1
|
Wu Z, Zhang J, Zhang B, Yu C, Wang Z, Hao Z, Hao J, Liu P, Liu X. Regulatory role of the transcription factor BcMr1 in efflux-mediated multidrug resistance in Botrytis cinerea via pre-adaptation to plant secondary metabolites. Int J Biol Macromol 2025; 311:143520. [PMID: 40306507 DOI: 10.1016/j.ijbiomac.2025.143520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Botrytis cinerea causes grey mold of many crops and is one of the top ten diseases in agriculture. Its wide host range and high genetic variability make it highly prone to developing fungicide resistance, particularly multidrug resistance (MDR), which is a resistance to various fungicides with different modes of action. We have recently found that B. cinerea adapts to plant secondary metabolites (PSMs) through the up-regulation of efflux protein ATP-binding cassette (ABC) to develop MDR (which is termed e-MDR) in the interaction with host plants. However, how PSM stimulation is transmitted to ABC expression and how MDR is regulated remain unknown. In this study, the transcription factor (TF) BcMr1, which is related to MDR, was screened and identified from various B. cinerea strains having different sensitivities to fungicides through bioinformatic and transcriptomic analyses, accompanied by chromatin immunoprecipitation-sequencing (ChIP-seq), electrophoretic mobility shift assay (EMSA), yeast one-hybrid (Y1H), and quantitative polymerase chain reaction (qPCR). The results revealed that BcMr1 binds to the promoters of ABC transporter genes and positively regulates the expression of BcatrA, BcatrD, BcatrO, Bmr3, BCIN_03g02050 and BCIN_16g02970, which are ABC efflux proteins, resulting in B. cinerea's e-MDR. Furthermore, PSMs and interacting proteins were shown to be possible activators of this TF. This study provides new insights into the regulatory role of the TF BcMr1 and other downstream candidate genes involved in e-MDR in B. cinerea, which helps to understand the development of MDR in the field through pre-adaption mechanism.
Collapse
Affiliation(s)
- Zhaochen Wu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Junting Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Borui Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Chuxian Yu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhiwen Wang
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China
| | - Zhigang Hao
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Wu Z, Zhao W, Lang M, He Q, Li Y, Hu Y, Liu Y, Zheng S, Shi H, Zhou S. Juvenile hormone and BMP signaling modulate fat body cell fate during the transition of previtellogenic development to vitellogenesis. BMC Biol 2025; 23:143. [PMID: 40437481 PMCID: PMC12121051 DOI: 10.1186/s12915-025-02247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 05/13/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Insect fat body, a central tissue for nutrient storage, energy metabolism, and protein synthesis, degrades by apoptosis and autophagy during larval metamorphosis. After adult emergence, the fat body grows rapidly with cell proliferation and polyploidization during the previtellogenic period but ceases cell proliferation in the vitellogenic phase. So far, the regulatory mechanisms underlying fat body cell fate decisions in adulthood remain unknown. RESULTS Transcriptomic analysis of locust fat body revealed the enrichment of pathways associated with cell cycle, nuclear division, and DNA replication. Decapentaplegic (Dpp) was among the top of differentially expressed genes in the signaling cascades involved in regulating cell proliferation. Abundance of Dpp, phosphorylated Mad (p-Mad), and Medea increased during the previtellogenic stage and subsequently declined in the vitellogenic phase. Knockdown of Dpp, Mad, and Medea resulted in suppressed fat body cell proliferation, along with remarkably reduced cell number and blocked vitellogenin (Vg) expression in the fat body as well as consequent arrest of egg development. Mad/Medea complex bound to the promoters of cyclin B (CycB) and polo-like kinase 1 (Plk1) and stimulated their expression. Depletion of CycB and Plk1 caused the defective phenotypes resembling Dpp, Mad, and Medea knockdown. In the vitellogenic phase, the high levels of juvenile hormone (JH) promoted the degradation of Medea via fizzy-related protein (Fzr)-mediated ubiquitination, leading to inhibited cell proliferation. The results suggest that fat body cell proliferation in the previtellogenic development is promoted by the bone morphogenetic protein (BMP) signaling pathway, whereas high levels of JH in the vitellogenic stage antagonize BMP signaling for ceasing cell proliferation. CONCLUSIONS The findings provide novel insights into the regulation of fat body cell fate during the transition of previtellogenic growth to vitellogenic Vg synthesis for reproductive requirements.
Collapse
Affiliation(s)
- Zhongxia Wu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenxiao Zhao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengyao Lang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiongjie He
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Yiying Li
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Hu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Yan Liu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Siqian Zheng
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Huanhuan Shi
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
3
|
Li Y, Lang M, He Q, Hu Y, Shi H, Zheng S, Wu Z, Zhou S. Nutritional and hormonal regulation of mitochondrial biogenesis drives fat body remodeling for reproductive competence. J Adv Res 2025:S2090-1232(25)00285-1. [PMID: 40306618 DOI: 10.1016/j.jare.2025.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/04/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025] Open
Abstract
INTRODUCTION Insect fat body serves as a central hub for energy mobilization and protein synthesis. During larval metamorphosis, fat body undergoes programmed cell death and tissue disassembly. Following adult eclosion, fat body reconstructs with cell proliferation and becomes competent for large-scale vitellogenin (Vg) synthesis required for the maturation of dozens of eggs. OBJECTIVES This study aims to uncover the molecular mechanisms underlying the remodeling of fat body in acquisition of competence for massive Vg production. METHODS RNA-seq and metabolomics were used for identification of differentially expressed genes and metabolites. RNAi was applied for gene knockdown. Transmission electron microscope, MitoTracker staining, mitochondrial DNA quantification, ATP and citrate synthase assays were employed for examining mitochondrial biogenesis. Dual-luciferase reporter assay and EMSA were performed for transcriptional regulation. qRT-PCR and western blot were performed for measuring Vg synthesis. RESULTS Transcriptomic and metabolomic analyses revealed significant upregulation of genes and metabolites involved in mitochondrial biogenesis in the fat body of adult locusts. PGC-1α was highly expressed in adult fat body. Knockdown of PGC-1α reduced mitochondrial biogenesis, fat body cell number, Vg synthesis and ovarian development. CREBB bound to PGC-1α promoter and activated its transcription. CREBB depletion impaired mitochondrial biogenesis and fat body remodeling. Moreover, loss of TORC1 function suppressed CREBB function and PGC-1α expression, subsequently disrupting mitochondrial biogenesis and fat body remodeling. Juvenile hormone (JH) deprivation also decreased CREBB function and PGC-1α expression, which was reversible with JH treatment. Our results suggest that TORC1 and JH coordinate CREBB-upregulated PGC-1α expression, which promotes mitochondrial biogenesis and fat body remodeling for Vg synthesis and egg production. CONCLUSION The findings provide new insights into the molecular mechanisms of post-metamorphic fat body development, and highlight the role of JH/TORC1/CREBB/PGC-1α/mitochondrial biogenesis axis in insect reproduction. The data also offer potential targets for insect pest control.
Collapse
Affiliation(s)
- Yiying Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengyao Lang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiongjie He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Huanhuan Shi
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Siqian Zheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhongxia Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.
| | - Shutang Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
4
|
Zhai D, Lu H, Liu S, Liu J, Zhang W, Wu J, Li J, Bai R, Yan F, Zhao C. Fungal Warriors: Effects of Beauveria bassiana and Purpureocillium lilacinum on CCYV-Carrying Whiteflies. Biomolecules 2025; 15:593. [PMID: 40305369 PMCID: PMC12025157 DOI: 10.3390/biom15040593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Bemisia tabaci is a major agricultural pest that affects both greenhouse and field crops by feeding on plant sap, which impairs plant growth, and by secreting honeydew, promotes sooty mold growth that further reduces photosynthesis. Additionally, these insects are vectors for viruses such as the cucurbit chlorotic yellows virus (CCYV), which causes significant damage to cucurbit crops. Traditional chemical pesticide treatments have limitations, including the development of resistance, harm to non-target organisms, and environmental contamination. Traditional chemical pesticides have limitations when it comes to controlling plants infested by CCYV and whitefly. However, the underlying reasons for these limitations remain unclear, as does the impact of entomopathogenic fungi on whitefly responses. This study explores the potential of using biological control agents, specifically Beauveria bassiana and Purpureocillium lilacinum, to manage whitefly populations and control CCYV transmission. Laboratory experiments were conducted to evaluate the pathogenicity of these fungi on non/viruliferous whitefly. The results indicated that both fungi effectively reduced whitefly populations, with B. bassiana showing particularly strong adverse effects. Whiteflies infected with CCYV exhibited a higher LC50 to B. bassiana and P. lilacinum. Furthermore, bio-pesticides significantly altered the bacterial microbiome dynamics of the whitefly. Interestingly, CCYV increased the susceptibility of whiteflies to entomopathogenic fungus. The findings suggest that these biocontrol agents offer a sustainable alternative to chemical pesticides. Our study unraveled a new horizon for the multiple interaction theories among bio-pesticides-insects-symbionts-viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fengming Yan
- Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (D.Z.); (H.L.); (S.L.); (J.L.); (W.Z.); (J.W.); (J.L.); (R.B.)
| | - Chenchen Zhao
- Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (D.Z.); (H.L.); (S.L.); (J.L.); (W.Z.); (J.W.); (J.L.); (R.B.)
| |
Collapse
|
5
|
Zhang G, Li C, Zeng Q, Li J, Du Z, Geng T, He S, Li J, Guo L, Wan H. JNK-ERK Synergistic Regulation of P450 Gene Expression Confers Nitenpyram Resistance in Nilaparvata lugens (Stål). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7695-7703. [PMID: 40123514 DOI: 10.1021/acs.jafc.5c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Cascading regulation of signaling pathways plays a crucial role in insect growth, development, and adaptation. However, how insects employ signaling cascades to regulate detoxification gene expression and enhance resistance is not well understood. In the current study, we investigated the MAPK signaling pathway in mediating nitenpyram resistance in Nilaparvata lugens. qRT-PCR and western-blot analyses revealed that both transcription and protein levels of NlJNK and NlERK were upregulated in the nitenpyram resistant strain, and these changes can be induced by exposure to nitenpyram. Moreover, the expression of P450 genes including NlCYP6ER1, NlCYP302A1, and NlCYP6AY1, which were closely associated with nitenpyram resistance, was significantly decreased following the silencing of NlJNK and NlERK or inhibitor treatments. Further studies showed that NlERK-NlJNK comediated transcription factors NlCREB and NlAP-1 to regulate P450 gene expression. These findings highlight the critical role of the MAPK pathway in N. lugens resistance and offer the potential targets for the insecticide resistance management.
Collapse
Affiliation(s)
- Guijian Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Chengyue Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinghong Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingbo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuyi Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Geng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Le Guo
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Zhang J, Wu Z, Zhou R, Han P, Liang Z, Xing Y, Gao T, Hao J, Liu P, Liu X. Fluazinam Resistance in Colletotrichum gloeosporioides and Its Association with Metabolic Detoxification and Efflux. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7596-7608. [PMID: 40100941 DOI: 10.1021/acs.jafc.4c11478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Colletotrichum gloeosporioides is a major pathogen causing anthracnose of pepper (Capsicum annuum). In agricultural production, it is typically managed using fungicides like fluazinam. However, the frequent use of fungicides raises concerns about the potential development of fungicide resistance. This issue has not been extensively documented. To address this, 102 isolates of C. gloeosporioides were collected from pepper in fields. The EC50 values of these isolates to fluazinam exhibited a unimodal distribution with a mean value of 0.18 ± 0.14 μg/mL, indicating the absence of naturally occurring resistance in the sampling region. Through fluazinam domestication, 35 fluazinam-resistant mutants were obtained from the parental strain Cg219. These mutants exhibited strong cross-resistance to the fungicide SYP-14288. Metabolic analysis revealed that C. gloeosporioides could metabolize fluazinam into compounds lacking antifungal activity. Genetic analysis showed that genes related to efflux and detoxification were upregulated to varying degrees in both fluazinam-resistant mutants and fluazinam-treated strains. By comparing fungal growth and pathogenicity between the mutants and their parent, the mutants showed impaired overall fitness. Therefore, C. gloeosporioides has a low risk of developing resistance to fluazinam. This study provides critical data for monitoring the emergence of fungicide resistance and developing resistance management strategies for fluazinam.
