1
|
van Luyk ME, Krotenberg Garcia A, Lamprou M, Suijkerbuijk SJE. Cell competition in primary and metastatic colorectal cancer. Oncogenesis 2024; 13:28. [PMID: 39060237 PMCID: PMC11282291 DOI: 10.1038/s41389-024-00530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Adult tissues set the scene for a continuous battle between cells, where a comparison of cellular fitness results in the elimination of weaker "loser" cells. This phenomenon, named cell competition, is beneficial for tissue integrity and homeostasis. In fact, cell competition plays a crucial role in tumor suppression, through elimination of early malignant cells, as part of Epithelial Defense Against Cancer. However, it is increasingly apparent that cell competition doubles as a tumor-promoting mechanism. The comparative nature of cell competition means that mutational background, proliferation rate and polarity all factor in to determine the outcome of these processes. In this review, we explore the intricate and context-dependent involvement of cell competition in homeostasis and regeneration, as well as during initiation and progression of primary and metastasized colorectal cancer. We provide a comprehensive overview of molecular and cellular mechanisms governing cell competition and its parallels with regeneration.
Collapse
Affiliation(s)
- Merel Elise van Luyk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ana Krotenberg Garcia
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maria Lamprou
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Li J, Li R, Bai X, Zhang W, Nie Y, Hu S. Direct reprogramming of fibroblasts into functional hepatocytes via CRISPRa activation of endogenous Gata4 and Foxa3. Chin Med J (Engl) 2024; 137:1351-1359. [PMID: 38721807 PMCID: PMC11191006 DOI: 10.1097/cm9.0000000000003088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND The ability to generate functional hepatocytes without relying on donor liver organs holds significant therapeutic promise in the fields of regenerative medicine and potential liver disease treatments. Clustered regularly interspaced short palindromic repeats (CRISPR) activator (CRISPRa) is a powerful tool that can conveniently and efficiently activate the expression of multiple endogenous genes simultaneously, providing a new strategy for cell fate determination. The main purpose of this study is to explore the feasibility of applying CRISPRa for hepatocyte reprogramming and its application in the treatment of mouse liver fibrosis. METHOD The differentiation of mouse embryonic fibroblasts (MEFs) into functional induced hepatocyte-like cells (iHeps) was achieved by utilizing the CRISPRa synergistic activation mediator (SAM) system, which drove the combined expression of three endogenous transcription factors- Gata4, Foxa3 , and Hnf1a -or alternatively, the expression of two transcription factors, Gata4 and Foxa3 . In vivo , we injected adeno-associated virus serotype 6 (AAV6) carrying the CRISPRa SAM system into liver fibrotic Col1a1-CreER ; Cas9fl/fl mice, effectively activating the expression of endogenous Gata4 and Foxa3 in fibroblasts. The endogenous transcriptional activation of genes was confirmed using real-time quantitative polymerase chain reaction (RT-qPCR) and RNA-seq, and the morphology and characteristics of the induced hepatocytes were observed through microscopy. The level of hepatocyte reprogramming in vivo is detected by immunofluorescence staining, while the improvement of liver fibrosis is evaluated through Sirius red staining, alpha-smooth muscle actin (α-SMA) immunofluorescence staining, and blood alanine aminotransferase (ALT) examination. RESULTS Activation of only two factors, Gata4 and Foxa3 , via CRISPRa was sufficient to successfully induce the transformation of MEFs into iHeps. These iHeps could be expanded in vitro and displayed functional characteristics similar to those of mature hepatocytes, such as drug metabolism and glycogen storage. Additionally, AAV6-based delivery of the CRISPRa SAM system effectively induced the hepatic reprogramming from fibroblasts in mice with live fibrosis. After 8 weeks of induction, the reprogrammed hepatocytes comprised 0.87% of the total hepatocyte population in the mice, significantly reducing liver fibrosis. CONCLUSION CRISPRa-induced hepatocyte reprogramming may be a promising strategy for generating functional hepatocytes and treating liver fibrosis caused by hepatic diseases.
Collapse
Affiliation(s)
- Jiacheng Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruopu Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xue Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Wenlong Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
3
|
Guo Z, Pu S, Li Y, Wang X, Hu S, Zhao H, Yang C, Zhou Z. Functional characterization of CD49f + hepatic stem/progenitor cells in adult mice liver. J Mol Histol 2022; 53:239-256. [PMID: 35166962 DOI: 10.1007/s10735-022-10063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Hepatic Stem/progenitor cells (HSPCs) have gained a large amount of interest for treating acute liver disease. However, the isolation and identification of HSPCs are unclear due to the lack of cell-specific surface markers. To isolate adult HSPCs, we used cell surface-marking antibodies, including CD49f and Sca-1. Two subsets of putative HSPCs, Lin-CD45-Sca-1-CD49f+ (CD49f+) and Lin-CD45-Sca-1+CD49f- (Sca-1+) cells, were isolated from adult mice liver by flow cytometry. Robust proliferative activity and clonogenic activity were found in both CD49f+ and Sca-1+ cells through colony-forming tests and cell cycle analyses. Immunofluorescence staining revealed that CD49f+ cells expressed ALB and CK-19 while Sca-1+ cells expressed only ALB, indicating that CD49f+ cells were bipotential and capable of differentiating into hepatocyte and cholangiocyte. Consequently, PAS stain showed that differentiated CD49f+ and Sca-1+ cells synthesised glycogen, indicating they could differentiate into functional hepatocytes. mRNA expression profile indicated that both CD49f+ and Sca-1+ cells showed differential expression of genes that are associated with liver progenitor function such as Sox9 and EpCam. Moreover, two subsets of putative HSPCs were activated by DDC and we found that their abundance and proliferation increased with age. In summary, we hypothesized that CD49f+ cells were a type of potential HSPCs and may be utilised for clinical stem cell therapy.
Collapse
Affiliation(s)
- Ziqi Guo
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yun Li
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaoxia Wang
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Suying Hu
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China. .,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China. .,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China. .,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China. .,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
4
|
Jaber FL, Sharma Y, Mui BG, Kapoor S, Gupta S. Tumor Necrosis Factor Directs Allograft-Related Innate Responses and Its Neutralization Improves Hepatocyte Engraftment in Rats. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:79-89. [PMID: 33127336 PMCID: PMC7768347 DOI: 10.1016/j.ajpath.2020.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/09/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
The innate immune system plays a critical role in allograft rejection. Alloresponses involve numerous cytokines, chemokines, and receptors that cause tissue injury during rejection. To dissect these inflammatory mechanisms, we developed cell transplantation models in dipeptidylpeptidase-deficient F344 rats using mycophenolate mofetil and tacrolimus for partial lymphocyte-directed immunosuppression. Syngeneic hepatocytes engrafted in liver, whereas allogeneic hepatocytes were rejected but engrafted after immunosuppression. These transplants induced mRNAs for >40 to 50 cytokines, chemokines, and receptors. In allografts, innate cell type-related regulatory networks extended to granulocytes, monocytes, and macrophages. Activation of Tnfa and its receptors or major chemokine receptor-ligand subsets persisted in the long term. An examination of the contribution of Tnfa in allograft response revealed that it was prospectively antagonized by etanercept or thalidomide, which resolved cytokine, chemokine, and receptor cascades. In bioinformatics analysis of upstream regulator networks, the Cxcl8 pathway exhibited dominance despite immunosuppression. Significantly, Tnfa antagonism silenced the Cxcl8 pathway and decreased neutrophil and Kupffer cell recruitment, resulting in multifold greater engraftment of allogeneic hepatocytes and substantially increased liver repopulation in retrorsine/partial hepatectomy model. We conclude that Tnfa is a major driver for persistent innate immune responses after allogeneic cells. Neutralizing Tnfa should help in avoiding rejection and associated tissue injury in the allograft setting.
Collapse
Affiliation(s)
- Fadi Luc Jaber
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Yogeshwar Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Brandon G Mui
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Sorabh Kapoor
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Diabetes Center, Albert Einstein College of Medicine, Bronx, New York; Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York; Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, Bronx, New York; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
5
|
Yasen A, Tuxun T, Apaer S, Li W, Maimaitinijiati Y, Wang H, Aisan M, Aji T, Shao Y, Hao W. Fetal liver stem cell transplantation for liver diseases. Regen Med 2019; 14:703-714. [PMID: 31393226 DOI: 10.2217/rme-2018-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stem cell transplantation exhibited a promising lifesaving therapy for various end-stage liver diseases and could serve as a salvaging bridge until curative methods can be performed. In past decades, mature hepatocytes, liver progenitor cells, mesenchymal stem cells and induced pluripotent stem cells have been practiced in above settings. However, long-term survival rates and continuous proliferation ability of these cells in vivo are unsatisfactory, whereas, fetal liver stem cells (FLSCs), given their unique superiority, may be the best candidate for stem cell transplantation technique. Recent studies have revealed that FLSCs could be used as an attractive genetic therapy or regenerative treatments for inherited metabolic or other hepatic disorders. In this study, we reviewed current status and advancements of FLSCs-based treatment.
