1
|
Liu Y, Li J, Liu Q. Inactivation of the CMAH gene and deficiency of Neu5Gc play a role in human brain evolution. Inflamm Regen 2025; 45:5. [PMID: 39920734 PMCID: PMC11806805 DOI: 10.1186/s41232-025-00368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
During human evolution, some genes were lost or silenced from the genome of hominins. These missing genes might be the key to the evolution of humans' unique cognitive skills. An inactivation mutation in CMP-N-acetylneuraminic acid hydroxylase (CMAH) was the result of natural selection. The inactivation of CMAH protected our ancestors from some pathogens and reduced the level of N-glycolylneuraminic acid (Neu5Gc) in brain tissue. Interestingly, the low level of Neu5Gc promoted the development of brain tissue, which may have played a role in human evolution. As a xenoantigen, Neu5Gc may have been involved in brain evolution by affecting neural conduction, neuronal development, and aging.
Collapse
Affiliation(s)
- Yuxin Liu
- Center of Reproductive Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Jinhong Li
- Department of Laboratory Medicine, Medical Technology and Engineering College, Fujian Medical University, Fuzhou, P.R. China
| | - Qicai Liu
- Center of Reproductive Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China.
- Vanke School of Public Health, National Graduate College for Engineers, Tsinghua University, Beijing, P.R. China.
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Medical University, Fuzhou, P.R. China.
- School of Biomedical Engineering, Tsinghua University, Beijing, P.R. China.
- Department of Reproductive Medicine Centre, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
2
|
Chen Q, Mueed A, Zhu L, Deng Z, Peng H, Li H, Zhang B. HPLC-QQQ-MS/MS-based authentication and determination of free and bound sialic acids content in human, bovine, sheep, goat milk, and infant formula. J Food Sci 2024; 89:4178-4191. [PMID: 38847763 DOI: 10.1111/1750-3841.17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
An accurate method for qualitative and quantitative analysis of lipid-bound (LB), protein-bound (PB), oligosaccharides-bound, and free sialic acids in milk was developed by using high-performance liquid chromatography -triple quadrupole-tandem mass spectrometer. The profile of free and bound sialic acids in milk (human, bovine, goat, and sheep) and infant formula (IF) was examined in the present study. Human milk contains only N-acetylneuraminic acid (Neu5Ac) and was mainly present in the form of oligosaccharide-bound. The content of total Neu5Ac (T-Neu5Ac), free and bound Neu5Ac in human milk decreased with the prolongation of lactation. The most intriguing finding was the increase in the proportion of PB and LB sialic acids. The sialic acids in bovine and sheep milk were mainly PB and oligosaccharides-bound Neu5Ac. T-Neu5Ac in goat milk (GM) was 67.44-89.72 µg/mL and was mainly PB Neu5Ac, but total N-glycolylneuraminic acid (T-Neu5Gc) content of GM can be as high as 100.01 µg/mL. The concentration of T-Neu5Gc in sheep and GM was significantly higher than that of bovine milk (BM). T-Neu5Gc content of GM -based IF was 264.86 µg/g, whereas T-Neu5Gc content of BM -based IF was less (2.26-17.01 µg/g). Additionally, our results found that there were also sialic acids in IF ingredients, which were mainly bound with protein and oligosaccharides, primarily derived from desalted whey powder and whey protein concentrate.
Collapse
Affiliation(s)
- Qingyan Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Liuying Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Han Peng
- Department of Food Science and Technology, University of California, Davis, California, USA
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Hutton E, Scott E, Robson CN, Signoret N, Fascione MA. A systematic review reveals conflicting evidence for the prevalence of antibodies against the sialic acid 'xenoautoantigen' Neu5Gc in humans and the need for a standardised approach to quantification. Front Mol Biosci 2024; 11:1390711. [PMID: 38737334 PMCID: PMC11082328 DOI: 10.3389/fmolb.2024.1390711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
Despite an array of hypothesised implications for health, disease, and therapeutic development, antibodies against the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) remain a subject of much debate. This systematic review of 114 publications aimed to generate a comprehensive overview of published studies in this field, addressing both the reported prevalence of anti-Neu5Gc antibodies in the human population and whether experimental variation accounts for the conflicting reports about the extent of this response. Absolute titres of anti-Neu5Gc antibodies, the reported prevalence of these antibodies, and the individual variation observed within experiments were analysed and grouped according to biological context ('inflammation', 'xenotransplantation', 'biotherapeutic use', 'cancer', and 'healthy populations'), detection method, target epitope selection, and choice of blocking agent. These analyses revealed that the experimental method had a notable impact on both the reported prevalence and absolute titres of anti-Neu5Gc antibodies in the general population, thereby limiting the ability to ascribe reported trends to genuine biological differences or the consequence of experimental design. Overall, this review highlights important knowledge gaps in the study of antibodies against this important xenoautoantigen and the need to establish a standardised method for their quantification if the extent of the importance of Neu5Gc in human health is to be fully understood.
Collapse
Affiliation(s)
- Esme Hutton
- Department of Chemistry, University of York, York, United Kingdom
- Hull York Medical School, University of York, York, United Kingdom
| | - Emma Scott
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, United Kingdom
| | - Craig N. Robson
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, United Kingdom
| | | | | |
Collapse
|
4
|
Takeda R, Tabuchi A, Nonaka Y, Kano R, Sudo M, Kano Y, Hoshino D. Cmah deficiency blunts cellular senescence in adipose tissues and improves whole-body glucose metabolism in aged mice. Geriatr Gerontol Int 2023; 23:958-964. [PMID: 37968438 DOI: 10.1111/ggi.14732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
AIM Cytidine monophosphate-N-acetylneuraminic acid (Neu5Ac) hydroxylase (Cmah) is an enzyme, which converts Neu5Ac to the sialic acid Neu5Gc. Neu5Gc is thought to increase inflammatory cytokines, which are, in part, produced in senescent cells of adipose tissues. Cellular senescence in adipose tissues induces whole-body aging and impaired glucose metabolism. Therefore, we hypothesized that Cmah deficiency would prevent cellular senescence in adipose tissues and impaired glucose metabolism. METHODS Wild-type (WT) and Cmah knockout (KO) mice aged 24-25 months were used. Whole-body metabolism was assessed using a metabolic gas analysis system. We measured blood glucose and insulin concentrations after oral glucose administration. The size of the lipid droplets in the liver was quantified. Markers of cellular senescence and senescence-associated secretory phenotypes were measured in adipose tissues. RESULTS Cmah KO had significantly increased VO2 and energy expenditure (P < 0.01). Unlike glucose, the insulin concentration after oral glucose administration was significantly lower in the Cmah KO group than in the WT group (P < 0.001). Lipid droplets in the liver were significantly lower in the Cmah KO group than in the WT group (P < 0.05). The markers of cellular senescence and senescence-associated secretory phenotypes in the adipose tissues were significantly lower in the Cmah KO group than in the WT group (P < 0.05). CONCLUSIONS Cmah deficiency blunted cellular senescence in adipose tissues and improved whole-body glucose metabolism. These characteristics in aged Cmah KO mice might be associated with higher energy expenditure. Geriatr Gerontol Int 2023; 23: 958-964.
Collapse
Affiliation(s)
- Reo Takeda
- Department of Engineering Science, The University of Electro-communications, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ayaka Tabuchi
- Department of Engineering Science, The University of Electro-communications, Tokyo, Japan
| | - Yudai Nonaka
- Institute of Liberal Arts and Sciences, Kanazawa University, Ishikawa, Japan
| | - Ryotaro Kano
- Department of Engineering Science, The University of Electro-communications, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Mizuki Sudo
- Physical Fitness Research Institute, Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Yutaka Kano
- Department of Engineering Science, The University of Electro-communications, Tokyo, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Tokyo, Japan
| | - Daisuke Hoshino
- Department of Engineering Science, The University of Electro-communications, Tokyo, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
5
|
Chen Y, Chen H, Zheng Q. Siglecs family used by pathogens for immune escape may engaged in immune tolerance in pregnancy. J Reprod Immunol 2023; 159:104127. [PMID: 37572430 DOI: 10.1016/j.jri.2023.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The Siglecs family is a group of type I sialic acid-binding immunoglobulin-like receptors that regulate cellular signaling by recognizing sialic acid epitopes. Siglecs are predominantly expressed on the surface of leukocytes, where they play a crucial role in regulating immune activity. Pathogens can exploit inhibitory Siglecs by utilizing their sialic acid components to promote invasion or suppress immune functions, facilitating immune evasion. The establishing of an immune-balanced maternal-fetal interface microenvironment is essential for a successful pregnancy. Dysfunctional immune cells may lead to adverse pregnancy outcomes. Siglecs are important for inducing a phenotypic switch in leukocytes at the maternal-fetal interface toward a less toxic and more tolerant phenotype. Recent discoveries regarding Siglecs in the reproductive system have drawn further attention to their potential roles in reproduction. In this review, we primarily discuss the latest advances in understanding the impact of Siglecs as immune regulators on infections and pregnancy.
Collapse
Affiliation(s)
- Ying Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China
| | - Huan Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China.
| |
Collapse
|
6
|
Yi S, Feng Y, Wang Y, Ma F. Sialylation: fate decision of mammalian sperm development, fertilization, and male fertility†. Biol Reprod 2023; 109:137-155. [PMID: 37379321 DOI: 10.1093/biolre/ioad067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Sperm development, maturation, and successful fertilization within the female reproductive tract are intricate and orderly processes that involve protein translation and post-translational modifications. Among these modifications, sialylation plays a crucial role. Any disruptions occurring throughout the sperm's life cycle can result in male infertility, yet our current understanding of this process remains limited. Conventional semen analysis often fails to diagnose some infertility cases associated with sperm sialylation, emphasizing the need to comprehend and investigate the characteristics of sperm sialylation. This review reanalyzes the significance of sialylation in sperm development and fertilization and evaluates the impact of sialylation damage on male fertility under pathological conditions. Sialylation serves a vital role in the life journey of sperm, providing a negatively charged glycocalyx and enriching the molecular structure of the sperm surface, which is beneficial to sperm reversible recognition and immune interaction. These characteristics are particularly crucial during sperm maturation and fertilization within the female reproductive tract. Moreover, enhancing the understanding of the mechanism underlying sperm sialylation can promote the development of relevant clinical indicators for infertility detection and treatment.