Collapse
Affiliation(s)
- Junting Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhaochen Wu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Rongjia Zhou
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Ping Han
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100193, China
| | - Zhengya Liang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yaochun Xing
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Tuqiang Gao
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, Maine 04469, United States
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Dong W, Shang J, Guo X, Wang H, Zhu J, Liang P, Shi X. Transcription factor CREB/ATF regulates overexpression of CYP6CY14 conferring resistance to cycloxaprid in Aphis gossypii. Int J Biol Macromol 2025; 303:140634. [PMID: 39904427 DOI: 10.1016/j.ijbiomac.2025.140634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/19/2024] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
Aphis gossypii Glover as a destructive agricultural pest has evolved resistance to various insecticides. Cycloxaprid is a novel structure neonicotinoid insecticide with excellent toxicity against A. gossypii. However, the resistance mechanism of A. gossypii to cycloxaprid was unclear. In the present study, a cycloxaprid-resistant (Cpd-R) strain (80.1-fold) of A. gossypii was obtained by continuous selection. Bioassay results showed that piperonyl butoxide significantly increased the toxicity of cycloxaprid by 10.5-fold to the Cpd-R strain. The activity of P450s was significantly higher in Cpd-R strain than in susceptible (Cpd-S) strain. The transcriptomic and qRT-PCR results showed that CYP6CY14, CYP380C44 and CYP303A1 were significantly upregulated in Cpd-R strain compared with Cpd-S strain. Furthermore, knockdown of CYP6CY14, CYP380C44 and CYP303A1 via RNA interference (RNAi) significantly increased the sensitivity of Cpd-R strain to cycloxaprid. Based on the higher expression of CYP6CY14 and RNAi results, transgenic Drosophila assay was conducted to further clarify the role of CYP6CY14 in cycloxaprid resistance, and results showed a significant increase in resistance to cycloxaprid in D. melanogaster. Additionally, the results of RNAi, dual-luciferase reporter and yeast one-hybrid (Y1H) indicated that CREB/ATF directly regulates CYP6CY14 expression. These findings provide necessary basis for clarifying the resistance mechanism of cycloxaprid in A. gossypii.
Collapse
Affiliation(s)
- Wenyang Dong
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiao Shang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xinyu Guo
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Haishan Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiahao Zhu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xueyan Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Meng LW, Luo ZY, Zhang FQ, Dong YX, Ye C, Zhang W, Wang JJ. Increased expression of an isoform of the long non-coding RNA, lnc37707, is associated with malathion resistance in Bactrocera dorsalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 209:106343. [PMID: 40082034 DOI: 10.1016/j.pestbp.2025.106343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel) is an invasive pest threatening global fruit industries. Field populations of B. dorsalis exhibit complex insecticide resistance, hindering pest control efforts and exacerbating damage. Long non-coding RNAs (lncRNAs) are critical regulators of multiple bioprocess in insects, including insecticide resistance, and have potentials as novel target for pest management. Here, the candidate lncRNAs associated with malathion resistance in B. dorsalis were identified through RNA-seq. One of the isoforms of lnc37707, designated as lnc37707.10, was significantly enriched in the detoxification tissues of malathion-resistant (MR) strain. A specific fragment of lnc37707.10 (sflnc37707) was strongly associated with malathion resistance, and silencing sflnc37707 increased the susceptibility, whereas overexpressing it decreased susceptibility to malathion. Silencing sflnc37707 resulted in the down-regulation of 248 genes, but none of them included the four adjacent genes as its potential target. Instead, pathway analysis revealed significant enrichment of down-regulated genes involved in drug and xenobiotics metabolism, including P450s and GSTs. Bioinformatic analysis suggested a potential regulatory role of miRNA in the function of lnc37707. Further combining silence or overexpression sflnc37707 with miRNA mimic treatment identified that BdGSTd10 (an important gene involved in malathion resistance) and miR-1000 was strongly linked to lnc37707.10. Finally, a ceRNA (competing endogenous RNA) regulatory axis was proposed, where lnc37707.10 might indirectly modulate BdGSTd10 by sponging miR-1000 to regulate the malathion resistance in B. dorsalis. These findings provide a new insight into insecticide resistance and a potential lncRNA target for the sustainable pest management.
Collapse
Affiliation(s)
- Li-Wei Meng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Zong-Yu Luo
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Fu-Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yi-Xuan Dong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Chao Ye
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Wei Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Huang M, Gong P, Yin C, Yang J, Liu S, Fu B, Wei X, Liang J, Xue H, He C, Du T, Wang C, Ji Y, Hu J, Zhang R, Belyakova NA, Zhang Y, Yang X. Cytochrome P450 CYP6EM1 confers resistance to thiamethoxam in the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) via detoxification metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106272. [PMID: 40015864 DOI: 10.1016/j.pestbp.2024.106272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 03/01/2025]
Abstract
The whitefly Bemisia tabaci (Hemiptera: Gennadius) is a notorious and highly polyphagous agricultural pest that is well known for its ability to transmit a wide range of serious plant pathogenic viruses. The field populations of B. tabaci in some areas have developed resistance to thiamethoxam. We found that high expression of CYP6EM1 can enhance the resistance of B. tabaci to dinotefuran. It is unclear whether CYP6EM1 is involved in the resistance of B. tabaci to the same neonicotinoid pesticide, thiamethoxam. The results of the present study demonstrated that the expression of CYP6EM1 could be induced within 9 h after the exposure of B. tabaci adults to thiamethoxam. Molecular docking analyses, with a binding energy of -6.13 cal/mol, revealed a strong binding affinity between thiamethoxam and the CYP6EM1 protein, implying that CYP6EM1 may be involved in thiamethoxam resistance. Compared with that in the susceptible strain, the mRNA expression level of the CYP6EM1 gene was significantly greater in thiamethoxam-resistant strains (R#1, 9.93-fold, P = 0.0008; R#2, 40.43-fold, P = 0.0013; R#3, 27.40-fold, P = 0.0002; R#4, 21.63-fold, P = 0.0003 and R#5, 28.65-fold, P = 0.0006). Loss and gain of function studies in vivo were performed via RNA interference and transgenic expression in Drosophila melanogaster, and the results confirmed the role of CYP6EM1 in conferring such resistance. An in vitro metabolism assay revealed that CYP6EM1 directly metabolized 15.60 % of thiamethoxam. This study provides solid evidence for the critical role of CYP6EM1 in the metabolism of thiamethoxam, which contributes to resistance. Our work provides a deeper understanding of the mechanism underlying neonicotinoid resistance and contributes valuable insights for the sustainable management of global pests such as whiteflies.
Collapse
Affiliation(s)
- Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Plant Protection, Hunan Agricultural University, Changsha 410125, PR China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Plant Protection, Hunan Agricultural University, Changsha 410125, PR China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Plant Protection, Hunan Agricultural University, Changsha 410125, PR China
| | - JinYu Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Natalia A Belyakova
- All-Russia Institute of Plant Protection, Russian Academy of Sciences, Podbelskogo 3, Pushkin, 196608 St. Petersburg, Russia
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Plant Protection, Hunan Agricultural University, Changsha 410125, PR China.
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
10
|
Du T, Xue H, Zhou X, Gui L, Belyakova NA, Zhang Y, Yang X. The UDP-glycosyltransferase UGT352A3 contributes to the detoxification of thiamethoxam and imidacloprid in resistant whitefly. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106321. [PMID: 40015912 DOI: 10.1016/j.pestbp.2025.106321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
Uridine diphosphate (UDP)-glycosyltransferases are essential phase-II detoxification enzymes that glycosylate lipophilic endogenous and xenobiotic compounds and they are thought to play a role in driving the evolution of insecticide resistance. To examine if the resistance to thiamethoxam and imidacloprid was associated with enhancement of UDP-glycosyltransferase in the whitefly, Bemisia tabaci, we first conducted UDP enzyme activity assays in resistant and sensitive strains in the absence and presence of UGT inhibitors. We found that the UGT enzyme content of resistant whitefly was significantly 5.02- to 10.69-fold higher than that of sensitive whitefly. Individual UGT inhibitors effectively inhibited UGT activity in resistant strains and their effect was synergistic when applied in combination. We then used bioinformatic, molecular, genetic and in silico approaches to determine if UGT352A3 encoded a key enzyme linked to neonicotinoid resistance. In resistant strains, UGT352A3 expression was elevated 1.8- to 6.6-fold compared to susceptible strains, which correlated with higher resistance ratios. RNAi-mediated knockdown of UGT352A3 in resistant whitefly strains significantly heightened their sensitivity to the insecticides, thiamethoxam and imidacloprid. Molecular docking analyses further confirmed a strong binding affinity between UGT352A3 and thiamethoxam and imidacloprid, which supported a role in their metabolism. These findings suggest that UGT352A3 is a critical factor in the development of resistance to thiamethoxam and imidacloprid in whitefly, underscoring its important potential as a new pest resistance management target.
Collapse
Affiliation(s)
- Tianhua Du
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Forestry, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Hu Xue
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaomao Zhou
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Lianyou Gui
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Natalia A Belyakova
- All-Russia Institute of Plant Protection, Russian Academy of Sciences, Podbelskogo 3, Pushkin 196608, St. Petersburg, Russia
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
11
|
Chen J, Huo ZJ, Sun FL, Zhang LQ, Han HB, Zhu J, Tan Y. Integrative Analysis of Transcriptomics and Proteomics for Screening Genes and Regulatory Networks Associated with Lambda-Cyhalothrin Resistance in the Plant Bug Lygus pratensis Linnaeus (Hemiptera: Miridae). Int J Mol Sci 2025; 26:1745. [PMID: 40004208 PMCID: PMC11855015 DOI: 10.3390/ijms26041745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The prolonged use of pyrethroid insecticides for controlling the plant bug Lygus pratensis has led to upward resistance. This study aims to elucidate the molecular mechanisms and potential regulatory pathways associated with lambda-cyhalothrin resistance in L. pratensis. In this study, we constructed a regulatory network by integrating transcriptome RNA-Seq and proteome iTRAQ sequencing analyses of one lambda-cyhalothrin-susceptible strain and two resistant strains, annotating key gene families associated with detoxification, identifying differentially expressed genes and proteins, screening for transcription factors involved in the regulation of detoxification metabolism, and examining the metabolic pathways involved in resistance. A total of 82,919 unigenes were generated following the assembly of transcriptome data. Of these, 24,859 unigenes received functional annotations, while 1064 differential proteins were functionally annotated, and 1499 transcription factors belonging to 64 distinct transcription factor families were identified. Notably, 66 transcription factors associated with the regulation of detoxification metabolism were classified within the zf-C2H2, Homeobox, THAP, MYB, bHLH, HTH, HMG, and bZIP families. Co-analysis revealed that the CYP6A13 gene was significantly up-regulated at both transcriptional and translational levels. The GO and KEGG enrichment analyses revealed that the co-up-regulated DEGs and DEPs were significantly enriched in pathways related to sphingolipid metabolism, Terpenoid backbone biosynthesis, ABC transporters, RNA transport, and peroxisome function, as well as other signaling pathways involved in detoxification metabolism. Conversely, the co-down-regulated DEGs and DEPs were primarily enriched in pathways associated with Oxidative phosphorylation, Fatty acid biosynthesis, Neuroactive ligand-receptor interactions, and other pathways pertinent to growth and development. The results revealed a series of physiological and biochemical adaptations exhibited by L. pratensis during the detoxification metabolism related to lambda-cyhalothrin resistance. This work provided a theoretical basis for further analysis of the molecular regulation mechanism underlying this resistance.
Collapse
Affiliation(s)
- Jing Chen
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Zhi-Jia Huo
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Fei-Long Sun
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Li-Qi Zhang
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Hai-Bin Han
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Jiang Zhu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Yao Tan
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolian Agricultural University, Hohhot 010019, China
| |
Collapse
|
12
|
Chen Y, Cen Y, Liu Y, Peng Y, Lin Y, Feng Q, Xiao Y, Zheng S. P450 gene CYP321A8 is responsible for cross-resistance of insecticides in field populations of Spodoptera frugiperda. INSECT SCIENCE 2025; 32:227-242. [PMID: 38770715 DOI: 10.1111/1744-7917.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024]
Abstract
Continuous and long-term use of traditional and new pesticides can result in cross-resistance among pest populations in different fields. Study on the mechanism of cross-resistance and related genes will help resistance management and field pest control. In this study, the pesticide-resistance mechanism in Spodoptera frugiperda (FAW) was studied with field populations in 3 locations of South China. Field FAW populations were highly resistant to traditional insecticides, chlorpyrifos (organophosphate) and deltamethrin (pyrethroid), and had higher levels of cytochrome P450 activity than a non-resistant laboratory strain. Inhibition of P450 activity by piperonyl butoxide significantly increased the sensitivity of resistant FAW in 3 locations to chlorpyrifos, deltamethrin and chlorantraniliprole (amide), a new type of insecticide, suggesting that P450 detoxification is a critical factor for insecticide resistance in field FAW populations. Transcriptomic analysis indicated that 18 P450 genes were upregulated in the field FAW populations collected in 3 regions and in 2 consecutive years, with CYP321A8, the most significantly upregulated one. Knockdown of CYP321A8 messenger RNA by RNA interference resulted in an increased sensitivity to the 3 tested insecticides in the field FAW. Enzyme activity and molecular docking analyses indicated that CYP321A8 enzyme was able to metabolize the 3 tested insecticides and interact with 8 other types of insecticides, confirming that CYP321A8 is a key cross-resistance gene with a wide range of substrates in the field FAW populations across the different regions and can be used as a biomarker and target for management of FAW insecticide resistance in fields.
