1
|
de le Roi M, Nägler I, Rubbenstroth D, Beer M, Höper D, Barth SA, Fayyad A, Puff C, Baumgärtner W, Wohlsein P. Retrospective analysis of clustered neuroinflammatory and neurodegenerative diseases in captive lions in the early 1970s. Vet Pathol 2025:3009858251335280. [PMID: 40304295 DOI: 10.1177/03009858251335280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Rustrela virus (RusV), a recently discovered pathogen for domestic and wildlife animals, was identified as the causative agent of meningoencephalomyelitis in domestic cats and various zoo animals including lions. To analyze a past outbreak of increased mortality in lions and to reveal its possible etiological relationship with an RusV infection, this retrospective study re-evaluates 20 cases of lions originating from a zoo in Western Germany using archived formalin-fixed paraffin-embedded (FFPE) tissues. Animals with different neurologic signs were submitted for necropsy between December 1970 and April 1971. Eight lions (40%) suffered from non-suppurative meningoencephalomyelitis with RusV RNA and antigen detectable in the central nervous system (CNS). Twelve animals (60%) were negative for RusV. Eleven animals had an etiologically undetermined degenerative encephalomyelopathy characterized by dilated myelin sheaths, myelinophages, and spheroids. Eight of these 12 lions suffered from an erosive, lymphohistiocytic enteritis with nuclear inclusion bodies in enterocytes associated with parvoviral antigen and nucleic acid in the intestines, lymph nodes, and spleen, but not in the CNS. Five of the parvovirus-infected animals had a granulomatous inflammation in mesenteric lymph nodes that was also the only detectable lesion in one other lion. Acid-fast bacilli and Mycobacterium bovis DNA confirmed the diagnosis of tuberculosis. In summary, this study provides convincing evidence of the usefulness of long-term stored FFPE material for further investigations using immunohistochemistry, reverse transcription quantitative polymerase chain reaction, and in situ hybridization for resolving past disease outbreaks. It provides further insights into the epidemiology of infectious agents like RusV and parvovirus.
Collapse
Affiliation(s)
| | - Inga Nägler
- University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | - Adnan Fayyad
- University of Veterinary Medicine Hannover, Hannover, Germany
- An-Najah National University, Nablus, Palestine
| | - Christina Puff
- University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Peter Wohlsein
- University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
2
|
de le Roi M, Gerhards H, Fayyad A, Boelke M, Becker SC, Volz A, Gerhauser I, Baumgärtner W, Puff C. Evaluating the potential of anti-dsRNA antibodies as an alternative viral sensing tool in encephalitides of different species. Front Vet Sci 2025; 12:1540437. [PMID: 40191085 PMCID: PMC11969456 DOI: 10.3389/fvets.2025.1540437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Although laboratory methods have advanced, the cause of many encephalitides is still unknown. Molecular methods like multiplex PCR and microarrays are considered to be often less sensitive than Next Generation Sequencing, whereas the latter is time-consuming and costly. These analyses require appropriate tissue preparations and are more difficult to perform on formalin-fixed, paraffin-embedded (FFPE) tissues. Anti-double-stranded RNA (dsRNA) antibodies could potentially identify virus infections independently of the viral genome and can be applied to FFPE material. This study examined the applicability of monoclonal anti-dsRNA antibodies by immunohistochemistry to confirm encephalitides caused by different RNA viruses and comparing the findings with those obtained using monoclonal and polyclonal virus-specific antibodies. The viruses studied included negative-sense (Borna disease virus 1, BoDV-1; canine distemper virus, CDV; Rift Valley fever virus, RVFV) and positive-sense single stranded RNA viruses (severe acute respiratory disease syndrome coronavirus 2, SARS-CoV-2; tick-borne encephalitis virus, TBEV; Theiler's murine encephalomyelitis virus, TMEV). Interestingly, dsRNA was detected in both infected and non-infected animals and inconsistently co-localized to BoDV-1, TBEV, and TMEV antigen. Strict co-localization was lacking in CDV, SARS-CoV-2 and RVFV. Despite the co-localization of dsRNA with virus antigen for some RNA viruses, anti-dsRNA antibodies were unreliable as markers for unknown virus infections. Future studies should explore the upstream components of the immune response, including the interferon signaling cascade to assess their potential as effective virus-sensing tool.
Collapse
Affiliation(s)
- Madeleine de le Roi
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hannah Gerhards
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Adnan Fayyad
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus, Palestine
| | - Mathias Boelke
- Institute of Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
3
|
Morani AH, Saeed MM, Aslam M, Mehmoud A, Shokri A, Mukalazi H. Local and global stability analysis of HIV/AIDS by using a nonstandard finite difference scheme. Sci Rep 2025; 15:4502. [PMID: 39915504 PMCID: PMC11802842 DOI: 10.1038/s41598-024-82872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 12/10/2024] [Indexed: 02/09/2025] Open
Abstract
This study presents a mathematical model incorporating both asymptomatic and symptomatic HIV-infected individuals to analyze the dynamics of HIV/AIDS. This expanded model offers a more comprehensive understanding of the epidemic's spread. We calculate the basic reproduction number (R0) to quantify the virus's transmission potential. To achieve accurate and robust simulations, we introduce the Nonstandard Finite Difference Scheme (NSFD). Compared to traditional methods like RK-4, NSFD offers improved dynamical consistency and numerical precision, leading to enhanced stability and efficiency in simulating infectious diseases like HIV/AIDS. Local and global stability analysis are performed using the Routh-Hurwitz method. The NSFD method effectively captures the dynamics of HIV propagation under various scenarios, providing valuable insights into HIV/AIDS progression. We demonstrate the superiority of the NSFD approach compared to existing methods, paving the way for further research in modeling viral infections.
Collapse
Affiliation(s)
- Amjid Hussain Morani
- Department of Mathematics, Institute of Numerical Sciences, Gomal University, Dera Ismail Khan, KPK, 29050, Pakistan
| | - Maha Mohammed Saeed
- Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Muhammad Aslam
- Department of Mathematics, College of Sciences, King Khalid University, Abha, 61413, Saudi Arabia
| | - Atif Mehmoud
- Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Ali Shokri
- Department of Mathematics, Faculty of Science, University of Maragheh, Maragheh, 83111-55181, Iran
| | - Herbert Mukalazi
- Department of Mathematics and Statistics, Kyambogo University, Kampala, Uganda.
| |
Collapse
|
4
|
Wilson T, Kuch M, Poinar D, Rockarts J, Wainman B, Morgello S, Poinar H. Impact of commercial RNA extraction methods on the recovery of human RNA sequence data from archival fixed tissues. Biotechniques 2025; 77:76-93. [PMID: 40071636 PMCID: PMC12063700 DOI: 10.1080/07366205.2025.2473842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/26/2025] [Indexed: 04/10/2025] Open
Abstract
Archival fixed tissues hold key insights into the evolutionary history of RNA viruses and the associated host immune response, yet access to the RNA sequence data is limited by a lack of robust methods for RNA extraction and sequence retrieval from these tissue types. Here we compared three commercial RNA extraction techniques (bead, column, and phase-based) on five fixed human brain tissues done in triplicate, that have been stored for up to 43 years. We found that for this sample set, bead-based extractions captured longer molecules and yielded a greater proportion of unique reads when aligned to the human genome, than did column and phase-based extraction methods. Via the incorporation of multiple extraction replicates, we quantified the variability in sequencing metrics resulting from tissue sample and extraction technique heterogeneity. Additionally, we compared pre- and post-sequencing metrics and found that the former poorly predicted post-sequencing on-target success. Our findings help inform future research on the recovery of RNA from archival fixed tissues.