Collapse
Affiliation(s)
- Aimaiti Yasen
- Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Tuerhongjiang Tuxun
- Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Shadike Apaer
- State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Wending Li
- Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Yusufukadier Maimaitinijiati
- Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Hui Wang
- State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Meiheriayi Aisan
- Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Tuerganaili Aji
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Yingmei Shao
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Wen Hao
- State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| |
Collapse
|
6
|
Kakabadze Z, Karalashvili L, Chakhunashvili D, Havlioglu N, Janelidze M, Kakabadze A, Sharma Y, Gupta S. Decellularized bovine placentome for portacavally-interposed heterotopic liver transplantation in rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:293-301. [PMID: 30678914 DOI: 10.1016/j.msec.2018.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/19/2018] [Accepted: 12/09/2018] [Indexed: 02/06/2023]
Abstract
Scaffolds from healthy placentae offer advantages for tissue engineering with undamaged matrix, associated cytoprotective molecules, and embedded vessels for revascularization. As size disparities in human placenta and small recipients hamper preclinical studies, we studied alternative of bovine placentomes in smaller size ranges. Multiple cow placentomes were decellularized and anatomical integrity was analyzed. Tissue engineering used inbred donor rat livers. Placentomes were hepatized and immediately transplanted in rats with perfusion from portal vein and drainage into inferior vena cava. Cows yielded 99 ± 16 placentomes each. Of these, approximately 25% had 3 to 9 cm diameter and 7 to 63 ml volume, which was suitable for transplantation. After decellularization, angiography and casts documented 100% of vessels and vascular networks were well-perfused without disruptions or leaks. The residual matrix also remained intact for transplantation of placentomes. Perfusion in transplanted placentomes was maintained over up to 30 days. Liver tissue reassembled with restoration of hepatic acinar and sinusoidal structure. Transplanted tissue was intact without apoptosis, or necrosis. Hepatic functions were maintained. Preservation of hepatic homeostasis was verified by cytofluorimetric analysis of hepatocyte ploidy. The prevalence in healthy and transplanted liver of diploid, tetraploid and higher ploidy classes was similar with 57%, 41% and 2% versus 51%, 46.5% and 2.6%, respectively, p = 0.77, ANOVA. CONCLUSIONS: Cow placentomes will allow therapeutic development with disease models in small animals. This will also advance drug or toxicology studies. Portasystemic interposition of engineered liver will be particularly suitable for treating hepatic insufficiencies (metabolic, secretory or detoxification needs), including for children or smaller adults.
Collapse
Affiliation(s)
- Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, 33 V. PshavelaAvenue, 0177 Tbilisi, Georgia.
| | - Lia Karalashvili
- Department of Clinical Anatomy, Tbilisi State Medical University, 33 V. PshavelaAvenue, 0177 Tbilisi, Georgia
| | - David Chakhunashvili
- Department of Clinical Anatomy, Tbilisi State Medical University, 33 V. PshavelaAvenue, 0177 Tbilisi, Georgia
| | - Necat Havlioglu
- Department of Veterans Affairs, Pathology and Laboratory Services, VA Medical Center, Saint Louis Health Care System, Saint Louis, MO, USA
| | - Merab Janelidze
- Department of Clinical Anatomy, Tbilisi State Medical University, 33 V. PshavelaAvenue, 0177 Tbilisi, Georgia
| | - Ann Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, 33 V. PshavelaAvenue, 0177 Tbilisi, Georgia
| | - Yogeshwar Sharma
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx 10461, NY, USA.
| | - Sanjeev Gupta
- Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, The Irwin S. and Sylvia Chanin Institute for Cancer Research, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx 10461, NY, USA.
| |
Collapse
|
7
|
Barahman M, Asp P, Roy-Chowdhury N, Kinkhabwala M, Roy-Chowdhury J, Kabarriti R, Guha C. Hepatocyte Transplantation: Quo Vadis? Int J Radiat Oncol Biol Phys 2018; 103:922-934. [PMID: 30503786 DOI: 10.1016/j.ijrobp.2018.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/10/2018] [Accepted: 11/10/2018] [Indexed: 12/21/2022]
Abstract
Orthotopic liver transplantation (OLT) has been effective in managing end-stage liver disease since the advent of cyclosporine immunosuppression therapy in 1980. The major limitations of OLT are organ supply, monetary cost, and the burden of lifelong immunosuppression. Hepatocyte transplantation, as a substitute for OLT, has been an exciting topic of investigation for several decades. HT is potentially minimally invasive and can serve as a vehicle for delivery of personalized medicine through autologous cell transplant after modification ex vivo. However, 3 major hurdles have prevented large-scale clinical application: (1) availability of transplantable cells; (2) safe and efficient ex vivo gene therapy methods; and (3) engraftment and repopulation efficiency. This review will discuss new sources for transplantable liver cells obtained by lineage reprogramming, clinically acceptable methods of genetic manipulation, and the development of hepatic irradiation-based preparative regimens for enhancing engraftment and repopulation of transplanted hepatocytes. We will also review the results of the first 3 patients with genetic liver disorders who underwent preparative hepatic irradiation before hepatocyte transplantation.
Collapse
Affiliation(s)
- Mark Barahman
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Patrik Asp
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Namita Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Milan Kinkhabwala
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Chandan Guha
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
8
|
Matsui A, Uchida S, Hayashi A, Kataoka K, Itaka K. Prolonged engraftment of transplanted hepatocytes in the liver by transient pro-survival factor supplementation using ex vivo mRNA transfection. J Control Release 2018; 285:1-11. [PMID: 29966689 DOI: 10.1016/j.jconrel.2018.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022]
Abstract
Cell transplantation therapy needs engraftment efficiency improvement of transplanted cells to the host tissues. Ex vivo transfection of a pro-survival gene to transplanted cells is a possible solution; however prolonged expression and/or genomic integration of the gene can be cancer promoting. To supply pro-survival protein only when it is needed, we used mRNA transfection, which exhibits transient protein expression profiles without the risk of genomic integration. Ex vivo transfection of mRNA encoding Bcl-2, a pro-survival factor, led to enhanced hepatocyte engraftment in both of normal and diseased mouse liver, effectively supporting liver function in a model of chronic hepatitis. The transplanted hepatocytes maintained their viability and function in the liver for at least one month, though Bcl-2 expression from mRNA was sustained for just a few days. Mechanism analyses suggest that Bcl-2 inhibits Kupffer cell-mediated hepatocyte clearance, which occurs within 2 days after transplantation. Within 2 days, hepatocytes migrated to the liver parenchyma, presumably a suitable place for the hepatocytes to survive without Bcl-2 expression. Thus, the duration of Bcl-2 expression from mRNA was sufficient to achieve prolonged engraftment. Ex vivo mRNA transfection allows supply of pro-survival factors to transplanted cells with minimal safety concerns accompanying prolonged expression, providing an effective platform to improve engraftment efficiency in cell transplantation therapy.
Collapse
Affiliation(s)
- Akitsugu Matsui
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan.
| | - Akimasa Hayashi
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Keiji Itaka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
9
|
Pahk KJ, Mohammad GH, Malago M, Saffari N, Dhar DK. A Novel Approach to Ultrasound-Mediated Tissue Decellularization and Intra-Hepatic Cell Delivery in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1958-1967. [PMID: 27184248 DOI: 10.1016/j.ultrasmedbio.2016.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
Liver transplantation is the mainstay of treatment for end stage liver diseases, including metabolic and congenital liver diseases. The number of suitable donor organs is, however, limited, and a whole-liver transplant requires complex surgery. Cell therapy, such as intra-portal hepatocytes transplantation, has been considered as a bridging therapy to liver transplantation but has shown a mixed clinical outcome with limited success, including low level of engraftment of transplanted hepatocytes. Here, we report a novel cell delivery technique in a rat model by creating a cavity inside the liver parenchyma by non-invasive high intensity focused ultrasound histotripsy. Our in vivo experimental results together with histologic observations show that direct injection of cells inside the cavity can facilitate successful uptake, proliferation and integration of the transplanted hepatocytes in the recipient liver. We were able to restore the plasma albumin level to 50% of the normal level in Nagase analbuminemic rats (serum albumin level of the Nagase rats was initially nil) by cell therapy after high intensity focused ultrasound-mediated histotripsy. We believe that this novel technique would enable the delivery of a large number of cells into the liver to restore liver function, particularly as a treatment for metabolic liver diseases. This novel method of intra-hepatic hepatocyte transplantation might be an invaluable tool for cell therapy in the future.
Collapse
Affiliation(s)
- Ki Joo Pahk
- Department of Mechanical Engineering, University College London, London, UK
| | - Goran Hamid Mohammad
- Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, UK
| | - Massimo Malago
- Hepato-pancreatic-biliary and Liver Transplantation Surgery, Royal Free Hospital, University College London, London, UK
| | - Nader Saffari
- Department of Mechanical Engineering, University College London, London, UK.
| | - Dipok Kumar Dhar
- Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, UK; King Faisal Specialist Hospital and Research Center, Comparative Medicine Department and Organ Transplantation Center, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Cui MH, Jayalakshmi K, Liu L, Guha C, Branch CA. In vivo (1)H MRS and (31)P MRSI of the response to cyclocreatine in transgenic mouse liver expressing creatine kinase. NMR IN BIOMEDICINE 2015; 28:1634-1644. [PMID: 26451872 DOI: 10.1002/nbm.3391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/05/2015] [Accepted: 08/11/2015] [Indexed: 06/05/2023]
Abstract
Hepatocyte transplantation has been explored as a therapeutic alternative to liver transplantation, but a means to monitor the success of the procedure is lacking. Published findings support the use of in vivo (31)P MRSI of creatine kinase (CK)-expressing hepatocytes to monitor proliferation of implanted hepatocytes. Phosphocreatine tissue level depends upon creatine (Cr) input to the CK enzyme reaction, but Cr measurement by (1)H MRS suffers from low signal-to-noise ratio (SNR). We examine the possibility of using the Cr analog cyclocreatine (CCr, a substrate for CK), which is quickly phosphorylated to phosphocyclocreatine (PCCr), as a higher SNR alternative to Cr. (1)H MRS and (31)P MRSI were employed to measure the effect of incremental supplementation of CCr upon PCCr, γ-ATP, pH and Pi /ATP in the liver of transgenic mice expressing the BB isoform of CK (CKBB) in hepatocytes. Water supplementation with 0.1% CCr led to a peak total PCCr level of 17.15 ± 1.07 mmol/kg wet weight by 6 weeks, while adding 1.0% CCr led to a stable PCCr liver level of 18.12 ± 3.91 mmol/kg by the fourth day of feeding. PCCr was positively correlated with CCr, and ATP concentration and pH declined with increasing PCCr. Feeding with 1% CCr in water induced an apparent saturated level of PCCr, suggesting that CCr quantization may not be necessary for quantifying expression of CK in mice. These findings support the possibility of using (31)P MRS to noninvasively monitor hepatocyte transplant success with CK-expressing hepatocytes.