Collapse
Affiliation(s)
- Yumei Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yongjie Cen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yanan Peng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yiguang Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yong Xiao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
13
|
Shen J, Yang Q, Xu F, Han Y, Li Y, Zheng M. Effects of Amino Acid Mutation in Cytochrome P450 (CYP96A146) of Descurainia sophia on the Metabolism and Resistance to Tribenuron-Methyl. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:370-379. [PMID: 39698796 DOI: 10.1021/acs.jafc.4c10217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Cytochrome P450 monooxygenases (P450s) play important roles in herbicide resistance. In this study, there are four amino acid mutations (F39Y, H163Y, S203A, and V361E) between CYP96A146-S and CYP96A146-R, which were cloned, respectively, from susceptible (S) and tribenuron-methyl-resistant (TR) Descurainia sophia. The Arabidopsis expressing CYP96A146-S or CYP96A146-R showed resistance to tribenuron-methyl, carfentrazone-ethyl, and oxyfluorfen, while Arabidopsis transformed with CYP96A146-R or CYP96A146 with any two or three mutations of H163Y, S203A, or V361E exhibited significantly higher resistance to tribenuron-methyl than Arabidopsis expressing CYP96A146-S. The metabolic rates of tribenuron-methyl were significantly faster in Arabidopsis expressing CYP96A146-R than that with CYP96A146-S. The molecular dynamics simulation demonstrated that amino acid mutations did not affect the domain of the HEM ring, which could significantly enhance the volume of the catalytic pocket in P450 (CYP96A146), thereby increasing the collision rate between the catalytic pocket and tribenuron-methyl. Hence, the amino acid mutations may be one of the mechanisms underlying P450-mediated herbicide resistance.
Collapse
Affiliation(s)
- Jing Shen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Qian Yang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Fan Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Yuxin Han
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Yubin Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Mingqi Zheng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
14
|
Khan H, Rihal V, Kaur A, Singh TG. Proposed Hypothesis of TWEAK/Fn14 Receptor Modulation in Autism Spectrum Disorder. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:257-262. [PMID: 39473248 DOI: 10.2174/0118715273330549241015073953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 05/13/2025]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with a complex, multiple etiology that is marked by impaired social interaction, communication, and repetitive behaviour. There is presently no pharmaceutical treatment for the core symptoms of ASD, even though the prevalence of ASD is increasing worldwide. Treatment of autism spectrum disorder involves the interaction of numerous signalling pathways, such as the Wnt/beta-catenin pathway, probiotics and kynurenine pathway, PPAR pathway, PI3K-AKT-mTOR pathway, Hedgehog signaling pathway, etc. The scientific literature has revealed TWEAK/Fn14 to not be explored in the autism spectrum disorder. In vitro and in vivo, TWEAK can control a wide range of cellular responses. Recent research has revealed that TWEAK and Fn14 are expressed in the Central Nervous System (CNS) and upregulated in perivascular endothelial cells, astrocytes, neurons, and microglia in response to various stimuli, including cerebral ischemia. This upregulation is followed by cell death and an increase in Blood-brain Barrier (BBB) permeability. The study has revealed that Aurintricarboxylic Acid (ATA) acts as an agent that suppresses TWEAK/Fn14 signaling. Similarly, from the discussion, it has been emphasized that the proposed molecular TWEAK/Fn14 signalling pathway can be considered as a therapeutic approach in the management of autism spectrum disorder.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Vivek Rihal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
15
|
Wang LQ, Li SH, Zhang WQ. Identification of a vital transcription factor of the alanine aminotransferase in the brown planthopper and its upstream regulatory pathways. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 175:104212. [PMID: 39547539 DOI: 10.1016/j.ibmb.2024.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
The brown planthopper (Nilaparvata lugens) is an important insect pest of rice, and can rapidly adapt to insect-resistant rice varieties. In our previous studies, alanine aminotransferase in N. lugens (NlALT) was found to play an important role in the adaptation of the brown planthopper to resistant rice IR36. Here, we further identified CCAAT/enhancer binding protein (NlC/EBP) as a vital transcription factor of NlALT. Nlp38b in the MAPKs pathway regulated the expression of NlALT by influencing the phosphorylation level of NlC/EBP. In addition, we found that NlGRL101, a G protein-coupled receptor (GPCR), was significantly higher expressed in the N. lugens population adapted to IR36 (P-IR36). After knockdown of NlGRL101 through RNAi in P-IR36 population, lower expressions of Nlp38b and NlC/EBP, along with reduced phosphorylation levels of Nlp38b and NlC/EBP were observed; moreover, NlALT activity and honeydew amount were decreased by 15.68% and 76.08%, respectively. These results indicated that insect-resistant rice IR36 induced expression of NlGRL101, which enhanced expression of NlALT through Nlp38b and NlC/EBP. These findings are helpful for better understanding of insect adaptation to resistant crop varieties.
Collapse
Affiliation(s)
- Li-Qun Wang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi-Hui Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wen-Qing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
16
|
Sun D, Zeng J, Xu Q, Wang M, Shentu X. Two critical detoxification enzyme genes, NlCYP301B1 and NlGSTm2 confer pymetrozine resistance in the brown planthopper (BPH), Nilaparvata lugens Stål. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106199. [PMID: 39672628 DOI: 10.1016/j.pestbp.2024.106199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
The brown planthopper (BPH), Nilaparvata lugens Stål, is a notorious pest that infests rice across Asia. The rapid evolution of chemical pesticide resistance in BPH poses an ongoing threat to agriculture and human health. Currently, pymetrozine has emerged as a viable alternative to imidacloprid for managing N. lugens. The detoxification of insecticides in insects includes three major metabolic gene families: cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), and carboxylesterases (CarEs). In this study, highly resistant strains of BPH to pymetrozine (BPH-R40: 705-fold) were created from the susceptible BPH strain through continuous multi-selection. The activities of detoxifying enzymes, including P450s, GSTs, and CarEs were measured. Notably, P450s and GSTs exhibited significantly higher activity in the pymetrozine-resistance strain than that of the susceptible BPH strain. Hence, we characterized P450s and GSTs genes in N. lugens and revealed their phylogeny, structure, motif analysis, and chromosome location. Subsequently, the expression profiles of 53 P450s and 11 GSTs genes were quantified, and two crucial detoxifying enzyme genes, NlCYP301B1 and NlGSTm2, were identified as being involved in pymetrozine resistance. Furthermore, RNA interference (RNAi)-mediated silencing of NlCYP301B1 and NlGSTm2 gene expression significantly increased larval mortality of BPH in response to pymetrozine. To our knowledge, enhancing the activity of key detoxification enzymes to resist insecticides represents a widespread and vital defense mechanism in insects.
Collapse
Affiliation(s)
- Dan Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China.
| | - Jiahui Zeng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Qiuchen Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Mingyun Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
17
|
Li TP, Wang CH, Xie JC, Wang MK, Chen J, Zhu YX, Hao DJ, Hong XY. Microbial changes and associated metabolic responses modify host plant adaptation in Stephanitis nashi. INSECT SCIENCE 2024; 31:1789-1809. [PMID: 38369568 DOI: 10.1111/1744-7917.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Symbiotic microorganisms are essential for the physiological processes of herbivorous pests, including the pear lace bug Stephanitis nashi, which is known for causing extensive damage to garden plants and fruit trees due to its exceptional adaptability to diverse host plants. However, the specific functional effects of the microbiome on the adaptation of S. nashi to its host plants remains unclear. Here, we identified significant microbial changes in S. nashi on 2 different host plants, crabapple and cherry blossom, characterized by the differences in fungal diversity as well as bacterial and fungal community structures, with abundant correlations between bacteria or fungi. Consistent with the microbiome changes, S. nashi that fed on cherry blossom demonstrated decreased metabolites and downregulated key metabolic pathways, such as the arginine and mitogen-activated protein kinase signaling pathway, which were crucial for host plant adaptation. Furthermore, correlation analysis unveiled numerous correlations between differential microorganisms and differential metabolites, which were influenced by the interactions between bacteria or fungi. These differential bacteria, fungi, and associated metabolites may modify the key metabolic pathways in S. nashi, aiding its adaptation to different host plants. These results provide valuable insights into the alteration in microbiome and function of S. nashi adapted to different host plants, contributing to a better understanding of pest invasion and dispersal from a microbial perspective.
Collapse
Affiliation(s)
- Tong-Pu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Chen-Hao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jia-Chu Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Meng-Ke Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yu-Xi Zhu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - De-Jun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Gong C, Wang W, Ma Y, Zhan X, Peng A, Pu J, Yang J, Wang X. Dendritic mesoporous silica-delivered siRNAs nano insecticides to prevent Sogatella furcifera by inhibiting metabolic detoxification and reproduction. J Nanobiotechnology 2024; 22:736. [PMID: 39605075 PMCID: PMC11600678 DOI: 10.1186/s12951-024-02966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Migratory insect infestation caused by Sogatella furcifera is a serious threat to rice production. The most effective method available for S. furcifera control is intensive insecticide spraying, which cause widespread resistance. RNA interference (RNAi) insecticides hold enormous potential in managing pest resistance. However, the instability and the poor efficiency of cross-kingdom RNA trafficking are key obstacles for the application in agricultural pest management. METHODS We present dendritic mesoporous silica nanoparticles (DMSNs)-based nanocarrier for delivering siRNA and nitenpyram to inhibit the metabolic detoxification and development of S. furcifera, thereby preventing its proliferation. RESULTS This nano complex (denoted as N@UK-siRNA/DMSNs) significantly enhanced the stability of siRNA (efficacy lasting 21 days) and released cargos in GSH or planthopper bodily fluid with a maximum release rate of 84.99%. Moreover, the released UK-siRNA targeting two transcription factors (Ultraspiracle and Krüppel-homolog 1) downregulated the developmental genes Ultraspiracle (0.09-fold) and Krüppel-homolog 1 (0.284-fold), and downstream detoxification genes ABC SfABCH4 (0.016-fold) and P450 CYP6FJ3 (0.367-fold). CONCLUSION The N@UK-siRNA/DMSNs inhibited pest development and detoxification, significantly enhancing susceptibility to nitenpyram to nanogram level (LC50 is 250-252 ng/mL), resulting in a 5.37-7.13-fold synergistic ratio. This work proposes a comprehensive management strategy for controlling S. furcifera to ensure the green and safe production of rice.
