1
|
Zhang T, Lin Y, Zhang Z, Wang Z, Zeng F, Wang Q. Roles and applications of autophagy in guarding against environmental stress and DNA damage in Saccharomyces cerevisiae. FEBS J 2025. [PMID: 40272088 DOI: 10.1111/febs.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/09/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Saccharomyces cerevisiae (S. cerevisiae), a famous chassis cell factory, often faces various environmental stress conditions like extreme temperature, osmolarity, and nutrient starvation during the fermentation process. Additionally, chromosomal replication and genome editing-assisted metabolic engineering may cause DNA damage to S. cerevisiae. S. cerevisiae has evolved multiple elaborate mechanisms to fend against these adverse conditions. One of these "self-repair" mechanisms is autophagy, a ubiquitous "self-eating" mechanism that transports intracellular components to the lysosome/vacuole for degradation. Here, we reviewed the current state of our knowledge about the role and application of autophagy regulation in S. cerevisiae in response to environmental stress and genome damage, which may provide new strategies for developing robust industrial yeast and accelerating genome engineering.
Collapse
Affiliation(s)
- Tong Zhang
- College of Science & Technology, Hebei Agricultural University, Cangzhou, Hebei, China
| | - Yuping Lin
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ziteng Zhang
- College of Science & Technology, Hebei Agricultural University, Cangzhou, Hebei, China
| | - Zhen Wang
- College of Science & Technology, Hebei Agricultural University, Cangzhou, Hebei, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Qinhong Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
2
|
Kobalter S, Wriessnegger T, Pichler H. Engineering yeast for tailored fatty acid profiles. Appl Microbiol Biotechnol 2025; 109:101. [PMID: 40263140 PMCID: PMC12014800 DOI: 10.1007/s00253-025-13487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
The demand for sustainable and eco-friendly alternatives to fossil and plant oil-derived chemicals has spurred interest in microbial production of lipids, particularly triacylglycerols, fatty acids, and their derivatives. Yeasts are promising platforms for synthesizing these compounds due to their high lipid accumulation capabilities, robust growth, and generally recognized as safe (GRAS) status. There is vast interest in fatty acid and triacylglycerol products with tailored fatty acid chain lengths and compositions, such as polyunsaturated fatty acids and substitutes for cocoa butter and palm oil. However, microbes naturally produce a limited set of mostly long-chain fatty acids, necessitating the development of microbial cell factories with customized fatty acid profiles. This review explores the capabilities of key enzymes involved in fatty acid and triacylglycerol synthesis, including fatty acid synthases, desaturases, elongases, and acyltransferases. It discusses factors influencing fatty acid composition and presents engineering strategies to enhance fatty acid synthesis. Specifically, we highlight successful engineering approaches to modify fatty acid profiles in triacylglycerols and produce tailored fatty acids, and we offer recommendations for host selection to streamline engineering efforts. KEY POINTS: • Detailed overview on all basic aspects of fatty acid metabolism in yeast • Comprehensive description of fatty acid profile tailoring in yeast • Extensive summary of applying tailored fatty acid profiles in production processes.
Collapse
Affiliation(s)
- Simon Kobalter
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Petersgasse 14, 8010, Graz, Austria
| | - Tamara Wriessnegger
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Petersgasse 14, 8010, Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Petersgasse 14, 8010, Graz, Austria.
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Petersgasse 14, 8010, Graz, Austria.
| |
Collapse
|
3
|
Rassan MA, Ewaisha R, Zeitoun H, Shehat MG. Promising antifungal properties of the orally active autophagy inhibitor SBP-7455 against fluconazole-resistant Candida clinical isolates. Lett Appl Microbiol 2025; 78:ovaf055. [PMID: 40216409 DOI: 10.1093/lambio/ovaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
Candida species, the single most common cause of fungal infections, are major opportunistic pathogens. Novel antifungal agents are needed to address the threat of Candida infections resistant to first-line antifungal agents and those that are multi-drug resistant, both being increasingly reported. Here, we explore the antifungal properties of the novel autophagy inhibitor SBP-7455, whose anticancer effects have been recently described. Using broth microdilution, SBP-7455 inhibited the fluconazole-resistant standard C. albicans strain with minimum inhibitory concentration (MIC) values of 43.91 and 21.95 µM in the presence and absence of d-glucose, respectively. SBP-7455 inhibited the growth of six fluconazole-resistant Candida clinical isolates (MIC range 5.48-87.82 µM). Using the checkerboard assay, the fluconazole-resistant standard strain (MIC > 250 µg/ml) was rendered sensitive (MIC = 3.9 µg/ml) to fluconazole when combined with SBP-7455, but combining SBP-7455 with chloroquine was antagonistic. Compared with control, SBP-7455 treated cell membranes showed disrupted integrity and bulging on SEM images. Treatment with SBP-7455 significantly (P < 0.01) increased reduced glutathione levels with no significant change in nitric oxide levels, possibly adapting to oxidative stress induced by autophagy inhibition. Taken together, our results report for the first time the promising antifungal effects of the dual autophagy inhibitor SBP-7455 against fluconazole-resistant Candida, worthy of further investigation.