Collapse
Affiliation(s)
- Tess Wilson
- McMaster Ancient DNA Centre, McMaster University, Hamilton, Canada
- Department of Biochemistry, McMaster University, Hamilton, Canada
| | - Melanie Kuch
- McMaster Ancient DNA Centre, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Debi Poinar
- McMaster Ancient DNA Centre, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Jasmine Rockarts
- Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Bruce Wainman
- Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Susan Morgello
- Icahn School of Medicine at Mount Sinai, New York, United States
| | - Hendrik Poinar
- McMaster Ancient DNA Centre, McMaster University, Hamilton, Canada
- Department of Biochemistry, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| |
Collapse
|
5
|
Dias RA. Towards a Comprehensive Definition of Pandemics and Strategies for Prevention: A Historical Review and Future Perspectives. Microorganisms 2024; 12:1802. [PMID: 39338476 PMCID: PMC11433773 DOI: 10.3390/microorganisms12091802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The lack of a universally accepted definition of a pandemic hinders a comprehensive understanding of and effective response to these global health crises. Current definitions often lack quantitative criteria, rendering them vague and limiting their utility. Here, we propose a refined definition that considers the likelihood of susceptible individuals contracting an infectious disease that culminates in widespread global transmission, increased morbidity and mortality, and profound societal, economic, and political consequences. Applying this definition retrospectively, we identify 22 pandemics that occurred between 165 and 2024 AD and were caused by a variety of diseases, including smallpox (Antonine and American), plague (Justinian, Black Death, and Third Plague), cholera (seven pandemics), influenza (two Russian, Spanish, Asian, Hong Kong, and swine), AIDS, and coronaviruses (SARS, MERS, and COVID-19). This work presents a comprehensive analysis of past pandemics caused by both emerging and re-emerging pathogens, along with their epidemiological characteristics, societal impact, and evolution of public health responses. We also highlight the need for proactive measures to reduce the risk of future pandemics. These strategies include prioritizing surveillance of emerging zoonotic pathogens, conserving biodiversity to counter wildlife trafficking, and minimizing the potential for zoonotic spillover events. In addition, interventions such as promoting alternative protein sources, enforcing the closure of live animal markets in biodiversity-rich regions, and fostering global collaboration among diverse stakeholders are critical to preventing future pandemics. Crucially, improving wildlife surveillance systems will require the concerted efforts of local, national and international entities, including laboratories, field researchers, wildlife conservationists, government agencies and other stakeholders. By fostering collaborative networks and establishing robust biorepositories, we can strengthen our collective capacity to detect, monitor, and mitigate the emergence and transmission of zoonotic pathogens.
Collapse
Affiliation(s)
- Ricardo Augusto Dias
- School of Veterinary Medicine, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 05508-270, Brazil
| |
Collapse
|
6
|
Astudillo-Clavijo V, Mankis T, López-Fernández H. Opening the Museum's Vault: Historical Field Records Preserve Reliable Ecological Data. Am Nat 2024; 203:305-322. [PMID: 38358812 DOI: 10.1086/728422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractMuseum specimens have long served as foundational data sources for ecological, evolutionary, and environmental research. Continued reimagining of museum collections is now also generating new types of data associated with but beyond physical specimens, a concept known as "extended specimens." Field notes penned by generations of naturalists contain firsthand ecological observations associated with museum collections and comprise a form of extended specimens with the potential to provide novel ecological data spanning broad geographic and temporal scales. Despite their data-yielding potential, however, field notes remain underutilized in research because of their heterogeneous, unstandardized, and qualitative nature. We introduce an approach for transforming descriptive ecological notes into quantitative data suitable for statistical analysis. Tests with simulated and real-world published data show that field notes and our transformation approach retain reliable quantitative ecological information under a range of sample sizes and evolutionary scenarios. Unlocking the wealth of data contained within field records could facilitate investigations into the ecology of clades whose diversity, distribution, or other demographic features present challenges to traditional ecological studies, improve our understanding of long-term environmental and evolutionary change, and enhance predictions of future change.
Collapse
|
7
|
Konno Y, Uriu K, Chikata T, Takada T, Kurita JI, Ueda MT, Islam S, Yang Tan BJ, Ito J, Aso H, Kumata R, Williamson C, Iwami S, Takiguchi M, Nishimura Y, Morita E, Satou Y, Nakagawa S, Koyanagi Y, Sato K. Two-step evolution of HIV-1 budding system leading to pandemic in the human population. Cell Rep 2024; 43:113697. [PMID: 38294901 DOI: 10.1016/j.celrep.2024.113697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/19/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
The pandemic HIV-1, HIV-1 group M, emerged from a single spillover event of its ancestral lentivirus from a chimpanzee. During human-to-human spread worldwide, HIV-1 diversified into multiple subtypes. Here, our interdisciplinary investigation mainly sheds light on the evolutionary scenario of the viral budding system of HIV-1 subtype C (HIV-1C), a most successfully spread subtype. Of the two amino acid motifs for HIV-1 budding, the P(T/S)AP and YPxL motifs, HIV-1C loses the YPxL motif. Our data imply that HIV-1C might lose this motif to evade immune pressure. Additionally, the P(T/S)AP motif is duplicated dependently of the level of HIV-1 spread in the human population, and >20% of HIV-1C harbored the duplicated P(T/S)AP motif. We further show that the duplication of the P(T/S)AP motif is caused by the expansion of the CTG triplet repeat. Altogether, our results suggest that HIV-1 has experienced a two-step evolution of the viral budding process during human-to-human spread worldwide.
Collapse
Affiliation(s)
- Yoriyuki Konno
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Graduate School of Medicine, the University of Tokyo, Tokyo 1130033, Japan; Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori 0368561, Japan
| | - Takayuki Chikata
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8608556, Japan
| | - Toru Takada
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 8128581, Japan
| | - Jun-Ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa 2300045, Japan
| | - Mahoko Takahashi Ueda
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 2591193, Japan
| | - Saiful Islam
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8608556, Japan
| | - Benjy Jek Yang Tan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8608556, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Hirofumi Aso
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 6068501, Japan
| | - Ryuichi Kumata
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Carolyn Williamson
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Shingo Iwami
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 8128581, Japan; MIRAI, Japan Science and Technology Agency, Kawaguchi 3320012, Japan
| | - Masafumi Takiguchi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8608556, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa 2300045, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori 0368561, Japan
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8608556, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 2591193, Japan
| | - Yoshio Koyanagi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 6068501, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Graduate School of Medicine, the University of Tokyo, Tokyo 1130033, Japan; International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 2778561, Japan; CREST, Japan Science and Technology Agency, Kawaguchi 3320012, Japan.
| |
Collapse
|
8
|
Kuno G. Mechanisms of Yellow Fever Transmission: Gleaning the Overlooked Records of Importance and Identifying Problems, Puzzles, Serious Issues, Surprises and Research Questions. Viruses 2024; 16:84. [PMID: 38257784 PMCID: PMC10820296 DOI: 10.3390/v16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
In viral disease research, few diseases can compete with yellow fever for the volume of literature, historical significance, richness of the topics and the amount of strong interest among both scientists and laypersons. While the major foci of viral disease research shifted to other more pressing new diseases in recent decades, many critically important basic tasks still remain unfinished for yellow fever. Some of the examples include the mechanisms of transmission, the process leading to outbreak occurrence, environmental factors, dispersal, and viral persistence in nature. In this review, these subjects are analyzed in depth, based on information not only in old but in modern literatures, to fill in blanks and to update the current understanding on these topics. As a result, many valuable facts, ideas, and other types of information that complement the present knowledge were discovered. Very serious questions about the validity of the arbovirus concept and some research practices were also identified. The characteristics of YFV and its pattern of transmission that make this virus unique among viruses transmitted by Ae. aegypti were also explored. Another emphasis was identification of research questions. The discovery of a few historical surprises was an unexpected benefit.