Collapse
Affiliation(s)
- Changwei Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Wang
- College of Science, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yanxin Ma
- College of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxu Zhan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 611130, China
| | - Anchun Peng
- College of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Pu
- College of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jizhi Yang
- College of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuegui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- College of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
19
|
Zhang H, Gao H, Lin X, Yang B, Wang J, Yuan X, Zhang Z, He T, Liu Z. Akt-FoxO signaling drives co-adaptation to insecticide and host plant stresses in an herbivorous insect. J Adv Res 2024:S2090-1232(24)00498-3. [PMID: 39510378 DOI: 10.1016/j.jare.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/07/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Ongoing interactions between host and herbivorous insect trigger a co-evolutionary arms race. Genetic diversity within insects facilitates their adaptation to phytochemicals and their derivatives, including plant-derived insecticides. Cytochrome P450s play important roles in metabolizing phytochemicals and insecticides, due to their diversity and almost perfect evolution. OBJECTIVES This study aims to uncover a common molecular mechanism in herbivorous insects by investigating the role of kinase-transcription factor regulation of P450s in conferring tolerance to both insecticides and phytochemicals. METHODS RNA interference, transcriptome sequencing, insecticide, and phytochemical bioassays were conducted to validate the functions of Akt, FoxO, and candidate P450s. Dual-luciferase activity assays were employed to identify the regulation of P450s by the Akt-FoxO signaling pathway. Recombinant P450 enzymes were utilized to investigate the metabolism of insecticides and phytochemicals. RESULTS We identified an Akt-FoxO signaling cascade, a representative of kinase-transcription factor pathways. This cascade mediates the expression of eight P450 enzymes involved in the metabolism of insecticides and phytochemicals in Nilaparvata lugens. These P450s are from different families and with different substrate selectivity, enabling them to respectively metabolize insecticides and phytochemicals with structure diversity. Nevertheless, the eight P450 genes were up-regulated by FoxO, which was inhibited in a higher cascade by Akt through phosphorylation. The discovery of the Akt-FoxO signaling pathway regulating a series of P450 genes elucidates the finely tuned regulatory mechanism in insects for adapting to phytochemicals and insecticides. CONCLUSION These finding sheds light on the physiological balance maintained by these regulatory processes. The work provides the experimental evidence of co-adaptation to the stresses imposed by host plant and insecticide within the model of the kinase-TF involving various P450s. This model provides a comprehensive view of how pests adapt to multiple environmental stresses.
Collapse
Affiliation(s)
- Huihui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xumin Lin
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Baojun Yang
- Rice Technology Research and Development Center, China National Rice Research Institute, Stadium 359, Hangzhou 310006, China
| | - Jingting Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xiaowei Yuan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zhen Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Tianshun He
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
20
|
Zou L, Liu Z, Jin M, Wang P, Shan Y, Xiao Y. Genome-wide DNA methylation profile and its function in regulating Vip3Aa tolerance in fall armyworm (Spodoptera frugiperda). PEST MANAGEMENT SCIENCE 2024; 80:5820-5831. [PMID: 39030881 DOI: 10.1002/ps.8313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Vegetative insecticidal proteins (Vips) are widely used in pest management, but Vip tolerance poses a significant threat. DNA methylation plays important roles in regulating the response of biological organisms to environmental stress, and it may also regulate fall armyworm (FAW, Spodoptera frugiperda) Vip3Aa tolerance. RESULTS In this study, a DNA methylation map was developed for FAW, and its function in regulating FAW Vip3Aa tolerance was explored. The FAW genome-wide DNA methylation map showed that exons were preferred regions for DNA methylation and housekeeping genes were highly methylated. FAW was screened using Vip3Aa for ten generations, and bioassays indicated that Vip3Aa tolerance increased trans-generationally. A comparison of DNA methylation maps between Vip3Aa-tolerant and -susceptible strains showed that gene body methylation was positively correlated with gene expression level. FAW exhibits significant variation in DNA methylation among individuals, and Vip3Aa screening induces epigenetic variation based on DNA methylation. Moreover, the study demonstrated that a reduction in methylation density within the gene body of a 3'5'-cyclic nucleotide phosphodiesterase gene resulted in decreased expression and increased tolerance of FAW to Vip3Aa, which was validated through RNA interference experiments. CONCLUSION The DNA methylation map and mechanism of Vip3Aa tolerance improve our understanding of DNA methylation and its function in Lepidoptera and provide a new perspective for developing pest management strategies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luming Zou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Zhenxing Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Peng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| |
Collapse
|
21
|
Tan M, Jiang H, Chai R, Fan M, Niu Z, Sun G, Yan S, Jiang D. Cd exposure confers β-cypermethrin tolerance in Lymantria dispar by activating the ROS/CnCC signaling pathway-mediated P450 detoxification. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135566. [PMID: 39173384 DOI: 10.1016/j.jhazmat.2024.135566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Heavy metal pollutants are important abiotic environmental factors affecting pest habitats. In this study, Cd pre-exposure significantly increased the tolerance of Lymantria dispar larvae to β-cypermethrin, but did not significantly alter their tolerance to λ-cyhalothrin and bifenthrin. The activation of P450 by Cd exposure is the key mechanism that induces insecticide cross-tolerance in L. dispar larvae. Both before and after β-cypermethrin treatment, Cd exposure significantly increased the expression of CYP6AB224 and CYP6AB226 in L. dispar larvae. Silencing CYP6AB224 and CYP6AB226 reduced the tolerance of Cd-treated L. dispar larvae to β-cypermethrin. Transgenic CYP6AB224 and CYP6AB226 genes significantly increased the tolerance of Drosophila and Sf9 cells to β-cypermethrin, and the recombinant proteins of both genes could significantly metabolise β-cypermethrin. Cd exposure significantly increased the expression of CnCC and Maf. CnCC was found to be a key transcription factor regulating CYP6AB224- and CYP6AB226-activated insecticide cross-tolerance in Cd-treated larvae. Decreasing reactive oxygen species (ROS) levels in the Cd-treated larvae or increasing ROS levels in the untreated larvae reduced or enhanced the expression of CnCC, CYP6AB224 and CYP6AB226 and β-cypermethrin tolerance in L. dispar larvae, respectively. Collectively, Cd exposure confers β-cypermethrin tolerance in L. dispar larvae through the ROS/CnCC signalling pathway-mediated P450 detoxification.
Collapse
Affiliation(s)
- Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Hong Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Rusong Chai
- Forest Botanical Garden of Heilongjiang Province, Harbin 150040, PR China
| | - Miao Fan
- Forest Botanical Garden of Heilongjiang Province, Harbin 150040, PR China
| | - Zengting Niu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Guotong Sun
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
22
|
Li J, Jin L, Yan K, Xu P, Pan Y, Shang Q. STAT5B, Akt and p38 Signaling Activate FTZ-F1 to Regulate the Xenobiotic Tolerance-Related Gene SlCyp9a75b in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20331-20342. [PMID: 39253853 DOI: 10.1021/acs.jafc.4c04465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Cytochrome P450 monooxygenases in insects have been verified to implicated in insecticide and phytochemical detoxification metabolism. However, the regulation of P450s, which are modulated by signal-regulated transcription factors (TFs), is less well studied in insects. Here, we found that the Malpighian tubule specific P450 gene SlCYP9A75b in Spodoptera litura is induced by xenobiotics. The transgenic Drosophila bioassay and RNAi results indicated that this P450 gene contributes to α-cypermethrin, cyantraniliprole, and nicotine tolerance. In addition, functional analysis revealed that the MAPKs p38, PI3K/Akt, and JAK-STAT activate the transcription factor fushi tarazu factor 1 (FTZ-F1) to regulate CYP9A75b expression. These findings provide mechanistic insights into the contributions of CYP9A genes to xenobiotic detoxification and support the possible involvement of different signaling pathways and TFs in tolerance to xenobiotics in insects.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Long Jin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
23
|
Xu D, Liao H, He C, Wang K, Dong R, Zhang Y, Guo Z, Yang X, Xie W, Crickmore N, Wang S. Expression reduction and a variant of a P450 gene mediate chlorpyrifos resistance in Tetranychus urticae Koch. J Adv Res 2024:S2090-1232(24)00417-X. [PMID: 39299604 DOI: 10.1016/j.jare.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/03/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
INTRODUCTION Understanding how insects and mites develop resistance to chlorpyrifos is crucial for effective field management. Although extensive research has demonstrated that T. urticae exhibits high resistance to chlorpyrifos, the specific resistance mechanism remains elusive. Investigating this mechanism could provide valuable insights for pest control strategies. OBJECTIVES This study aimed to reveal the mechanism of chlorpyrifos resistance in T. urticae. METHODS The expression level of the CYP392D8 gene in T. urticae strains were analyzed using real- time quantitative PCR and western blot techniques. Functional validation of CYP392D8 was conducted through RNAi and heterogeneous expression. The production of chlorpyrifos-oxon in both resistant and susceptible strains were quantified using LC-MS/MS. Furthermore, the metabolic capabilities of CYP392D8 variants were verified using HPLC-MS and molecular docking. RESULTS The results showed the expression of CYP392D8 was reduced in some Chinese resistant populations and mites with knocked down CYP392D8 showed decreased susceptibility to chlorpyrifos. Chlorpyrifos-oxon, the active metabolite of chlorpyrifos, was generated when chlorpyrifos was incubated with recombinant CYP392D8 protein in vitro. And a higher efficiency of chlorpyrifos-oxon formation was observed with the CYP392D8-S variant from susceptible mites compared to the CYP392D8-R variant from resistant mites. After treatment with low doses of chlorpyrifos, susceptible mite extracts produced substantial amounts of chlorpyrifos-oxon, while resistant mites only showed trace amounts. In addition, molecular docking studies showed that CYP392D8-S had a higher binding capacity to chlorpyrifos than the CYP392D8-R variant. CONCLUSION This study reveals a mechanism of insecticide resistance due to the bioactivation reduction in combination with the sequence variation in a pest mite. These findings provide an important theoretical bias for management strategies of mites in the field and comprehensive control.
Collapse
Affiliation(s)
- Dandan Xu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Haojie Liao
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ke Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rui Dong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaojiang Guo
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
24
|
Wang YC, Chang YW, Xie HF, Gong WR, Wu CD, Du YZ. The cytochrome P450 gene CYP4g1 driven by high temperature confers abamectin tolerance on Liriomyza trifolii through promoting cuticular hydrocarbons biosynthesis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106012. [PMID: 39084804 DOI: 10.1016/j.pestbp.2024.106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Liriomyza trifolii, an invasive pest, poses a substantial threat to horticultural and vegetable plants. It spreads rapidly, especially in hot weather, leading to large-scale outbreaks with strong thermotolerance and insecticide resistance. In this study, mortality and LtCYP4g1 expression in L. trifolii were evaluated after thermal and insecticides exposure. Furthermore, functional verification of LtCYP4g1 was conducted through RNA interference and bacterial survival assays in Escherichia coli containing recombinant LtCYP4g1 protein. Results indicated that a short time exposure to high temperature incresed insecticide tolerance of L. trifolii, attributed to decreased mortality and induced LtCYP4g1 expression; LtCYP4g1 was involved in stimulating synthesis of cuticular hydrocarbons (CHCs) and elevating epicuticle lipid content and thickness, and E. coli cells overexpressing LtCYP4g1 exhibited significant tolerance to thermal and insecticide stress. In general, P450-mediated tolerance of L. trifolii was enhanced by high temperature, with LtCYP4g1 playing a role in promoting biosynthesis of CHCs for thickening epidermal lipid barrier and reducing cuticular penetration. This study provides a framework for delving into the function of CYP450s in insecticide detoxification and illustrates the role of global warming in driving the evolution of L. trifolii.
Collapse
Affiliation(s)
- Yu-Cheng Wang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225000, China
| | - Ya-Wen Chang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225000, China
| | - Hong-Fang Xie
- Plant Protection and Quarantine Station of Nanjing City, Nanjing 210029, Jiangsu Province, China
| | - Wei-Rong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing 210036, China
| | - Cheng-Dong Wu
- Pukou Agricultural Technology Extension Center of Nanjing City, Pukou 211800, China
| | - Yu-Zhou Du
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225000, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
25
|
Wang Z, He W, Fu L, Cheng H, Lin C, Dong X, Liu C. Detoxification and neurotransmitter clearance drive the recovery of Arma chinensis from β-cypermethrin-triggered knockdown. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135175. [PMID: 39002489 DOI: 10.1016/j.jhazmat.2024.135175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Natural enemies of arthropods contribute considerably to agriculture by suppressing pests, particularly when combined with chemical control. Studies show that insect recovery after insecticide application is rare. Here, we discovered the recovery of the predatory bug Arma chinensis from knockdown following the application of β-cypermethrin but not five other insecticides. A. chinensis individuals were more tolerant to β-cypermethrin than lepidopteran and coleopteran larvae, which did not recover from knockdown. We assessed A. chinensis recovery by monitoring their respiration and tracking locomotion through the entire process. We identified and verified the trans-regulation of detoxifying genes, including those encoding cytochrome P450s and α/β-hydrolase, which confer recovery from β-cypermethrin exposure in A. chinensis, by mitogen-activated protein kinase (MAPK) and cAMP response element binding protein (CREB). Furthermore, we discovered a novel mechanism, the neurotransmitter clearance, in vivo during the recovery process, by which the insect initiated the removal of excessive dopamine with a degrading enzyme ebony. Overall, these results provide mechanistic insights into the detoxification and neurotransmitter clearance that jointly drive insect recovery from insecticide exposure.