Collapse
Affiliation(s)
- Shiqi Yi
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Ye C, Zhang L, Tang L, Duan Y, Liu J, Zhou H. Host genetic backgrounds: the key to determining parasite-host adaptation. Front Cell Infect Microbiol 2023; 13:1228206. [PMID: 37637465 PMCID: PMC10449477 DOI: 10.3389/fcimb.2023.1228206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Parasitic diseases pose a significant threat to global public health, particularly in developing countries. Host genetic factors play a crucial role in determining susceptibility and resistance to infection. Recent advances in molecular and biological technologies have enabled significant breakthroughs in understanding the impact of host genes on parasite adaptation. In this comprehensive review, we analyze the host genetic factors that influence parasite adaptation, including hormones, nitric oxide, immune cells, cytokine gene polymorphisms, parasite-specific receptors, and metabolites. We also establish an interactive network to better illustrate the complex relationship between host genetic factors and parasite-host adaptation. Additionally, we discuss future directions and collaborative research priorities in the parasite-host adaptation field, including investigating the impact of host genes on the microbiome, developing more sophisticated models, identifying and characterizing parasite-specific receptors, utilizing patient-derived sera as diagnostic and therapeutic tools, and developing novel treatments and management strategies targeting specific host genetic factors. This review highlights the need for a comprehensive and systematic approach to investigating the underlying mechanisms of parasite-host adaptation, which requires interdisciplinary collaborations among biologists, geneticists, immunologists, and clinicians. By deepening our understanding of the complex interactions between host genetics and parasite adaptation, we can develop more effective and targeted interventions to prevent and treat parasitic diseases. Overall, this review provides a valuable resource for researchers and clinicians working in the parasitology field and offers insights into the future directions of this critical research area.
Collapse
Affiliation(s)
- Caixia Ye
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Pediatrics, Yunyang Women and Children’s Hospital (Yunyang Maternal and Child Health Hospital), Chongqing, China
| | - Lianhua Zhang
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Surgery, Yunyang Women and Children’s Hospital (Yunyang Maternal and Child Health Hospital), Chongqing, China
| | - Lili Tang
- The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Tumor Hospital), Urumqi, China
| | - Yongjun Duan
- Department of Pediatrics, Yunyang Women and Children’s Hospital (Yunyang Maternal and Child Health Hospital), Chongqing, China
| | - Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongli Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Shao Y, Zhou L, Li F, Zhao L, Zhang BL, Shao F, Chen JW, Chen CY, Bi X, Zhuang XL, Zhu HL, Hu J, Sun Z, Li X, Wang D, Rivas-González I, Wang S, Wang YM, Chen W, Li G, Lu HM, Liu Y, Kuderna LFK, Farh KKH, Fan PF, Yu L, Li M, Liu ZJ, Tiley GP, Yoder AD, Roos C, Hayakawa T, Marques-Bonet T, Rogers J, Stenson PD, Cooper DN, Schierup MH, Yao YG, Zhang YP, Wang W, Qi XG, Zhang G, Wu DD. Phylogenomic analyses provide insights into primate evolution. Science 2023; 380:913-924. [PMID: 37262173 DOI: 10.1126/science.abn6919] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2023] [Indexed: 06/03/2023]
Abstract
Comparative analysis of primate genomes within a phylogenetic context is essential for understanding the evolution of human genetic architecture and primate diversity. We present such a study of 50 primate species spanning 38 genera and 14 families, including 27 genomes first reported here, with many from previously less well represented groups, the New World monkeys and the Strepsirrhini. Our analyses reveal heterogeneous rates of genomic rearrangement and gene evolution across primate lineages. Thousands of genes under positive selection in different lineages play roles in the nervous, skeletal, and digestive systems and may have contributed to primate innovations and adaptations. Our study reveals that many key genomic innovations occurred in the Simiiformes ancestral node and may have had an impact on the adaptive radiation of the Simiiformes and human evolution.
Collapse
Affiliation(s)
- Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Long Zhou
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fang Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Institute of Animal Sex and Development, ZhejiangWanli University, Ningbo 315100, China
| | - Lan Zhao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | | | - Chun-Yan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xupeng Bi
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
| | | | - Jiang Hu
- Grandomics Biosciences, Beijing 102206, China
| | - Zongyi Sun
- Grandomics Biosciences, Beijing 102206, China
| | - Xin Li
- Grandomics Biosciences, Beijing 102206, China
| | - Depeng Wang
- Grandomics Biosciences, Beijing 102206, China
| | | | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Mei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510070, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hui-Meng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lukas F K Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Jin Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - George P Tiley
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | | - Yong-Gang Yao
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Guang Qi
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
9
|
Wang J, Shewell LK, Day CJ, Jennings MP. N-glycolylneuraminic acid as a carbohydrate cancer biomarker. Transl Oncol 2023; 31:101643. [PMID: 36805917 PMCID: PMC9971276 DOI: 10.1016/j.tranon.2023.101643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/20/2023] Open
Abstract
One of the forms of aberrant glycosylation in human tumors is the expression of N-glycolylneuraminic acid (Neu5Gc). The only known enzyme to biosynthesize Neu5Gc in mammals, cytidine-5'-monophosphate-N-acetylneuraminic acid (CMAH), appears to be genetically inactivated in humans. Regardless, low levels of Neu5Gc have been detected in healthy humans. Therefore, it is proposed that the presence of Neu5Gc in humans is from dietary acquisition, such as red meat. Notably, detection of elevated Neu5Gc levels has been repeatedly found in cancer tissues, cells and serum samples, thereby Neu5Gc-containing antigens may be exploited as a class of cancer biomarkers. Here we review the findings to date on using Neu5Gc-containing tumor glycoconjugates as a class of cancer biomarkers for cancer detection, surveillance, prognosis and therapeutic targets. We review the evidence that supports an emerging hypothesis of de novo Neu5Gc biosynthesis in human cancer cells as a source of Neu5Gc in human tumors, generated under certain metabolic conditions.
Collapse
Affiliation(s)
- Jing Wang
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Lucy K Shewell
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | | | | |
Collapse
|
10
|
Abstract
Sialic acids (Sias), a group of over 50 structurally distinct acidic saccharides on the surface of all vertebrate cells, are neuraminic acid derivatives. They serve as glycan chain terminators in extracellular glycolipids and glycoproteins. In particular, Sias have significant implications in cell-to-cell as well as host-to-pathogen interactions and participate in various biological processes, including neurodevelopment, neurodegeneration, fertilization, and tumor migration. However, Sia is also present in some of our daily diets, particularly in conjugated form (sialoglycans), such as those in edible bird's nest, red meats, breast milk, bovine milk, and eggs. Among them, breast milk, especially colostrum, contains a high concentration of sialylated oligosaccharides. Numerous reviews have concentrated on the physiological function of Sia as a cellular component of the body and its relationship with the occurrence of diseases. However, the consumption of Sias through dietary sources exerts significant influence on human health, possibly by modulating the gut microbiota's composition and metabolism. In this review, we summarize the distribution, structure, and biological function of particular Sia-rich diets, including human milk, bovine milk, red meat, and egg.
Collapse
Affiliation(s)
- Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Angata T, Varki A. Discovery, classification, evolution and diversity of Siglecs. Mol Aspects Med 2023; 90:101117. [PMID: 35989204 PMCID: PMC9905256 DOI: 10.1016/j.mam.2022.101117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 02/08/2023]
Abstract
Immunoglobulin (Ig) superfamily proteins play diverse roles in vertebrates, including regulation of cellular responses by sensing endogenous or exogenous ligands. Siglecs are a family of glycan-recognizing proteins belonging to the Ig superfamily (i.e., I-type lectins). Siglecs are expressed on various leukocyte types and are involved in diverse aspects of immunity, including the regulation of inflammatory responses, leukocyte proliferation, host-microbe interaction, and cancer immunity. Sialoadhesin/Siglec-1, CD22/Siglec-2, and myelin-associated glycoprotein/Siglec-4 were among the first to be characterized as members of the Siglec family, and along with Siglec-15, they are relatively well-conserved among tetrapods. Conversely, CD33/Siglec-3-related Siglecs (CD33rSiglecs, so named as they show high sequence similarity with CD33/Siglec-3) are encoded in a gene cluster with many interspecies variations and even intraspecies variations within some lineages such as humans. The rapid evolution of CD33rSiglecs expressed on leukocytes involved in innate immunity likely reflects the selective pressure by pathogens that interact and possibly exploit these Siglecs. Human Siglecs have several additional unique and/or polymorphic properties as compared with closely related great apes, changes possibly related to the loss of the sialic acid Neu5Gc, another distinctly human event in sialobiology. Multiple changes in human CD33rSiglecs compared to great apes include many examples of human-specific expression in non-immune cells, coinciding with human-specific diseases involving such cell types. Some Siglec gene polymorphisms have dual consequences-beneficial in a situation but detrimental in another. The association of human Siglec gene polymorphisms with several infectious and non-infectious diseases likely reflects the ongoing competition between the host and microbial pathogens.