Collapse
Affiliation(s)
- Mark A Rassan
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Radwa Ewaisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria , 21521, Egypt
| | - Hend Zeitoun
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria , 21521, Egypt
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria , 21521, Egypt
| |
Collapse
|
4
|
Takano S, Umetani M, Nakaoka H, Miyazaki R. Diversification of single-cell growth dynamics under starvation influences subsequent reproduction in a clonal bacterial population. THE ISME JOURNAL 2025; 19:wrae257. [PMID: 39714219 PMCID: PMC11773413 DOI: 10.1093/ismejo/wrae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/14/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Most of the microbes in nature infrequently receive nutrients and are thus in slow- or non-growing states. How quickly they can resume their growth upon an influx of new resources is crucial to occupy environmental niches. Isogenic microbial populations are known to harbor only a fraction of cells with rapid growth resumption, yet little is known about the physiological characteristics of those cells and their emergence in the population. Here, we tracked growth of individual Escherichia coli cells in populations under fluctuating nutrient conditions. We found that shifting from high- to low-nutrient conditions caused stalling of cell growth with few cells continuing to divide extremely slowly, a process which was dependent on lipid turnover. Resuming high-nutrient inflow after low-nutrient conditions resulted in cells resuming growth and division, but with different lag times and leading to varying progeny. The history of cell growth during low-nutrient but not high-nutrient conditions was determinant for resumption of growth, which cellular genealogy analysis suggested to originate from inherited physiological differences. Our results demonstrate that cellular growth dynamics become diverse by nutrient limitations, under which a fraction of cells experienced a particular growth history can reproduce progeny with new resources in the future.
Collapse
Affiliation(s)
- Sotaro Takano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
- Integrated Bioresource Information Division, Bioresource Research, Center, RIKEN, Tsukuba, 305-0074, Japan
| | - Miki Umetani
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
- Research Center for Complex Systems Biology, The University of Tokyo, Tokyo, 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hidenori Nakaoka
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, Tokushima, 770-8503, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-0006, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, 169-8555, Japan
| |
Collapse
|
5
|
Xie D, Lei Y, Sun Y, Li X, Zheng J. Regulation of fructose levels on carbon flow and metabolites in yeast during food fermentation. FOOD SCI TECHNOL INT 2025; 31:69-82. [PMID: 37259509 DOI: 10.1177/10820132231179495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this study, the effects of fructose levels on yeast growth, metabolic pathways and products, and redox status were investigated by simulated dough medium. The results showed that yeast was subjected to oxidative stress and damage under both sugar-free and high-fructose conditions. Yeast has a strong ability to metabolize pentose phosphate, trehalose, and tricarboxylic acid under sugar-free conditions. In the high fructose environment, yeast preferentially produced trehalose and glycerol in the early stage and gradually increased the metabolism of pentose phosphate in the later stage. Compared with the low fructose concentration, yeast had stronger pentose phosphate and tricarboxylic acid cycle (TCA) metabolism to ensure nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP) content in higher fructose levels. Therefore, sugar-free and high fructose levels affected the growth of yeast cells and yeast responded to fructose levels by regulating the metabolic carbon flow of glycolysis, pentose phosphate, trehalose, and TCA.
Collapse
Affiliation(s)
- Dongdong Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, China
| | - Yanan Lei
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, China
| | - Yingqi Sun
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, China
| | - Xing Li
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, China
| | - Jiaxin Zheng
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Aye HM, Li FJ, He CY. Dynamic composition of stress granules in Trypanosoma brucei. PLoS Pathog 2024; 20:e1012666. [PMID: 39480887 PMCID: PMC11556693 DOI: 10.1371/journal.ppat.1012666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/12/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Stress granules (SGs) are stress-induced RNA condensates consisting of stalled initiation complexes resulting from translational inhibition. The biochemical composition and function of SGs are highly diverse, and this diversity has been attributed to different stress conditions, signalling pathways involved and specific cell types. Interestingly, mRNA decay components, which are found in ubiquitous cytoplasmic foci known as processing bodies (PB), have also been identified in SG proteomes. A major challenge in current SG studies is to understand the cause of SG diversity, as well as the function of SG under different stress conditions. Trypanosoma brucei is a single-cellular parasite that causes Human African Trypanosomiasis (sleeping sickness). In this study, we showed that by varying the supply of extracellular carbon sources during starvation, cellular ATP levels changed rapidly, resulting in SGs of different compositions and dynamics. We identified a subset of SG components, which dissociated from the SGs in response to cellular ATP depletion. Using expansion microscopy, we observed sub-granular compartmentalization of PB- and SG-components within the stress granules. Our results highlight the importance of cellular ATP in SG composition and dynamics, providing functional insight to SGs formed under different stress conditions.
