobium) meliloti are reported to induce resistance by priming. During quorum sensing in populations of gram negative bacteria, they produce N-acyl homoserine-lactones (AHL), which induce resistance in plants in a species- and genotype-specific manner. Therefore, the present study aims to detect genotypic differences in the response of barley to AHL, followed by the identification of genomic regions involved in priming efficiency of barley. A diverse set of 198 spring barley accessions was treated with a repaired E. meliloti natural mutant strain expR+ch producing a substantial amount of AHL and a transformed E. meliloti strain carrying the lactonase gene attM from Agrobacterium tumefaciens. For P. hordei resistance the diseased leaf area and the infection type were scored 12 dpi (days post-inoculation), and the corresponding relative infection and priming efficiency were calculated. Results revealed significant effects (p<0.001) of the bacterial treatment indicating a positive effect of priming on resistance to P. hordei. In a genome-wide association study (GWAS), based on the observed phenotypic differences and 493,846 filtered SNPs derived from the Illumina 9k iSelect chip, genotyping by sequencing (GBS), and exome capture data, 11 quantitative trait loci (QTL) were identified with a hot spot on the short arm of the barley chromosome 6H, associated to improved resistance to P. hordei after priming with E. meliloti expR+ch. Genes in these QTL regions represent promising candidates for future research on the mechanisms of plant-microbe interactions.
Collapse
Affiliation(s)
- Andrea Matros
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Adam Schikora
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Frank Ordon
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Gwendolin Wehner
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| |
Collapse
|
48
|
Runge P, Ventura F, Kemen E, Stam R. Distinct Phyllosphere Microbiome of Wild Tomato Species in Central Peru upon Dysbiosis. MICROBIAL ECOLOGY 2023; 85:168-183. [PMID: 35041070 PMCID: PMC9849306 DOI: 10.1007/s00248-021-01947-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Plants are colonized by myriads of microbes across kingdoms, which affect host development, fitness, and reproduction. Hence, plant microbiomes have been explored across a broad range of host species, including model organisms, crops, and trees under controlled and natural conditions. Tomato is one of the world's most important vegetable crops; however, little is known about the microbiota of wild tomato species. To obtain insights into the tomato microbiota occurring in natural environments, we sampled epiphytic microbes from leaves of four tomato species, Solanum habrochaites, S. corneliomulleri, S. peruvianum, and S. pimpinellifolium, from two geographical locations within the Lima region of Peru over 2 consecutive years. Here, a high-throughput sequencing approach was applied to investigate microbial compositions including bacteria, fungi, and eukaryotes across tomato species and geographical locations. The phyllosphere microbiome composition varies between hosts and location. Yet, we identified persistent microbes across tomato species that form the tomato microbial core community. In addition, we phenotypically defined healthy and dysbiotic samples and performed a downstream analysis to reveal the impact on microbial community structures. To do so, we compared microbial diversities, unique OTUs, relative abundances of core taxa, and microbial hub taxa, as well as co-occurrence network characteristics in healthy and dysbiotic tomato leaves and found that dysbiosis affects the phyllosphere microbial composition in a host species-dependent manner. Yet, overall, the present data suggests an enrichment of plant-promoting microbial taxa in healthy leaves, whereas numerous microbial taxa containing plant pathogens occurred in dysbiotic leaves.Concluding, we identify the core phyllosphere microbiome of wild tomato species, and show that the overall phyllosphere microbiome can be impacted by sampling time point, geographical location, host genotype, and plant health. Future studies in these components will help understand the microbial contribution to plant health in natural systems and can be of use in cultivated tomatoes.