Collapse
Affiliation(s)
- Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Ajit Varki
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Galili U. Paleo-immunology of human anti-carbohydrate antibodies preventing primate extinctions. Immunology 2023; 168:18-29. [PMID: 36161654 DOI: 10.1111/imm.13582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/16/2022] [Indexed: 12/27/2022] Open
Abstract
Two human natural anti-carbohydrate antibodies appeared in critical evolutionary events that brought primates and hominins to brink of extinction. The first is the anti-Gal antibody, produced in Old-World monkeys (OWM), apes and humans. It binds the carbohydrate-antigen 'α-gal epitope' (Galα1-3Galβ1-4GlcNAc-R) on carbohydrate-chains (glycans) synthesized by non-primate mammals, lemurs and New-World monkeys (NWM). The second is anti-N-glycolylneuraminic-acid (anti-Neu5Gc) antibody binding Neu5Gc on glycans synthesized by OWM, apes and most non-primate mammals. Ancestral OWM and apes synthesized α-gal epitopes and were eliminated ~20-30 million-years-ago (mya). Only few accidentally mutated offspring lacking α-gal epitopes, produced anti-Gal and survived. Hominin-populations living ~3 mya synthesized Neu5Gc and were eliminated, but few mutated offspring that accidently lost their ability to synthesize Neu5Gc, produced natural anti-Neu5Gc antibody. These hominins survived and ultimately evolved into present-day humans. It is argued that these two near-extinction events were likely to be the result of epidemics caused by highly virulent and lethal enveloped viruses that killed parental-populations. These viruses presented α-gal epitopes or Neu5Gc synthesized in host-cells of the parental-populations. Mutated offspring survived the epidemics because they were protected from the lethal virus by the natural anti-Gal or anti-Neu5Gc antibodies they produced due to loss of immune-tolerance to α-gal epitopes or to Neu5Gc, respectively.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine/Division of Cardiology, Rush University Medical College, Chicago, Illinois, USA
| |
Collapse
|
13
|
Crisà A, Marchitelli C, Failla S, Contò M. Determination of N-acetylneuraminic and N-glycolylneuraminic acids in unprocessed milk of four cattle breeds. J DAIRY RES 2022; 89:1-3. [PMID: 36155637 DOI: 10.1017/s0022029922000620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This research communication reports concentrations of two sialic acids (SA), N-acetylneuraminic (Neu5Ac) and N-glycolylneuraminic (Neu5Gc), in fresh milk from different cow breeds throughout lactation. According to published studies, the two SA types found in animal-derived products have diverse and conflicting effects on human health, but SA content is not routinely analysed in individual milk cows samples. We measured the content of Neu5Ac and Neu5Gc in milk from Holstein Friesian (HO), Simmental (SM), Simmental × Holstein crossbred (SM×HO), and Podolica (POD) cows at 60 and 120 d following calving. HO, SM and SM×HO were reared in an intensive production while POD were raised in an extensive system. Results showed that total Neu5Ac was overall thirty times more abundant than Neu5Gc, and their concentrations were higher at 120 d than at 60 d (P < 0.001). Neu5Gc values were greater in HO, SM, and SM × HO than in POD (P < 0.001), while HO had a higher Neu5Ac value than the other three breeds (P < 0.001). These findings shed light on the differences in SA content among cow breeds and lay the groundwork for future research to select animals that produce milk with desirable characteristics for human health.
Collapse
Affiliation(s)
- Alessandra Crisà
- CREA: Research Centre for Animal Production and Acquaculture, Monterotondo, Italy
| | - Cinzia Marchitelli
- CREA: Research Centre for Animal Production and Acquaculture, Monterotondo, Italy
| | - Sebastiana Failla
- CREA: Research Centre for Animal Production and Acquaculture, Monterotondo, Italy
| | - Michela Contò
- CREA: Research Centre for Animal Production and Acquaculture, Monterotondo, Italy
| |
Collapse
|
14
|
Naito-Matsui Y. Physiological Significance of Animal- and Tissue-specific Sialic Acid Composition. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2036.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Naito-Matsui Y. Physiological Significance of Animal- and Tissue-specific Sialic Acid Composition. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2036.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Frith MC. Paleozoic Protein Fossils Illuminate the Evolution of Vertebrate Genomes and Transposable Elements. Mol Biol Evol 2022; 39:6555113. [PMID: 35348724 PMCID: PMC9004415 DOI: 10.1093/molbev/msac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomes hold a treasure trove of protein fossils: fragments of formerly protein-coding DNA, which mainly come from transposable elements (TEs) or host genes. These fossils reveal ancient evolution of TEs and genomes, and many fossils have been exapted to perform diverse functions important for the host's fitness. However, old and highly-degraded fossils are hard to identify, standard methods (e.g. BLAST) are not optimized for this task, and few Paleozoic protein fossils have been found. Here, a recently optimized method is used to find protein fossils in vertebrate genomes. It finds Paleozoic fossils predating the amphibian/amniote divergence from most major TE categories, including virus-related Polinton and Gypsy elements. It finds 10 fossils in the human genome (8 from TEs and 2 from host genes) that predate the last common ancestor of all jawed vertebrates, probably from the Ordovician period. It also finds types of transposon and retrotransposon not found in human before. These fossils have extreme sequence conservation, indicating exaptation: some have evidence of gene-regulatory function, and they tend to lienearest to developmental genes. Some ancient fossils suggest "genome tectonics", where two fragments of one TE have drifted apart by up to megabases, possibly explaining gene deserts and large introns. This paints a picture of great TE diversity in our aquatic ancestors, with patchy TE inheritance by later vertebrates, producing new genes and regulatory elements on the way. Host-gene fossils too have contributed anciently-conserved DNA segments. This paves the way to further studies of ancient protein fossils.
Collapse
Affiliation(s)
- Martin C Frith
- Artificial Intelligence Research Center, AIST, Tokyo, Japan.,Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan.,Computational Bio Big-Data Open Innovation Laboratory, AIST, Tokyo, Japan
| |
Collapse
|
17
|
Lopez-Gordo E, Orlowski A, Wang A, Weinberg A, Sahoo S, Weber T. Hydroxylation of N-acetylneuraminic Acid Influences the in vivo Tropism of N-linked Sialic Acid-Binding Adeno-Associated Viruses AAV1, AAV5, and AAV6. Front Med (Lausanne) 2021; 8:732095. [PMID: 35036407 PMCID: PMC8757481 DOI: 10.3389/fmed.2021.732095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are promising candidates for gene therapy. However, a number of recent preclinical large animal studies failed to translate into the clinic. This illustrates the formidable challenge of choosing the animal models that promise the best chance of a successful translation into the clinic. Several of the most common AAV serotypes use sialic acid (SIA) as their primary receptor. However, in contrast to most mammals, humans lack the enzyme CMAH, which hydroxylates cytidine monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac) into cytidine monophosphate-N-glycolylneuraminic acid (CMP-Neu5Gc). As a result, human glycans only contain Neu5Ac and not Neu5Gc. Here, we investigate the tropism of AAV1, 5, 6 and 9 in wild-type C57BL/6J (WT) and CMAH knock-out (CMAH−/−) mice. All N-linked SIA-binding serotypes (AAV1, 5 and 6) showed significantly lower transduction of the heart in CMAH−/− when compared to WT mice (5–5.8-fold) and, strikingly, skeletal muscle transduction by AAV5 was almost 30-fold higher in CMAH−/− compared to WT mice. Importantly, the AAV tropism or distribution of expression among different organs was also affected. For AAV1, AAV5 and AAV6, expression in the heart compared to the liver was 4.6–8-fold higher in WT than in CMAH−/− mice, and for AAV5 the expression in the heart compared to the skeletal muscle was 57.3-fold higher in WT than in CMAH−/− mice. These data thus strongly suggest that the relative abundance of Neu5Ac and Neu5Gc plays a role in AAV tropism, and that results obtained in commonly used animal models might not translate into the clinic.
Collapse
Affiliation(s)
- Estrella Lopez-Gordo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Alejandro Orlowski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Arthur Wang
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Alan Weinberg
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Thomas Weber
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
- *Correspondence: Thomas Weber
| |
Collapse
|
18
|
van Houtum EJH, Büll C, Cornelissen LAM, Adema GJ. Siglec Signaling in the Tumor Microenvironment. Front Immunol 2021; 12:790317. [PMID: 34966391 PMCID: PMC8710542 DOI: 10.3389/fimmu.2021.790317] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors that recognize sialoglycans - sialic acid containing glycans that are abundantly present on cell membranes. Siglecs are expressed on most immune cells and can modulate their activity and function. The majority of Siglecs contains immune inhibitory motifs comparable to the immune checkpoint receptor PD-1. In the tumor microenvironment (TME), signaling through the Siglec-sialoglycan axis appears to be enhanced through multiple mechanisms favoring tumor immune evasion similar to the PD-1/PD-L1 signaling pathway. Siglec expression on tumor-infiltrating immune cells appears increased in the immune suppressive microenvironment. At the same time, enhanced Siglec ligand expression has been reported for several tumor types as a result of aberrant glycosylation, glycan modifications, and the increased expression of sialoglycans on proteins and lipids. Siglec signaling has been identified as important regulator of anti-tumor immunity in the TME, but the key factors contributing to Siglec activation by tumor-associated sialoglycans are diverse and poorly defined. Among others, Siglec activation and signaling are co-determined by their expression levels, cell surface distribution, and their binding preferences for cis- and trans-ligands in the TME. Siglec binding preference are co-determined by the nature of the proteins/lipids to which the sialoglycans are attached and the multivalency of the interaction. Here, we review the current understanding and emerging conditions and factors involved in Siglec signaling in the TME and identify current knowledge gaps that exist in the field.
Collapse
Affiliation(s)
- Eline J. H. van Houtum
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Büll
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, Netherlands
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lenneke A. M. Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
19
|
Khan N, de Manuel M, Peyregne S, Do R, Prufer K, Marques-Bonet T, Varki N, Gagneux P, Varki A. Multiple Genomic Events Altering Hominin SIGLEC Biology and Innate Immunity Predated the Common Ancestor of Humans and Archaic Hominins. Genome Biol Evol 2021; 12:1040-1050. [PMID: 32556248 PMCID: PMC7379906 DOI: 10.1093/gbe/evaa125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Human-specific pseudogenization of the CMAH gene eliminated the mammalian sialic acid (Sia) Neu5Gc (generating an excess of its precursor Neu5Ac), thus changing ubiquitous cell surface “self-associated molecular patterns” that modulate innate immunity via engagement of CD33-related-Siglec receptors. The Alu-fusion-mediated loss-of-function of CMAH fixed ∼2–3 Ma, possibly contributing to the origins of the genus Homo. The mutation likely altered human self-associated molecular patterns, triggering multiple events, including emergence of human-adapted pathogens with strong preference for Neu5Ac recognition and/or presenting Neu5Ac-containing molecular mimics of human glycans, which can suppress immune responses via CD33-related-Siglec engagement. Human-specific alterations reported in some gene-encoding Sia-sensing proteins suggested a “hotspot” in hominin evolution. The availability of more hominid genomes including those of two extinct hominins now allows full reanalysis and evolutionary timing. Functional changes occur in 8/13 members of the human genomic cluster encoding CD33-related Siglecs, all predating the human common ancestor. Comparisons with great ape genomes indicate that these changes are unique to hominins. We found no evidence for strong selection after the Human–Neanderthal/Denisovan common ancestor, and these extinct hominin genomes include almost all major changes found in humans, indicating that these changes in hominin sialobiology predate the Neanderthal–human divergence ∼0.6 Ma. Multiple changes in this genomic cluster may also explain human-specific expression of CD33rSiglecs in unexpected locations such as amnion, placental trophoblast, pancreatic islets, ovarian fibroblasts, microglia, Natural Killer(NK) cells, and epithelia. Taken together, our data suggest that innate immune interactions with pathogens markedly altered hominin Siglec biology between 0.6 and 2 Ma, potentially affecting human evolution.