Collapse
Affiliation(s)
- Htay Mon Aye
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Cynthia Y. He
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Pilic J, Gottschalk B, Bourgeois B, Habisch H, Koshenov Z, Oflaz FE, Erdogan YC, Miri SM, Yiğit EN, Aydın MŞ, Öztürk G, Eroglu E, Shoshan-Barmatz V, Madl T, Graier WF, Malli R. Hexokinase 1 forms rings that regulate mitochondrial fission during energy stress. Mol Cell 2024; 84:2732-2746.e5. [PMID: 38981483 DOI: 10.1016/j.molcel.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Metabolic enzymes can adapt during energy stress, but the consequences of these adaptations remain understudied. Here, we discovered that hexokinase 1 (HK1), a key glycolytic enzyme, forms rings around mitochondria during energy stress. These HK1-rings constrict mitochondria at contact sites with the endoplasmic reticulum (ER) and mitochondrial dynamics protein (MiD51). HK1-rings prevent mitochondrial fission by displacing the dynamin-related protein 1 (Drp1) from mitochondrial fission factor (Mff) and mitochondrial fission 1 protein (Fis1). The disassembly of HK1-rings during energy restoration correlated with mitochondrial fission. Mechanistically, we identified that the lack of ATP and glucose-6-phosphate (G6P) promotes the formation of HK1-rings. Mutations that affect the formation of HK1-rings showed that HK1-rings rewire cellular metabolism toward increased TCA cycle activity. Our findings highlight that HK1 is an energy stress sensor that regulates the shape, connectivity, and metabolic activity of mitochondria. Thus, the formation of HK1-rings may affect mitochondrial function in energy-stress-related pathologies.
Collapse
Affiliation(s)
- Johannes Pilic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010 Graz, Austria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010 Graz, Austria
| | - Benjamin Bourgeois
- BioTechMed Graz, Mozartgasse 12/2, 8010 Graz, Austria; Otto Loewi Research Center, Medical Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Hansjörg Habisch
- Otto Loewi Research Center, Medical Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Zhanat Koshenov
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010 Graz, Austria
| | - Furkan E Oflaz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010 Graz, Austria
| | - Yusuf C Erdogan
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010 Graz, Austria
| | - Seyed M Miri
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Türkiye; Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Türkiye
| | - Esra N Yiğit
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Türkiye; Department of Physiology, International School of Medicine, Istanbul Medipol University, 34810 Istanbul, Türkiye
| | - Mehmet Ş Aydın
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Türkiye
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Türkiye
| | - Emrah Eroglu
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Türkiye; Department of Physiology, International School of Medicine, Istanbul Medipol University, 34810 Istanbul, Türkiye
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Tobias Madl
- BioTechMed Graz, Mozartgasse 12/2, 8010 Graz, Austria; Otto Loewi Research Center, Medical Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010 Graz, Austria; BioTechMed Graz, Mozartgasse 12/2, 8010 Graz, Austria
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010 Graz, Austria; BioTechMed Graz, Mozartgasse 12/2, 8010 Graz, Austria; Center for Medical Research, CF Bioimaging, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| |
Collapse
|
8
|
Walker RM, Sanabria VC, Youk H. Microbial life in slow and stopped lanes. Trends Microbiol 2024; 32:650-662. [PMID: 38123400 PMCID: PMC11187706 DOI: 10.1016/j.tim.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Microbes in nature often lack nutrients and face extreme or widely fluctuating temperatures, unlike microbes in growth-optimized settings in laboratories that much of the literature examines. Slowed or suspended lives are the norm for microbes. Studying them is important for understanding the consequences of climate change and for addressing fundamental questions about life: are there limits to how slowly a cell's life can progress, and how long cells can remain viable without self-replicating? Recent studies began addressing these questions with single-cell-level measurements and mathematical models. Emerging principles that govern slowed or suspended lives of cells - including lives of dormant spores and microbes at extreme temperatures - are re-defining discrete cellular states as continuums and revealing intracellular dynamics at new timescales. Nearly inactive, lifeless-appearing microbes are transforming our understanding of life.
Collapse
Affiliation(s)
- Rachel M Walker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Valeria C Sanabria
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hyun Youk
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Ma Q, Surya W, He D, Yang H, Han X, Nai MH, Lim CT, Torres J, Miao Y. Spa2 remodels ADP-actin via molecular condensation under glucose starvation. Nat Commun 2024; 15:4491. [PMID: 38802374 PMCID: PMC11130202 DOI: 10.1038/s41467-024-48863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Actin nucleotide-dependent actin remodeling is essential to orchestrate signal transduction and cell adaptation. Rapid energy starvation requires accurate and timely reorganization of the actin network. Despite distinct treadmilling mechanisms of ADP- and ATP-actin filaments, their filament structures are nearly identical. How other actin-binding proteins regulate ADP-actin filament assembly is unclear. Here, we show that Spa2 which is the polarisome scaffold protein specifically remodels ADP-actin upon energy starvation in budding yeast. Spa2 triggers ADP-actin monomer nucleation rapidly through a dimeric core of Spa2 (aa 281-535). Concurrently, the intrinsically disordered region (IDR, aa 1-281) guides Spa2 undergoing phase separation and wetting on the surface of ADP-G-actin-derived F-actin and bundles the filaments. Both ADP-actin-specific nucleation and bundling activities of Spa2 are actin D-loop dependent. The IDR and nucleation core of Spa2 are evolutionarily conserved by coexistence in the fungus kingdom, suggesting a universal adaptation mechanism in the fungal kingdom in response to glucose starvation, regulating ADP-G-actin and ADP-F-actin with high nucleotide homogeneity.
Collapse
Affiliation(s)
- Qianqian Ma
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Danxia He
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Hanmeng Yang
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, 119276, Singapore, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore.