Collapse
Affiliation(s)
- Goro Kuno
- Formerly at the Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|
9
|
Zhao JH, Wang YW, Yang J, Tong ZJ, Wu JZ, Wang YB, Wang QX, Li QQ, Yu YC, Leng XJ, Chang L, Xue X, Sun SL, Li HM, Ding N, Duan JA, Li NG, Shi ZH. Natural products as potential lead compounds to develop new antiviral drugs over the past decade. Eur J Med Chem 2023; 260:115726. [PMID: 37597436 DOI: 10.1016/j.ejmech.2023.115726] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Virus infection has been one of the main causes of human death since the ancient times. Even though more and more antiviral drugs have been approved in clinic, long-term use can easily lead to the emergence of drug resistance and side effects. Fortunately, there are many kinds of metabolites which were produced by plants, marine organisms and microorganisms in nature with rich structural skeletons, and they are natural treasure house for people to find antiviral active substances. Aiming at many types of viruses that had caused serious harm to human health in recent years, this review summarizes the natural products with antiviral activity that had been reported for the first time in the past ten years, we also sort out the source, chemical structure and safety indicators in order to provide potential lead compounds for the research and development of new antiviral drugs.
Collapse
Affiliation(s)
- Jing-Han Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yue-Wei Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - He-Min Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
10
|
Guzmán-Solís AA, Navarro MA, Ávila-Arcos MC, Blanco-Melo D. A Glimpse into the Past: What Ancient Viral Genomes Reveal About Human History. Annu Rev Virol 2023; 10:49-75. [PMID: 37268008 DOI: 10.1146/annurev-virology-111821-123859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Humans have battled viruses for millennia. However, directly linking the symptomatology of disease outbreaks to specific viral pathogens was not possible until the twentieth century. With the advent of the genomic era and the development of advanced protocols for isolation, sequencing, and analysis of ancient nucleic acids from diverse human remains, the identification and characterization of ancient viruses became feasible. Recent studies have provided invaluable information about past epidemics and made it possible to examine assumptions and inferences on the origin and evolution of certain viral families. In parallel, the study of ancient viruses also uncovered their importance in the evolution of the human lineage and their key roles in shaping major events in human history. In this review, we describe the strategies used for the study of ancient viruses, along with their limitations, and provide a detailed account of what past viral infections have revealed about human history.
Collapse
Affiliation(s)
- Axel A Guzmán-Solís
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Alejandro Navarro
- Licenciatura en Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México;
| | - María C Ávila-Arcos
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México;
| | - Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| |
Collapse
|
11
|
Mármol-Sánchez E, Fromm B, Oskolkov N, Pochon Z, Kalogeropoulos P, Eriksson E, Biryukova I, Sekar V, Ersmark E, Andersson B, Dalén L, Friedländer MR. Historical RNA expression profiles from the extinct Tasmanian tiger. Genome Res 2023; 33:1299-1316. [PMID: 37463752 PMCID: PMC10552650 DOI: 10.1101/gr.277663.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
Paleogenomics continues to yield valuable insights into the evolution, population dynamics, and ecology of our ancestors and other extinct species. However, DNA sequencing cannot reveal tissue-specific gene expression, cellular identity, or gene regulation, which are only attainable at the transcriptional level. Pioneering studies have shown that useful RNA can be extracted from ancient specimens preserved in permafrost and historical skins from extant canids, but no attempts have been made so far on extinct species. We extract, sequence, and analyze historical RNA from muscle and skin tissue of a ∼130-year-old Tasmanian tiger (Thylacinus cynocephalus) preserved in desiccation at room temperature in a museum collection. The transcriptional profiles closely resemble those of extant species, revealing specific anatomical features such as slow muscle fibers or blood infiltration. Metatranscriptomic analysis, RNA damage, tissue-specific RNA profiles, and expression hotspots genome-wide further confirm the thylacine origin of the sequences. RNA sequences are used to improve protein-coding and noncoding annotations, evidencing missing exonic loci and the location of ribosomal RNA genes while increasing the number of annotated thylacine microRNAs from 62 to 325. We discover a thylacine-specific microRNA isoform that could not have been confirmed without RNA evidence. Finally, we detect traces of RNA viruses, suggesting the possibility of profiling viral evolution. Our results represent the first successful attempt to obtain transcriptional profiles from an extinct animal species, providing thought-to-be-lost information on gene expression dynamics. These findings hold promising implications for the study of RNA molecules across the vast collections of natural history museums and from well-preserved permafrost remains.
Collapse
Affiliation(s)
- Emilio Mármol-Sánchez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden;
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden
| | - Bastian Fromm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, 9006 Tromsø, Norway
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, 223 62 Lund, Sweden
| | - Zoé Pochon
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, 106 91 Stockholm, Sweden
| | - Panagiotis Kalogeropoulos
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Eli Eriksson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Inna Biryukova
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Vaishnovi Sekar
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Erik Ersmark
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology (CMB), Karolinska Institute, 171 77 Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden;
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Marc R Friedländer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden;
| |
Collapse
|
12
|
Lund MC, Larsen BB, Rowsey DM, Otto HW, Gryseels S, Kraberger S, Custer JM, Steger L, Yule KM, Harris RE, Worobey M, Van Doorslaer K, Upham NS, Varsani A. Using archived and biocollection samples towards deciphering the DNA virus diversity associated with rodent species in the families cricetidae and heteromyidae. Virology 2023; 585:42-60. [PMID: 37276766 DOI: 10.1016/j.virol.2023.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
Rodentia is the most speciose order of mammals, and they are known to harbor a wide range of viruses. Although there has been significant research on zoonotic viruses in rodents, research on the diversity of other viruses has been limited, especially for rodents in the families Cricetidae and Heteromyidae. In fecal and liver samples of nine species of rodents, we identify 346 distinct circular DNA viral genomes. Of these, a large portion are circular, single-stranded DNA viruses in the families Anelloviridae (n = 3), Circoviridae (n = 5), Genomoviridae (n = 7), Microviridae (n = 297), Naryaviridae (n = 4), Vilyaviridae (n = 15) and in the phylum Cressdnaviricota (n = 13) that cannot be assigned established families. We also identified two large bacteriophages of 36 and 50 kb that are part of the class Caudoviricetes. Some of these viruses are clearly those that infect rodents, however, most of these likely infect various organisms associated with rodents, their environment or their diet.
Collapse
Affiliation(s)
- Michael C Lund
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Brendan B Larsen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98102, USA
| | - Dakota M Rowsey
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Hans W Otto
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Sophie Gryseels
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000, Leuven, Belgium; Department of Biology, University of Antwerp, 2000, Antwerp, Belgium; OD Taxonomy and Phylogeny, Royal Belgian Museum of Natural Sciences, 1000, Brussels, Belgium
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Laura Steger
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Kelsey M Yule
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Robin E Harris
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, The BIO5 Institute, Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, AZ, 85724, USA
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7701, South Africa.