Collapse
Affiliation(s)
- Naazneen Khan
- Glycobiology Research and Training Center, Department of Medicine, University of California San Diego.,Center for Academic Research and Training in Anthropogeny (CARTA),University of California San Diego
| | - Marc de Manuel
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | - Stephane Peyregne
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Raymond Do
- Glycobiology Research and Training Center, Department of Medicine, University of California San Diego.,Center for Academic Research and Training in Anthropogeny (CARTA),University of California San Diego
| | - Kay Prufer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Barcelona, Spain
| | - Nissi Varki
- Glycobiology Research and Training Center, Department of Medicine, University of California San Diego.,Center for Academic Research and Training in Anthropogeny (CARTA),University of California San Diego
| | - Pascal Gagneux
- Glycobiology Research and Training Center, Department of Medicine, University of California San Diego.,Center for Academic Research and Training in Anthropogeny (CARTA),University of California San Diego
| | - Ajit Varki
- Glycobiology Research and Training Center, Department of Medicine, University of California San Diego.,Center for Academic Research and Training in Anthropogeny (CARTA),University of California San Diego
| |
Collapse
|
20
|
Hobbs M, Jahan M, Ghorashi SA, Wang B. Current Perspective of Sialylated Milk Oligosaccharides in Mammalian Milk: Implications for Brain and Gut Health of Newborns. Foods 2021; 10:foods10020473. [PMID: 33669968 PMCID: PMC7924844 DOI: 10.3390/foods10020473] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are the third most abundant solid component after lactose and lipids of breast milk. All mammal milk contains soluble oligosaccharides, including neutral milk oligosaccharides (NMOs) without sialic acid (Sia) moieties and acidic oligosaccharides or sialylated milk oligosaccharides (SMOs) with Sia residues at the end of sugar chains. The structural, biological diversity, and concentration of milk oligosaccharides in mammalian milk are significantly different among species. HMOs have multiple health benefits for newborns, including development of immune system, modification of the intestinal microbiota, anti-adhesive effect against pathogens, and brain development. Most infant formulas lack oligosaccharides which resemble HMOs. Formula-fed infants perform poorly across physical and psychological wellbeing measures and suffer health disadvantages compared to breast-fed infants due to the differences in the nutritional composition of breast milk and infant formula. Of these milk oligosaccharides, SMOs are coming to the forefront of research due to the beneficial nature of Sia. This review aims to critically discuss the current state of knowledge of the biology and role of SMOs in human milk, infant formula milks, and milk from several other species on gut and brain health of human and animal offspring.
Collapse
Affiliation(s)
- Madalyn Hobbs
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.H.); (M.J.); (S.A.G.)
| | - Marefa Jahan
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.H.); (M.J.); (S.A.G.)
- School of Animal & Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Seyed A. Ghorashi
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.H.); (M.J.); (S.A.G.)
| | - Bing Wang
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.H.); (M.J.); (S.A.G.)
- School of Animal & Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Correspondence: ; Tel.: +61-2-6933-4549
| |
Collapse
|
21
|
Coker JK, Moyne O, Rodionov DA, Zengler K. Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut microbiome and affect human health. Gut Microbes 2021; 13:1-18. [PMID: 33615984 PMCID: PMC7899658 DOI: 10.1080/19490976.2020.1869502] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Gut microbiome composition depends heavily upon diet and has strong ties to human health. Dietary carbohydrates shape the gut microbiome by providing a potent nutrient source for particular microbes. This review explores how dietary carbohydrates in general, including individual monosaccharides and complex polysaccharides, influence the gut microbiome with subsequent effects on host health and disease. In particular, the effects of sialic acids, a prominent and influential class of monosaccharides, are discussed. Complex plant carbohydrates, such as dietary fiber, generally promote microbial production of compounds beneficial to the host while preventing degradation of host carbohydrates from colonic mucus. In contrast, simple and easily digestible sugars such as glucose are often associated with adverse effects on health and the microbiome. The monosaccharide class of sialic acids exerts a powerful but nuanced effect on gut microbiota. Sialic acid consumption (in monosaccharide form, or as part of human milk oligosaccharides or certain animal-based foods) drives the growth of organisms with sialic acid metabolism capabilities. Minor chemical modifications of Neu5Ac, the most common form of sialic acid, can alter these effects. All aspects of carbohydrate composition are therefore relevant to consider when designing dietary therapeutic strategies to alter the gut microbiome.
Collapse
Affiliation(s)
- Joanna K Coker
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | - Oriane Moyne
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| |
Collapse
|
22
|
Jahan M, Thomson PC, Wynn PC, Wang B. The non-human glycan, N-glycolylneuraminic acid (Neu5Gc), is not expressed in all organs and skeletal muscles of nine animal species. Food Chem 2020; 343:128439. [PMID: 33127222 DOI: 10.1016/j.foodchem.2020.128439] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/05/2023]
Abstract
Red meat-derived sialic acid (Sia), N-glycolylneuraminic acid (Neu5Gc), promotes the risk of carcinoma and inflammation. Expression in skeletal muscle and organs across animal species remains unknown. We measured Neu5Gc in skeletal muscle and organ tissues from nine species using UHPLC and found that: (1) neu5Gc concentration in skeletal muscle was highest in goats (166 ± 48.7 µg/g protein), followed by cattle, pig, sheep, horse, cat and deer: >75% was conjugated. No Neu5Gc was detected in kangaroo and dog muscles; (2) total Neu5Gc in organ meats was generally about 2-54% higher than in muscle. Surprisingly Neu5Gc was absent in seven organs of female deer; (3) nine commercial ovine meat cuts contained similar Neu5Gc levels. Thus, red meat Neu5Gc concentration is tissue and species-specific and absent in muscle and organ tissue of some species. Our study provides guidelines for animal meat preferences for consumers and sheds light on the functionality of Neu5Gc.
Collapse
Affiliation(s)
- Marefa Jahan
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Peter C Thomson
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; School of Life and Environmental Sciences, University of Sydney. Camden, NSW 2750, Australia
| | - Peter C Wynn
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Bing Wang
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
23
|
Suntsova MV, Buzdin AA. Differences between human and chimpanzee genomes and their implications in gene expression, protein functions and biochemical properties of the two species. BMC Genomics 2020; 21:535. [PMID: 32912141 PMCID: PMC7488140 DOI: 10.1186/s12864-020-06962-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Chimpanzees are the closest living relatives of humans. The divergence between human and chimpanzee ancestors dates to approximately 6,5-7,5 million years ago. Genetic features distinguishing us from chimpanzees and making us humans are still of a great interest. After divergence of their ancestor lineages, human and chimpanzee genomes underwent multiple changes including single nucleotide substitutions, deletions and duplications of DNA fragments of different size, insertion of transposable elements and chromosomal rearrangements. Human-specific single nucleotide alterations constituted 1.23% of human DNA, whereas more extended deletions and insertions cover ~ 3% of our genome. Moreover, much higher proportion is made by differential chromosomal inversions and translocations comprising several megabase-long regions or even whole chromosomes. However, despite of extensive knowledge of structural genomic changes accompanying human evolution we still cannot identify with certainty the causative genes of human identity. Most structural gene-influential changes happened at the level of expression regulation, which in turn provoked larger alterations of interactome gene regulation networks. In this review, we summarized the available information about genetic differences between humans and chimpanzees and their potential functional impacts on differential molecular, anatomical, physiological and cognitive peculiarities of these species.
Collapse
Affiliation(s)
- Maria V Suntsova
- Institute for personalized medicine, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Moscow, Russia
| | - Anton A Buzdin
- Institute for personalized medicine, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Moscow, Russia. .,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow, Russia. .,Omicsway Corp, Walnut, CA, USA. .,Moscow Institute of Physics and Technology (National Research University), 141700, Moscow, Russia.
| |
Collapse
|
24
|
Suzuki N. Glycan diversity in the course of vertebrate evolution. Glycobiology 2020; 29:625-644. [PMID: 31287538 DOI: 10.1093/glycob/cwz038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 11/12/2022] Open
Abstract
Vertebrates are estimated to have arisen over 500 million years ago in the Cambrian Period. Species that survived the Big Five extinction events at a global scale underwent repeated adaptive radiations along with habitat expansions from the sea to the land and sky. The development of the endoskeleton and neural tube enabled more complex body shapes. At the same time, vertebrates became suitable for the invasion and proliferation of foreign organisms. Adaptive immune systems were acquired for responses to a wide variety of pathogens, and more sophisticated systems developed during the evolution of mammals and birds. Vertebrate glycans consist of common core structures and various elongated structures, such as Neu5Gc, Galα1-3Gal, Galα1-4Gal, and Galβ1-4Gal epitopes, depending on the species. During species diversification, complex glycan structures were generated, maintained or lost. Whole-genome sequencing has revealed that vertebrates harbor numerous and even redundant glycosyltransferase genes. The production of various glycan structures is controlled at the genetic level in a species-specific manner. Because cell surface glycans are often targets of bacterial and viral infections, glycan structural diversity is presumed to be protective against infections. However, the maintenance of apparently redundant glycosyltransferase genes and investment in species-specific glycan structures, even in higher vertebrates with highly developed immune systems, are not well explained. This fact suggests that glycans play important roles in unknown biological processes.