Collapse
Affiliation(s)
- Paul Runge
- Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Köln, Germany
| | - Freddy Ventura
- Plant Pathology and Bacteriology, International Potato Centre, Avenida La Molina 1895, La Molina, Lima, Peru
| | - Eric Kemen
- Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life Science, Emil-Ramann-Str. 2, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
49
|
Rai S, Omar AF, Rehan M, Al-Turki A, Sagar A, Ilyas N, Sayyed RZ, Hasanuzzaman M. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture. PLANTA 2022; 257:27. [PMID: 36583789 DOI: 10.1007/s00425-022-04052-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
This review is an effort to provide in-depth knowledge of microbe's interaction and its role in crop microbiome using combination of advanced molecular and OMICS technology to translate this information for the sustenance of agriculture. Increasing population, climate change and exhaustive agricultural practices either influenced nutrient inputs of soil or generating biological and physico-chemical deterioration of the soils and affecting the agricultural productivity and agro-ecosystems. Alarming concerns toward food security and crop production claim for renewed attention in microbe-based farming practices. Microbes are omnipresent (soil, water, and air) and their close association with plants would help to accomplish sustainable agriculture goals. In the last few decades, the search for beneficial microbes in crop production, soil fertilization, disease management, and plant growth promotion is the thirst for eco-friendly agriculture. The crop microbiome opens new paths to utilize beneficial microbes and manage pathogenic microbes through integrated advanced biotechnology. The crop microbiome helps plants acquire nutrients, growth, resilience against phytopathogens, and tolerance to abiotic stresses, such as heat, drought, and salinity. Despite the emergent functionality of the crop microbiome as a complicated constituent of the plant fitness, our understanding of how the functionality of microbiome influenced by numerous factors including genotype of host, climatic conditions, mobilization of minerals, soil composition, nutrient availability, interaction between nexus of microbes, and interactions with other external microbiomes is partially understood. However, the structure, composition, dynamics, and functional contribution of such cultured and uncultured crop microbiome are least explored. The advanced biotechnological approaches are efficient tools for acquiring the information required to investigate the microbiome and extract data to develop high yield producing and resistant variety crops. This knowledge fills the fundamental gap between the theoretical concepts and the operational use of these advanced tools in crop microbiome studies. Here, we review (1) structure and composition of crop microbiome, (2) microbiome-mediated role associated with crops fitness, (3) Molecular and -omics techniques for exploration of crop microbiome, and (4) current approaches and future prospectives of crop microbiome and its exploitation for sustainable agriculture. Recent -omic approaches are influential tool for mapping, monitoring, modeling, and management of crops microbiome. Identification of crop microbiome, using system biology and rhizho-engineering, can help to develop future bioformulations for disease management, reclamation of stressed agro-ecosystems, and improved productivity of crops. Nano-system approaches combined with triggering molecules of crop microbiome can help in designing of nano-biofertilizers and nano-biopesticides. This combination has numerous merits over the traditional bioinoculants. They stimulate various defense mechanisms in plants facing stress conditions; provide bioavailability of nutrients in the soil, helps mitigate stress conditions; and enhance chances of crops establishment.
Collapse
Affiliation(s)
- Shalini Rai
- Department of Biotechnology, SHEPA, Varanasi, India.
| | - Ayman F Omar
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia.
- Department of Plant Pathology, Plant Pathology and Biotechnology Laboratory and EPCRS Excellence Center, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Genetics, College of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Ahmad Al-Turki
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Alka Sagar
- Department of Microbiology, MIET, Meerut, India
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - R Z Sayyed
- Asian PGPR Society, Auburn Venture, Auburn, AL, USA.
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-E-Bangla Agricultural University (SAU), Sher-E-Bangla Nagar, Dhaka, 1207, Bangladesh
| |
Collapse
|
50
|
Zhu QL, Yan K, Wang NZ, Ma SQ, Lu DS, Su XH, Yuan ZS, Dong YF, Wang YP, Ding CJ. The structure and assembly of rhizobacterial communities are influenced by poplar genotype. Front Microbiol 2022; 13:1052567. [DOI: 10.3389/fmicb.2022.1052567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
The interaction between plants and microbes dominates plant growth and fitness in specific environments. The study of the relationship between plant genotypes and rhizobacterial community structure would provide a deep insight into the recruitment strategies of plants toward soil bacteria. In this study, three genotypes of 18-year-old mature poplar (H1, H2, and H3) derived from four different parents were selected from a germplasm nursery of Populus deltoides. Rhizosphere soil carbon, nitrogen, and phosphorus properties as well as the 16S rDNA sequences of rhizobacterial communities were analyzed to determine the relationship between poplar genotypes and rhizobacterial communities assembly. The results showed there were significant differences in the diversity (Chao1, ACE index, and Shannon index) of rhizobacterial communities between H1 and H2, as well as between H2 and H3, but no difference between H1 and H3. Principal component analysis also revealed a similar structure of rhizobacterial communities between H1 and H3, whereas the rhizobacterial communities of H2 demonstrated significant differences from H1 and H3. Linear discriminant effect size analysis indicated that there were 11 and 14 different biomarkers in the H1 and H3 genotype, respectively, but 42 in the H2 genotype. Co-occurrence network analysis indicated that the rhizobacterial communities of H2 had a distinct network structure compared to those of the other two genotypes, whereas H1 and H3 had a similar pattern of co-occurrence network. Threshold indicator taxa analysis revealed that 63 genera responded significantly to NO3–-N content and 58 genera to NH4+-N/NO3–-N ratio. Moreover, the stochastic assembly process was found to be decreased with increasing NO3–-N content and fluctuated with increasing NH4+-N/NO3–-N ratio. All results indicated that the structure of poplar rhizobacterial communities were influenced by host genotypes, and available nitrogen might play a dominant role in the assembly of rhizobacterial communities. This study would promote the future selection and utilization of rhizobacteria in poplar breeding.
Collapse
|