Collapse
Affiliation(s)
- Min-Hui Cui
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kamaiah Jayalakshmi
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Laibin Liu
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Craig A Branch
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
11
|
Gramignoli R, Vosough M, Kannisto K, Srinivasan RC, Strom SC. Clinical hepatocyte transplantation: practical limits and possible solutions. Eur Surg Res 2015; 54:162-177. [PMID: 25633583 DOI: 10.1159/000369552] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/04/2014] [Indexed: 01/05/2025]
Abstract
Since the first human hepatocyte transplants (HTx) in 1992, clinical studies have clearly established proof of principle for this therapy as a treatment for patients with acquired or inherited liver disease. Although major accomplishments have been made, there are still some specific limitations to this technology, which, if overcome, could greatly enhance the efficacy and implementation of this therapy. Here, we describe what in our view are the most significant obstacles to the clinical application of HTx and review the solutions currently proposed. The obstacles of significance include the limited number and quality of liver tissues as a cell source, the lack of clinical grade reagents, quality control evaluation of hepatocytes prior to transplantation, hypothermic storage of cells prior to transplantation, preconditioning treatments to enhance engraftment and proliferation of donor cells, tracking or monitoring cells after transplantation, and the optimal immunosuppression protocols for transplant recipients.
Collapse
Affiliation(s)
- Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
12
|
Chen S, Shao C, Dong T, Chai H, Xiong X, Sun D, Zhang L, Yu Y, Wang P, Cheng F. Transplantation of ATP7B-transduced bone marrow mesenchymal stem cells decreases copper overload in rats. PLoS One 2014; 9:e111425. [PMID: 25375371 PMCID: PMC4222898 DOI: 10.1371/journal.pone.0111425] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/26/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recent studies have demonstrated that transplantation of ATP7B-transduced hepatocytes ameliorates disease progression in LEC (Long-Evans Cinnamon) rats, a model of Wilson's disease (WD). However, the inability of transplanted cells to proliferate in a normal liver hampers long-term treatment. In the current study, we investigated whether transplantation of ATP7B-transduced bone marrow mesenchymal stem cells (BM-MSCs) could decrease copper overload in LEC rats. MATERIALS AND METHODS The livers of LEC rats were preconditioned with radiation (RT) and/or ischemia-reperfusion (IRP) before portal vein infusion of ATP7B-transduced MSCs (MSCsATP7B). The volumes of MSCsATP7B or saline injected as controls were identical. The expression of ATP7B was analyzed by real-time quantitative polymerase chain reaction (RT-PCR) at 4, 12 and 24 weeks post-transplantation. MSCATP7B repopulation, liver copper concentrations, serum ceruloplasmin levels, and alanine transaminase (ALT) and aspartate transaminase (AST) levels were also analyzed at each time-point post-transplantation. RESULTS IRP-plus-RT preconditioning was the most effective strategy for enhancing the engraftment and repopulation of transplanted MSCsATP7B. This strategy resulted in higher ATP7B expression and serum ceruloplasmin, and lower copper concentration in this doubly preconditioned group compared with the saline control group, the IRP group, and the RT group at all three time-points post-transplantation (p<0.05 for all). Moreover, 24 weeks post-transplantation, the levels of ALT and AST in the IRP group, the RT group, and the IRP-plus-RT group were all significantly decreased compared to those of the saline group (p<0.05 compared with the IRP group and RT group, p<0.01 compared with IRP-plus-RT group); ALT and AST levels were significantly lower in the IRP-plus-RT group compared to either the IRP group or the RT group (p<0.01 and p<0.05. respectively). CONCLUSIONS These results demonstrate that transplantation of MSCsATP7B into IRP-plus-RT preconditioned LEC rats decreased copper overload and was associated with an increase in MSC engraftment and repopulation.
Collapse
Affiliation(s)
- Shenglin Chen
- Department of Hepatobiliary Surgery Ward of General Surgery, The Affiliated Wuhu No. 2 People's Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Cunhua Shao
- Department of Hepatobiliary Surgery, Dongying People's Hospital, Dongying, Shandong Province, China
| | - Tianfu Dong
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Hao Chai
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Xinkui Xiong
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Daoyi Sun
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Long Zhang
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Yue Yu
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Ping Wang
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Feng Cheng
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| |
Collapse
|
13
|
Hansel MC, Gramignoli R, Skvorak KJ, Dorko K, Marongiu F, Blake W, Davila J, Strom SC. The history and use of human hepatocytes for the treatment of liver diseases: the first 100 patients. CURRENT PROTOCOLS IN TOXICOLOGY 2014; 62:14.12.1-23. [PMID: 25378242 PMCID: PMC4343212 DOI: 10.1002/0471140856.tx1412s62] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Orthotopic liver transplantation remains the only curative treatment for many end-stage liver diseases, yet the number of patients receiving liver transplants remains limited by the number of organs available for transplant. There is a need for alternative therapies for liver diseases. The transplantation of isolated hepatocytes (liver cells) has been used as an experimental therapy for liver disease in a limited number of cases. Recently, the 100th case of hepatocyte transplantation was reported. This review discusses the history of the hepatocyte transplant field, the major discoveries that supported and enabled the first hepatocyte transplants, and reviews the cases and outcomes of the first 100 clinical transplants. Some of the problems that limit the application or efficacy of hepatocyte transplantation are discussed, as are possible solutions to these problems. In conclusion, hepatocyte transplants have proven effective particularly in cases of metabolic liver disease where reversal or amelioration of the characteristic symptoms of the disease is easily quantified. However, no patients have been completely corrected of a metabolic liver disease for a significant amount of time by hepatocyte transplantation alone. It is likely that future developments in new sources of cells for transplantation will be required before this cellular therapy can be fully implemented and available for large numbers of patients.
Collapse
Affiliation(s)
- Marc C Hansel
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kapoor S, Berishvili E, Bandi S, Gupta S. Ischemic preconditioning affects long-term cell fate through DNA damage-related molecular signaling and altered proliferation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2779-2790. [PMID: 25128377 PMCID: PMC4188865 DOI: 10.1016/j.ajpath.2014.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 12/16/2022]
Abstract
Despite the potential of ischemic preconditioning for organ protection, long-term effects in terms of molecular processes and cell fates are ill defined. We determined consequences of hepatic ischemic preconditioning in rats, including cell transplantation assays. Ischemic preconditioning induced persistent alterations; for example, after 5 days liver histology was normal, but γ-glutamyl transpeptidase expression was observed, with altered antioxidant enzyme content, lipid peroxidation, and oxidative DNA adducts. Nonetheless, ischemic preconditioning partially protected from toxic liver injury. Similarly, primary hepatocytes from donor livers preconditioned with ischemia exhibited undesirably altered antioxidant enzyme content and lipid peroxidation, but better withstood insults. However, donor hepatocytes from livers preconditioned with ischemia did not engraft better than hepatocytes from control livers. Moreover, proliferation of hepatocytes from donor livers preconditioned with ischemia decreased under liver repopulation conditions. Hepatocytes from donor livers preconditioned with ischemia showed oxidative DNA damage with expression of genes involved in MAPK signaling that impose G1/S and G2/M checkpoint restrictions, including p38 MAPK-regulated or ERK-1/2-regulated cell-cycle genes such as FOS, MAPK8, MYC, various cyclins, CDKN2A, CDKN2B, TP53, and RB1. Thus, although ischemic preconditioning allowed hepatocytes to better withstand secondary insults, accompanying DNA damage and molecular events simultaneously impaired their proliferation capacity over the long term. Mitigation of ischemic preconditioning-induced DNA damage and deleterious molecular perturbations holds promise for advancing clinical applications.