Collapse
Affiliation(s)
- Zhen Wang
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenjie He
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Luyao Fu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongmei Cheng
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changjin Lin
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolin Dong
- Department of Entomology, Yangtze University, Jingzhou 434023, China
| | - Chenxi Liu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
26
|
Fu B, Liang J, Hu J, Du T, Tan Q, He C, Wei X, Gong P, Yang J, Liu S, Huang M, Gui L, Liu K, Zhou X, Nauen R, Bass C, Yang X, Zhang Y. GPCR-MAPK signaling pathways underpin fitness trade-offs in whitefly. Proc Natl Acad Sci U S A 2024; 121:e2402407121. [PMID: 38959045 PMCID: PMC11252912 DOI: 10.1073/pnas.2402407121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
Trade-offs between evolutionary gain and loss are prevalent in nature, yet their genetic basis is not well resolved. The evolution of insect resistance to insecticide is often associated with strong fitness costs; however, how the fitness trade-offs operates remains poorly understood. Here, we show that the mitogen-activated protein kinase (MAPK) pathway and its upstream and downstream actors underlie the fitness trade-offs associated with insecticide resistance in the whitefly Bemisia tabaci. Specifically, we find a key cytochrome P450 gene CYP6CM1, that confers neonicotinoids resistance to in B. tabaci, is regulated by the MAPKs p38 and ERK through their activation of the transcription factor cAMP-response element binding protein. However, phosphorylation of p38 and ERK also leads to the activation of the transcription repressor Cap "n" collar isoform C (CncC) that negatively regulates exuperantia (Ex), vasa (Va), and benign gonial cell neoplasm (Bg), key genes involved in oogenesis, leading to abnormal ovary growth and a reduction in female fecundity. We further demonstrate that the transmembrane G protein-coupled receptor (GPCR) neuropeptide FF receptor 2 (NPFF2) triggers the p38 and ERK pathways via phosphorylation. Additionally, a positive feedback loop between p38 and NPFF2 leads to the continuous activation of the MAPK pathways, thereby constitutively promoting neonicotinoids resistance but with a significant reproductive cost. Collectively, these findings provide fundamental insights into the role of cis-trans regulatory networks incurred by GPCR-MAPK signaling pathways in evolutionary trade-offs and applied knowledge that can inform the development of strategies for the sustainable pest control.
Collapse
Affiliation(s)
- Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou434025, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Jinyu Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou434025, China
| | - Qimei Tan
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha430125, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou434025, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
- College of Plant Protection, Hunan Agricultural University, Changsha410125, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
- College of Plant Protection, Hunan Agricultural University, Changsha410125, China
| | - Lianyou Gui
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou434025, China
| | - Kui Liu
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, China
| | - Xuguo Zhou
- Department of Entomology School of Integrative Biology College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL61801-3795
| | - Ralf Nauen
- Pest Control Biology, Bayer AG, CropScience Division, D40789Monheim, Germany
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, CornwallTR10 9FE, United Kingdom
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou434025, China
- College of Plant Protection, Hunan Agricultural University, Changsha410125, China
| |
Collapse
|
27
|
Xiao H, Ma C, Peng R, Xie M. Insights into the role of non-coding RNAs in the development of insecticide resistance in insects. Front Genet 2024; 15:1429411. [PMID: 39036703 PMCID: PMC11257933 DOI: 10.3389/fgene.2024.1429411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024] Open
Abstract
Pest control heavily relies on chemical pesticides has been going on for decades. However, the indiscriminate use of chemical pesticides often results in the development of resistance in pests. Almost all pests have developed some degree of resistance to pesticides. Research showed that the mechanisms of insecticide resistance in insects encompass metabolic resistance, behavioral resistance, penetration resistance and target-site resistance. Research on the these mechanisms has been mainly focused on the cis-regulatory or trans-regulatory for the insecticide resistance-related genes, with less attention paid to non-coding RNAs (ncRNAs), such as microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). There has been increased studies focus on understanding how these ncRNAs are involved in post-transcriptional regulation of insecticide resistance-related genes. Besides, the formatted endogenous RNA (ceRNA) regulatory networks (lncRNA/circRNA-miRNA-mRNA) has been identified as a key player in governing insect resistance formation. This review delves into the functions and underlying mechanisms of miRNA, lncRNA, and circRNA in regulating insect resistance. ncRNAs orchestrate insect resistance by modulating the expression of detoxification enzyme genes, insecticide target genes, as well as receptor genes, effectively regulating both target-site, metabolic and penetration resistance in insects. It also explores the regulatory mechanisms of ceRNA networks in the development of resistance. By enhancing our understanding of the mechanisms of ncRNAs in insecticide resistance, it will not only provide valuable insights into the new mechanisms of insecticide resistance but also help to enrich new directions in ncRNAs gene regulation research.
Collapse
Affiliation(s)
- Huamei Xiao
- Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun, China
| | | | | | | |
Collapse
|
28
|
Li J, Zhu C, Xu Y, He H, Zhao C, Yan F. Molecular Mechanism Underlying ROS-Mediated AKH Resistance to Imidacloprid in Whitefly. INSECTS 2024; 15:436. [PMID: 38921151 PMCID: PMC11204299 DOI: 10.3390/insects15060436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Synthetic insecticides used to control Bemisia tabaci include organophosphorus, pyrethroids, insect growth regulators, nicotinoids, and neonicotinoids. Among these, neonicotinoids have been used continuously, which has led to the emergence of high-level resistance to this class of chemical insecticides in the whitefly, making whitefly management difficult. The adipokinetic hormone gene (AKH) and reactive oxygen species (ROS) play roles in the development of insect resistance. Therefore, the roles of AKH and ROS in imidacloprid resistance in Bemisia tabaci Mediterranean (MED; formerly biotype Q) were evaluated in this study. The expression level of AKH in resistant B. tabaci MED was significantly lower than that in sensitive B. tabaci (MED) (p < 0.05). AKH expression showed a decreasing trend. After AKH silencing by RNAi, we found that ROS levels as well as the expression levels of the resistance gene CYP6CM1 and its upstream regulatory factors CREB, ERK, and P38 increased significantly (p < 0.05); additionally, whitefly resistance to imidacloprid increased and mortality decreased (p < 0.001). These results suggest that AKH regulates the expression of resistance genes via ROS in Bemisia tabaci.
Collapse
Affiliation(s)
| | | | | | | | | | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (C.Z.); (Y.X.); (H.H.); (C.Z.)
| |
Collapse
|
29
|
Li SC, Cheng LY, Yang QQ, Huang ZH, Shao BB, Yu SJ, Ding LL, Pan Q, Lei S, Liu L, Cong L, Ran C. Overexpression of a nuclear receptor HR96 contributes to spirodiclofen susceptibility in Panonychus citri (McGregor). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105952. [PMID: 38879306 DOI: 10.1016/j.pestbp.2024.105952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024]
Abstract
The citrus red mite, Panonychus citri, is one of the most notorious and devastating citrus pests around the world that has developed resistance to multiple chemical acaricides. In previous research, we found that spirodiclofen-resistant is related to overexpression of P450, CCE, and ABC transporter genes in P. citri. However, the regulatory mechanisms of these detoxification genes are still elusive. This study identified all hormone receptor 96 genes of P. citri. 8 PcHR96 genes contained highly conserved domains. The expression profiles showed that PcHR96h was significantly upregulated in spirodiclofen resistant strain and after exposure to spirodiclofen. RNA interference of PcHR96h decreased expression of detoxification genes and increased spirodiclofen susceptibility in P. citri. Furthermore, molecular docking, heterologous expression, and drug affinity responsive target stability demonstrated that PcHR96h can interact with spirodiclofen in vitro. Our research results indicate that PcHR96h plays an important role in regulating spirodiclofen susceptibility and provides theoretical support for the resistance management of P. citri.
Collapse
Affiliation(s)
- Si-Chen Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Lu-Yan Cheng
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China; Chongqing Institute for Food and Drug Control, Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China
| | - Qi-Qi Yang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Ze-Hao Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin-Bin Shao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Shi-Jiang Yu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Li-Li Ding
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Qi Pan
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Shuang Lei
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Liu Liu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Lin Cong
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Chun Ran
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China.
| |
Collapse
|
30
|
Zhou M, Liu Y, Wang Y, Chang Y, Wu Q, Gong W, Du Y. Effect of High Temperature on Abamectin and Thiamethoxam Tolerance in Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae). INSECTS 2024; 15:399. [PMID: 38921114 PMCID: PMC11203426 DOI: 10.3390/insects15060399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024]
Abstract
Bemisia tabaci (Gennadius) is one of the most important invasive species in China, with strong insecticide resistance and thermotolerance. In this study, we investigated the effects of elevated temperature on the tolerance of B. tabaci MEMA1 to abamectin (AB) and thianethixam (TH) insecticides. We firstly cloned two new CYP450 genes from B. tabaci MEAM1, including one CYP6 family gene (BtCYP6k1) and one CYP305 family gene (BtCYP305a1). The expression patterns of the two BtCYP450 genes were compared in response to high-temperature stress and insecticide exposure, and RNAi was then used to demonstrate the role that these two genes play in insecticide tolerance. The results showed that expression of the two BtCYP450 genes could be induced by exposure to elevated temperature or insecticide, but this gene expression could be inhibited to a certain extent when insects were exposed to the combined effects of high temperature and insecticide treatment. For AB treatment, the expression of the two BtCYP450 genes reached the lowest level when insects were exposed to a temperature of 41 °C and treated with AB (combined effects of temperature and insecticide). In contrast, TH treatment showed a general decrease in the expression of the two BtCYP450 genes with exposure to elevated temperatures. These findings suggest that insecticide tolerance in B. tabaci MEAM1 could be mediated by high temperatures. This study provides a prospective method for the more effective application of insecticides for the control of B. tabaci in the field.
Collapse
Affiliation(s)
- Mi Zhou
- Institute of Applied Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.Z.); (Y.L.); (Y.W.); (Y.C.)
| | - Yuncai Liu
- Institute of Applied Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.Z.); (Y.L.); (Y.W.); (Y.C.)
| | - Yucheng Wang
- Institute of Applied Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.Z.); (Y.L.); (Y.W.); (Y.C.)
| | - Yawen Chang
- Institute of Applied Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.Z.); (Y.L.); (Y.W.); (Y.C.)
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Weirong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing 210036, China;
| | - Yuzhou Du
- Institute of Applied Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.Z.); (Y.L.); (Y.W.); (Y.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
31
|
Deng M, Xiao T, Xu X, Wang W, Yang Z, Lu K. Nicotinamide deficiency promotes imidacloprid resistance via activation of ROS/CncC signaling pathway-mediated UGT detoxification in Nilaparvata lugens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172035. [PMID: 38565349 DOI: 10.1016/j.scitotenv.2024.172035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Metabolic alternation is a typical characteristic of insecticide resistance in insects. However, mechanisms underlying metabolic alternation and how altered metabolism in turn affects insecticide resistance are largely unknown. Here, we report that nicotinamide levels are decreased in the imidacloprid-resistant strain of Nilaparvata lugens, may due to reduced abundance of the symbiotic bacteria Arsenophonus. Importantly, the low levels of nicotinamide promote imidacloprid resistance via metabolic detoxification alternation, including elevations in UDP-glycosyltransferase enzymatic activity and enhancements in UGT386B2-mediated metabolism capability. Mechanistically, nicotinamide suppresses transcriptional regulatory activities of cap 'n' collar isoform C (CncC) and its partner small muscle aponeurosis fibromatosis isoform K (MafK) by scavenging the reactive oxygen species (ROS) and blocking the DNA binding domain of MafK. In imidacloprid-resistant N. lugens, nicotinamide deficiency re-activates the ROS/CncC signaling pathway to provoke UGT386B2 overexpression, thereby promoting imidacloprid detoxification. Thus, nicotinamide metabolism represents a promising target to counteract imidacloprid resistance in N. lugens.