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore, Singapore.
| |
Collapse
|
10
|
Kim DH. Contrasting views on the role of AMPK in autophagy. Bioessays 2024; 46:e2300211. [PMID: 38214366 PMCID: PMC10922896 DOI: 10.1002/bies.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Efficient management of low energy states is vital for cells to maintain basic functions and metabolism and avoid cell death. While autophagy has long been considered a critical mechanism for ensuring survival during energy depletion, recent research has presented conflicting evidence, challenging the long-standing concept. This recent development suggests that cells prioritize preserving essential cellular components while restraining autophagy induction when cellular energy is limited. This essay explores the conceptual discourse on autophagy regulation during energy stress, navigating through the studies that established the current paradigm and the recent research that has challenged its validity while proposing an alternative model. This exploration highlights the far-reaching implications of the alternative model, which represents a conceptual departure from the established paradigm, offering new perspectives on how cells respond to energy stress.
Collapse
Affiliation(s)
- Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Wang Z, Su C, Zhang Y, Shangguan S, Wang R, Su J. Key enzymes involved in the utilization of fatty acids by Saccharomyces cerevisiae: a review. Front Microbiol 2024; 14:1294182. [PMID: 38274755 PMCID: PMC10808364 DOI: 10.3389/fmicb.2023.1294182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Saccharomyces cerevisiae is a eukaryotic organism with a clear genetic background and mature gene operating system; in addition, it exhibits environmental tolerance. Therefore, S. cerevisiae is one of the most commonly used organisms for the synthesis of biological chemicals. The investigation of fatty acid catabolism in S. cerevisiae is crucial for the synthesis and accumulation of fatty acids and their derivatives, with β-oxidation being the predominant pathway responsible for fatty acid metabolism in this organism, occurring primarily within peroxisomes. The latest research has revealed distinct variations in β-oxidation among different fatty acids, primarily attributed to substrate preferences and disparities in the metabolic regulation of key enzymes involved in the S. cerevisiae fatty acid metabolic pathway. The synthesis of lipids, on the other hand, represents another crucial metabolic pathway for fatty acids. The present paper provides a comprehensive review of recent research on the key factors influencing the efficiency of fatty acid utilization, encompassing β-oxidation and lipid synthesis pathways. Additionally, we discuss various approaches for modifying β-oxidation to enhance the synthesis of fatty acids and their derivatives in S. cerevisiae, aiming to offer theoretical support and serve as a valuable reference for future studies.
Collapse
Affiliation(s)
- Zhaoyun Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Chunli Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yisang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Sifan Shangguan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
12
|
Feng Y, Chen Y, Wu X, Chen J, Zhou Q, Liu B, Zhang L, Yi C. Interplay of energy metabolism and autophagy. Autophagy 2024; 20:4-14. [PMID: 37594406 PMCID: PMC10761056 DOI: 10.1080/15548627.2023.2247300] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Macroautophagy/autophagy, is widely recognized for its crucial role in enabling cell survival and maintaining cellular energy homeostasis during starvation or energy stress. Its regulation is intricately linked to cellular energy status. In this review, covering yeast, mammals, and plants, we aim to provide a comprehensive overview of the understanding of the roles and mechanisms of carbon- or glucose-deprivation related autophagy, showing how cells effectively respond to such challenges for survival. Further investigation is needed to determine the specific degraded substrates by autophagy during glucose or energy deprivation and the diverse roles and mechanisms during varying durations of energy starvation.Abbreviations: ADP: adenosine diphosphate; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATP: adenosine triphosphate; ER: endoplasmic reticulum; ESCRT: endosomal sorting complex required for transport; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GD: glucose deprivation; GFP: green fluorescent protein; GTPases: guanosine triphosphatases; HK2: hexokinase 2; K phaffii: Komagataella phaffii; LD: lipid droplet; MAP1LC3/LC3: microtubule-associated protein1 light chain 3; MAPK: mitogen-activated protein kinase; Mec1: mitosis entry checkpoint 1; MTOR: mechanistic target of rapamycin kinase; NAD (+): nicotinamide adenine dinucleotide; OGD: oxygen and glucose deprivation; PAS: phagophore assembly site; PCD: programmed cell death; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; ROS: reactive oxygen species; S. cerevisiae: Saccharomyces cerevisiae; SIRT1: sirtuin 1; Snf1: sucrose non-fermenting 1; STK11/LKB1: serine/threonine kinase 11; TFEB: transcription factor EB; TORC1: target of rapamycin complex 1; ULK1: unc-51 like kinase 1; Vps27: vacuolar protein sorting 27; Vps4: vacuolar protein sorting 4.