Collapse
Affiliation(s)
- Sorabh Kapoor
- Department of Medicine and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Ekaterine Berishvili
- Department of Medicine and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Sriram Bandi
- Department of Medicine and Pathology, Albert Einstein College of Medicine, Bronx, New York; Department of Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Sanjeev Gupta
- Department of Medicine and Pathology, Albert Einstein College of Medicine, Bronx, New York; Department of Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Diabetes Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cancer Center, Albert Einstein College of Medicine, Bronx, New York; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York; Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
15
|
Vainshtein JM, Kabarriti R, Mehta KJ, Roy-Chowdhury J, Guha C. Bone marrow-derived stromal cell therapy in cirrhosis: clinical evidence, cellular mechanisms, and implications for the treatment of hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2014; 89:786-803. [PMID: 24969793 DOI: 10.1016/j.ijrobp.2014.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/09/2014] [Accepted: 02/12/2014] [Indexed: 01/18/2023]
Abstract
Current treatment options for hepatocellular carcinoma (HCC) are often limited by the presence of underlying liver disease. In patients with liver cirrhosis, surgery, chemotherapy, and radiation therapy all carry a high risk of hepatic complications, ranging from ascites to fulminant liver failure. For patients receiving radiation therapy, cirrhosis dramatically reduces the already limited radiation tolerance of the liver and represents the most important clinical risk factor for the development of radiation-induced liver disease. Although improvements in conformal radiation delivery techniques have improved our ability to safely irradiate confined areas of the liver to increasingly higher doses with excellent local disease control, patients with moderate-to-severe liver cirrhosis continue to face a shortage of treatment options for HCC. In recent years, evidence has emerged supporting the use of bone marrow-derived stromal cells (BMSCs) as a promising treatment for liver cirrhosis, with several clinical studies demonstrating sustained improvement in clinical parameters of liver function after autologous BMSC infusion. Three predominant populations of BMSCs, namely hematopoietic stem cells, mesenchymal stem cells, and endothelial progenitor cells, seem to have therapeutic potential in liver injury and cirrhosis. Preclinical studies of BMSC transplantation have identified a range of mechanisms through which these cells mediate their therapeutic effects, including hepatocyte transdifferentiation and fusion, paracrine stimulation of hepatocyte proliferation, inhibition of activated hepatic stellate cells, enhancement of fibrolytic matrix metalloproteinase activity, and neovascularization of regenerating liver. By bolstering liver function in patients with underlying Child's B or C cirrhosis, autologous BMSC infusion holds great promise as a therapy to improve the safety, efficacy, and utility of surgery, chemotherapy, and hepatic radiation therapy in the treatment of HCC.
Collapse
Affiliation(s)
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Keyur J Mehta
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
16
|
Benderitter M, Caviggioli F, Chapel A, Coppes RP, Guha C, Klinger M, Malard O, Stewart F, Tamarat R, van Luijk P, Limoli CL. Stem cell therapies for the treatment of radiation-induced normal tissue side effects. Antioxid Redox Signal 2014; 21:338-55. [PMID: 24147585 PMCID: PMC4060814 DOI: 10.1089/ars.2013.5652] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Targeted irradiation is an effective cancer therapy but damage inflicted to normal tissues surrounding the tumor may cause severe complications. While certain pharmacologic strategies can temper the adverse effects of irradiation, stem cell therapies provide unique opportunities for restoring functionality to the irradiated tissue bed. RECENT ADVANCES Preclinical studies presented in this review provide encouraging proof of concept regarding the therapeutic potential of stem cells for treating the adverse side effects associated with radiotherapy in different organs. Early-stage clinical data for radiation-induced lung, bone, and skin complications are promising and highlight the importance of selecting the appropriate stem cell type to stimulate tissue regeneration. CRITICAL ISSUES While therapeutic efficacy has been demonstrated in a variety of animal models and human trials, a range of additional concerns regarding stem cell transplantation for ameliorating radiation-induced normal tissue sequelae remain. Safety issues regarding teratoma formation, disease progression, and genomic stability along with technical issues impacting disease targeting, immunorejection, and clinical scale-up are factors bearing on the eventual translation of stem cell therapies into routine clinical practice. FUTURE DIRECTIONS Follow-up studies will need to identify the best possible stem cell types for the treatment of early and late radiation-induced normal tissue injury. Additional work should seek to optimize cellular dosing regimes, identify the best routes of administration, elucidate optimal transplantation windows for introducing cells into more receptive host tissues, and improve immune tolerance for longer-term engrafted cell survival into the irradiated microenvironment.
Collapse
Affiliation(s)
- Marc Benderitter
- 1 Laboratory of Radiopathology and Experimental Therapies, IRSN , PRP-HOM, SRBE, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Serra MP, Marongiu F, Sini M, Marongiu M, Contini A, Wolff H, Rave-Frank M, Krause P, Laconi E, Koenig S. Hepatocyte senescence induced by radiation and partial hepatectomy in rat liver. Int J Radiat Biol 2014; 90:876-83. [PMID: 24827852 DOI: 10.3109/09553002.2014.922714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Exposure to radiation primes the liver for extensive replacement of the resident parenchymal cells by transplanted hepatocytes. The mechanisms underlying this repopulation remain to be clarified. In these studies, we examined the possible occurrence of cell senescence in vivo following radiation-associated preconditioning of the host liver. MATERIALS AND METHODS Fischer 344 rats underwent external-beam, computed-tomography-based partial liver irradiation. A single dose of 25 Gy was delivered to the right liver lobes (40% of liver mass). An additional group of animals received a 1/3 partial hepatectomy (removal of the left anterior lobe) four days after irradiation. Non-irradiated groups served as controls. All rats were sacrificed four weeks after the initial treatment. RESULTS The irradiated livers displayed several markers of cell senescence, including expression of senescence-associated-β-galactosidase (SA-β-gal), increase in cell size, and up-regulation of cyclin-dependent kinase inhibitors (CDK-I) p16 and p21. Furthermore, quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) analysis revealed activation of the senescence-associated secretory phenotype (SASP), including the cytokines interleukin 6 (IL6) and 1α (IL1α). The senescence-related changes were more prominent in rats undergoing partial hepatectomy (PH) following irradiation (IR). CONCLUSIONS We conclude that priming with radiation for liver repopulation results in the induction of cell senescence and the up-regulation of a senescence-associated secretory phenotype. The latter can contribute to the extensive growth of transplanted cells in this system.
Collapse
|
18
|
Wan Z, Zhang XG, Liu ZW, Lv Y. Therapeutic liver repopulation for metabolic liver diseases: Advances from bench to bedside. Hepatol Res 2013; 43:122-130. [PMID: 22971121 DOI: 10.1111/j.1872-034x.2012.01081.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 12/14/2022]
Abstract
Metabolic liver diseases are characterized by inherited defects in hepatic enzymes or other proteins with metabolic functions. Therapeutic liver repopulation (TLR), an approach of massive liver replacement by transplanted normal hepatocytes, could be used to provide the missing metabolic function elegantly. However, partial and transient correction of the underlying metabolic defects due to very few integrated donor cell mass remains the major obstacle for the effective and widespread use of this approach. Little engraftment and proliferation insufficiency lead to the poor outcome. This article reviews the advances in the mechanisms of initial engraftment and selective proliferation and suggests some effective treatment strategies, from pharmacological preconditioning to stem cell transplantation, to optimize liver repopulation with liver cell transplantation. Enhancing cell viability and plating efficiency, increasing sinusoidal spaces, regulation of sinusoidal endothelial cell barrier and controlling inflammatory reaction may promote initial cell engraftment. Liver-directed irradiation, reversible portal vein embolization and fetal liver stem/progenitor cell transplantation induce preferential proliferation of donor cells substantially without severe side-effects. Furthermore, it seems better to use combined approaches to achieve a high level of liver repopulation for the management of metabolic liver diseases.
Collapse
Affiliation(s)
- Zhen Wan
- Hepatobiliary Surgery; Institute of Advanced Surgical Techniques and Tissue Engineering Research, Xi'an Jiaotong University, Xi'an, China
| | | | | | | |
Collapse
|
19
|
Abstract
The liver has an enormous potential to restore the parenchymal tissue loss due to injury. This is accomplished by the proliferation of either the hepatocytes or liver progenitor cells in cases where massive damage prohibits hepatocytes from entering the proliferative response. Under debate is still whether hepatic stem cells are involved in liver tissue maintenance and regeneration or even whether they exist at all. The definition of an adult tissue-resident stem cell comprises basic functional stem cell criteria like the potential of self-renewal, multipotent, i.e. at least bipotent differentiation capacity and serial transplantability featuring the ability of functional tissue repopulation. The relationship between a progenitor and its progeny should exemplify the lineage commitment from the putative stem cell to the differentiated cell. This is mainly assessed by lineage tracing and immunohistochemical identification of markers specific to progenitors and their descendants. Flow cytometry approaches revealed that the liver stem cell population in animals is likely to be heterogeneous giving rise to progeny with different molecular signatures, depending on the stimulus to activate the putative stem cell compartment. The stem cell criteria are met by a variety of cells identified in the fetal and adult liver both under normal and injury conditions. It is the purpose of this review to verify hepatic stem cell candidates in the light of the stem cell definition criteria mentioned. Also from this point of view adult stem cells from non-hepatic tissues such as bone marrow, umbilical cord blood or adipose tissue, have the potential to differentiate into cells featuring functional hepatocyte characteristics. This has great impact because it opens the possibility of generating hepatocyte-like cells from adult stem cells in a sufficient amount and quality for their therapeutical application to treat end-stage liver diseases by stem cell-based hepatocytes in place of whole organ transplantation.
Collapse
Affiliation(s)
- Bruno Christ
- Translational Centre for Regenerative Medicine-TRM, University of Leipzig, Philipp-Rosenthal-Straße 55, D-04103 Leipzig, Germany.
| | | |
Collapse
|
20
|
Jorns C, Ellis EC, Nowak G, Fischler B, Nemeth A, Strom SC, Ericzon BG. Hepatocyte transplantation for inherited metabolic diseases of the liver. J Intern Med 2012; 272:201-23. [PMID: 22789058 DOI: 10.1111/j.1365-2796.2012.02574.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inherited metabolic diseases of the liver are characterized by deficiency of a hepatic enzyme or protein often resulting in life-threatening disease. The remaining liver function is usually normal. For most patients, treatment consists of supportive therapy, and the only curative option is liver transplantation. Hepatocyte transplantation is a promising therapy for patients with inherited metabolic liver diseases, which offers a less invasive and fully reversible approach. Procedure-related complications are rare. Here, we review the experience of hepatocyte transplantation for metabolic liver diseases and discuss the major obstacles that need to be overcome to establish hepatocyte transplantation as a reliable treatment option in the clinic.