Collapse
Affiliation(s)
- Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiyue Xu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
32
|
Liu L, He W, Xu P, Wei W, Wang J, Liu K. Contribution of the transcription factor SfGATAe to Bt Cry toxin resistance in Spodoptera frugiperda through reduction of ABCC2 expression. Int J Biol Macromol 2024; 267:131459. [PMID: 38593893 DOI: 10.1016/j.ijbiomac.2024.131459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Insect resistance evolution poses a significant threat to the advantages of biopesticides and transgenic crops utilizing insecticidal Cry-toxins from Bacillus thuringiensis (Bt). However, there is limited research on the relationship between transcriptional regulation of specific toxin receptors in lepidopteran insects and their resistance to Bt toxins. Here, we report the positive regulatory role of the SfGATAe transcription factor on the expression of the ABCC2 gene in Spodoptera frugiperda. DNA regions in the SfABCC2 promoter that are vital for regulation by SfGATAe, utilizing DAP-seq technology and promoter deletion mapping. Through yeast one-hybrid assays, DNA pull-down experiments, and site-directed mutagenesis, we confirmed that the transcription factor SfGATAe regulates the core control site PBS2 in the ABCC2 target gene. Tissue-specific expression analysis has revealed that SfGATAe is involved in the regulation and expression of midgut cells in the fall armyworm. Silencing SfGATAe in fall armyworm larvae resulted in reduced expression of SfABCC2 and decreased sensitivity to Cry1Ac toxin. Overall, this study elucidated the regulatory mechanism of the transcription factor SfGATAe on the expression of the toxin receptor gene SfABCC2 and this transcriptional control mechanism impacts the resistance of the fall armyworm to Bt toxins.
Collapse
Affiliation(s)
- Leilei Liu
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China.
| | - Wenfeng He
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Peiwen Xu
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Wei
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China
| | - Jintao Wang
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
33
|
Yang Y, Wang A, Xue C, Tian H, Zhang Y, Zhou M, Zhao M, Liu Z, Zhang J. MicroRNA PC-5p-3991_515 mediates triflumezopyrim susceptibility in the small brown planthopper through regulating the post-transcriptional expression of P450 CYP417A2. PEST MANAGEMENT SCIENCE 2024; 80:1761-1770. [PMID: 38018281 DOI: 10.1002/ps.7905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Cytochrome P450 monooxygenases (P450s) are recognized as a major contributor to metabolic resistance in insects to most insecticides, through gene overexpressions and protein mutations. MicroRNA (miRNA), an important post-transcriptional regulator, has been reported to promote insecticide resistance by mediating the expression of detoxification enzyme genes. RESULTS In the present study, we reported that a novel microRNA PC-5p-3991_515 was involved in the post-transcriptional regulation of CYP417A2 and mediated the triflumezopyrim susceptibility in the small brown planthopper (SBPH), Laodelphax striatellus (Fallén). The tissue expression profiles showed that CYP417A2 was highly expressed in fat body. CYP417A2 was significantly up-regulated at 12, 36, 60, 84 and 108 h after the triflumezopyrim treatment. RNA interference (RNAi) against CYP417A2 significantly increased triflumezopyrim susceptibility in SBPH. According to the prediction by miRanda and TargetScan software, three miRNAs were indicated to bind to CYP417A2. However, when oversupply of agomir, only two miRNAs, PC-3p-625_4405 and PC-5p-3991_515, significantly increased the susceptibility to triflumezopyrim and decreased CYP417A2 levels. Furthermore, PC-5p-3991_515 was confirmed to be involved in the post-transcriptional regulation of CYP417A2 by dual luciferase reporter assay. Meanwhile, PC-5p-3991_515 was co-localized with CYP417A2 in the midgut in situ hybridization. CONCLUSION Our findings revealed that the novel microRNA, PC-5p-3991_515, post-transcriptionally regulated CYP417A2 expression, which then mediated the triflumezopyrim susceptibility in SBPH. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanxue Yang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chao Xue
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Honglin Tian
- Institute of Maize, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yun Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Maolin Zhou
- Institute of Maize, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
34
|
Wang P, Li H, Meng J, Liu Q, Wang X, Wang B, Liu B, Wang C, Sun W, Pan B. Activation of CncC pathway by ROS burst regulates ABC transporter responsible for beta-cypermethrin resistance in Dermanyssus gallinae (Acari:Dermanyssidae). Vet Parasitol 2024; 327:110121. [PMID: 38286058 DOI: 10.1016/j.vetpar.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 01/31/2024]
Abstract
The drug resistance of poultry red mites to chemical acaricides is a global issue in the control of the mites, which presents an ongoing threat to the poultry industry. Though the increased production of detoxification enzymes has been frequently implicated in resistance development, the overexpression mechanism of acaricide-resistant related genes in mites remains unclear. In the present study, it was observed that the transcription factor Cap 'n' Collar isoform-C (CncC) and its partner small muscle aponeurosis fibromatosis (Maf) were highly expressed in resistant strains compared to sensitive strains under the stress of beta-cypermethrin. When the CncC/Maf pathway genes were down-regulated by RNA interference (RNAi), the expression of the ABC transporter genes was down-regulated, leading to a significant increase in the sensitivity of resistant strains to beta-cypermethrin, suggesting that CncC/Maf played a crucial role in mediating the resistance of D.gallinae to beta-cypermethrin by regulating ABC transporters. Furthermore, it was observed that the content of H2O2 and the activities of peroxidase (POD) and catalase (CAT) enzymes were significantly higher in resistant strains after beta-cypermethrin stress, indicating that beta-cypermethrin activates reactive oxygen species (ROS). In ROS scavenger assays, it was found that the expression of CncC/Maf significantly decreased, along with a decrease in the ABC transporter genes. The present study showed that beta-cypermethrin seemed to trigger the outbreak of ROS, subsequently activated the CncC/Maf pathway, as a result induced the ABC transporter-mediated resistance to the drug, shedding more light on the resistance mechanisms of D.gallinae to pyrethroids.
Collapse
Affiliation(s)
- Penglong Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Huan Li
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Jiali Meng
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Qi Liu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Xu Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Bohan Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Boxing Liu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Chuanwen Wang
- College of Veterinary Medicine, Hebei Agricultural University, No. 289 Lingyusi Street, Baoding 071001, Hebei, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| |
Collapse
|
35
|
Yan S, Tan M, Zhang A, Jiang D. The exposure risk of heavy metals to insect pests and their impact on pests occurrence and cross-tolerance to insecticides: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170274. [PMID: 38262537 DOI: 10.1016/j.scitotenv.2024.170274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/26/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Heavy metal (HM) pollution is a severe global environmental issue. HMs in the environment can transfer along the food chain, which aggravates their ecotoxicological effect and exposes the insects to heavy metal stress. In addition to their growth-toxic effects, HMs have been reported as abiotic environmental factors that influence the implementation of integrated pest management strategies, including microbial control, enemy insect control, and chemical control. This will bring new challenges to pest control and further highlight the ecotoxicological impact of HM pollution. In this review, the relationship between HM pollution and insecticide tolerance in pests was analyzed. Our focus is on the risks of HM exposure to pests, pests tolerance to insecticides under HM exposure, and the mechanisms underlying the effect of HM exposure on pests tolerance to insecticides. We infer that HM exposure, as an initial stressor, induces cross-tolerance in pests to subsequent insecticide stress. Additionally, the priming effect of HM exposure on enzymes associated with insecticide metabolism underlies cross-tolerance formation. This is a new interdisciplinary field between pollution ecology and pest control, with an important guidance value for optimizing pest control strategies in HM polluted areas.
Collapse
Affiliation(s)
- Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
36
|
Zhou H, Ning Y, Jian Y, Zhang M, Klakong M, Guo F, Shao Q, Li Y, Yang P, Li Z, Yang L, Li S, Ding W. Functional analysis of a down-regulated transcription factor-SoxNeuroA gene involved in the acaricidal mechanism of scopoletin against spider mites. PEST MANAGEMENT SCIENCE 2024; 80:1593-1606. [PMID: 37986233 DOI: 10.1002/ps.7892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Insight into the mode of action of plant-derived acaricides will help in the development of sustainable control strategies for mite pests. Scopoletin, a promising plant-derived bioactive compound, displays prominent acaricidal activity against Tetranychus cinnabarinus. The transcription factor SoxNeuroA plays a vital role in maintaining calcium ion (Ca2+ ) homeostasis. Down-regulation of SoxNeuroA gene expression occurs in scopoletin-exposed mites, but the functional role of this gene remains unknown. RESULTS A SoxNeuroA gene from T. cinnabarinus (TcSoxNeuroA) was first cloned and identified. Reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time polymerase chain reaction (qPCR), and Western blotting assays all confirmed that the gene expression and protein levels of TcSoxNeuroA were significantly reduced under scopoletin exposure. Furthermore, RNA interference silencing of the weakly expressed SoxNeuroA gene significantly enhanced the susceptibility of mites to scopoletin, suggesting that the acaricidal mechanism of scopoletin was mediated by the weakly expressed SoxNeuroA gene. Additionally, yeast one-hybrid (Y1H) and dual-luciferase reporter assays revealed that TcSoxNeuroA was a repressor of Orai1 Ca2+ channel gene transcription, and the key binding sequence was ATCAAAG (positions -361 to -368 of the Orai1 promoter). Importantly, site-directed mutagenesis and microscale thermophoresis assays further indicated that ASP185, ARG189, and LYS217, which were key predicted hydrogen-bonding sites in the molecular docking model, may be the vital binding sites for scopoletin in TcSoxNeuroA. CONCLUSION These results demonstrate that the acaricidal mechanism of scopoletin involves inhibition of the transcription factor SoxNeuroA, thus inducing the activation of the Orai1 Ca2+ channel, eventually leading to Ca2+ overload and lethality. Elucidation of the transcription factor-targeted mechanism for this potent plant-derived acaricide has vital implications for the design of next-generation green acaricides with novel targets. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Yeshuang Ning
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Yufan Jian
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Miao Zhang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Matthana Klakong
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Qingyi Shao
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Yanhong Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Pinglong Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Zongquan Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Liang Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Shili Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| |
Collapse
|
37
|
Ding Y, Li J, Yan K, Jin L, Fan C, Bi R, Kong H, Pan Y, Shang Q. CF2-II Alternative Splicing Isoform Regulates the Expression of Xenobiotic Tolerance-Related Cytochrome P450 CYP6CY22 in Aphis gossypii Glover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3406-3414. [PMID: 38329423 DOI: 10.1021/acs.jafc.3c08770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The expression of P450 genes is regulated by trans-regulatory factors or cis-regulatory elements and influences how endogenous or xenobiotic substances are metabolized in an organism's tissues. In this study, we showed that overexpression of the cytochrome P450 gene, CYP6CY22, led to resistance to cyantraniliprole in Aphis gossypii. The expression of CYP6CY22 increased in the midgut and remaining carcass of the CyR strain, and after repressing the expression of CYP6CY22, the mortality of cotton aphids increased 2.08-fold after exposure to cyantraniliprole. Drosophila ectopically expressing CYP6CY22 exhibited tolerance to cyantraniliprole and cross-tolerance to xanthotoxin, quercetin, 2-tridecanone, tannic acid, and nicotine. Moreover, transcription factor CF2-II (XM_027994540.2) is transcribed only as the splicing variant isoform CF2-II-AS, which was found to be 504 nucleotides shorter than CF2-II in A. gossypii. RNAi and yeast one-hybrid (Y1H) results indicated that CF2-II-AS positively regulates CYP6CY22 and binds to cis-acting element p (-851/-842) of CYP6CY22 to regulate its overexpression. The above results indicated that CYP6CY22 was regulated by the splicing isoform CF2-II-AS, which will help us further understand the mechanism of transcriptional adaption of cross-tolerance between synthetic insecticides and plant secondary metabolites mediated by P450s.
Collapse
Affiliation(s)
- Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Long Jin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Chengcheng Fan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Rui Bi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Haoran Kong
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
38
|
Zhang L, Tang F. Molecular mechanism of Serratia marcescens Bizio infection in Reticulitermes chinensis Snyder based on full-length SMRT transcriptome sequencing. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-13. [PMID: 38328866 DOI: 10.1017/s000748532300072x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Reticulitermes chinensis Snyder is an important pest in forestry and construction and is widely distributed in China. We found that Serratia marcescens Bizio strain SM1 has insecticidal activity to R. chinensis, but the pathogenic mechanism of SM1 to R. chinensis is not clear. Therefore, full-length transcriptome sequencing was performed on R. chinensis infected with SM1 and the control group. A total of 230 differentially expressed genes were identified by comparing SM1 infection group and the control group, among which 103 were downregulated and 127 were upregulated. We found downregulated genes in nine metabolic pathway categories, among which carbohydrate metabolism had the most downregulated genes, followed by energy metabolism and amino acid metabolism. We also found that some downregulated genes were related to pattern recognition receptors, cellular immunity, and humoral immunity, indicating that R. chinensis immunity was negatively affected by SM1 infection. In addition, some genes in signal transduction and genetic information processing pathways were downregulated. In this study, high-throughput full-length transcriptome analysis was used to analyse the pathogenic mechanism of SM1 to R. chinensis. The results of this study provide useful information for exploring the relationship between SM1 and R. chinensis, and provide theoretical support for the future application of SM1 and the prevention and treatment of R. chinensis.