| |
Collapse
|
13
|
Grant HE, Roy S, Williams R, Tutill H, Ferns B, Cane PA, Carswell JW, Ssemwanga D, Kaleebu P, Breuer J, Leigh Brown AJ. A large population sample of African HIV genomes from the 1980s reveals a reduction in subtype D over time associated with propensity for CXCR4 tropism. Retrovirology 2022; 19:28. [PMID: 36514107 PMCID: PMC9746199 DOI: 10.1186/s12977-022-00612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022] Open
Abstract
We present 109 near full-length HIV genomes amplified from blood serum samples obtained during early 1986 from across Uganda, which to our knowledge is the earliest and largest population sample from the initial phase of the HIV epidemic in Africa. Consensus sequences were made from paired-end Illumina reads with a target-capture approach to amplify HIV material following poor success with standard approaches. In comparisons with a smaller 'intermediate' genome dataset from 1998 to 1999 and a 'modern' genome dataset from 2007 to 2016, the proportion of subtype D was significantly higher initially, dropping from 67% (73/109), to 57% (26/46) to 17% (82/465) respectively (p < 0.0001). Subtype D has previously been shown to have a faster rate of disease progression than other subtypes in East African population studies, and to have a higher propensity to use the CXCR4 co-receptor ("X4 tropism"); associated with a decrease in time to AIDS. Here we find significant differences in predicted tropism between A1 and D subtypes in all three sample periods considered, which is particularly striking the 1986 sample: 66% (53/80) of subtype D env sequences were predicted to be X4 tropic compared with none of the 24 subtype A1. We also analysed the frequency of subtype in the envelope region of inter-subtype recombinants, and found that subtype A1 is over-represented in env, suggesting recombination and selection have acted to remove subtype D env from circulation. The reduction of subtype D frequency over three decades therefore appears to be a result of selective pressure against X4 tropism and its higher virulence. Lastly, we find a subtype D specific codon deletion at position 24 of the V3 loop, which may explain the higher propensity for subtype D to utilise X4 tropism.
Collapse
Affiliation(s)
- Heather E Grant
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK.
| | - Sunando Roy
- Division of Infection and Immunity, University College London, London, UK
| | - Rachel Williams
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Helena Tutill
- Division of Infection and Immunity, University College London, London, UK
| | - Bridget Ferns
- Department of Virology, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | - Deogratius Ssemwanga
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Pontiano Kaleebu
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | | |
Collapse
|
14
|
Ellwanger JH, Fearnside PM, Ziliotto M, Valverde-Villegas JM, Veiga ABGDA, Vieira GF, Bach E, Cardoso JC, Müller NFD, Lopes G, Caesar L, Kulmann-Leal B, Kaminski VL, Silveira ES, Spilki FR, Weber MN, Almeida SEDEM, Hora VPDA, Chies JAB. Synthesizing the connections between environmental disturbances and zoonotic spillover. AN ACAD BRAS CIENC 2022; 94:e20211530. [PMID: 36169531 DOI: 10.1590/0001-3765202220211530] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Zoonotic spillover is a phenomenon characterized by the transfer of pathogens between different animal species. Most human emerging infectious diseases originate from non-human animals, and human-related environmental disturbances are the driving forces of the emergence of new human pathogens. Synthesizing the sequence of basic events involved in the emergence of new human pathogens is important for guiding the understanding, identification, and description of key aspects of human activities that can be changed to prevent new outbreaks, epidemics, and pandemics. This review synthesizes the connections between environmental disturbances and increased risk of spillover events based on the One Health perspective. Anthropogenic disturbances in the environment (e.g., deforestation, habitat fragmentation, biodiversity loss, wildlife exploitation) lead to changes in ecological niches, reduction of the dilution effect, increased contact between humans and other animals, changes in the incidence and load of pathogens in animal populations, and alterations in the abiotic factors of landscapes. These phenomena can increase the risk of spillover events and, potentially, facilitate new infectious disease outbreaks. Using Brazil as a study model, this review brings a discussion concerning anthropogenic activities in the Amazon region and their potential impacts on spillover risk and spread of emerging diseases in this region.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Philip Martin Fearnside
- Instituto Nacional de Pesquisas da Amazônia/INPA, Avenida André Araújo, 2936, Aleixo, 69067-375 Manaus, AM, Brazil
| | - Marina Ziliotto
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Jacqueline María Valverde-Villegas
- Institut de Génétique Moléculaire de Montpellier/IGMM, Centre National de la Recherche Scientifique/CNRS, Laboratoire coopératif IGMM/ABIVAX, 1919, route de Mende, 34090 Montpellier, Montpellier, France
| | - Ana Beatriz G DA Veiga
- Universidade Federal de Ciências da Saúde de Porto Alegre/UFCSPA, Departamento de Ciências Básicas de Saúde, Rua Sarmento Leite, 245, Centro Histórico, 90050-170 Porto Alegre, RS, Brazil
| | - Gustavo F Vieira
- Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunoinformática, Núcleo de Bioinformática do Laboratório de Imunogenética/NBLI, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Laboratório de Saúde Humana in silico, Avenida Victor Barreto, 2288, Centro, 92010-000 Canoas, RS, Brazil
| | - Evelise Bach
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Jáder C Cardoso
- Centro Estadual de Vigilância em Saúde/CEVS, Divisão de Vigilância Ambiental em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Avenida Ipiranga, 5400, Jardim Botânico, 90610-000 Porto Alegre, RS, Brazil
| | - Nícolas Felipe D Müller
- Centro Estadual de Vigilância em Saúde/CEVS, Divisão de Vigilância Ambiental em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Avenida Ipiranga, 5400, Jardim Botânico, 90610-000 Porto Alegre, RS, Brazil
| | - Gabriel Lopes
- Fundação Oswaldo Cruz/FIOCRUZ, Casa de Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Lílian Caesar
- Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Indiana University/IU, Department of Biology, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - Bruna Kulmann-Leal
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Valéria L Kaminski
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São Paulo/UNIFESP, Instituto de Ciência e Tecnologia/ICT, Laboratório de Imunologia Aplicada, Rua Talim, 330, Vila Nair, 12231-280 São José dos Campos, SP, Brazil
| | - Etiele S Silveira
- Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunoinformática, Núcleo de Bioinformática do Laboratório de Imunogenética/NBLI, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Fernando R Spilki
- Universidade Feevale, Laboratório de Saúde Única, Instituto de Ciências da Saúde/ICS, Rodovia ERS-239, 2755, Vila Nova, 93525-075 Novo Hamburgo, RS, Brazil
| | - Matheus N Weber
- Universidade Feevale, Laboratório de Saúde Única, Instituto de Ciências da Saúde/ICS, Rodovia ERS-239, 2755, Vila Nova, 93525-075 Novo Hamburgo, RS, Brazil
| | - Sabrina E DE Matos Almeida
- Universidade Feevale, Laboratório de Saúde Única, Instituto de Ciências da Saúde/ICS, Rodovia ERS-239, 2755, Vila Nova, 93525-075 Novo Hamburgo, RS, Brazil
| | - Vanusa P DA Hora
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande/FURG, Faculdade de Medicina, Rua Visconde de Paranaguá, 102, Centro, 96203-900, Rio Grande, RS, Brazil
| | - José Artur B Chies
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Nishimura L, Fujito N, Sugimoto R, Inoue I. Detection of Ancient Viruses and Long-Term Viral Evolution. Viruses 2022; 14:v14061336. [PMID: 35746807 PMCID: PMC9230872 DOI: 10.3390/v14061336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/22/2022] Open
Abstract
The COVID-19 outbreak has reminded us of the importance of viral evolutionary studies as regards comprehending complex viral evolution and preventing future pandemics. A unique approach to understanding viral evolution is the use of ancient viral genomes. Ancient viruses are detectable in various archaeological remains, including ancient people's skeletons and mummified tissues. Those specimens have preserved ancient viral DNA and RNA, which have been vigorously analyzed in the last few decades thanks to the development of sequencing technologies. Reconstructed ancient pathogenic viral genomes have been utilized to estimate the past pandemics of pathogenic viruses within the ancient human population and long-term evolutionary events. Recent studies revealed the existence of non-pathogenic viral genomes in ancient people's bodies. These ancient non-pathogenic viruses might be informative for inferring their relationships with ancient people's diets and lifestyles. Here, we reviewed the past and ongoing studies on ancient pathogenic and non-pathogenic viruses and the usage of ancient viral genomes to understand their long-term viral evolution.