Collapse
Affiliation(s)
- C Jorns
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Gentric G, Celton-Morizur S, Desdouets C. Polyploidy and liver proliferation. Clin Res Hepatol Gastroenterol 2012; 36:29-34. [PMID: 21778131 DOI: 10.1016/j.clinre.2011.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/23/2011] [Accepted: 05/25/2011] [Indexed: 02/04/2023]
Abstract
Organisms containing an increase in DNA content by whole number multiples of the entire set of chromosomes are defined as polyploid. Cells that contain more than two sets of chromosomes were first observed in plants about a century ago, and it is now recognized that polyploid cells form in many eukaryotes under a wide variety of circumstances. Although it is less common in mammals, some tissues, including the liver, show a high percentage of polyploid cells. Thus, during post-natal growth, the liver parenchyma undergoes dramatic changes characterized by gradual polyploidization during which hepatocytes of several ploidy classes emerge as a result of modified cell-division cycles. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence and to both lead to a progressive loss of cell pluripotency and to a markedly decreased replication capacity. In adults, liver polyploidization is differentially regulated upon loss of liver mass and liver damage. Here we review the current state of understanding about how polyploidization is regulated during normal and pathological liver growth, and detail by which mechanisms hepatocytes become polyploid.
Collapse
Affiliation(s)
- G Gentric
- Inserm, U1016, Institut Cochin, 75014 Paris, France
| | | | | |
Collapse
|
22
|
Chen X, Xing S, Feng Y, Chen S, Pei Z, Wang C, Liang X. Early stage transplantation of bone marrow cells markedly ameliorates copper metabolism and restores liver function in a mouse model of Wilson disease. BMC Gastroenterol 2011; 11:75. [PMID: 21676234 PMCID: PMC3141753 DOI: 10.1186/1471-230x-11-75] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 06/15/2011] [Indexed: 11/10/2022] Open
Abstract
Background Recent studies have demonstrated that normal bone marrow (BM) cells transplantation can correct liver injury in a mouse model of Wilson disease (WD). However, it still remains unknown when BM cells transplantation should be administered. The aim of this study was to investigate the potential impact of normal BM cells transplantation at different stages of WD to correct liver injury in toxic milk (tx) mice. Methods Recipient tx mice were sublethally irradiated (5 Gy) prior to transplantation. The congenic wild-type (DL) BM cells labeled with CM-DiI were transplanted via caudal vein injection into tx mice at the early (2 months of age) or late stage (5 months of age) of WD. The same volume of saline or tx BM cells were injected as controls. The DL donor cell population, copper concentration, serum ceruloplasmin oxidase activity and aspartate aminotransferase (AST) levels in the various groups were evaluated at 1, 4, 8 and 12 weeks post-transplant, respectively. Results The DL BM cells population was observed from 1 to 12 weeks and peaked by the 4th week in the recipient liver after transplantation. DL BM cells transplantation during the early stage significantly corrected copper accumulation, AST across the observed time points and serum ceruloplasmin oxidase activity through 8 to 12 weeks in tx mice compared with those treated with saline or tx BM cells (all P < 0.05). In contrast, BM cells transplantation during the late stage only corrected AST levels from 4 to 12 weeks post-transplant and copper accumulation at 12 weeks post-transplant (all P < 0.05). No significant difference was found between the saline and tx BM cells transplantation groups across the observed time points (P > 0.05). Conclusions Early stage transplantation of normal BM cells is better than late stage transplantation in correcting liver function and copper metabolism in a mouse model of WD.
Collapse
Affiliation(s)
- Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No 58 Zhongshan Road 2, Guangzhou 510080, PR China
| | | | | | | | | | | | | |
Collapse
|
23
|
Ichinohe N, Kon J, Sasaki K, Nakamura Y, Ooe H, Tanimizu N, Mitaka T. Growth ability and repopulation efficiency of transplanted hepatic stem cells, progenitor cells, and mature hepatocytes in retrorsine-treated rat livers. Cell Transplant 2011; 21:11-22. [PMID: 21669046 DOI: 10.3727/096368911x580626] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cell-based therapies as an alternative to liver transplantation have been anticipated for the treatment of potentially fatal liver diseases. Not only mature hepatocytes (MHs) but also hepatic stem/progenitor cells are considered as candidate cell sources. However, whether the stem/progenitor cells have an advantage to engraft and repopulate the recipient liver compared with MHs has not been comprehensively assessed. Therefore, we used Thy1(+) (oval) and CD44(+) (small hepatocytes) cells isolated from GalN-treated rat livers as hepatic stem and progenitor cells, respectively. Cells from dipeptidylpeptidase IV (DPPIV)(+) rat livers were transplanted into DPPIV(-) livers treated with retrorsine following partial hepatectomy. Both stem and progenitor cells could differentiate into hepatocytes in host livers. In addition, the growth of the progenitor cells was faster than that of MHs until days 14. However, their repopulation efficiency in the long term was very low, since the survival period of the progenitor cells was much shorter than that of MHs. Most foci derived from Thy1(+) cells disappeared within 2 months. Many cells expressed senescence-associated β-galactosidase in 33% of CD44-derived foci at day 60, whereas the expression was observed in 13% of MH-derived ones. The short life of the cells may be due to their cellular senescence. On the other hand, the incorporation of sinusoidal endothelial cells into foci and sinusoid formation, which might be correlated to hepatic maturation, was completed faster in MH-derived foci than in CD44-derived ones. The survival of donor cells may have a close relation to not only early integration into hepatic plates but also the differentiated state of the cells at the time of transplantation.
Collapse
Affiliation(s)
- Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Krause P, Wolff HA, Rave-Frank M, Schmidberger H, Becker H, Hess CF, Christiansen H, Koenig S. Fractionated external beam radiotherapy as a suitable preparative regimen for hepatocyte transplantation after partial hepatectomy. Int J Radiat Oncol Biol Phys 2011; 80:1214-9. [PMID: 21514075 DOI: 10.1016/j.ijrobp.2011.02.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/23/2010] [Accepted: 02/06/2011] [Indexed: 12/17/2022]
Abstract
PURPOSE Hepatocyte transplantation is strongly considered to be a promising option to correct chronic liver failure through repopulation of the diseased organ. We already reported on extensive liver repopulation by hepatocytes transplanted into rats preconditioned with 25-Gy single dose selective external beam irradiation (IR). Herein, we tested lower radiation doses and fractionated protocols, which would be applicable in clinical use. METHODS AND MATERIAL Livers of dipeptidylpeptidase IV (DPPIV)-deficient rats were preconditioned with partial liver external beam single dose IR at 25 Gy, 8 Gy, or 5 Gy, or fractionated IR at 5 × 5 Gy or 5 × 2 Gy. Four days after completion of IR, a partial hepatectomy (PH) was performed to resect the untreated liver section. Subsequently, 12 million wild-type (DPPIV(+)) hepatocytes were transplanted via the spleen into the recipient livers. The degree of donor cell integration and liver repopulation was studied 16 weeks after transplantation by means of immunofluorescence and DPPIV-luminescence assay. RESULTS Donor hepatocyte integration and liver repopulation were more effective in the irradiated livers following pretreatment with the IR doses 1 × 25 Gy and 5 × 5 Gy (formation of large DPPIV-positive cell clusters) than single-dose irradiation at 8 Gy or 5 Gy (DPPIV-positive clusters noticeably smaller and less frequent). Quantitative analysis of extracted DPPIV revealed signals exceeding the control level in all transplanted animals treated with IR and PH. Compared with the standard treatment of 1 × 25 Gy, fractionation with 5 × 5 Gy was equally efficacious, the Mann-Whitney U test disclosing no statistically significant difference (p = 0.146). The lower doses of 1 × 5 Gy, 1 × 8 Gy, and 5 × 2 Gy were significantly less effective with p < 0.05. CONCLUSION This study suggests that fractionated radiotherapy in combination with PH is a conceivable pretreatment approach to prime the host liver for hepatocyte transplantation, thus bringing the experimental model a step closer to clinical application.
Collapse
Affiliation(s)
- Petra Krause
- Department of General and Visceral Surgery, University Medical Centre Goettingen, Goettingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Koenig S, Yuan Q, Krause P, Christiansen H, Rave-Fraenk M, Kafert-Kasting S, Kriegbaum H, Schneider A, Ott M, Meyburg J. Regional Transient Portal Ischemia and Irradiation as Preparative Regimen for Hepatocyte Transplantation. Cell Transplant 2011; 20:303-11. [DOI: 10.3727/096368910x520074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hepatocyte transplantation is regarded as a promising option to correct hereditary metabolic liver disease. This study describes a novel method involving regional transient portal ischemia (RTPI) in combination with hepatic irradiation (IR) as a preparative regimen for hepatocyte transplantation. The right lobules of rat livers (45% of liver mass) were subjected to RTPI of 30–120 min. Liver specimens and serum samples were analyzed for transaminase levels, DNA damage, apoptosis, and proliferation. Repopulation experiments involved livers of dipeptidylpeptidase IV (DPPIV)-deficient rats preconditioned with RTPI (60–90 min) either with or without prior partial hepatic IR (25 Gy). After reperfusion intervals of 1 and 24 h, 12 million wild-type (DPPIV positive) hepatocytes were transplanted into recipient livers via the spleen. RTPI of 60–90 min caused limited hepatic injury through necrosis and induced a distinct regenerative response in the host liver. Twelve weeks following transplantation, small clusters of donor hepatocytes were detected within the portal areas. Quantitative analysis revealed limited engraftment of 0.79% to 2.95%, whereas control animals (sham OP) exhibited 4.16% (determined as relative activity of DPPIV when compared to wild-type liver). Repopulation was significantly enhanced (21.43%) when IR was performed prior to RTPI, optimum preconditioning settings being 90 min of ischemia and 1 h of reperfusion before transplantation. We demonstrate that RTPI alone is disadvantageous to donor cell engraftment, whereas the combination of IR with RTPI comprises an effective preparative regimen for liver repopulation. The method described clearly has potential for clinical application.