Collapse
Affiliation(s)
- Ling Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
39
|
Yin C, O’Reilly AO, Liu SN, Du TH, Gong PP, Zhang CJ, Wei XG, Yang J, Huang MJ, Fu BL, Liang JJ, Xue H, Hu JY, Ji Y, He C, Du H, Wang C, Zhang R, Tan QM, Lu HT, Xie W, Chu D, Zhou XG, Nauen R, Gui LY, Bass C, Yang X, Zhang YJ. Dual mutations in the whitefly nicotinic acetylcholine receptor β1 subunit confer target-site resistance to multiple neonicotinoid insecticides. PLoS Genet 2024; 20:e1011163. [PMID: 38377137 PMCID: PMC10906874 DOI: 10.1371/journal.pgen.1011163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/01/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Neonicotinoid insecticides, which target insect nicotinic acetylcholine receptors (nAChRs), have been widely and intensively used to control the whitefly, Bemisia tabaci, a highly damaging, globally distributed, crop pest. This has inevitably led to the emergence of populations with resistance to neonicotinoids. However, to date, there have been no reports of target-site resistance involving mutation of B. tabaci nAChR genes. Here we characterize the nAChR subunit gene family of B. tabaci and identify dual mutations (A58T&R79E) in one of these genes (BTβ1) that confer resistance to multiple neonicotinoids. Transgenic D. melanogaster, where the native nAChR Dβ1 was replaced with BTβ1A58T&R79E, were significantly more resistant to neonicotinoids than flies where Dβ1 were replaced with the wildtype BTβ1 sequence, demonstrating the causal role of the mutations in resistance. The two mutations identified in this study replace two amino acids that are highly conserved in >200 insect species. Three-dimensional modelling suggests a molecular mechanism for this resistance, whereby A58T forms a hydrogen bond with the R79E side chain, which positions its negatively-charged carboxylate group to electrostatically repulse a neonicotinoid at the orthosteric site. Together these findings describe the first case of target-site resistance to neonicotinoids in B. tabaci and provide insight into the molecular determinants of neonicotinoid binding and selectivity.
Collapse
Affiliation(s)
- Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Andrias O. O’Reilly
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Shao-Nan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Tian-Hua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Pei-Pan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Cheng-Jia Zhang
- Hunan Provincial Key laboratory of Pesticide Biology and Precise Use Techology, Hunan Agricultural Biotechnology Research Institute, Changsha, P. R. China
| | - Xue-Gao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ming-Jiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Bu-Li Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jin-Jin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jin-Yu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qi-Mei Tan
- Hunan Provincial Key laboratory of Pesticide Biology and Precise Use Techology, Hunan Agricultural Biotechnology Research Institute, Changsha, P. R. China
| | - Han-Tang Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Dong Chu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, School of Agriculture and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Lian-You Gui
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - You-Jun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
40
|
Hu J, Fu B, Liang J, Zhang R, Wei X, Yang J, Tan Q, Xue H, Gong P, Liu S, Huang M, Du T, Yin C, He C, Ji Y, Wang C, Zhang C, Du H, Su Q, Yang X, Zhang Y. CYP4CS5-mediated thiamethoxam and clothianidin resistance is accompanied by fitness cost in the whitefly Bemisia tabaci. PEST MANAGEMENT SCIENCE 2024; 80:910-921. [PMID: 37822143 DOI: 10.1002/ps.7826] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Understanding the trade-offs between insecticide resistance and the associated fitness is of particular importance to sustainable pest control. One of the most devastating pest worldwide, the whitefly Bemisia tabaci, has developed resistance to various insecticides, especially the neonicotinoid group. Although neonicotinoid resistance often is conferred by P450s-mediated metabolic resistance, the relationship between such resistance and the associated fitness phenotype remains largely elusive. By gene cloning, quantitative reverse transcription (qRT)-PCR, RNA interference (RNAi), transgenic Drosophila melanogaster, metabolism capacity in vitro and 'two sex-age stage' life table study, this study aims to explore the molecular role of a P450 gene CYP4CS5 in neonicotinoid resistance and to investigate whether such resistance mechanism carries fitness costs in the whitefly. RESULTS Our bioassay tests showed that a total of 13 field-collected populations of B. tabaci MED biotype displayed low-to-moderate resistance to thiamethoxam and clothianidin. Compared to the laboratory susceptible strain, we then found that an important P450 CYP4CS5 was remarkably upregulated in the field resistant populations. Such overexpression of CYP4CS5 had a good match with the resistance level among the whitefly samples. Further exposure to the two neonicotinoids resulted in an increase in CYP4CS5 expression. These results implicate that overexpression of CYP4CS5 is closely correlated with thiamethoxam and clothianidin resistance. RNAi knockdown of CYP4CS5 increased mortality of the resistant and susceptible populations after treatment with thiamethoxam and clothianidin in bioassay, but obtained an opposite result when using a transgenic line of D. melanogaster expressing CYP4CS5. Metabolic assays in vitro revealed that CYP4CS5 exhibited certain capacity of metabolizing thiamethoxam and clothianidin. These in vivo and in vitro assays indicate an essential role of CYP4CS5 in conferring thiamethoxam and clothianidin resistance in whitefly. Additionally, our life-table analysis demonstrate that the field resistant whitefly exhibited a prolonged development time, shortened longevity and reduced fecundity compared to the susceptible, suggesting an existing fitness cost as a result of the resistance. CONCLUSION Collectively, in addition to the important role of CYP4CS5 in conferring thiamethoxam and clothianidin resistance, this resistance mechanism is associated with fitness costs in the whitefly. These findings not only contribute to the development of neonicotinoids resistance management strategies, but also provide a new target for sustainable whitefly control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinyu Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qimei Tan
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengjia Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Su
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
41
|
Huang Y, Xu L, Zheng J, Wu P, Zhang Y, Qiu L. Identification and characterization of both cis- and trans-regulators mediating fenvalerate-induced expression of CYP6B7 in Helicoverpa armigera. Int J Biol Macromol 2024; 258:128995. [PMID: 38159702 DOI: 10.1016/j.ijbiomac.2023.128995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
As we known, inducibility is an important feature of P450 genes. Previous studies indicated that CYP6B7 could be induced and involved in fenvalerate detoxification in Helicoverpa armigera. However, the regulatory mechanism of CYP6B7 induced by fenvalerate is still unclear. In this study, CYP6B7 promoter of H. armigera was cloned and the cis-acting element of fenvalerate was identified to be located between -84 and - 55 bp of CYP6B7 promoter. Subsequently, 33 candidate transcription factors (CYP6B7-fenvalerate association proteins, CAPs) that may bind to the cis-acting element were screened and verified by yeast one-hybrid. Among them, the expression levels of several CAPs were significantly induced by fenvalerate. Knockdown of juvenile hormone-binding protein-like (JHBP), RNA polymerase II-associated protein 3 (RPAP3), fatty acid synthase-like (FAS) and peptidoglycan recognition protein LB-like (PGRP) resulted in significant expression inhibition of CYP6B7, and increased sensitivity of H. armigera to fenvalerate. Co-transfection of reporter gene p (-84/-55) with pFast-CAP showed that JHBP, RPAP3 and PGRP could significantly increase the activity of CYP6B7 promoter. These results suggested that trans-acting factors JHBP, RPAP3 and PGRP may bind with cis-acting elements to regulate the expression of CYP6B7 induced by fenvalerate, and play an important role in the detoxification of H. armigera to fenvalerate.
Collapse
Affiliation(s)
- Yun Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Xu
- College of Resources and Environment and Henan Engineering Research Center of Green Pesticide Creation &Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Peizhuo Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
42
|
Zhang H, Lin X, Yang B, Zhang L, Liu Z. Two Point Mutations in CYP4CE1 Promoter Contributed to the Differential Regulation of CYP4CE1 Expression by FoxO between Susceptible and Nitenpyram-Resistant Nilaparvata lugens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1779-1786. [PMID: 38215467 DOI: 10.1021/acs.jafc.3c02495] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Four P450s were reported to be important for imidacloprid resistance in Nilaparvata lugens, a major insect pest on rice, which was confirmed in this study in an imidacloprid-resistant strain (ImiR). Here we found that only two (CYP4CE1 and CYP6ER1) from these four P450 genes were overexpressed in a nitenpyram-resistant strain (NitR) when compared to a susceptible strain (SUS). CYP4CE1 RNAi reduced nitenpyram and imidacloprid resistance in NitR and ImiR strains, with a greater reduction in nitenpyram resistance. The transcription factor FoxO mediated nitenpyram resistance in NitR and ImiR strains, but it was not differentially expressed among strains. The potential reason for the differential regulation of FoxO on CYP4CE1 expression was mainly from sequence differences in the CYP4CE1 promoter between susceptible and resistant insects. In six FoxO response elements predicted in the CYP4CE1 promoter, the single-nucleotide polymorphisms were frequently detected in over 50% of NitR and ImiR individuals. The luciferase reporter assays showed that two mutations, -650T/G and -2205T/A in two response elements at the positions of -648 and -2200 bp, mainly contributed to the enhanced regulation on CYP4CE1 expression by FoxO in resistant insects. The frequency was over 69% for both -650T/G and -2205T/A detected in NitR and ImiR individuals but less than 20% in SUS insects. In conclusion, CYP4CE1 overexpression importantly contributed to nitenpyram resistance in N. lugens, and two mutations in the CYP4CE1 promoter of resistant insects led to an enhanced regulation on CYP4CE1 expression by FoxO.
Collapse
Affiliation(s)
- Huihui Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xumin Lin
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Baojun Yang
- Rice Technology Research and Development Center, China National Rice Research Institute, Stadium 359, Hangzhou 310006, China
| | - Lingchun Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| |
Collapse
|
43
|
Ding Y, Lv Y, Pan Y, Li J, Yan K, Yu Z, Shang Q. A masked gene concealed hand in glove in the forkhead protein crocodile regulates the predominant detoxification CYP6DA1 in Aphis gossypii Glover. Int J Biol Macromol 2023; 253:126824. [PMID: 37690634 DOI: 10.1016/j.ijbiomac.2023.126824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Cytochrome P450-mediated metabolism is an important mechanism of insecticide resistance, most studies show upregulated transcript levels of P450s in resistant insect strains. Our previous studies illustrated that some upregulated P450s were associated with cyantraniliprole resistance, and it is more comprehensive to use the tissue specificity of transcriptomes to compare resistant (CyR) and susceptible (SS) strains. In this study, the expression profiles of P450s in a CyR strain compared with a SS strain in remaining carcass or midgut were investigated by RNA sequencing, and candidate genes were selected for functional study. Drosophila melanogaster bioassays suggested that ectopic overexpression of CYP4CK1, CYP6CY5, CYP6CY9, CYP6CY19, CYP6CZ1 and CYP6DA1 in flies was sufficient to confer cyantraniliprole resistance, among which CYP6DA1 was the predominant contributor to resistance (12.24-fold). RNAi suppression of CYP4CK1, CYP6CY5, CYP6CY9 and CYP6DA1 significantly increased CyR aphid sensitivity to cyantraniliprole. The CYP6DA1 promoter had two predicted binding sites for crocodile (CROC), an intron-free ORF with bidirectional transcription yielding CROC (+) and CROC (-). Y1H, RNAi and EMSA found that CROC (-) was a transcription factor directly regulating CYP6DA1 expression. In conclusion, P450 genes contribute to cyantraniliprole resistance, and the transcription factor CROC (-) regulates the expression of CYP6DA1 in A. gossypii.