Collapse
Affiliation(s)
- Yuyao Feng
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Ying Chen
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyong Wu
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junye Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Qingyan Zhou
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bao Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
| | - Cong Yi
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Coltman BL, Rebnegger C, Gasser B, Zanghellini J. Characterising the metabolic rewiring of extremely slow growing Komagataella phaffii. Microb Biotechnol 2024; 17:e14386. [PMID: 38206275 PMCID: PMC10832545 DOI: 10.1111/1751-7915.14386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Retentostat cultivations have enabled investigations into substrate-limited near-zero growth for a number of microbes. Quantitative physiology at these near-zero growth conditions has been widely discussed, yet characterisation of the fluxome is relatively under-reported. We investigated the rewiring of metabolism in the transition of a recombinant protein-producing strain of Komagataella phaffii to glucose-limited near-zero growth rates. We used cultivation data from a 200-fold range of growth rates and comprehensive biomass composition data to integrate growth rate dependent biomass equations, generated using a number of different approaches, into a K. phaffii genome-scale metabolic model. Here, we show that a non-growth-associated maintenance value of 0.65 mmol ATP g CDW - 1 h - 1 and a growth-associated maintenance value of 108 mmol ATP g CDW - 1 lead to accurate growth rate predictions. In line with its role as energy source, metabolism is rewired to increase the yield of ATP per glucose. This includes a reduction of flux through the pentose phosphate pathway, and a greater utilisation of glycolysis and the TCA cycle. Interestingly, we observed activity of an external, non-proton translocating NADH dehydrogenase in addition to the malate-aspartate shuttle. Regardless of the method used for the generation of biomass equations, a similar, yet different, growth rate dependent rewiring was predicted. As expected, these differences between the different methods were clearer at higher growth rates, where the biomass equation provides a much greater constraint than at slower growth rates. When placed on an increasingly limited glucose diet, the metabolism of K. phaffii adapts, enabling it to continue to drive critical processes sustaining its high viability at near-zero growth rates.
Collapse
Affiliation(s)
- Benjamin Luke Coltman
- CD‐Laboratory for Growth‐decoupled Protein Production in Yeast at Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Department of Biotechnology, Institute of Microbiology and Microbial BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Corinna Rebnegger
- CD‐Laboratory for Growth‐decoupled Protein Production in Yeast at Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Department of Biotechnology, Institute of Microbiology and Microbial BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Brigitte Gasser
- CD‐Laboratory for Growth‐decoupled Protein Production in Yeast at Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Department of Biotechnology, Institute of Microbiology and Microbial BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Jürgen Zanghellini
- Austrian Centre of Industrial BiotechnologyViennaAustria
- Department of Analytical ChemistryUniversity of ViennaViennaAustria
| |
Collapse
|
14
|
Park JM, Lee DH, Kim DH. Redefining the role of AMPK in autophagy and the energy stress response. Nat Commun 2023; 14:2994. [PMID: 37225695 PMCID: PMC10209092 DOI: 10.1038/s41467-023-38401-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
Autophagy maintains cellular homeostasis during low energy states. According to the current understanding, glucose-depleted cells induce autophagy through AMPK, the primary energy-sensing kinase, to acquire energy for survival. However, contrary to the prevailing concept, our study demonstrates that AMPK inhibits ULK1, the kinase responsible for autophagy initiation, thereby suppressing autophagy. We found that glucose starvation suppresses amino acid starvation-induced stimulation of ULK1-Atg14-Vps34 signaling via AMPK activation. During an energy crisis caused by mitochondrial dysfunction, the LKB1-AMPK axis inhibits ULK1 activation and autophagy induction, even under amino acid starvation. Despite its inhibitory effect, AMPK protects the ULK1-associated autophagy machinery from caspase-mediated degradation during energy deficiency, preserving the cellular ability to initiate autophagy and restore homeostasis once the stress subsides. Our findings reveal that dual functions of AMPK, restraining abrupt induction of autophagy upon energy shortage while preserving essential autophagy components, are crucial to maintain cellular homeostasis and survival during energy stress.
Collapse
Affiliation(s)
- Ji-Man Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Da-Hye Lee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Minnesota, Minneapolis, MN, 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
15
|
Zhang T, Wen G, Song B, Chen Z, Jiang S. Transcriptome profiling reveals the underlying mechanism of grape post-harvest pathogen Penicillium olsonii against the metabolites of Bacillus velezensis. Front Microbiol 2023; 13:1019800. [PMID: 36741881 PMCID: PMC9889648 DOI: 10.3389/fmicb.2022.1019800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Pathogen infection influences the post-harvest shelf life of grape berries. In a preliminary study, metabolites produced by Bacillus velezensis significantly inhibited the growth of the grape postharvest pathogen Penicillium olsonii. Methods To investigate the mechanism of interaction between B. velezensis and P. olsonii, a draft genome was generated for P. olsonii WHG5 using the Illumina NovaSeq platform, and the transcriptomic changes in WHG5 were analyzed in response to the exposure to B. velezensis metabolites (10% v/v). Results The expression levels of genes associated with sporulation, including GCY1, brlA, and abaA, were down-regulated compared with those of the control. In addition, spore deformation and abnormal swelling of the conidiophore were observed. The expression of crucial enzymes, including fructose 2,6-bisphosphate and mannitol-2-dehydrogenase, was down-regulated, indicating that the glycolytic pathway of WHG5 was adversely affected by B. velezensis metabolites. The KEGG pathway enrichment analysis revealed that glutathione metabolism and the antioxidant enzyme system were involved in the response to B. velezensis metabolites. The down-regulation of the pathogenesis-related genes, PG1 and POT1, suggested that B. velezensis metabolites decreased the pathogenicity of P. olsonii. B. velezensis metabolites disrupted the homeostasis of reactive oxygen species in P. olsonii by affecting glucose metabolism, resulting in spore deformation and disruption of growth. In addition, the expression of key pathogenesis-related genes was down-regulated, thereby reducing the pathogenicity of P. olsonii. Disscusion This study provides insights into the responses of P. olsonii to B. velezensis metabolites and identifies potential target genes that may be useful in biocontrol strategies for the suppression of post-harvest spoilage in grapes.