Collapse
Affiliation(s)
- S. Koenig
- Department of General and Visceral Surgery, University Medical Centre Goettingen, Goettingen, Germany
| | - Q. Yuan
- Department of Gastroenterology, Hepatology and Endocrinology, Centre of Internal Medicine, Hanover Medical School, Hanover, Germany
- Twincore Centre for Experimental and Clinical Research, Hannover, Germany
| | - P. Krause
- Department of General and Visceral Surgery, University Medical Centre Goettingen, Goettingen, Germany
| | - H. Christiansen
- Department of Radiotherapy, University Medical Centre Goettingen, Goettingen, Germany
| | - M. Rave-Fraenk
- Department of Radiotherapy, University Medical Centre Goettingen, Goettingen, Germany
| | | | | | - A. Schneider
- Department of Gastroenterology, Hepatology and Endocrinology, Centre of Internal Medicine, Hanover Medical School, Hanover, Germany
| | - M. Ott
- Department of General and Visceral Surgery, University Medical Centre Goettingen, Goettingen, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Centre of Internal Medicine, Hanover Medical School, Hanover, Germany
- Twincore Centre for Experimental and Clinical Research, Hannover, Germany
| | - J. Meyburg
- Department of General and Visceral Surgery, University Medical Centre Goettingen, Goettingen, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Centre of Internal Medicine, Hanover Medical School, Hanover, Germany
| |
Collapse
|
26
|
Shafritz DA, Oertel M. Model systems and experimental conditions that lead to effective repopulation of the liver by transplanted cells. Int J Biochem Cell Biol 2011; 43:198-213. [PMID: 20080205 PMCID: PMC2907475 DOI: 10.1016/j.biocel.2010.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/22/2009] [Accepted: 01/07/2010] [Indexed: 12/26/2022]
Abstract
In recent years, there has been substantial progress in transplanting cells into the liver with the ultimate goal of restoring liver mass and function in both inherited and acquired liver diseases. The basis for considering that this might be feasible is that the liver is a highly regenerative organ. After massive liver injury or surgical removal of two-thirds or more of the liver tissue, the organ can restore its mass with completely normal morphologic structure and function. It has also been found under highly selective conditions that transplanted hepatocytes can fully repopulate the liver and cure a metabolic disorder or deficiency state. Fetal liver cells can also substantially repopulate the normal liver, and it is hoped in the future that effective repopulation will be achievable with cultured cells or cell lines, pluripotent stem cells from other somatic tissues, embryonic stem cells, or induced pluripotent stem cells, which can now be generated in vitro by a variety of methods. The purpose of this review is to present the major systems that have been used for liver repopulation, the variables involved in obtaining successful repopulation and what has been achieved in these various systems to date with different cell types.
Collapse
Affiliation(s)
- David A Shafritz
- Marion Bessin Liver Research Center, Department of Medicine and Division of Hepatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
27
|
Abstract
Hepatocyte transplantation has shown potential as an additional treatment modality for certain diseases of the liver. To date, patients with liver-based metabolic disorders or acute liver failure have undergone hepatocyte transplantation in several centers around the world. Results from individual patients are promising, especially for the treatment of liver-based metabolic disorders, but the lack of controlled trials makes the interpretation of the findings difficult. The current source of isolated hepatocytes is donor organs that are unused or deemed unsuitable for liver transplantation. Hence the major challenge that this field is facing is the limited supply of donor organs that can provide good quality cells. Alternative sources of cells, including stem cells, are under investigation. This Review discusses the current bench-to-bedside issues and future challenges that need to be faced to allow the wider application of hepatocyte transplantation.
Collapse
|
28
|
Tschaharganeh DF, Kaldenbach M, Erschfeld S, Tischendorf JJW, Trautwein C, Streetz KL. Glycoprotein 130-dependent pathways in host hepatocytes are important for liver repopulation in mice. Liver Transpl 2010; 16:23-32. [PMID: 20035522 DOI: 10.1002/lt.21962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocyte transplantation (HT) is still restricted by the limited amount of transplantable cells. Therefore, a better understanding of the mechanisms involved in cellular engraftment, proliferation, and in vivo selection is important. Here we aimed to evaluate the role of the interleukin 6 (IL-6)/glycoprotein 130 (gp130) system for liver repopulation. Mice carrying a conditional hepatocyte-specific deletion of the common IL-6 signal transducer gp130 (gp130(Deltahepa)) were used for HT. First, we compared bone marrow transplantation (BMT), partial hepatectomy (PH), and retrorsine treatment of recipient mice to optimize the in vivo selection of transplanted hepatocytes. BMT combined with PH was sufficient to induce a 30-fold increase in the number of transplanted donor hepatocytes, whereas additional retrorsine pretreatment led to an up to 40-fold increase. Next, the influence of gp130 signaling in hepatocytes on cell selection was evaluated. Wild-type (WT) hepatocytes repopulated WT recipients at the same rate as gp130(Deltahepa) cells. In contrast, liver repopulation by transplanted cells was enhanced in gp130(Deltahepa) recipient mice. This was associated with higher proliferation of donor hepatocytes and enhanced apoptosis in gp130(Deltahepa) recipient livers. Additionally, the acute phase response was strongly induced after HT in WT recipients but blunted in gp130(Deltahepa) recipients. As a result, significantly more liver remodeling, evidenced by stronger hepatic stellate cell activation and collagen accumulation, was found in gp130(Deltahepa) mice after HT. In conclusion, the HT model established here can be efficiently applied to investigate cell-specific mechanisms in liver repopulation. Moreover, we have shown that gp130-dependent pathways in host hepatocytes are important for controlling liver repopulation.
Collapse
|
29
|
Abstract
The liver has an extraordinary faculty to regenerate. Hepatocytes are highly differentiated cells that, despite a resting G0 state in the normal quiescent liver, can re-enter the cell cycle to reconstitute the organ after an injury. However, the first cell therapy approaches trying to harness this specific characteristic of the hepatocytes came up against the competition with resident hepatocytes in the ability to proliferate. This review will describe the different rodent models that have been developed in the last 15 years to demonstrate the concept of liver repopulation with transplanted cells harbouring a selective advantage over resident hepatocytes. Examples will then be given to show how these models demonstrated the therapeutic efficiency of cell transplantation in specific disorders. The transplantation of human hepatocytes into some of these mouse models led to the creation of humanized livers. These humanized mice provide a powerful tool to study the physiopathology of human hepatotropic pathogens and to develop drugs against them. Finally, emphasis will be placed on the role of these rodent models in the demonstration of the hepatocytic potential of stem cells.
Collapse
|
30
|
Celton-Morizur S, Desdouets C. Polyploidization of liver cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 676:123-35. [PMID: 20687473 DOI: 10.1007/978-1-4419-6199-0_8] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Eukaryotic organisms usually contain a diploid complement of chromosomes. However, there are a number of exceptions. Organisms containing an increase in DNA content by whole number multiples of the entire set of chromosomes are defined as polyploid. Cells that contain more than two sets of chromosomes were first observed in plants about a century ago and it is now recognized that polyploidy cells form in many eukaryotes under a wide variety of circumstance. Although it is less common in mammals, some tissues, including the liver, show a high percentage of polyploid cells. Thus, during postnatal growth, the liver parenchyma undergoes dramatic changes characterized by gradual polyploidization during which hepatocytes of several ploidy classes emerge as a result of modified cell-division cycles. This process generates the successive appearance of tetraploid and octoploid cell classes with one or two nuclei (mononucleated or binucleated). Liver cells polyploidy is generally considered to indicate terminal differentiation and senescence and to lead both to the progressive loss of cell pluripotency and a markedly decreased replication capacity. In adults, liver polyploidization is differentially regulated upon loss of liver mass and liver damage. Interestingly, partial hepatectomy induces marked cell proliferation followed by an increase in liver ploidy. In contrast, during hepatocarcinoma (HCC), growth shifts to a nonpolyploidizing pattern and expansion of the diploid hepatocytes population is observed in neoplastic nodules. Here we review the current state of understanding about how polyploidization is regulated during normal and pathological liver growth and detail by which mechanisms hepatocytes become polyploid.
Collapse
|
31
|
|
32
|
Tokai H, Kawashita Y, Ito Y, Yamanouchi K, Takatsuki M, Eguchi S, Tajima Y, Kanematsu T. Efficacy and limitation of bone marrow transplantation in the treatment of acute and subacute liver failure in rats. Hepatol Res 2009; 39:1137-43. [PMID: 19619255 DOI: 10.1111/j.1872-034x.2009.00556.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Recent reports have shown that bone marrow cells (BMC) retain the potential to differentiate into hepatocytes. Thus, the BMC have been recognized as an attractive source for liver regenerative medicine. However, it has not been clarified whether BMC transplantation can be used to treat liver damage in vivo. In the present study, we explored whether BMC possess therapeutic potential to treat acute and/or subacute liver failure. METHODS Fulminant hepatic failure (FHF) was induced by 70% hepatectomy with ligation of the right lobe pedicle (24% liver mass), followed by transplantation of BMC into the spleen. Dipeptidyl peptidase IV-positive (DPPIV(+)) BMC were then transplanted into DPPIV-negative (DPPIV(-)) recipients following hepatic irradiation (HIR) in which 70% of the liver was resected and the remnant liver irradiated. RESULTS There was no benefit of BMC transplantation towards survival in the FHF model. DPPIV(+) hepatocytes appeared in the liver tissues of the DPPIV(-) HIR model rats, but DPPIV(+) hepatocytes replaced less than 13% of the recipient liver. CONCLUSION BMC transplantation may have limitations in the treatment of fulminant or acute liver failure because they do not have sufficient time to develop into functional hepatocytes. Preparative HIR may be beneficial in help to convert the transplanted BMC into host hepatocytes, and provide a survival benefit. Although, However, the precise mechanism warrants further studies.