Collapse
Affiliation(s)
- Noriko Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
25
|
Yehuda S, Padler-Karavani V. Glycosylated Biotherapeutics: Immunological Effects of N-Glycolylneuraminic Acid. Front Immunol 2020; 11:21. [PMID: 32038661 PMCID: PMC6989436 DOI: 10.3389/fimmu.2020.00021] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
The emerging field of biotherapeutics provides successful treatments for various diseases, yet immunogenicity and limited efficacy remain major concerns for many products. Glycosylation is a key factor determining the pharmacological properties of biotherapeutics, including their stability, solubility, bioavailability, pharmacokinetics, and immunogenicity. Hence, an increased attention is directed at optimizing the glycosylation properties of biotherapeutics. Currently, most biotherapeutics are produced in non-human mammalian cells in light of their ability to produce human-like glycosylation. However, most mammals produce the sialic acid N-glycolylneuraminic acid (Neu5Gc), while humans cannot due to a specific genetic defect. Humans consume Neu5Gc in their diet from mammalian derived foods (red meat and dairy) and produce polyclonal antibodies against diverse Neu5Gc-glycans. Moreover, Neu5Gc can metabolically incorporate into human cells and become presented on surface or secreted glycans, glycoproteins, and glycolipids. Several studies in mice suggested that the combination of Neu5Gc-containing epitopes and anti-Neu5Gc antibodies could contribute to exacerbation of chronic inflammation-mediated diseases (e.g., cancer, cardiovascular diseases, and autoimmunity). This could potentially become complicated with exposure to Neu5Gc-containing biotherapeutics, bio-devices or xenografts. Indeed, Neu5Gc can be found on various approved and marketed biotherapeutics. Here, we provide a perspective review on the possible consequences of Neu5Gc glycosylation of therapeutic protein drugs due to the limited published evidence of Neu5Gc glycosylation on marketed biotherapeutics and studies on their putative effects on immunogenicity, drug efficacy, and safety.
Collapse
Affiliation(s)
- Sharon Yehuda
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Dhar C, Sasmal A, Varki A. From "Serum Sickness" to "Xenosialitis": Past, Present, and Future Significance of the Non-human Sialic Acid Neu5Gc. Front Immunol 2019; 10:807. [PMID: 31057542 PMCID: PMC6481270 DOI: 10.3389/fimmu.2019.00807] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 01/01/2023] Open
Abstract
The description of "serum sickness" more than a century ago in humans transfused with animal sera eventually led to identification of a class of human antibodies directed against glycans terminating in the common mammalian sialic acid N-Glycolylneuraminic acid (Neu5Gc), hereafter called "Neu5Gc-glycans." The detection of such glycans in malignant and fetal human tissues initially raised the possibility that it was an oncofetal antigen. However, "serum sickness" antibodies were also noted in various human disease states. These findings spurred further research on Neu5Gc, and the discovery that it is not synthesized in the human body due to a human-lineage specific genetic mutation in the enzyme CMAH. However, with more sensitive techniques Neu5Gc-glycans were detected in smaller quantities on certain human cell types, particularly epithelia and endothelia. The likely explanation is metabolic incorporation of Neu5Gc from dietary sources, especially red meat of mammalian origin. This incorporated Neu5Gc on glycans appears to be the first example of a "xeno-autoantigen," against which varying levels of "xeno-autoantibodies" are present in all humans. The resulting chronic inflammation or "xenosialitis" may have important implications in human health and disease, especially in conditions known to be aggravated by consumption of red meat. In this review, we will cover the early history of the discovery of "serum sickness" antibodies, the subsequent recognition that they were partly directed against Neu5Gc-glycans, the discovery of the genetic defect eliminating Neu5Gc production in humans, and the later recognition that this was not an oncofetal antigen but the first example of a "xeno-autoantigen." Further, we will present comments about implications for disease risks associated with red meat consumption such as cancer and atherosclerosis. We will also mention the potential utility of these anti-Neu5Gc-glycan antibodies in cancer immunotherapy and provide some suggestions and perspectives for the future. Other reviews in this special issue cover many other aspects of this unusual pathological process, for which there appears to be no other described precedent.
Collapse
Affiliation(s)
- Chirag Dhar
- Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| | - Aniruddha Sasmal
- Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| | - Ajit Varki
- Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
27
|
Albertó M, Cuello HA, Gulino CA, Pifano M, Belgorosky D, Gabri MR, Eiján AM, Segatori VI. Expression of bladder cancer-associated glycans in murine tumor cell lines. Oncol Lett 2019; 17:3141-3150. [PMID: 30867744 PMCID: PMC6396118 DOI: 10.3892/ol.2019.9995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
The characterization of murine cell lines is of great importance in order to identify preclinical models that could resemble human diseases. Aberrant glycosylation includes the loss, excessive or novel expression of glycans and the appearance of truncated structures. MB49 and MB49-I are currently the only two murine cell lines available for the development of preclinical bladder cancer models. The glycans Lewis X (LeX), Sialyl lewis X (SLeX) and Sialyl Tn (STn) have previously been associated with aggressiveness, dissemination and poor prognosis in human bladder cancer, additionally N-glycolyl GM3 (NGcGM3) is a neo-antigen expressed in many types of tumors; however, to the best of our knowledge, its expression has not previously been assessed in this type of cancer. Taking into account the relevance of glycans in tumor biology and considering that they can act as targets of therapies and biomarkers, the present study evaluated the expression of LeX, SLeX, STn and NGcGM3 in MB49 and MB49-I cells, in different growth conditions such as monolayer cultures, three-dimensional multicellular spheroids and mouse heterotopic and orthotopic tumors. The expression of LeX was not detected in either cell line, whereas SLeX was expressed in monolayers, spheroids and orthotopic tumors of both cell lines. STn was only identified in MB49 monolayers and spheroids. There are no reports concerning the expression of NGcGM3 in human or murine bladder cancer. In our hands, MB49 and MB49-I expressed this ganglioside in all the growth conditions evaluated. The assessment of its expression in cancer cell lines and patient tumors is of great importance, considering the relevance of this ganglioside in tumor biology. The data obtained by the present study demonstrates that glycan expression may be substantially altered depending on the growth conditions, highlighting the importance of the characterization of murine cancer models. To the best of our knowledge, the present study is the first to examine the expression of cancer-associated glycans, in the two murine cell lines available for the development of preclinical studies in bladder cancer.
Collapse
Affiliation(s)
- Marina Albertó
- Laboratory of Molecular Oncology, Quilmes National University, Bernal B1876BXD, Argentina
| | - Hector Adrián Cuello
- Laboratory of Molecular Oncology, Quilmes National University, Bernal B1876BXD, Argentina
| | | | - Marina Pifano
- Laboratory of Molecular Oncology, Quilmes National University, Bernal B1876BXD, Argentina
| | - Denise Belgorosky
- Research Area, Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires 1417 DTB, Argentina
| | - Mariano Rolando Gabri
- Laboratory of Molecular Oncology, Quilmes National University, Bernal B1876BXD, Argentina
| | - Ana María Eiján
- Research Area, Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires 1417 DTB, Argentina
| | - Valeria Inés Segatori
- Laboratory of Molecular Oncology, Quilmes National University, Bernal B1876BXD, Argentina
| |
Collapse
|
28
|
Galili U. Evolution in primates by “Catastrophic‐selection” interplay between enveloped virus epidemics, mutated genes of enzymes synthesizing carbohydrate antigens, and natural anti‐carbohydrate antibodies. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168:352-363. [DOI: 10.1002/ajpa.23745] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Uri Galili
- Department of MedicineRush Medical College Chicago Illinois
| |
Collapse
|
29
|
Angata T. Possible Influences of Endogenous and Exogenous Ligands on the Evolution of Human Siglecs. Front Immunol 2018; 9:2885. [PMID: 30564250 PMCID: PMC6288428 DOI: 10.3389/fimmu.2018.02885] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022] Open
Abstract
Sialic acids, a group of acidic sugars abundantly expressed in the tissues of deuterostome animals but rarely found in microbes, serve as a "signature of self" for these animals. Cognate sensors for sialic acids include Siglecs, a family of transmembrane lectins of vertebrate immune systems that recognize glycans containing sialic acids. A type of sialic acid called N-glycolylneuraminic acid (Neu5Gc) is abundant in many mammalian lineages including great apes, the closest extant relatives of modern human, but was lost in the lineage leading to modern human via the pseudogenization of the CMAH gene encoding the enzyme that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Loss of Neu5Gc appears to have influenced the evolution of human Siglecs, such as the adjustment of sialic acid binding preferences and the inactivation of at least one Siglec. In addition, various mechanistic studies using model systems and genetic association studies have revealed that some human Siglecs interact with pathogens and influence the outcome of infections, and these pathogens in turn likely influence the evolution of these Siglecs. By understanding the evolutionary forces affecting Siglecs, we shall achieve a better appreciation of Siglec functions, and by understanding Siglec functions, we can obtain deeper insight into the evolutionary processes driving Siglec evolution.