Collapse
Affiliation(s)
| | | | | | | | - Shijiao Jiang
- Key Laboratory of Southwest China Wildlife Resources Conservation, School of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
16
|
Abstract
Maintaining nutrient and energy homeostasis is crucial for the survival and function of cells and organisms in response to environmental stress. Cells have evolved a stress-induced catabolic pathway, termed autophagy, to adapt to stress conditions such as starvation. During autophagy, damaged or non-essential cellular structures are broken down in lysosomes, and the resulting metabolites are reused for core biosynthetic processes or energy production. Recent studies have revealed that autophagy can target and degrade different types of nutrient stores and produce a variety of metabolites and fuels, including amino acids, nucleotides, lipids and carbohydrates. Here, we will focus on how autophagy functions to balance cellular nutrient and energy demand and supply - specifically, how energy deprivation switches on autophagic catabolism, how autophagy halts anabolism by degrading the protein synthesis machinery, and how bulk and selective autophagy-derived metabolites recycle and feed into a variety of bioenergetic and anabolic pathways during stress conditions. Recent new insights and progress in these areas provide a better understanding of how resource mobilization and reallocation sustain essential metabolic and anabolic activities under unfavorable conditions.
Collapse
|
17
|
Fairman G, Ouimet M. Lipophagy pathways in yeast are controlled by their distinct modes of induction. Yeast 2022; 39:429-439. [PMID: 35652813 DOI: 10.1002/yea.3705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 11/06/2022] Open
Abstract
Lipid droplet (LD) autophagy (lipophagy) is a recently discovered selective form of autophagy and is a pathway for LD catabolism. This ubiquitous process has been an ongoing area of research within the budding yeast, Saccharomyces cerevisiae. Yeast lipophagy phenotypically resembles microautophagy, although it has a distinct set of genetic requirements depending on the mode of induction. This review highlights the similarities and differences between different forms of yeast lipophagy and offers perspectives on how our knowledge of lipophagy in yeast may guide our understanding of this process within mammalian cells to ultimately inform future applications of lipophagy.
Collapse
Affiliation(s)
- Garrett Fairman
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mireille Ouimet
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Kang X, Zhang J, Xu Y, Zhang X, Cui F, Li H. Knocking-out ARO80 promotes the intracellular ROS accumulation through weakening MAPK pathway of Saccharomyces cerevisiae. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Minden S, Aniolek M, Sarkizi Shams Hajian C, Teleki A, Zerrer T, Delvigne F, van Gulik W, Deshmukh A, Noorman H, Takors R. Monitoring Intracellular Metabolite Dynamics in Saccharomyces cerevisiae during Industrially Relevant Famine Stimuli. Metabolites 2022; 12:metabo12030263. [PMID: 35323706 PMCID: PMC8953226 DOI: 10.3390/metabo12030263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon limitation is a common feeding strategy in bioprocesses to enable an efficient microbiological conversion of a substrate to a product. However, industrial settings inherently promote mixing insufficiencies, creating zones of famine conditions. Cells frequently traveling through such regions repeatedly experience substrate shortages and respond individually but often with a deteriorated production performance. A priori knowledge of the expected strain performance would enable targeted strain, process, and bioreactor engineering for minimizing performance loss. Today, computational fluid dynamics (CFD) coupled to data-driven kinetic models are a promising route for the in silico investigation of the impact of the dynamic environment in the large-scale bioreactor on microbial performance. However, profound wet-lab datasets are needed to cover relevant perturbations on realistic time scales. As a pioneering study, we quantified intracellular metabolome dynamics of Saccharomyces cerevisiae following an industrially relevant famine perturbation. Stimulus-response experiments were operated as chemostats with an intermittent feed and high-frequency sampling. Our results reveal that even mild glucose gradients in the range of 100 µmol·L−1 impose significant perturbations in adapted and non-adapted yeast cells, altering energy and redox homeostasis. Apparently, yeast sacrifices catabolic reduction charges for the sake of anabolic persistence under acute carbon starvation conditions. After repeated exposure to famine conditions, adapted cells show 2.7% increased maintenance demands.
Collapse
Affiliation(s)
- Steven Minden
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Maria Aniolek
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Christopher Sarkizi Shams Hajian
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Tobias Zerrer
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Frank Delvigne
- Microbial Processes and Interactions (MiPI), TERRA Research and Teaching Centre, Gembloux Agro Bio Tech, University of Liege, 5030 Gembloux, Belgium;
| | - Walter van Gulik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 6, 2629 HZ Delft, The Netherlands;
| | - Amit Deshmukh
- Royal DSM, 2613 AX Delft, The Netherlands; (A.D.); (H.N.)
| | - Henk Noorman
- Royal DSM, 2613 AX Delft, The Netherlands; (A.D.); (H.N.)