Collapse
Affiliation(s)
- Hirotaka Tokai
- Department of Surgery, Graduate School of Biochemical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Joseph B, Kapoor S, Schilsky ML, Gupta S. Bile salt-induced pro-oxidant liver damage promotes transplanted cell proliferation for correcting Wilson disease in the Long-Evans Cinnamon rat model. Hepatology 2009; 49:1616-1624. [PMID: 19185006 PMCID: PMC2677114 DOI: 10.1002/hep.22792] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Insights into disease-specific mechanisms for liver repopulation are needed for cell therapy. To understand the efficacy of pro-oxidant hepatic perturbations in Wilson disease, we studied Long-Evans Cinnamon (LEC) rats with copper toxicosis under several conditions. Hepatocytes from healthy Long-Evans Agouti (LEA) rats were transplanted intrasplenically into the liver. A cure was defined as lowering of copper to below 250 microg/g liver, presence of ATPase, Cu++ transporting, beta polypeptide (atp7b) messenger RNA (mRNA) in the liver and improvement in liver histology. Treatment of animals with the hydrophobic bile salt, cholic acid, or liver radiation before cell transplantation produced cure rates of 14% and 33%, respectively; whereas liver radiation plus partial hepatectomy followed by cell transplantation proved more effective, with cure in 55%, P < 0.01; and liver radiation plus cholic acid followed by cell transplantation was most effective, with cure in 75%, P < 0.001. As a group, cell therapy cures in rats preconditioned with liver radiation plus cholic acid resulted in less hepatic copper, indicating greater extent of liver repopulation. We observed increased hepatic catalase and superoxide dismutase activities in LEC rats, suggesting chronic oxidative stress. After liver radiation or cholic acid, hepatic lipid peroxidation levels increased, indicating further oxidative injury, although we did not observe overt additional cytotoxicity. This contrasted with healthy animals in which liver radiation and cholic acid produced hepatic steatosis and loss of injured hepatocytes. We concluded that pro-oxidant perturbations were uniquely effective for cell therapy in Wilson disease because of the nature of preexisting hepatic damage.
Collapse
Affiliation(s)
- Brigid Joseph
- Marion Bessin Liver Research Center, Diabetes Research Center, Cancer Research Center, Departments of Medicine and Pathology, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York
| | - Sorabh Kapoor
- Marion Bessin Liver Research Center, Diabetes Research Center, Cancer Research Center, Departments of Medicine and Pathology, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York
| | - Michael L. Schilsky
- The Yale-New Haven Transplantation Center, Yale-New Haven Hospital, New Haven, Connecticut
| | - Sanjeev Gupta
- Marion Bessin Liver Research Center, Diabetes Research Center, Cancer Research Center, Departments of Medicine and Pathology, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
34
|
Alison MR, Islam S, Lim S. Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J Pathol 2009; 217:282-98. [PMID: 18991329 DOI: 10.1002/path.2453] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The worldwide shortage of donor livers to transplant end stage liver disease patients has prompted the search for alternative cell therapies for intractable liver diseases, such as acute liver failure, cirrhosis and hepatocellular carcinoma (HCC). Under normal circumstances the liver undergoes a low rate of hepatocyte 'wear and tear' renewal, but can mount a brisk regenerative response to the acute loss of two-thirds or more of the parenchymal mass. A body of evidence favours placement of a stem cell niche in the periportal regions, although the identity of such stem cells in rodents and man is far from clear. In animal models of liver disease, adopting strategies to provide a selective advantage for transplanted hepatocytes has proved highly effective in repopulating recipient livers, but the poor success of today's hepatocyte transplants can be attributed to the lack of a clinically applicable procedure to force a similar repopulation of the human liver. The activation of bipotential hepatic progenitor cells (HPCs) is clearly vital for survival in many cases of acute liver failure, and the signals that promote such reactions are being elucidated. Bone marrow cells (BMCs) make, at best, a trivial contribution to hepatocyte replacement after damage, but other BMCs contribute to the hepatic collagen-producing cell population, resulting in fibrotic disease; paradoxically, BMC transplantation may help alleviate established fibrotic disease. HCC may have its origins in either hepatocytes or HPCs, and HCCs, like other solid tumours appear to be sustained by a minority population of cancer stem cells.
Collapse
Affiliation(s)
- M R Alison
- Centre for Diabetes and Metabolic Medicine, St Bartholomew's Hospital and the London School of Medicine and Dentistry, London, UK.
| | | | | |
Collapse
|
35
|
Sanchez C, Oskowitz A, Pochampally RR. Epigenetic reprogramming of IGF1 and leptin genes by serum deprivation in multipotential mesenchymal stromal cells. Stem Cells 2009; 27:375-82. [PMID: 19038795 PMCID: PMC4943331 DOI: 10.1634/stemcells.2008-0546] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent studies on the therapeutic effect of multipotential mesenchymal stem cells (MSCs) in various models of injury have shown that paracrine factors secreted by MSCs are responsible for tissue repair with very little engraftment. In this study we tested the hypothesis that MSCs under stress undergo epigenetic modifications that direct secretion of paracrine factors responsible for tissue repair. Microarray assays of MSCs that had been deprived of serum (SD-MSCs), to induce stress, demonstrated an increase in the expression of several angiogenic, prosurvival, and antiapoptotic factors, including insulin-like growth factor 1 (IGF1) and leptin. Real-time polymerase chain reaction assays demonstrated a >200-fold increase in the expression of IGF1 and leptin in SD-MSCs. Chromatin immunoprecipitation of SD-MSCs revealed histone tail modifications consistent with transcriptional activation of IGF1 and leptin promoters in a reversible manner. To identify the functional significance of the epigenetic changes in stressed MSCs, we tested the prosurvival properties of SD-MSCs and the ability of conditioned medium from SD-MSCs to enhance survival of apoptotic cancer cells. First, we showed that SD-MSCs are more resistant to oxidative damage than MSCs using alkaline comet assays. Next, we demonstrated that conditioned medium from SD-MSCs decreased staurosporin-induced cell death in the KHOS osteosarcoma cell line, and that this effect was partially reversed by immunodepletion of IGF1 or leptin from the conditioned medium. In conclusion, we demonstrate that serum deprivation induces epigenetic changes in MSCs to upregulate the expression of the proangiogenic and antiapoptotic factors IGF1 and leptin.
Collapse
Affiliation(s)
- Cecilia Sanchez
- Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Adam Oskowitz
- Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Radhika R. Pochampally
- Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Pharmacology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
36
|
Choi MS, Catana AM, Wu J, Kim YS, Yoon SJ, Borowsky AD, Gambhir SS, Gupta S, Zern MA. Use of bioluminescent imaging to assay the transplantation of immortalized human fetal hepatocytes into mice. Cell Transplant 2009; 17:899-909. [PMID: 19069633 DOI: 10.3727/096368908786576471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Noninvasive serial monitoring of the fate of transplanted cells would be invaluable to evaluate the potential therapeutic use of human hepatocyte transplantation. Therefore, we assessed the feasibility of bioluminescent imaging using double or triple fusion lentiviral vectors in a NOD-SCID mouse model transplanted with immortalized human fetal hepatocytes. Lentiviral vectors driven by the CMV promoter were constructed carrying reporter genes: firefly luciferase and green fluorescence protein with or without herpes simplex virus type 1 thymidine kinase. Human fetal hepatocytes immortalized by telomerase reconstitution (FH-hTERT) were successfully transduced with either of these fusion vectors. Two million stably transduced cells selected by fluorescence-activated cell sorting were injected into the spleens of NOD-SCID mice pretreated with methylcholanthrene and monocrotaline. The transplanted mice were serially imaged with a bioluminescence charged-coupled device camera after D-luciferin injection. Bioluminescence signal intensity was highest on day 3 (6.10 +/- 2.02 x 10(5) p/s/cm2/sr, mean +/- SEM), but decreased to 2.26 +/- 1.54 x 10(5) and 7.47 +/- 3.09 x 10(4) p/s/cm2/sr on day 7 and 10, respectively (p = 0.001). ELISA for human albumin in mice sera showed that levels were similar to those of control mice on day 2 (3.25 +/- 0.92 vs. 2.84 +/- 0.59 ng/ml, mean +/- SEM), peaked at 18.04 +/- 3.11 ng/ml on day 7, and decreased to 8.93 +/- 1.40 and 3.54 +/- 0.87 ng/ml on day 14 and 21, respectively (p = 0.02). Real-time quantitative RT-PCR showed gene expression levels of human albumin, alpha1-antitrypsin, and transferrin in mouse liver were 60.7 +/- 6.5%, 26.0 +/- 1.4%, and 156.8 +/- 62.4% of those of primary human adult hepatocytes, respectively, and immunohistochemistry revealed cells with human albumin and alpha1-antitrypsin expression in the mouse liver. In conclusion, our study demonstrated that bioluminescent imaging appears to be a sensitive, noninvasive modality for serial monitoring of transplanted hepatic stem cells.