Collapse
Affiliation(s)
- Luca Nishimura
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Naoko Fujito
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Ryota Sugimoto
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Correspondence: ; Tel.: +81-55-981-6795
| |
Collapse
|
16
|
HIV / AIDS as a model for emerging infectious disease: origin, dating and circumstances of an emblematic epidemiological success. Presse Med 2022; 51:104128. [PMID: 35623545 DOI: 10.1016/j.lpm.2022.104128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
In June 1981, the Centers for Disease Control (CDC) "Morbidity and Mortality Weekly Report" described the first cases of what was to be known as the Acquired Immunodeficiency Syndrome (AIDS). Two years later, the agent responsible for the disease, the human immunodeficiency virus (HIV), was identified. Since then, according to the World Health Organization an estimated 40 million people have died from the disease. Where does this virus come from, and why such an emergence in the late 20th century? These are the questions that it is now possible to answer in large part thanks to the numerous studies published over a little more than three decades. As with other emerging infectious diseases, initial cross-species transmission from an animal reservoir and subsequent favorable sociological factors associated with the evolution of human societies have led to the spread of a dramatic disease, for which no vaccine is presently available.
Collapse
|
17
|
Malyarchuk AB, Andreeva TV, Kuznetsova IL, Kunizheva SS, Protasova MS, Uralsky LI, Tyazhelova TV, Gusev FE, Manakhov AD, Rogaev EI. Genomics of Ancient Pathogens: First Advances and Prospects. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:242-258. [PMID: 35526849 PMCID: PMC8916790 DOI: 10.1134/s0006297922030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
Abstract
Paleogenomics is one of the urgent and promising areas of interdisciplinary research in the today's world science. New genomic methods of ancient DNA (aDNA) analysis, such as next generation sequencing (NGS) technologies, make it possible not only to obtain detailed genetic information about historical and prehistoric human populations, but also to study individual microbial and viral pathogens and microbiomes from different ancient and historical objects. Studies of aDNA of pathogens by reconstructing their genomes have so far yielded complete sequences of the ancient pathogens that played significant role in the history of the world: Yersinia pestis (plague), Variola virus (smallpox), Vibrio cholerae (cholera), HBV (hepatitis B virus), as well as the equally important endemic human infectious agents: Mycobacterium tuberculosis (tuberculosis), Mycobacterium leprae (leprosy), and Treponema pallidum (syphilis). Genomic data from these pathogens complemented the information previously obtained by paleopathologists and allowed not only to identify pathogens from the past pandemics, but also to recognize the pathogen lineages that are now extinct, to refine chronology of the pathogen appearance in human populations, and to reconstruct evolutionary history of the pathogens that are still relevant to public health today. In this review, we describe state-of-the-art genomic research of the origins and evolution of many ancient pathogens and viruses and examine mechanisms of the emergence and spread of the ancient infections in the mankind history.
Collapse
Affiliation(s)
- Alexandra B Malyarchuk
- Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Tatiana V Andreeva
- Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Irina L Kuznetsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Svetlana S Kunizheva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Maria S Protasova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Lev I Uralsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Tatiana V Tyazhelova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Fedor E Gusev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Andrey D Manakhov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Evgeny I Rogaev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia.
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
18
|
Limnaios S, Kostaki EG, Adamis G, Astriti M, Chini M, Mangafas N, Lazanas M, Patrinos S, Metallidis S, Tsachouridou O, Papastamopoulos V, Kakalou E, Chatzidimitriou D, Antoniadou A, Papadopoulos A, Psichogiou M, Basoulis D, Gova M, Pilalas D, Paraskeva D, Chrysos G, Paparizos V, Kourkounti S, Sambatakou H, Bolanos V, Sipsas NV, Lada M, Barbounakis E, Kantzilaki E, Panagopoulos P, Maltezos E, Drimis S, Sypsa V, Lagiou P, Magiorkinis G, Hatzakis A, Skoura L, Paraskevis D. Dating the Origin and Estimating the Transmission Rates of the Major HIV-1 Clusters in Greece: Evidence about the Earliest Subtype A1 Epidemic in Europe. Viruses 2022; 14:v14010101. [PMID: 35062305 PMCID: PMC8782043 DOI: 10.3390/v14010101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
Our aim was to estimate the date of the origin and the transmission rates of the major local clusters of subtypes A1 and B in Greece. Phylodynamic analyses were conducted in 14 subtype A1 and 31 subtype B clusters. The earliest dates of origin for subtypes A1 and B were in 1982.6 and in 1985.5, respectively. The transmission rate for the subtype A1 clusters ranged between 7.54 and 39.61 infections/100 person years (IQR: 9.39, 15.88), and for subtype B clusters between 4.42 and 36.44 infections/100 person years (IQR: 7.38, 15.04). Statistical analysis revealed that the average difference in the transmission rate between the PWID and the MSM clusters was 6.73 (95% CI: 0.86 to 12.60; p = 0.026). Our study provides evidence that the date of introduction of subtype A1 in Greece was the earliest in Europe. Transmission rates were significantly higher for PWID than MSM clusters due to the conditions that gave rise to an extensive PWID HIV-1 outbreak ten years ago in Athens, Greece. Transmission rate can be considered as a valuable measure for public health since it provides a proxy of the rate of epidemic growth within a cluster and, therefore, it can be useful for targeted HIV prevention programs.
Collapse
Affiliation(s)
- Stefanos Limnaios
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Georgios Adamis
- 1st Department of Internal Medicine, G. Gennimatas General Hospital, 11527 Athens, Greece; (G.A.); (M.A.)
| | - Myrto Astriti
- 1st Department of Internal Medicine, G. Gennimatas General Hospital, 11527 Athens, Greece; (G.A.); (M.A.)
| | - Maria Chini
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Nikos Mangafas
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Marios Lazanas
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | | | - Simeon Metallidis
- 1st Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.M.); (O.T.)
| | - Olga Tsachouridou
- 1st Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.M.); (O.T.)
| | - Vasileios Papastamopoulos
- 5th Department of Internal Medicine and Infectious Diseases, Evaggelismos General Hospital, 10676 Athens, Greece; (V.P.); (E.K.)
| | - Eleni Kakalou
- 5th Department of Internal Medicine and Infectious Diseases, Evaggelismos General Hospital, 10676 Athens, Greece; (V.P.); (E.K.)
| | - Dimitrios Chatzidimitriou
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (L.S.)
| | - Anastasia Antoniadou
- 4th Department of Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.A.); (A.P.)
| | - Antonios Papadopoulos
- 4th Department of Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.A.); (A.P.)
| | - Mina Psichogiou
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (D.B.)
| | - Dimitrios Basoulis
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (D.B.)
| | - Maria Gova
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Dimitrios Pilalas
- Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitra Paraskeva
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Georgios Chrysos
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Vasileios Paparizos
- HIV/AIDS Unit, A. Syngros Hospital of Dermatology and Venereology, 16121 Athens, Greece; (V.P.); (S.K.)
| | - Sofia Kourkounti
- HIV/AIDS Unit, A. Syngros Hospital of Dermatology and Venereology, 16121 Athens, Greece; (V.P.); (S.K.)
| | - Helen Sambatakou
- HIV Unit, 2nd Department of Internal Medicine, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.S.); (V.B.)
| | - Vasileios Bolanos
- HIV Unit, 2nd Department of Internal Medicine, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.S.); (V.B.)
| | - Nikolaos V. Sipsas
- Department of Pathophysiology, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Malvina Lada
- 2nd Department of Internal Medicine, Sismanogleion General Hospital, 15126 Marousi, Greece;
| | - Emmanouil Barbounakis
- Department of Internal Medicine, University Hospital of Heraklion “PAGNI”, Medical School, University of Crete, 71110 Heraklion, Greece; (E.B.); (E.K.)
| | - Evrikleia Kantzilaki
- Department of Internal Medicine, University Hospital of Heraklion “PAGNI”, Medical School, University of Crete, 71110 Heraklion, Greece; (E.B.); (E.K.)
| | - Periklis Panagopoulos
- Department of Internal Medicine, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.P.); (E.M.)
| | - Efstratios Maltezos
- Department of Internal Medicine, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.P.); (E.M.)
| | - Stelios Drimis
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Vana Sypsa
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Lemonia Skoura
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (L.S.)