- Department of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
- Correspondence:
| |
Collapse
|
20
|
Variable penetrance of Nab3 granule accumulation quantified by a new tool for high-throughput single-cell granule analysis. Curr Genet 2022; 68:467-480. [PMID: 35301575 DOI: 10.1007/s00294-022-01234-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
Abstract
Reorganization of cellular proteins into subcellular compartments, such as the concentration of RNA-binding proteins into cytoplasmic stress granules and P-bodies, is a well-recognized, widely studied physiological process currently under intense investigation. One example of this is the induction of the yeast Nab3 transcription termination factor to rearrange from its pan-nucleoplasmic distribution to a granule at the nuclear periphery in response to nutrient limitation. Recent work in many cell types has shown that protein condensation in the nucleus is functionally important for transcription initiation, RNA processing, and termination. However, little is known about how subnuclear compartments form. Here, we have quantitatively analyzed this dynamic process in living yeast using a high-throughput computational tool and fluorescence microscopy. This analysis revealed that Nab3 granule accumulation varies in penetrance across yeast strains. A concentrated single granule is formed from at least a quarter of the nuclear Nab3 drawn from the rest of the nucleus. Levels of granule accumulation were inversely correlated with a growth defect in the absence of glucose. Importantly, the basis for some of the variation in penetrance was attributable to a defect in mitochondrial function. This publicly available computational tool provides a rigorous, reproducible, and unbiased examination of Nab3 granule accumulation that should be widely applicable to a variety of fluorescent images. Thousands of live cells can be readily examined enabling rigorous statistical verification of significance. With it, we describe a new feature of inducible subnuclear compartment formation for RNA-binding transcription factors and an important determinant of granule biogenesis.
Collapse
|
21
|
Dey T, Rangarajan PN. Carbon starvation-induced synthesis of GDH2 and PEPCK is essential for the survival of Pichia pastoris. Biochem Biophys Res Commun 2021; 581:25-30. [PMID: 34653675 DOI: 10.1016/j.bbrc.2021.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/01/2022]
Abstract
The industrial yeast Pichia pastoris can utilize amino acids as the sole source of carbon. It possesses a post-transcriptional regulatory circuit that governs the synthesis of cytosolic glutamate dehydrogenase 2 (GDH2) and phosphoenolpyruvate carboxykinase (PEPCK), key enzymes of amino acid catabolism. Here, we demonstrate that the post-transcriptional regulatory circuit is activated during carbon starvation resulting in the translation of GDH2 and PEPCK mRNAs. GDH2 and PEPCK synthesis is abrogated in Δatg1 indicating a key role for autophagy or an autophagy-related process. Finally, carbon-starved Δgdh2 and Δpepck exhibit poor survival. This study demonstrates a key role for amino acid catabolism during carbon starvation, a phenomenon hitherto unreported in other yeast species.
Collapse
Affiliation(s)
- Trishna Dey
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pundi N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
22
|
Nasaruddin ML, Tajul Arifin K. Application of Metabolomics in the Study of Starvation-Induced Autophagy in Saccharomyces cerevisiae: A Scoping Review. J Fungi (Basel) 2021; 7:987. [PMID: 34829274 PMCID: PMC8619235 DOI: 10.3390/jof7110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
This scoping review is aimed at the application of the metabolomics platform to dissect key metabolites and their intermediates to observe the regulatory mechanisms of starvation-induced autophagy in Saccharomyces cerevisiae. Four research papers were shortlisted in this review following the inclusion and exclusion criteria. We observed a commonly shared pathway undertaken by S. cerevisiae under nutritional stress. Targeted and untargeted metabolomics was applied in either of these studies using varying platforms resulting in the annotation of several different observable metabolites. We saw a commonly shared pathway undertaken by S. cerevisiae under nutritional stress. Following nitrogen starvation, the concentration of cellular nucleosides was altered as a result of autophagic RNA degradation. Additionally, it is also found that autophagy replenishes amino acid pools to sustain macromolecule synthesis. Furthermore, in glucose starvation, nucleosides were broken down into carbonaceous metabolites that are being funneled into the non-oxidative pentose phosphate pathway. The ribose salvage allows for the survival of starved yeast. Moreover, acute glucose starvation showed autophagy to be involved in maintaining ATP/energy levels. We highlighted the practicality of metabolomics as a tool to better understand the underlying mechanisms involved to maintain homeostasis by recycling degradative products to ensure the survival of S. cerevisiae under starvation. The application of metabolomics has extended the scope of autophagy and provided newer intervention targets against cancer as well as neurodegenerative diseases in which autophagy is implicated.
Collapse
Affiliation(s)
| | - Khaizurin Tajul Arifin
- Department of Biochemistry, Faculty of Medicine, National University of Malaysia Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
23
|
Jacquel B, Aspert T, Laporte D, Sagot I, Charvin G. Monitoring single-cell dynamics of entry into quiescence during an unperturbed life cycle. eLife 2021; 10:73186. [PMID: 34723791 PMCID: PMC8594939 DOI: 10.7554/elife.73186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
The life cycle of microorganisms is associated with dynamic metabolic transitions and complex cellular responses. In yeast, how metabolic signals control the progressive choreography of structural reorganizations observed in quiescent cells during a natural life cycle remains unclear. We have developed an integrated microfluidic device to address this question, enabling continuous single-cell tracking in a batch culture experiencing unperturbed nutrient exhaustion to unravel the coordination between metabolic and structural transitions within cells. Our technique reveals an abrupt fate divergence in the population, whereby a fraction of cells is unable to transition to respiratory metabolism and undergoes a reversible entry into a quiescence-like state leading to premature cell death. Further observations reveal that nonmonotonous internal pH fluctuations in respiration-competent cells orchestrate the successive waves of protein superassemblies formation that accompany the entry into a bona fide quiescent state. This ultimately leads to an abrupt cytosolic glass transition that occurs stochastically long after proliferation cessation. This new experimental framework provides a unique way to track single-cell fate dynamics over a long timescale in a population of cells that continuously modify their ecological niche.