Collapse
Affiliation(s)
- Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
30
|
Abstract
Sialic acids are cytoprotectors, mainly localized on the surface of cell membranes with multiple and outstanding cell biological functions. The history of their structural analysis, occurrence, and functions is fascinating and described in this review. Reports from different researchers on apparently similar substances from a variety of biological materials led to the identification of a 9-carbon monosaccharide, which in 1957 was designated "sialic acid." The most frequently occurring member of the sialic acid family is N-acetylneuraminic acid, followed by N-glycolylneuraminic acid and O-acetylated derivatives, and up to now over about 80 neuraminic acid derivatives have been described. They appeared first in the animal kingdom, ranging from echinoderms up to higher animals, in many microorganisms, and are also expressed in insects, but are absent in higher plants. Sialic acids are masks and ligands and play as such dual roles in biology. Their involvement in immunology and tumor biology, as well as in hereditary diseases, cannot be underestimated. N-Glycolylneuraminic acid is very special, as this sugar cannot be expressed by humans, but is a xenoantigen with pathogenetic potential. Sialidases (neuraminidases), which liberate sialic acids from cellular compounds, had been known from very early on from studies with influenza viruses. Sialyltransferases, which are responsible for the sialylation of glycans and elongation of polysialic acids, are studied because of their significance in development and, for instance, in cancer. As more information about the functions in health and disease is acquired, the use of sialic acids in the treatment of diseases is also envisaged.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Johannis P Kamerling
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
31
|
Peri S, Kulkarni A, Feyertag F, Berninsone PM, Alvarez-Ponce D. Phylogenetic Distribution of CMP-Neu5Ac Hydroxylase (CMAH), the Enzyme Synthetizing the Proinflammatory Human Xenoantigen Neu5Gc. Genome Biol Evol 2018; 10:207-219. [PMID: 29206915 PMCID: PMC5767959 DOI: 10.1093/gbe/evx251] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2017] [Indexed: 01/25/2023] Open
Abstract
The enzyme CMP-N-acetylneuraminic acid hydroxylase (CMAH) is responsible for the synthesis of N-glycolylneuraminic acid (Neu5Gc), a sialic acid present on the cell surface proteins of most deuterostomes. The CMAH gene is thought to be present in most deuterostomes, but it has been inactivated in a number of lineages, including humans. The inability of humans to synthesize Neu5Gc has had several evolutionary and biomedical implications. Remarkably, Neu5Gc is a xenoantigen for humans, and consumption of Neu5Gc-containing foods, such as red meats, may promote inflammation, arthritis, and cancer. Likewise, xenotransplantation of organs producing Neu5Gc can result in inflammation and organ rejection. Therefore, knowing what animal species contain a functional CMAH gene, and are thus capable of endogenous Neu5Gc synthesis, has potentially far-reaching implications. In addition to humans, other lineages are known, or suspected, to have lost CMAH; however, to date reports of absent and pseudogenic CMAH genes are restricted to a handful of species. Here, we analyze all available genomic data for nondeuterostomes, and 322 deuterostome genomes, to ascertain the phylogenetic distribution of CMAH. Among nondeuterostomes, we found CMAH homologs in two green algae and a few prokaryotes. Within deuterostomes, putatively functional CMAH homologs are present in 184 of the studied genomes, and a total of 31 independent gene losses/pseudogenization events were inferred. Our work produces a list of animals inferred to be free from endogenous Neu5Gc based on the absence of CMAH homologs and are thus potential candidates for human consumption, xenotransplantation research, and model organisms for investigation of human diseases.
Collapse
Affiliation(s)
- Sateesh Peri
- Department of Biology, University of Nevada, Reno
| | | | | | | | | |
Collapse
|
32
|
Gangi Setty T, Mowers JC, Hobbs AG, Maiya SP, Syed S, Munson RS, Apicella MA, Subramanian R. Molecular characterization of the interaction of sialic acid with the periplasmic binding protein from Haemophilus ducreyi. J Biol Chem 2018; 293:20073-20084. [PMID: 30315109 DOI: 10.1074/jbc.ra118.005151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/11/2018] [Indexed: 12/18/2022] Open
Abstract
The primary role of bacterial periplasmic binding proteins is sequestration of essential metabolites present at a low concentration in the periplasm and making them available for active transporters that transfer these ligands into the bacterial cell. The periplasmic binding proteins (SiaPs) from the tripartite ATP-independent periplasmic (TRAP) transport system that transports mammalian host-derived sialic acids have been well studied from different pathogenic bacteria, including Haemophilus influenzae, Fusobacterium nucleatum, Pasteurella multocida, and Vibrio cholerae SiaPs bind the sialic acid N-acetylneuraminic acid (Neu5Ac) with nanomolar affinity by forming electrostatic and hydrogen-bonding interactions. Here, we report the crystal structure of a periplasmic binding protein (SatA) of the ATP-binding cassette (ABC) transport system from the pathogenic bacterium Haemophilus ducreyi The structure of Hd-SatA in the native form and sialic acid-bound forms (with Neu5Ac and N-glycolylneuraminic acid (Neu5Gc)), determined to 2.2, 1.5, and 2.5 Å resolutions, respectively, revealed a ligand-binding site that is very different from those of the SiaPs of the TRAP transport system. A structural comparison along with thermodynamic studies suggested that similar affinities are achieved in the two classes of proteins through distinct mechanisms, one enthalpically driven and the other entropically driven. In summary, our structural and thermodynamic characterization of Hd-SatA reveals that it binds sialic acids with nanomolar affinity and that this binding is an entropically driven process. This information is important for future structure-based drug design against this pathogen and related bacteria.
Collapse
Affiliation(s)
- Thanuja Gangi Setty
- From the Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bangalore 560065, India,; the University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Jonathan C Mowers
- the Departments of Biochemistry and Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Aaron G Hobbs
- the Departments of Biochemistry and Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Shubha P Maiya
- From the Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bangalore 560065, India
| | - Sanaa Syed
- From the Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bangalore 560065, India
| | - Robert S Munson
- the Center for Microbial Interface Biology, Ohio State University, Columbus, Ohio 43210, and
| | - Michael A Apicella
- Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Ramaswamy Subramanian
- From the Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bangalore 560065, India,; the Departments of Biochemistry and Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
33
|
Okerblom J, Fletes W, Patel HH, Schenk S, Varki A, Breen EC. Human-like Cmah inactivation in mice increases running endurance and decreases muscle fatigability: implications for human evolution. Proc Biol Sci 2018; 285:rspb.2018.1656. [PMID: 30209232 PMCID: PMC6158528 DOI: 10.1098/rspb.2018.1656] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Compared to other primates, humans are exceptional long-distance runners, a feature that emerged in genus Homo approximately 2 Ma and is classically attributed to anatomical and physiological adaptations such as an enlarged gluteus maximus and improved heat dissipation. However, no underlying genetic changes have currently been defined. Two to three million years ago, an exon deletion in the CMP-Neu5Ac hydroxylase (CMAH) gene also became fixed in our ancestral lineage. Cmah loss in mice exacerbates disease severity in multiple mouse models for muscular dystrophy, a finding only partially attributed to differences in immune reactivity. We evaluated the exercise capacity of Cmah-/- mice and observed an increased performance during forced treadmill testing and after 15 days of voluntary wheel running. Cmah-/- hindlimb muscle exhibited more capillaries and a greater fatigue resistance in situ Maximal coupled respiration was also higher in Cmah null mice ex vivo and relevant differences in metabolic pathways were also noted. Taken together, these data suggest that CMAH loss contributes to an improved skeletal muscle capacity for oxygen use. If translatable to humans, CMAH loss could have provided a selective advantage for ancestral Homo during the transition from forest dwelling to increased resource exploration and hunter/gatherer behaviour in the open savannah.
Collapse
Affiliation(s)
- Jonathan Okerblom
- Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Glycobiology Research and Training Center (GRTC), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - William Fletes
- Glycobiology Research and Training Center (GRTC), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Initiative for Maximizing Student Development (IMSD) Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Hemal H Patel
- Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Simon Schenk
- Department of Orthopedic Surgery, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ajit Varki
- Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA .,Glycobiology Research and Training Center (GRTC), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ellen C Breen
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
34
|
Paul A, Padler-Karavani V. Evolution of sialic acids: Implications in xenotransplant biology. Xenotransplantation 2018; 25:e12424. [PMID: 29932472 PMCID: PMC6756921 DOI: 10.1111/xen.12424] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
All living cells are covered with a dense “sugar-coat” of carbohydrate chains (glycans) conjugated to proteins and lipids. The cell surface glycome is determined by a non-template driven process related to the collection of enzymes that assemble glycans in a sequential manner. In mammals, many of these glycans are topped with sialic acids (Sia), a large family of acidic sugars. The “Sialome” is highly diverse owing to various Sia types, linkage to underlying glycans, range of carriers, and complex spatial organization. Presented at the front of cells, Sia play a major role in immunity and recognition of “self” versus “non-self,” largely mediated by the siglecs family of Sia-binding host receptors. Albeit many mammalian pathogens have evolved to hijack this recognition system to avoid host immune attack, presenting a fascinating host-pathogen evolutionary arms race. Similarly, cancer cells exploit Sia for their own survival and propagation. As part of this ongoing fitness, humans lost the ability to synthesize the Sia type N-glycolylneuraminic acid (Neu5Gc), in contrast to other mammals. While this loss had provided an advantage against certain pathogens, humans are continuously exposed to Neu5Gc through mammalian-derived diet (eg, red meat), consequently generating a complex immune response against it. Circulating anti-Neu5Gc antibodies together with Neu5Gc on some human tissues mediate chronic inflammation “xenosialitis” that exacerbate various human diseases (eg, cancer and atherosclerosis). Similarly, Neu5Gc-containing xenografts are exposed to human anti-Neu5Gc antibodies with implications to sustainability. This review aimed to provide a glimpse into the evolution of Sia and their implications to xenotransplantation.
Collapse
Affiliation(s)
- Anu Paul
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Samraj AN, Bertrand KA, Luben R, Khedri Z, Yu H, Nguyen D, Gregg CJ, Diaz SL, Sawyer S, Chen X, Eliassen H, Padler-Karavani V, Wu K, Khaw KT, Willett W, Varki A. Polyclonal human antibodies against glycans bearing red meat-derived non-human sialic acid N-glycolylneuraminic acid are stable, reproducible, complex and vary between individuals: Total antibody levels are associated with colorectal cancer risk. PLoS One 2018; 13:e0197464. [PMID: 29912879 PMCID: PMC6005533 DOI: 10.1371/journal.pone.0197464] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND N-glycolylneuraminic acid (Neu5Gc) is a non-human red-meat-derived sialic acid immunogenic to humans. Neu5Gc can be metabolically incorporated into glycan chains on human endothelial and epithelial surfaces. This represents the first example of a "xeno-autoantigen", against which circulating human "xeno-autoantibodies" can react. The resulting inflammation ("xenosialitis") has been demonstrated in human-like Neu5Gc-deficient mice and contributed to carcinoma progression via antibody-mediated inflammation. Anti-Neu5Gc antibodies have potential as biomarkers for diseases associated with red meat consumption such as carcinomas, atherosclerosis, and type 2 diabetes. METHODS ELISA assays measured antibodies against Neu5Gc or Neu5Gc-glycans in plasma or serum samples from the Nurses' Health Studies, the Health Professionals Follow-up Study, and the European Prospective Investigation into Cancer and Nutrition, including inter-assay reproducibility, stability with delayed sample processing, and within-person reproducibility over 1-3 years in archived samples. We also assessed associations between antibody levels and coronary artery disease risk (CAD) or red meat intake. A glycan microarray was used to detected antibodies against multiple Neu5Gc-glycan epitopes. A nested case-control study design assessed the association between total anti-Neu5Gc antibodies detected in the glycan array assay and the risk of colorectal cancer (CRC). RESULTS ELISA assays showed a wide range of anti-Neu5Gc responses and good inter-assay reproducibility, stability with delayed sample processing, and within-person reproducibility over time, but these antibody levels did not correlate with CAD risk or red meat intake. Antibodies against Neu5Gc alone or against individual Neu5Gc-bearing epitopes were also not associated with colorectal cancer (CRC) risk. However, a sialoglycan microarray study demonstrated positive association with CRC risk when the total antibody responses against all Neu5Gc-glycans were combined. Individuals in the top quartile of total anti-Neu5Gc IgG antibody concentrations had nearly three times the risk compared to those in the bottom quartile (Multivariate Odds Ratio comparing top to bottom quartile: 2.98, 95% CI: 0.80, 11.1; P for trend = 0.02). CONCLUSIONS Further work harnessing the utility of these anti-Neu5Gc antibodies as biomarkers in red meat-associated diseases must consider diversity in individual antibody profiles against different Neu5Gc-bearing glycans. Traditional ELISA assays for antibodies directed against Neu5Gc alone, or against specific Neu5Gc-glycans may not be adequate to define risk associations. Our finding of a positive association of total anti-Neu5Gc antibodies with CRC risk also warrants confirmation in larger prospective studies.