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
- Correspondence:
| |
Collapse
|
19
|
van Zyl GU. New Technological Developments in Identification and Monitoring of New and Emerging Infections. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022. [PMCID: PMC8291697 DOI: 10.1016/b978-0-12-818731-9.00094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Spencer JNH. A landscape planning agenda for global health security: Learning from the history of HIV/AIDS and pandemic influenza. LANDSCAPE AND URBAN PLANNING 2021; 216:104242. [PMID: 36536764 PMCID: PMC9754155 DOI: 10.1016/j.landurbplan.2021.104242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 06/17/2023]
Abstract
This paper considers the role of landscape planning and design in the context of a growing need for research and policy recommendations associated with Emerging Infectious Diseases (EIDs), of which COVID-19 is the most recent. Beginning with a definition of EIDs and their origins within the context of landscape planning, the paper then argues that planning and design scholars and practitioners should begin by seeing the importance of a "global urban ecosystem" (GUE) comprised of rapidly transforming metropolitan and regional "patches" connected through "corridors" of relatively unregulated global transportation and mobility networks. It then revisits the history of the two prior global pandemics of HIV/AIDS and pandemic influenza to establish the importance of a landscape planning perspective at the intersection of wildlife, livestock, and globally connected human communities. The essay concludes by arguing that this GUE concept can facilitate creative planning and design by adapting concepts established in other patch and corridor networks like urban transit systems to the ongoing risk of future pandemic EIDs.
Collapse
|
21
|
Calvignac-Spencer S, Düx A, Gogarten JF, Patrono LV. Molecular archeology of human viruses. Adv Virus Res 2021; 111:31-61. [PMID: 34663498 DOI: 10.1016/bs.aivir.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolution of human-virus associations is usually reconstructed from contemporary patterns of genomic diversity. An intriguing, though still rarely implemented, alternative is to search for the genetic material of viruses in archeological and medical archive specimens to document evolution as it happened. In this chapter, we present lessons from ancient DNA research and incorporate insights from virology to explore the potential range of applications and likely limitations of archeovirological approaches. We also highlight the numerous questions archeovirology will hopefully allow us to tackle in the near future, and the main expected roadblocks to these avenues of research.
Collapse
Affiliation(s)
- Sébastien Calvignac-Spencer
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany; Viral Evolution, Robert Koch-Institute, Berlin, Germany.
| | - Ariane Düx
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany; Viral Evolution, Robert Koch-Institute, Berlin, Germany
| | - Jan F Gogarten
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany; Viral Evolution, Robert Koch-Institute, Berlin, Germany
| | - Livia V Patrono
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
22
|
Bennedbæk M, Zhukova A, Tang MHE, Bennet J, Munderi P, Ruxrungtham K, Gisslen M, Worobey M, Lundgren JD, Marvig RL. Phylogenetic analysis of HIV-1 shows frequent cross-country transmission and local population expansions. Virus Evol 2021; 7:veab055. [PMID: 34532059 PMCID: PMC8438898 DOI: 10.1093/ve/veab055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/03/2022] Open
Abstract
Understanding of pandemics depends on the characterization of pathogen collections from well-defined and demographically diverse cohorts. Since its emergence in Congo almost a century ago, Human Immunodeficiency Virus Type 1 (HIV-1) has geographically spread and genetically diversified into distinct viral subtypes. Phylogenetic analysis can be used to reconstruct the ancestry of the virus to better understand the origin and distribution of subtypes. We sequenced two 3.6-kb amplicons of HIV-1 genomes from 3,197 participants in a clinical trial with consistent and uniform sampling at sites across 35 countries and analyzed our data with another 2,632 genomes that comprehensively reflect the HIV-1 genetic diversity. We used maximum likelihood phylogenetic analysis coupled with geographical information to infer the state of ancestors. The majority of our sequenced genomes (n = 2,501) were either pure subtypes (A-D, F, and G) or CRF01_AE. The diversity and distribution of subtypes across geographical regions differed; USA showed the most homogenous subtype population, whereas African samples were most diverse. We delineated transmission of the four most prevalent subtypes in our dataset (A, B, C, and CRF01_AE), and our results suggest both continuous and frequent transmission of HIV-1 over country borders, as well as single transmission events being the seed of endemic population expansions. Overall, we show that coupling of genetic and geographical information of HIV-1 can be used to understand the origin and spread of pandemic pathogens.
Collapse
Affiliation(s)
| | - Anna Zhukova
- Unité Bioinformatique Evolutive, Hub Bioinformatique et Biostatistique, USR3756 (C3BI//DBC), Institut Pasteur and CNRS, 25-28 Rue du Dr Roux, 75015 Paris, France
| | | | | | - Paula Munderi
- MRC Uganda Research Unit on AIDS, UVRI P.O.Box 49, Plot 51-59 Nakiwogo Road, Entebbe-Uganda
| | - Kiat Ruxrungtham
- HIV-NAT, Thai Red Cross AIDS Research Center, and School of Global Health, Faculty Medicine, Chulalongkorn University, Chamchuri 5 Bld. 6th Fl., Phayathai Rd., Wangmai, Pathumwan Bangkok 10330, Thailand
| | - Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Universitetsplatsen 1, 405 30 Gothenburg, Sweden,Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Universitetsplatsen 1, 405 30 Gothenburg, Sweden
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Biological Sciences West, Rm. 324 Tucson, AZ 85721, USA
| | | | | |
Collapse
|
23
|
Ellwanger JH, Chies JAB. Zoonotic spillover: Understanding basic aspects for better prevention. Genet Mol Biol 2021; 44:e20200355. [PMID: 34096963 PMCID: PMC8182890 DOI: 10.1590/1678-4685-gmb-2020-0355] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/05/2021] [Indexed: 01/07/2023] Open
Abstract
The transmission of pathogens from wild animals to humans is called “zoonotic spillover”. Most human infectious diseases (60-75%) are derived from pathogens that originally circulated in non-human animal species. This demonstrates that spillover has a fundamental role in the emergence of new human infectious diseases. Understanding the factors that facilitate the transmission of pathogens from wild animals to humans is essential to establish strategies focused on the reduction of the frequency of spillover events. In this context, this article describes the basic aspects of zoonotic spillover and the main factors involved in spillover events, considering the role of the inter-species interactions, phylogenetic distance between host species, environmental drivers, and specific characteristics of the pathogens, animals, and humans. As an example, the factors involved in the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic are discussed, indicating what can be learned from this public health emergency, and what can be applied to the Brazilian scenario. Finally, this article discusses actions to prevent or reduce the frequency of zoonotic spillover events.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
| | - José Artur Bogo Chies
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
Tongo M, Martin DP, Dorfman JR. Elucidation of Early Evolution of HIV-1 Group M in the Congo Basin Using Computational Methods. Genes (Basel) 2021; 12:genes12040517. [PMID: 33918115 PMCID: PMC8065694 DOI: 10.3390/genes12040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
The Congo Basin region is believed to be the site of the cross-species transmission event that yielded HIV-1 group M (HIV-1M). It is thus likely that the virus has been present and evolving in the region since that cross-species transmission. As HIV-1M was only discovered in the early 1980s, our directly observed record of the epidemic is largely limited to the past four decades. Nevertheless, by exploiting the genetic relatedness of contemporary HIV-1M sequences, phylogenetic methods provide a powerful framework for investigating simultaneously the evolutionary and epidemiologic history of the virus. Such an approach has been taken to find that the currently classified HIV-1 M subtypes and Circulating Recombinant Forms (CRFs) do not give a complete view of HIV-1 diversity. In addition, the currently identified major HIV-1M subtypes were likely genetically predisposed to becoming a major component of the present epidemic, even before the events that resulted in the global epidemic. Further efforts have identified statistically significant hot- and cold-spots of HIV-1M subtypes sequence inheritance in genomic regions of recombinant forms. In this review we provide ours and others recent findings on the emergence and spread of HIV-1M variants in the region, which have provided insights into the early evolution of this virus.