Collapse
Affiliation(s)
- Basile Jacquel
- Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Théo Aspert
- Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Damien Laporte
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de Bordeaux, Bordeaux, France, Bordeaux, France
| | - Isabelle Sagot
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de Bordeaux, Bordeaux, France, Bordeaux, France
| | - Gilles Charvin
- Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
24
|
Addition of Vegetable Oil to Improve Triterpenoids Production in Liquid Fermentation of Medicinal Fungus Antrodia cinnamomea. J Fungi (Basel) 2021; 7:jof7110926. [PMID: 34829215 PMCID: PMC8622282 DOI: 10.3390/jof7110926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
The liquid fermentation of Antrodia cinnamomea is a promising alternative source for fungus production compared to the wildly grown fruiting body. Elicitation is a strong tool to enhance the productivity in microbial cells to obtain more compounds of interest. In this study, in order to improve the fungus growth and its terpenoids production, various vegetable oils were added in the fermentation broth of A. cinnamomea. It was found that corn oil from a group of vegetable oils exhibited the best effect on the biomass and triterpenoid content. After optimization, the initial addition of 1% (v/v) corn oil plus the inoculation of 10% (v/v) mycelia led to a maximum triterpenoid yield (532.3 mg L−1), which was increased as much as fourfold compared to the blank control. Differential transcriptome analysis demonstrated that corn oil significantly enriched several metabolic pathways including glycolysis/gluconeogenesis, propanoate metabolism and transmembrane hydrophobins. The enriched pathways interacted with deferentially expressed genes (DEGs) induced by corn oil treatment. Our research provides a potential strategy for the large production of triterpenoids by the improved fermentation of A. cinnamomea.
Collapse
|
25
|
Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, Palikaras K, Simonsen A, Johansen T, Tavernarakis N, Rubinsztein DC, Partridge L, Kroemer G, Labbadia J, Fang EF. Autophagy in healthy aging and disease. NATURE AGING 2021; 1:634-650. [PMID: 34901876 PMCID: PMC8659158 DOI: 10.1038/s43587-021-00098-4] [Citation(s) in RCA: 704] [Impact Index Per Article: 176.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Autophagy is a fundamental cellular process that eliminates molecules and subcellular elements, including nucleic acids, proteins, lipids and organelles, via lysosome-mediated degradation to promote homeostasis, differentiation, development and survival. While autophagy is intimately linked to health, the intricate relationship among autophagy, aging and disease remains unclear. This Review examines several emerging features of autophagy and postulates how they may be linked to aging as well as to the development and progression of disease. In addition, we discuss current preclinical evidence arguing for the use of autophagy modulators as suppressors of age-related pathologies such as neurodegenerative diseases. Finally, we highlight key questions and propose novel research avenues that will likely reveal new links between autophagy and the hallmarks of aging. Understanding the precise interplay between autophagy and the risk of age-related pathologies across organisms will eventually facilitate the development of clinical applications that promote long-term health.
Collapse
Affiliation(s)
- Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
- These authors contributed equally: Yahyah Aman, Tomas Schmauck-Medina
| | - Tomas Schmauck-Medina
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- These authors contributed equally: Yahyah Aman, Tomas Schmauck-Medina
| | - Malene Hansen
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, USA
| | | | - Ivana Bjedov
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Konstantinos Palikaras
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, The University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, Heraklion, Greece
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - John Labbadia
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
26
|
Kang X, Gao Z, Zheng L, Zhang X, Li H. Regulation of Lactobacillus plantarum on the reactive oxygen species related metabolisms of Saccharomyces cerevisiae. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Feng W, Yang M, Li X, Wei D. Dicer promotes Atg8 expression through RNAi independent mechanism in Cryptococcus neoformans. FEMS Yeast Res 2021; 21:6311133. [PMID: 34185085 DOI: 10.1093/femsyr/foab037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/26/2021] [Indexed: 11/12/2022] Open
Abstract
ATG8 is one of the critical genes that participate in several essential autophagic steps. The expression of ATG8 must be exquisitely regulated to avoid physiological disorder and even cell death. However, the mechanisms of regulating ATG8 expression remain to be fully uncovered. In this investigation, we found that Dicer homologs in Cryptococcus neoformans could activate the expression of ATG8 independent of RNAi. Deletion of two Dicer homologs (DCR1 and DCR2) from C. neoformans, especially DCR2, led to significantly reduced Atg8 protein level, but deletion of other RNAi components did not result in the same phenotype. The autophagic flux, the numbers of autophagic bodies and the tolerance to glucose starvation of dcr2∆ were also significantly reduced. Further investigation showed that Dcr2 activates the expression of ATG8 through the promoter region, not the Open Reading Frame or 3' Untranslated Region. We also found that a similar phenomenon exists in mammalian cells, as DCR1 instead of AGO2 knockdown also reduced the expression of LC3, indicating that this mechanism may be conservative in eukaryotic cells. Therefore, a novel transcription activation mechanism was revealed in this paper.
Collapse
Affiliation(s)
- Weijia Feng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Mengdi Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xin Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Dongsheng Wei
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| |
Collapse
|