Collapse
Affiliation(s)
- Annie N. Samraj
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Kimberly A. Bertrand
- Slone Epidemiology Center, Boston University, Boston, Massachusetts, United States of America
| | - Robert Luben
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Zahra Khedri
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Hai Yu
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Dzung Nguyen
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Christopher J. Gregg
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Sandra L. Diaz
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Sherilyn Sawyer
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Heather Eliassen
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Vered Padler-Karavani
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Walter Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Ajit Varki
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| |
Collapse
|
36
|
Teoh ST, Ogrodzinski MP, Ross C, Hunter KW, Lunt SY. Sialic Acid Metabolism: A Key Player in Breast Cancer Metastasis Revealed by Metabolomics. Front Oncol 2018; 8:174. [PMID: 29892572 PMCID: PMC5985449 DOI: 10.3389/fonc.2018.00174] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/04/2018] [Indexed: 11/13/2022] Open
Abstract
Metastatic breast cancer is currently incurable. It has recently emerged that different metabolic pathways support metastatic breast cancer. To further uncover metabolic pathways enabling breast cancer metastasis, we investigated metabolic differences in mouse tumors of differing metastatic propensities using mass spectrometry-based metabolomics. We found that sialic acid metabolism is upregulated in highly metastatic breast tumors. Knocking out a key gene in sialic acid metabolism, Cmas, inhibits synthesis of the activated form of sialic acid, cytidine monophosphate-sialic acid and decreases the formation of lung metastases in vivo. Thus, the sialic acid pathway may be a new target against metastatic breast cancer.
Collapse
Affiliation(s)
- Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Martin P Ogrodzinski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.,Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Christina Ross
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kent W Hunter
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
37
|
Brandis G, Cao S, Hughes D. Co-evolution with recombination affects the stability of mobile genetic element insertions within gene families of Salmonella. Mol Microbiol 2018; 108:697-710. [PMID: 29603442 DOI: 10.1111/mmi.13959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2018] [Indexed: 12/14/2022]
Abstract
Bacteria can have multiple copies of a gene at separate locations on the same chromosome. Some of these gene families, including tuf (translation elongation factor EF-Tu) and rrl (ribosomal RNA), encode functions critically important for bacterial fitness. Genes within these families are known to evolve in concert using homologous recombination to transfer genetic information from one gene to another. This mechanism can counteract the detrimental effects of nucleotide sequence divergence over time. Whether such mechanisms can also protect against the potentially lethal effects of mobile genetic element insertion is not well understood. To address this we constructed two different length insertion cassettes to mimic mobile genetic elements and inserted these into various positions of the tuf and rrl genes. We measured rates of recombinational repair that removed the inserted cassette and studied the underlying mechanism. Our results indicate that homologous recombination can protect the tuf and rrl genes from inactivation by mobile genetic elements, but for insertions within shorter gene sequences the efficiency of repair is very low. Intriguingly, we found that physical distance separating genes on the chromosome directly affects the rate of recombinational repair suggesting that relative location will influence the ability of homologous recombination to maintain homogeneity.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
38
|
Lim C, Dankwa S, Paul AS, Duraisingh MT. Host Cell Tropism and Adaptation of Blood-Stage Malaria Parasites: Challenges for Malaria Elimination. Cold Spring Harb Perspect Med 2017; 7:a025494. [PMID: 28213436 PMCID: PMC5666624 DOI: 10.1101/cshperspect.a025494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plasmodium falciparum and Plasmodium vivax account for most of the mortality and morbidity associated with malaria in humans. Research and control efforts have focused on infections caused by P. falciparum and P. vivax, but have neglected other malaria parasite species that infect humans. Additionally, many related malaria parasite species infect nonhuman primates (NHPs), and have the potential for transmission to humans. For malaria elimination, the varied and specific challenges of all of these Plasmodium species will need to be considered. Recent advances in molecular genetics and genomics have increased our knowledge of the prevalence and existing diversity of the human and NHP Plasmodium species. We are beginning to identify the extent of the reservoirs of each parasite species in humans and NHPs, revealing their origins as well as potential for adaptation in humans. Here, we focus on the red blood cell stage of human infection and the host cell tropism of each human Plasmodium species. Determinants of tropism are unique among malaria parasite species, presenting a complex challenge for malaria elimination.
Collapse
Affiliation(s)
- Caeul Lim
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Selasi Dankwa
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Aditya S Paul
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | | |
Collapse
|
39
|
Okerblom J, Varki A. Biochemical, Cellular, Physiological, and Pathological Consequences of Human Loss of N-Glycolylneuraminic Acid. Chembiochem 2017; 18:1155-1171. [PMID: 28423240 DOI: 10.1002/cbic.201700077] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Indexed: 12/15/2022]
Abstract
About 2-3 million years ago, Alu-mediated deletion of a critical exon in the CMAH gene became fixed in the hominin lineage ancestral to humans, possibly through a stepwise process of selection by pathogen targeting of the CMAH product (the sialic acid Neu5Gc), followed by reproductive isolation through female anti-Neu5Gc antibodies. Loss of CMAH has occurred independently in some other lineages, but is functionally intact in Old World primates, including our closest relatives, the chimpanzee. Although the biophysical and biochemical ramifications of losing tens of millions of Neu5Gc hydroxy groups at most cell surfaces remains poorly understood, we do know that there are multiscale effects functionally relevant to both sides of the host-pathogen interface. Hominin CMAH loss might also contribute to understanding human evolution, at the time when our ancestors were starting to use stone tools, increasing their consumption of meat, and possibly hunting. Comparisons with chimpanzees within ethical and practical limitations have revealed some consequences of human CMAH loss, but more has been learned by using a mouse model with a human-like Cmah inactivation. For example, such mice can develop antibodies against Neu5Gc that could affect inflammatory processes like cancer progression in the face of Neu5Gc metabolic incorporation from red meats, display a hyper-reactive immune system, a human-like tendency for delayed wound healing, late-onset hearing loss, insulin resistance, susceptibility to muscular dystrophy pathologies, and increased sensitivity to multiple human-adapted pathogens involving sialic acids. Further studies in such mice could provide a model for other human-specific processes and pathologies involving sialic acid biology that have yet to be explored.
Collapse
Affiliation(s)
- Jonathan Okerblom
- Biomedical Sciences Graduate Program, University of California in San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0687, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, GRTC) and, Center for Academic Research and Training in Anthropogeny, CARTA), Departments of Medicine and Cellular and Molecular Medicine, University of California in San Diego, La Jolla, CA, 92093-0687, USA
| |
Collapse
|
40
|
Röhrig CH, Choi SSH, Baldwin N. The nutritional role of free sialic acid, a human milk monosaccharide, and its application as a functional food ingredient. Crit Rev Food Sci Nutr 2016; 57:1017-1038. [DOI: 10.1080/10408398.2015.1040113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Sharon S. H. Choi
- Intertek Scientific & Regulatory Consultancy, Mississauga, Ontario, Canada
| | - Nigel Baldwin
- Intertek Scientific & Regulatory Consultancy, Hampshire, United Kingdom
| |
Collapse
|
41
|
Warren IA, Naville M, Chalopin D, Levin P, Berger CS, Galiana D, Volff JN. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 2016; 23:505-31. [PMID: 26395902 DOI: 10.1007/s10577-015-9493-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.
Collapse
Affiliation(s)
- Ian A Warren
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - Perrine Levin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chloé Suzanne Berger
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
42
|
Kwon DN, Park WJ, Choi YJ, Gurunathan S, Kim JH. Oxidative stress and ROS metabolism via down-regulation of sirtuin 3 expression in Cmah-null mice affect hearing loss. Aging (Albany NY) 2016; 7:579-94. [PMID: 26319214 PMCID: PMC4586103 DOI: 10.18632/aging.100800] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CMP-Neu5Ac hydroxylase (Cmah) disruption caused several abnormalities and diseases including hearing loss in old age. However, underling molecular mechanisms that give rise to age-related hearing loss (AHL) in Cmah-null mouse are still obscure. In this study, Cmah-null mice showed age-related decline of hearing associated with loss of sensory hair cells, spiral ganglion neurons, and/or stria vascularis degeneration in the cochlea. To identify differential gene expression profiles and pathway associated with AHL, we performed microarray analysis using Illumina MouseRef-8 v2 Expression BeadChip and pathway-focused PCR array in the cochlear tissues of Cmah-null mouse. Pathway and molecular mechanism analysis using differentially expressed genes provided evidences that altered biological pathway due to oxidative damage by low expressed antioxidants and dysregulated reactive oxygen species (ROS) metabolism. Especially, low sirtuin 3 (Sirt3) gene expressions in Cmah-null mice decreased both of downstream regulator (Foxo1 and MnSod) and regulatory transcription factor (Hif1αand Foxo3α) gene expression. Taken together, we suggest that down-regulation of Sirt3 expression leads to oxidative stress and mitochondrial dysfunction by regulation of ROS and that it could alter various signaling pathways in Cmah-null mice with AHL.