Collapse
Affiliation(s)
- Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Zihan Yu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
44
|
Pan D, Xia M, Li C, Liu X, Archdeacon L, O'Reilly AO, Yuan G, Wang J, Dou W. CYP4CL2 Confers Metabolic Resistance to Pyridaben in the Citrus Pest Mite Panonychus citri. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19465-19474. [PMID: 38048568 DOI: 10.1021/acs.jafc.3c06921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The citrus red mite Panonychus citri has developed strong resistance to acaricides. Cytochrome P450 monooxygenases (P450s) can detoxify pesticides and are involved in pesticide resistance in many insects. Here, a pyridaben-resistant P. citri strain showed cross-resistance to cyenopyrafen, bifenazate, fenpyroximate, and tolfenpyrad. Piperonyl butoxide, a P450 inhibitor, significantly increased the toxicity of pyridaben to resistant (Pyr_Rs) and susceptible (Pyr_Control) P. citri strains. P450 activity was significantly higher in Pyr_Rs than in Pyr_Control. Analyses of RNA-Seq data identified a P450 gene (CYP4CL2) that is potentially involved in pyridaben resistance. Consistently, it was up-regulated in two field-derived resistant populations (CQ_WZ and CQ_TN). RNA interference-mediated knockdown of CYP4CL2 significantly decreased the pyridaben resistance in P. citri. Transgenic Drosophila melanogaster expressing CYP4CL2 showed increased pyridaben resistance. Molecular docking analysis showed that pyridaben could bind to several amino acids at substrate recognition sites in CYP4CL2. These findings shed light on P450-mediated pyridaben resistance in pest mites.
Collapse
Affiliation(s)
- Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Menghao Xia
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Chuanzhen Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xunyan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Lewis Archdeacon
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 5UX, U.K
| | - Andrias O O'Reilly
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 5UX, U.K
| | - Guorui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jinjun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
45
|
Wu P, Huang Y, Zheng J, Zhang Y, Qiu L. Regulation of CncC in insecticide-induced expression of cytochrome P450 CYP9A14 and CYP6AE11 in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105707. [PMID: 38072560 DOI: 10.1016/j.pestbp.2023.105707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The expression of many detoxification genes can be regulated by CncC pathway and contributes to insecticide tolerance in insects. Our previous study has demonstrated that the transcripts of CncC and cytochrome P450s (CYP9A14, CYP6AE11) were significantly up-regulated after different insecticides treatment in Helicoverpa armigera. Further study indicated that H2O2, GSH, and MDA contents and antioxidant enzyme activities of H. armigera were enhanced after chlorantraniliprole, cyantraniliprole, indoxacarb, and spinosad exposure. Silencing CncC by RNA interference significantly down-regulated the expression levels of CYP9A14 and CYP6AE11, and increased the susceptibility of dsRNA-injected larvae to λ-cyhalothrin, chlorantraniliprole, and cyantraniliprole. On the contrary, applying CncC agonist curcumin on H. armigera induced the expression of CYP9A14 and CYP6AE11, and enhanced the tolerance of H. armigera to insecticides. Treatment of ROS scavenger N-acetylcysteine on H. armigera reduced the H2O2 content and antioxidant enzyme activities, suppressed the transcripts of CncC, CYP9A14, and CYP6AE11, and decreased the larval tolerance to insecticides. These results demonstrated that the induced-expression of CYP9A14 and CYP6AE11 related with insecticides tolerance in H. armigera was regulated by CncC, which may be activated by ROS generated by insecticides. This study will help to better understand the underlying regulation mechanisms of CncC pathway in H. armigera tolerance to insecticides.
Collapse
Affiliation(s)
- Peizhuo Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
46
|
Du TH, Yin C, Gui LY, Liang JJ, Liu SN, Fu BL, He C, Yang J, Wei XG, Gong PP, Huang MJ, Xue H, Hu JY, Du H, Ji Y, Zhang R, Wang C, Zhang CJ, Yang X, Zhang YJ. Over-expression of UDP-glycosyltransferase UGT353G2 confers resistance to neonicotinoids in whitefly (Bemisia tabaci). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105635. [PMID: 37945266 DOI: 10.1016/j.pestbp.2023.105635] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 11/12/2023]
Abstract
The whitefly, Bemisia tabaci, comes up high metabolic resistance to most neonicotinoids in long-term evolution, which is the key problem of pest control. UGT glycosyltransferase, as a secondary detoxification enzyme, plays an indispensable role in detoxification metabolism. In this study, UGT inhibitors, 5-nitrouracil and sulfinpyrazone, dramatically augmented the toxic damage of neonicotinoids to B. tabaci. A UGT named UGT353G2 was identified in whitefly, which was notably up-regulated in resistant strain (3.92 folds), and could be induced by most neonicotinoids. Additionally, the using of RNA interference (RNAi) suppresses UGT353G2 substantially increased sensitivity to neonicotinoids in resistant strain. Our results support that UGT353G2 may be involved in the neonicotinoids resistance of whitefly. These findings will help further verify the functional role of UGTs in neonicotinoid resistance.
Collapse
Affiliation(s)
- Tian-Hua Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Lian-You Gui
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Jin-Jin Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shao-Nan Liu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bu-Li Fu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue-Gao Wei
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pei-Pan Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming-Jiao Huang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin-Yu Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng-Jia Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - You-Jun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
47
|
Jin M, Peng Y, Peng J, Zhang H, Shan Y, Liu K, Xiao Y. Transcriptional regulation and overexpression of GST cluster enhances pesticide resistance in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Commun Biol 2023; 6:1064. [PMID: 37857697 PMCID: PMC10587110 DOI: 10.1038/s42003-023-05447-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
The rapid evolution of resistance in agricultural pest poses a serious threat to global food security. However, the mechanisms of resistance through metabolic regulation are largely unknown. Here, we found that a GST gene cluster was strongly selected in North China (NTC) population, and it was significantly genetically-linked to lambda-cyhalothrin resistance. Knockout of the GST cluster using CRISPR/Cas9 significantly increased the sensitivity of the knockout strain to lambda-cyhalothrin. Haplotype analysis revealed no non-synonymous mutations or structural variations in the GST cluster, whereas GST_119 and GST_121 were significantly overexpressed in the NTC population. Silencing of GST_119 or co-silencing of GST_119 and GST_121 with RNAi significantly increased larval sensitivity to lambda-cyhalothrin. We also identified additional GATAe transcription factor binding sites in the promoter of NTC_GST_119. Transient expression of GATAe in Hi5 cells activated NTC_GST_119 and Xinjiang (XJ)_GST_119 transcription, but the transcriptional activity of NTC_GST_119 was significantly higher than that of XJ_GST_119. These results demonstrate that variations in the regulatory region result in complex expression changes in the GST cluster, which enhances lambda-cyhalothrin resistance in field-populations. This study deepens our knowledge of the evolutionary mechanism of pest adaptation under environmental stress and provides potential targets for monitoring pest resistance and integrated management.
Collapse
Affiliation(s)
- Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huihui Zhang
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
48
|
Xiao T, Wang W, Deng M, Yang Z, Peng H, Huang Z, Sun Z, Lu K. CYP321A Subfamily P450s Contribute to the Detoxification of Phytochemicals and Pyrethroids in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14989-15002. [PMID: 37792742 DOI: 10.1021/acs.jafc.3c05423] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Although the induction of cytochrome P450 monooxygenases involved in insect detoxification has been well documented, the underlying regulatory mechanisms remain obscure. In Spodoptera litura, CYP321A subfamily members were effectively induced by exposure to flavone, xanthotoxin, curcumin, and λ-cyhalothrin, while knockdown of the CYP321A genes increased larval susceptibility to these xenobiotics. Homology modeling and molecular docking analyses showed that these four xenobiotics could stably bind to the CYP321A enzymes. Furthermore, two transcription factor genes, CncC and MafK, were significantly induced by the xenobiotics. Knockdown of CncC or MafK reduced the expression of four CYP321A genes and increased larval susceptibility to the xenobiotics. Dual-luciferase reporter assays showed that cotransfection of reporter plasmids carrying the CYP321A promoter with CncC and/or MafK-expressing constructs significantly magnified the promoter activity. These results indicate that the induction of CYP321A subfamily members conferring larval detoxification capability to xenobiotics is mediated by the activation of CncC and MafK.
Collapse
Affiliation(s)
- Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haoxue Peng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zifan Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhongxiang Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
49
|
Liu S, Fu B, Zhang C, He C, Gong P, Huang M, Du T, Liang J, Wei X, Yang J, Yin C, Ji Y, Xue H, Hu J, Wang C, Zhang R, Du H, Yang X, Zhang Y. 20E biosynthesis gene CYP306A1 confers resistance to imidacloprid in the nymph stage of Bemisia tabaci by detoxification metabolism. PEST MANAGEMENT SCIENCE 2023; 79:3883-3892. [PMID: 37226658 DOI: 10.1002/ps.7569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Difference in physiology level between the immature and mature stages of insects likely contribute to different mechanisms of insecticide resistance. It is well acknowledged that insect 20-hydroxyecdysone (20E) plays an important role in many biological processes in the immature stage, whether 20E confers insecticide resistance at this specific stage is still poorly understood. By gene cloning, reverse transcription quantitative real-time PCR, RNA interference (RNAi) and in vitro metabolism experiments, this study aimed to investigate the potential role of 20E-related genes in conferring imidacloprid (IMD) resistance in the immature stage of the whitefly Bemisia tabaci Mediterranean. RESULTS After identification of low to moderate IMD resistance in the whitefly, we found CYP306A1 of the six 20E-related genes was overexpressed in the nymph stage of the three resistant strains compared to a laboratory reference susceptible strain, but not in the adult stage. Further exposure to IMD resulted in an increase in CYP306A1 expression in the nymph stage. These results together imply that CYP306A1 may be implicated in IMD resistance in the nymph stage of the whitefly. RNAi knockdown of CYP306A1 increased the mortality of nymphs after treatment with IMD in bioassay, suggesting a pivotal role of CYP306A1 in conferring IMD resistance in the nymph stage. Additionally, our metabolism experiments in vivo showed that the content of IMD reduced by 20% along with cytochrome P450 reductase and heterologously expressed CYP306A1, which provides additional evidence for the important function of CYP306A1 in metabolizing IMD that leads to the resistance. CONCLUSION This study uncovers a novel function of the 20E biosynthesis gene CYP306A1 in metabolizing imidacloprid, thus contributing to such resistance in the immature stage of the insect. These findings not only advance our understanding of 20E-mediated insecticide resistance, but also provide a new target for sustainable pest control of global insect pests such as whitefly. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaonan Liu
- College of Plant Protection of Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengjia Zhang
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Hunan Agricultural Biotechnology Research Institute, Changsha, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingjiao Huang
- College of Plant Protection of Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yao Ji
- College of Plant Protection of Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinyu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - He Du
- College of Plant Protection of Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- College of Plant Protection of Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
50
|
Muthu Lakshmi Bavithra C, Murugan M, Pavithran S, Naveena K. Enthralling genetic regulatory mechanisms meddling insecticide resistance development in insects: role of transcriptional and post-transcriptional events. Front Mol Biosci 2023; 10:1257859. [PMID: 37745689 PMCID: PMC10511911 DOI: 10.3389/fmolb.2023.1257859] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Insecticide resistance in insects severely threatens both human health and agriculture, making insecticides less compelling and valuable, leading to frequent pest management failures, rising input costs, lowering crop yields, and disastrous public health. Insecticide resistance results from multiple factors, mainly indiscriminate insecticide usage and mounted selection pressure on insect populations. Insects respond to insecticide stress at the cellular level by modest yet significant genetic propagations. Transcriptional, co-transcriptional, and post-transcriptional regulatory signals of cells in organisms regulate the intricate processes in gene expressions churning the genetic information in transcriptional units into proteins and non-coding transcripts. Upregulation of detoxification enzymes, notably cytochrome P450s (CYPs), glutathione S-transferases (GSTs), esterases [carboxyl choline esterase (CCE), carboxyl esterase (CarE)] and ATP Binding Cassettes (ABC) at the transcriptional level, modification of target sites, decreased penetration, or higher excretion of insecticides are the noted insect physiological responses. The transcriptional regulatory pathways such as AhR/ARNT, Nuclear receptors, CncC/Keap1, MAPK/CREB, and GPCR/cAMP/PKA were found to regulate the detoxification genes at the transcriptional level. Post-transcriptional changes of non-coding RNAs (ncRNAs) such as microRNAs (miRNA), long non-coding RNAs (lncRNA), and epitranscriptomics, including RNA methylation, are reported in resistant insects. Additionally, genetic modifications such as mutations in the target sites and copy number variations (CNV) are also influencing insecticide resistance. Therefore, these cellular intricacies may decrease insecticide sensitivity, altering the concentrations or activities of proteins involved in insecticide interactions or detoxification. The cellular episodes at the transcriptional and post-transcriptional levels pertinent to insecticide resistance responses in insects are extensively covered in this review. An overview of molecular mechanisms underlying these biological rhythms allows for developing alternative pest control methods to focus on insect vulnerabilities, employing reverse genetics approaches like RNA interference (RNAi) technology to silence particular resistance-related genes for sustained insect management.
Collapse
Affiliation(s)
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Kathirvel Naveena
- Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|