Collapse
Affiliation(s)
- Marcel Tongo
- Center for Research on Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
- Correspondence:
| | - Darren P. Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Jeffrey R. Dorfman
- Division of Medical Virology, School of Pathology, Faculty of Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| |
Collapse
|
25
|
Berg MG, Olivo A, Harris BJ, Rodgers MA, James L, Mampunza S, Niles J, Baer F, Yamaguchi J, Kaptue L, Laeyendecker O, Quinn TC, McArthur C, Cloherty GA. A high prevalence of potential HIV elite controllers identified over 30 years in Democratic Republic of Congo. EBioMedicine 2021; 65:103258. [PMID: 33674212 PMCID: PMC7992073 DOI: 10.1016/j.ebiom.2021.103258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022] Open
Abstract
Background In-depth analysis of the HIV pandemic at its epicenter in the Congo basin has been hampered by 40 years of political unrest and lack of functional public health infrastructure. In recent surveillance studies (2017-18), we found that the prevalence of HIV in Kinshasa, Democratic Republic of Congo (11%) far exceeded previous estimates. Methods 10,457 participants were screened in Kinshasa with rapid tests from 2017-2019. Individuals confirmed as reactive by the Abbott ARCHITECT HIV Ag/Ab Combo assay (n=1968) were measured by the Abbott RealTime HIV-1 viral load assay. Follow up characterization of samples was performed with alternate manufacturer viral load assays, qPCR for additional blood borne viruses, unbiased next generation sequencing, and HIV Western blotting. Findings Our data suggested the existence of a significant cohort (n=429) of HIV antibody positive/viral load negative individuals. We systematically eliminated collection site bias, sample integrity, and viral genetic diversity as alternative explanations for undetectable viral loads. Mass spectroscopy unexpectedly detected the presence of 3TC antiviral medication in approximately 60% of those tested (209/354), and negative Western blot results indicated false positive serology in 12% (49/404). From the remaining Western blot positives (n=53) and indeterminates (n=31) with reactive Combo and rapid test results, we estimate 2.7-4.3% of infections in DRC to be potential elite controllers. We also analyzed samples from the DRC collected in 1987 and 2001-03, when antiretroviral drugs were not available, and found similarly elevated trends. Interpretation Viral suppression to undetectable viral loads without therapy occurs infrequently in HIV-1 infected patients around the world. Mining of global data suggests a unique ability to control HIV infection arose early in central Africa and occurs in <1% of founder populations. Identification of this group of elite controllers presents a unique opportunity to study potentially novel genetic mechanisms of viral suppression. Funding Abbott Laboratories funded surveillance in DRC and subsequent research efforts. Additional funding was received from a MIZZOU Award from the University of Missouri. Research was supported in part by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.
Collapse
Affiliation(s)
- Michael G Berg
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States.
| | - Ana Olivo
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States
| | - Barbara J Harris
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States
| | - Mary A Rodgers
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States
| | - Linda James
- Université Protestante au Congo, Croisement de l'avenue de Libération et du Boulevard Triomphal, Kinshasa, Democratic Republic of Congo; IMA World Health, 1730 M St NW Suite 1100, Washington DC, United States
| | - Samuel Mampunza
- Université Protestante au Congo, Croisement de l'avenue de Libération et du Boulevard Triomphal, Kinshasa, Democratic Republic of Congo
| | - Jonathan Niles
- IMA World Health, 1730 M St NW Suite 1100, Washington DC, United States
| | - Franklin Baer
- SANRU NGO, 76 Ave. de la Justice, Kinshasa-Gombe, Democratic Republic of Congo
| | - Julie Yamaguchi
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States
| | | | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore MD, United States; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Thomas C Quinn
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore MD, United States; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Carole McArthur
- Pathology Department, Truman Medical Center, Kansas City, MO, United States; Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, United States; University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Gavin A Cloherty
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States
| |
Collapse
|
26
|
Characterization of HIV-1 recombinant and subtype B near full-length genome among men who have sex with men in South Korea. Sci Rep 2021; 11:4122. [PMID: 33602986 PMCID: PMC7892834 DOI: 10.1038/s41598-021-82872-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/25/2021] [Indexed: 11/08/2022] Open
Abstract
In Korea, subtype B is the predominant variant of HIV-1, but full genome sequencing and analysis of its viral variants are lacking. We performed near full-length genome (NFLG) sequencing and phylogenetic and recombination analyses of fifty plasma samples from HIV-positive men who have sex with men (MSM) from a Korea HIV/AIDS cohort study. Viral genomes were amplified and the near-full-length sequences were determined using next-generation sequencing (NGS) and Sanger sequencing. We focused on the HIV-1 subtype classification and identification of HIV recombinants. Twelve HIV-1 NFLGs were determined: ten were subtyped as pure HIV-1 subtype B and two recombinant strains as a common subtype CRF07_BC, and a novel subtype CRF43_02G recombined with CRF02_AG again, or a new CRF02_AG and subtype G recombinant. For the ten NFLGs determined by NGS, “the novel recombinant emerged at approximately 2003 and the other nine subtype B about 2004 or 2005”. This is the first report analyzing HIV-1 NFLG, including recombinants and clinical characteristics, by subtype among MSM in Korea. Our results provide novel insights for understanding the recombinants in the HIV-1 epidemic in Korea.
Collapse
|
27
|
Identification of a New HIV-1 BC Intersubtype Circulating Recombinant Form (CRF108_BC) in Spain. Viruses 2021; 13:v13010093. [PMID: 33445523 PMCID: PMC7826730 DOI: 10.3390/v13010093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
The extraordinary genetic variability of human immunodeficiency virus type 1 (HIV-1) group M has led to the identification of 10 subtypes, 102 circulating recombinant forms (CRFs) and numerous unique recombinant forms. Among CRFs, 11 derived from subtypes B and C have been identified in China, Brazil, and Italy. Here we identify a new HIV-1 CRF_BC in Northern Spain. Originally, a phylogenetic cluster of 15 viruses of subtype C in protease-reverse transcriptase was identified in an HIV-1 molecular surveillance study in Spain, most of them from individuals from the Basque Country and heterosexually transmitted. Analyses of near full-length genome sequences from six viruses from three cities revealed that they were BC recombinant with coincident mosaic structures different from known CRFs. This allowed the definition of a new HIV-1 CRF designated CRF108_BC, whose genome is predominantly of subtype C, with four short subtype B fragments. Phylogenetic analyses with database sequences supported a Brazilian ancestry of the parental subtype C strain. Coalescent Bayesian analyses estimated the most recent common ancestor of CRF108_BC in the city of Vitoria, Basque Country, around 2000. CRF108_BC is the first CRF_BC identified in Spain and the second in Europe, after CRF60_BC, both phylogenetically related to Brazilian subtype C strains.