Collapse
Affiliation(s)
- Deug-Nam Kwon
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Woo-Jin Park
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Yun-Jung Choi
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | | | - Jin-Hoi Kim
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
43
|
Bailey J. Monkey-based research on human disease: the implications of genetic differences. Altern Lab Anim 2016; 42:287-317. [PMID: 25413291 DOI: 10.1177/026119291404200504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Assertions that the use of monkeys to investigate human diseases is valid scientifically are frequently based on a reported 90-93% genetic similarity between the species. Critical analyses of the relevance of monkey studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for monkeys to constitute good models for research, and that monkey data do not translate well to progress in clinical practice for humans. Salient examples include the failure of new drugs in clinical trials, the highly different infectivity and pathology of SIV/HIV, and poor extrapolation of research on Alzheimer's disease, Parkinson's disease and stroke. The major molecular differences underlying these inter-species phenotypic disparities have been revealed by comparative genomics and molecular biology - there are key differences in all aspects of gene expression and protein function, from chromosome and chromatin structure to post-translational modification. The collective effects of these differences are striking, extensive and widespread, and they show that the superficial similarity between human and monkey genetic sequences is of little benefit for biomedical research. The extrapolation of biomedical data from monkeys to humans is therefore highly unreliable, and the use of monkeys must be considered of questionable value, particularly given the breadth and potential of alternative methods of enquiry that are currently available to scientists.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society (NEAVS), Boston, MA, USA
| |
Collapse
|
44
|
Dankwa S, Lim C, Bei AK, Jiang RHY, Abshire JR, Patel SD, Goldberg JM, Moreno Y, Kono M, Niles JC, Duraisingh MT. Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite. Nat Commun 2016; 7:11187. [PMID: 27041489 PMCID: PMC4822025 DOI: 10.1038/ncomms11187] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/25/2016] [Indexed: 01/19/2023] Open
Abstract
Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways.
Collapse
Affiliation(s)
- Selasi Dankwa
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Caeul Lim
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Amy K Bei
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Rays H Y Jiang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - James R Abshire
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Saurabh D Patel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA.,Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Jonathan M Goldberg
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Yovany Moreno
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Maya Kono
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
45
|
Soares MP, Yilmaz B. Microbiota Control of Malaria Transmission. Trends Parasitol 2016; 32:120-130. [PMID: 26774793 DOI: 10.1016/j.pt.2015.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022]
Abstract
Stable mutualistic interactions between multicellular organisms and microbes are an evolutionarily conserved process with a major impact on host physiology and fitness. Humans establish such interactions with a consortium of microorganisms known as the microbiota. Despite the mutualistic nature of these interactions, some bacterial components of the human microbiota express immunogenic glycans that elicit glycan-specific antibody (Ab) responses. The ensuing circulating Abs are protective against infections by pathogens that express those glycans, as demonstrated for Plasmodium, the causative agent of malaria. Presumably, a similar protective Ab response acts against other vector-borne diseases.
Collapse
Affiliation(s)
- Miguel P Soares
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal.
| | - Bahtiyar Yilmaz
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal; Current address: Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, Murtenstrasse 35, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
46
|
SCHAUER R. Sialic acids as link to Japanese scientists. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:109-20. [PMID: 27063181 PMCID: PMC4989050 DOI: 10.2183/pjab.92.109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
This manuscript is dedicated to Prof. Tamio Yamakawa and describes my cooperations on sialic acid-related topics with Japanese scientists during the last 40 years. We studied sialic acids and their O-acetylated derivatives in the sea urchin Pseudocentrotus depressus, in Halocynthia species, and in human and bovine milk. In seafood we mainly searched for N-glycolylneuraminic acid. With synthetic substrates it was shown that sialic acid O-acetylation at C-4 hinders the activity of sialidases, with the exception of viral enzymes. The biosynthesis of Neu5Gc was discussed and the distribution of this sialic acid in dogs followed in modern literature and reviewed regarding their migration. An excellent source of sialic acids is edible bird nest substance (Collocalia mucin) which was used for the synthesis of sialylation inhibitors.
Collapse
Affiliation(s)
- Roland SCHAUER
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
47
|
CMP-Neu5Ac Hydroxylase Null Mice as a Model for Studying Metabolic Disorders Caused by the Evolutionary Loss of Neu5Gc in Humans. BIOMED RESEARCH INTERNATIONAL 2015; 2015:830315. [PMID: 26558285 PMCID: PMC4629002 DOI: 10.1155/2015/830315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/03/2015] [Accepted: 08/30/2015] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to identify the modification/turnover of gene products that are altered in humans due to evolutionary loss of Neu5Gc. CMP-Neu5Ac hydroxylase- (Cmah-) deficient mice show the infiltration of Kupffer cells within liver sinusoids, whereas body and liver weight develop normally. Pathway analysis by use of Illumina MouseRef-8 v2 Expression BeadChip provided evidence that a number of biological pathways, including the glycolysis, gluconeogenesis, TCA cycle, and pentose phosphate pathways, as well as glycogen metabolism-related gene expression, were significantly upregulated in Cmah-null mice. The intracellular glucose supply in Cmah-null mice resulted in mitochondrial dysfunction, oxidative stress, and the advanced glycation end products accumulation that could further induce oxidative stress. Finally, low sirtuin-1 and sirtuin-3 gene expressions due to higher NADH/NAD in Cmah-null mice decreased Foxo-1 and MnSOD gene expression, suggesting that oxidative stress may result in mitochondrial dysfunction in Cmah-null mouse. The present study suggests that mice with CMAH deficiency can be taken as an important model for studying metabolic disorders in humans.
Collapse
|
48
|
Abstract
Humans have acquired many distinct evolutionary traits after the human-chimpanzee divergence. These phenotypes have resulted from genetic changes that occurred in the human genome and were retained by natural selection. Comparative primate genome analyses reveal that loss-of-function mutations are common in the human genome. Some of these gene inactivation events were revealed to be associated with the emergence of advantageous phenotypes and were therefore positively selected and fixed in modern humans (the "less-ismore" hypothesis). Representative cases of human gene inactivation and their functional implications are presented in this review. Functional studies of additional inactive genes will provide insight into the molecular mechanisms underlying acquisition of various human-specific traits.
Collapse
Affiliation(s)
| | | | | | - Yoonsoo Hahn
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
49
|
Yilmaz B, Portugal S, Tran TM, Gozzelino R, Ramos S, Gomes J, Regalado A, Cowan PJ, d'Apice AJF, Chong AS, Doumbo OK, Traore B, Crompton PD, Silveira H, Soares MP. Gut microbiota elicits a protective immune response against malaria transmission. Cell 2015; 159:1277-89. [PMID: 25480293 PMCID: PMC4261137 DOI: 10.1016/j.cell.2014.10.053] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
Abstract
Glycosylation processes are under high natural selection pressure, presumably because these can modulate resistance to infection. Here, we asked whether inactivation of the UDP-galactose:β-galactoside-α1-3-galactosyltransferase (α1,3GT) gene, which ablated the expression of the Galα1-3Galβ1-4GlcNAc-R (α-gal) glycan and allowed for the production of anti-α-gal antibodies (Abs) in humans, confers protection against Plasmodium spp. infection, the causative agent of malaria and a major driving force in human evolution. We demonstrate that both Plasmodium spp. and the human gut pathobiont E. coli O86:B7 express α-gal and that anti-α-gal Abs are associated with protection against malaria transmission in humans as well as in α1,3GT-deficient mice, which produce protective anti-α-gal Abs when colonized by E. coli O86:B7. Anti-α-gal Abs target Plasmodium sporozoites for complement-mediated cytotoxicity in the skin, immediately after inoculation by Anopheles mosquitoes. Vaccination against α-gal confers sterile protection against malaria in mice, suggesting that a similar approach may reduce malaria transmission in humans.
Collapse
Affiliation(s)
- Bahtiyar Yilmaz
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Silvia Portugal
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook II, Room 125, 12441 Parklawn Drive, Rockville, MD 20852-8180, USA
| | - Tuan M Tran
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook II, Room 125, 12441 Parklawn Drive, Rockville, MD 20852-8180, USA
| | - Raffaella Gozzelino
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Susana Ramos
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Joana Gomes
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; Centro de Malaria e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Ana Regalado
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital, Fitzroy, Melbourne, VIC 3065, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 2900, Australia
| | - Anthony J F d'Apice
- Immunology Research Centre, St. Vincent's Hospital, Fitzroy, Melbourne, VIC 3065, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 2900, Australia
| | - Anita S Chong
- Section of Transplantation, Department of Surgery, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Ogobara K Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, 1805 Bamako, Mali
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, 1805 Bamako, Mali
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook II, Room 125, 12441 Parklawn Drive, Rockville, MD 20852-8180, USA
| | - Henrique Silveira
- Centro de Malaria e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Miguel P Soares
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
50
|
Abstract
The sialic acids N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) differ by a single oxygen atom and are widely found at the terminal position of glycans on vertebrate cell surfaces. In animals capable of synthesizing Neu5Gc, most tissues and cell types express both sialic acids, in proportions that vary between species. However, it has long been noted that Neu5Gc is consistently expressed at trace to absent levels in the brains of all vertebrates studied to date. Although several reports have claimed to find low levels of Neu5Gc-containing glycans in neural tissue, no study definitively excludes the possibility of contamination with glycans from non-neural cell types. This distribution of a molecule - prominently but variably expressed in extraneural tissues but very low or absent in the brain - is, to our knowledge, unique. The evolutionarily conserved brain-specific suppression of Neu5Gc may indicate that its presence is toxic to this organ; however, no studies to date have directly addressed this very interesting question. Here we provide a historical background to this issue and discuss potential mechanisms causing the suppression of Neu5Gc expression in brain tissue, as well as mechanisms by which Neu5Gc may exert the presumed toxicity. Finally, we discuss future approaches towards understanding the mechanisms and implications of this unusual finding.
Collapse
Affiliation(s)
- Leela R L Davies
- Glycobiology Research and Training Center, Center for Academic Research and Training in Anthropogeny, Biomedical Sciences Graduate Program, Departments of Medicine and Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Dr., MC 0687, La Jolla, CA, 92093-0687, USA
| | | |
Collapse
|