Collapse
|
28
|
Thompson CW, Phelps KL, Allard MW, Cook JA, Dunnum JL, Ferguson AW, Gelang M, Khan FAA, Paul DL, Reeder DM, Simmons NB, Vanhove MPM, Webala PW, Weksler M, Kilpatrick CW. Preserve a Voucher Specimen! The Critical Need for Integrating Natural History Collections in Infectious Disease Studies. mBio 2021; 12:e02698-20. [PMID: 33436435 PMCID: PMC7844540 DOI: 10.1128/mbio.02698-20] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite being nearly 10 months into the COVID-19 (coronavirus disease 2019) pandemic, the definitive animal host for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causal agent of COVID-19, remains unknown. Unfortunately, similar problems exist for other betacoronaviruses, and no vouchered specimens exist to corroborate host species identification for most of these pathogens. This most basic information is critical to the full understanding and mitigation of emerging zoonotic diseases. To overcome this hurdle, we recommend that host-pathogen researchers adopt vouchering practices and collaborate with natural history collections to permanently archive microbiological samples and host specimens. Vouchered specimens and associated samples provide both repeatability and extension to host-pathogen studies, and using them mobilizes a large workforce (i.e., biodiversity scientists) to assist in pandemic preparedness. We review several well-known examples that successfully integrate host-pathogen research with natural history collections (e.g., yellow fever, hantaviruses, helminths). However, vouchering remains an underutilized practice in such studies. Using an online survey, we assessed vouchering practices used by microbiologists (e.g., bacteriologists, parasitologists, virologists) in host-pathogen research. A much greater number of respondents permanently archive microbiological samples than archive host specimens, and less than half of respondents voucher host specimens from which microbiological samples were lethally collected. To foster collaborations between microbiologists and natural history collections, we provide recommendations for integrating vouchering techniques and archiving of microbiological samples into host-pathogen studies. This integrative approach exemplifies the premise underlying One Health initiatives, providing critical infrastructure for addressing related issues ranging from public health to global climate change and the biodiversity crisis.
Collapse
Affiliation(s)
- Cody W Thompson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Marc W Allard
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, College Park, Maryland, USA
| | - Joseph A Cook
- Museum of Southwestern Biology, Biology Department, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jonathan L Dunnum
- Museum of Southwestern Biology, Biology Department, University of New Mexico, Albuquerque, New Mexico, USA
| | - Adam W Ferguson
- Gantz Family Collections Center, Field Museum of Natural History, Chicago, Illinois, USA
| | - Magnus Gelang
- Gothenburg Natural History Museum, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | | | - Deborah L Paul
- Florida State University, Tallahassee, Florida, USA
- Species File Group, University of Illinois, Urbana-Champaign, Illinois, USA
| | | | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Maarten P M Vanhove
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium
| | - Paul W Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok, Kenya
| | - Marcelo Weksler
- Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
29
|
Rubio-Garrido M, González-Alba JM, Reina G, Ndarabu A, Barquín D, Carlos S, Galán JC, Holguín Á. Current and historic HIV-1 molecular epidemiology in paediatric and adult population from Kinshasa in the Democratic Republic of Congo. Sci Rep 2020; 10:18461. [PMID: 33116151 PMCID: PMC7595211 DOI: 10.1038/s41598-020-74558-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
HIV-1 diversity may impact monitoring and vaccine development. We describe the most recent data of HIV-1 variants and their temporal trends in the Democratic Republic of Congo (DRC) from 1976 to 2018 and in Kinshasa from 1983-2018. HIV-1 pol sequencing from dried blood collected in Kinshasa during 2016-2018 was done in 340 HIV-infected children/adolescents/adults to identify HIV-1 variants by phylogenetic reconstructions. Recombination events and transmission clusters were also analyzed. Variant distribution and genetic diversity were compared to historical available pol sequences from the DRC in Los Alamos Database (LANL). We characterized 165 HIV-1 pol variants circulating in Kinshasa (2016-2018) and compared them with 2641 LANL sequences from the DRC (1976-2012) and Kinshasa (1983-2008). During 2016-2018 the main subtypes were A (26.7%), G (9.7%) and C (7.3%). Recombinants accounted for a third of infections (12.7%/23.6% Circulant/Unique Recombinant Forms). We identified the first CRF47_BF reported in Africa and four transmission clusters. A significant increase of subtype A and sub-subtype F1 and a significant reduction of sub-subtype A1 and subtype D were observed in Kinshasa during 2016-2018 compared to variants circulating in the city from 1983 to 2008. We provide unique and updated information related to HIV-1 variants currently circulating in Kinshasa, reporting the temporal trends of subtypes/CRF/URF during 43 years in the DRC, and providing the most extensive data on children/adolescents.
Collapse
Affiliation(s)
- Marina Rubio-Garrido
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBEREsp-RITIP, 28034, Madrid, Spain
| | - José María González-Alba
- Virology Section, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBEREsp, 28034, Madrid, Spain
| | - Gabriel Reina
- Microbiology Department, Clínica Universidad de Navarra, Navarra Institute for Health Research (IdiSNA), Institute of Tropical Health, Universidad de Navarra (ISTUN), 31008, Pamplona, Spain.
| | - Adolphe Ndarabu
- Monkole Hospital, Kinshasa, Democratic Republic of the Congo
| | - David Barquín
- Microbiology Department, Clínica Universidad de Navarra, Navarra Institute for Health Research (IdiSNA), Institute of Tropical Health, Universidad de Navarra (ISTUN), 31008, Pamplona, Spain
| | - Silvia Carlos
- Department of Preventive Medicine and Public Health, Navarra Institute for Health Research (IdiSNA), Institute of Tropical Health, Universidad de Navarra (ISTUN), Pamplona, 31008, Spain
| | - Juan Carlos Galán
- Virology Section, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBEREsp, 28034, Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBEREsp-RITIP, 28034, Madrid, Spain.
| |
Collapse
|
30
|
Duchêne S, Ho SYW, Carmichael AG, Holmes EC, Poinar H. The Recovery, Interpretation and Use of Ancient Pathogen Genomes. Curr Biol 2020; 30:R1215-R1231. [PMID: 33022266 PMCID: PMC7534838 DOI: 10.1016/j.cub.2020.08.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability to sequence genomes from ancient biological material has provided a rich source of information for evolutionary biology and engaged considerable public interest. Although most studies of ancient genomes have focused on vertebrates, particularly archaic humans, newer technologies allow the capture of microbial pathogens and microbiomes from ancient and historical human and non-human remains. This coming of age has been made possible by techniques that allow the preferential capture and amplification of discrete genomes from a background of predominantly host and environmental DNA. There are now near-complete ancient genome sequences for three pathogens of considerable historical interest - pre-modern bubonic plague (Yersinia pestis), smallpox (Variola virus) and cholera (Vibrio cholerae) - and for three equally important endemic human disease agents - Mycobacterium tuberculosis (tuberculosis), Mycobacterium leprae (leprosy) and Treponema pallidum pallidum (syphilis). Genomic data from these pathogens have extended earlier work by paleopathologists. There have been efforts to sequence the genomes of additional ancient pathogens, with the potential to broaden our understanding of the infectious disease burden common to past populations from the Bronze Age to the early 20th century. In this review we describe the state-of-the-art of this rapidly developing field, highlight the contributions of ancient pathogen genomics to multidisciplinary endeavors and describe some of the limitations in resolving questions about the emergence and long-term evolution of pathogens.
Collapse
Affiliation(s)
- Sebastián Duchêne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Hendrik Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L9, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L8, Canada; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
31
|
Affiliation(s)
- Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Sebastián Duchêne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|