Collapse
Affiliation(s)
- Moon Seok Choi
- Transplant Research Institute, UC Davis Medical Center, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Hepatocyte transplantation has therapeutic potential for multiple hepatic and extrahepatic disorders with genetic or acquired basis. To demonstrate whether cell populations of interest will be effective for clinical applications, it is first necessary to characterize their properties in animal systems. Demonstrating the potential of cells to engraft and proliferate is a critical part of this characterization. Similarly, for stem/progenitor cells, demonstrating the capacity to differentiate along appropriate lineages and generate mature cells that can engraft and proliferate is essential. In various animal models, preconditioning of recipients prior to cell transplantation has been necessary to improve engraftment of cells, to stimulate proliferation of engrafted cells, and to induce extensive repopulation of the host liver by transplanted cells. Although this is an area of active investigation, effective preconditioning protocols should alter the hepatic microenvironment, such that transplanted cells can obtain selective advantages for engrafting and proliferating in the liver. Use of such experimental systems in animals will help generate further strategies for liver repopulation and thereby advance clinical applications of liver cell therapy.
Collapse
Affiliation(s)
- Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | |
Collapse
|
38
|
Fitzpatrick E, Mtegha M, Dhawan A. Crigler-Najjar syndrome: therapeutic options and consequences of mutations in the UGT1A1 complex. Expert Rev Endocrinol Metab 2008; 3:725-737. [PMID: 30764062 DOI: 10.1586/17446651.3.6.725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Crigler-Najjar syndrome (CN), a rare inherited disorder characterized by failure of bilirubin glucuronidation, can lead to severe disability and death from kernicterus. Gilbert syndrome is a more common, benign familial unconjugated hyperbilirubinemia. The underlying problem in both conditions is impaired bilirubin conjugation and elimination due to a mutation in uridine 5'-diphosphate glucuronyltransferase. The mainstay of current management of CN is phototherapy, followed by liver transplantation. Here, we review other therapies, including hepatocyte transplantation, that have been successfully used to lessen the phenotype, although long-term engraftment of cells remains elusive. Gene therapy holds hope for the future whereby the patient's hepatocytes are transduced with the wild-type gene. Outstanding issues include safety of the gene vector and establishing immunotolerance to both vector and the new protein. The significant advances in understanding the relevance of mutations in UGT not only in glucuronidation of bilirubin, but other drugs and substances, are also reviewed.
Collapse
Affiliation(s)
- Emer Fitzpatrick
- a Paediatric Liver Centre, King's College London School of Medicine at King's College Hospital, Denmark Hill, London SE5 9PJ, UK
| | - Marumbo Mtegha
- a Paediatric Liver Centre, King's College London School of Medicine at King's College Hospital, Denmark Hill, London SE5 9PJ, UK
| | - Anil Dhawan
- b Paediatric Liver Centre, King's College London School of Medicine at King's College Hospital, Denmark Hill, London SE5 9PJ, UK.
| |
Collapse
|
39
|
Enns GM, Millan MT. Cell-based therapies for metabolic liver disease. Mol Genet Metab 2008; 95:3-10. [PMID: 18640065 DOI: 10.1016/j.ymgme.2008.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 12/15/2022]
Abstract
Liver transplantation is an important therapeutic option for many individuals with metabolic liver disease. Nevertheless, the invasive nature of surgery and limitations of donor organ availability have led to the search for alternatives to whole-organ transplantation. Cell-based therapies have been a particularly active area of investigation in recent years. Hepatocyte transplantations have been performed for a variety of indications, including acute liver failure, end-stage liver disease, and inborn errors of metabolism. Individuals with inborn errors of metabolism who have undergone hepatocyte transplantation have shown clinical improvement and partial correction of the underlying metabolic defect. In most cases, sustained benefits have not been observed. This may be related to inadequate cell dose, variations in the quality of hepatocyte preparations, rejection of the transplanted cells, or senescence of transplanted hepatocytes. Though initial proof of concept with hepatocyte transplantation has been demonstrated by a number of investigators, wide application of this technology has been hindered by the inability to secure a reliable and well-characterized cell source(s) for transplantation and by the challenges of sustained engraftment and expansion of transplanted cells in vivo. Cell-based therapies, including those based on stem cells or more differentiated progenitor cells, may represent the future of cell transplantation for treatment of metabolic liver disease.
Collapse
Affiliation(s)
- Gregory M Enns
- Division of Medical Genetics, Department of Pediatrics, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94305-5208, USA.
| | | |
Collapse
|
40
|
Perryman SV, Jenkins DD, Streetz KL, Longaker MT, Sylvester KG. Hepatic injury and the kinetics of bone marrow-derived hepatocyte transgene expression. J Pediatr Surg 2008; 43:1511-9. [PMID: 18675644 DOI: 10.1016/j.jpedsurg.2007.12.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 01/05/2023]
Abstract
BACKGROUND Numerous congenital and acquired liver diseases could benefit from a successful hepatic cell therapy strategy. Hepatotypic cells derived from bone marrow have been recognized during liver injury, repair, and regeneration. To study this phenomenon, we compared the effect of several modes of experimental hepatic injury on hepatotypic protein expression in a mouse model after bone marrow transplantation. METHODS Male mice transgenic for the liver-specific protein human alpha-1 antitrypsin (hAAT) were used as bone marrow donors. Syngeneic wild-type recipient mice were subjected to 1 of 3 hepatic injuries: (1) sublethal irradiation, (2) injection of a hepatotoxic adenoviral construct, and (3) administration of a hepatotoxic diet. Bone marrow-derived hepatotypic (BMdH) transgene expression was determined by serial serum enzyme-linked immunosorbent assay for hAAT. RESULTS In both acute injury models, hAAT expression was detected as early as 1 week, whereas the control group never elicited hAAT expression. The adenovirus-treated group demonstrated transient hAAT level expression lasting up to 2 weeks postinjury, whereas the irradiated group maintained persistent hAAT expression through 4 months. In the chronic injury (hepatotoxin) model, hAAT expression persisted and was noted to increase over time to 200 to 300 ng/mL. CONCLUSIONS Irradiation favors long-term establishment of BMdH transgene expression, and chronic injury further promotes this phenomenon.
Collapse
Affiliation(s)
- Scott V Perryman
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
41
|
Ott M. A symphony of techniques for liver cell therapy, only applicable to rats? J Hepatol 2008; 49:6-8. [PMID: 18485519 DOI: 10.1016/j.jhep.2008.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
42
|
Abstract
Cirrhosis is defined as the histological development of regenerative nodules surrounded by fibrous bands in response to chronic liver injury, which leads to portal hypertension and end-stage liver disease. Recent advances in the understanding of the natural history and pathophysiology of cirrhosis, and in treatment of its complications, have resulted in improved management, quality of life, and life expectancy of patients. Liver transplantation remains the only curative option for a selected group of patients, but pharmacological treatments that can halt progression to decompensated cirrhosis or even reverse cirrhosis are currently being developed. This Seminar focuses on the diagnosis, complications, and management of cirrhosis, and new clinical and scientific developments.
Collapse
Affiliation(s)
- Detlef Schuppan
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
43
|
Abstract
Cirrhosis is defined as the histological development of regenerative nodules surrounded by fibrous bands in response to chronic liver injury, which leads to portal hypertension and end-stage liver disease. Recent advances in the understanding of the natural history and pathophysiology of cirrhosis, and in treatment of its complications, have resulted in improved management, quality of life, and life expectancy of patients. Liver transplantation remains the only curative option for a selected group of patients, but pharmacological treatments that can halt progression to decompensated cirrhosis or even reverse cirrhosis are currently being developed. This Seminar focuses on the diagnosis, complications, and management of cirrhosis, and new clinical and scientific developments.
Collapse
Affiliation(s)
- Detlef Schuppan
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
44
|
Marongiu F, Doratiotto S, Montisci S, Pani P, Laconi E. Liver repopulation and carcinogenesis: two sides of the same coin? THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:857-64. [PMID: 18321999 DOI: 10.2353/ajpath.2008.070910] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver repopulation by transplanted normal hepatocytes has been described in a number of experimental settings. Extensive repopulation can also occur from the selective proliferation of endogenous normal hepatocytes, both in experimental animals and in the human liver. This review highlights the intriguing association between clinical and experimental conditions related to liver repopulation and an increased risk for development of hepatocellular carcinoma. It is suggested that any microenvironment that is able to sustain the clonal growth of normal transplanted (or endogenous) hepatocytes is also geared to select for the emergence of rare resistant cells with an altered phenotype. Whereas the first pathway leads to liver repopulation with normal histology, the latter results in the growth of focal proliferative lesions and carries an increased risk of neoplastic disease. The implications of this association are discussed, both in terms of pathogenetic significance and possible therapeutic exploitation.
Collapse
Affiliation(s)
- Fabio Marongiu
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Patologia Sperimentale, Università di Cagliari, Cagliari, Italy
| | | | | | | | | |
Collapse
|
45
|
Swenson ES, Kuwahara R, Krause DS, Theise ND. Physiological variations of stem cell factor and stromal-derived factor-1 in murine models of liver injury and regeneration. Liver Int 2008; 28:308-18. [PMID: 18290773 PMCID: PMC2846401 DOI: 10.1111/j.1478-3231.2007.01659.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIMS Stem cell factor (SCF) and stromal-derived factor-1 (SDF-1) regulate the regenerative response to liver injury, possibly through activation of liver progenitor 'oval' cells and recruitment of circulating, marrow-derived progenitors. METHODS We performed a detailed analysis of SCF, SDF-1 and oval cell proliferation induced by tyrosinaemia, 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or liver irradiation in mice by ELISA and immunofluorescence. RESULTS Liver injury in the tyrosinaemia mouse is characterized by a dramatic decline in plasma SCF and absence of oval cell proliferation. In contrast, DDC induces bile duct (BD) and oval cell proliferation, and a modest decline in plasma SCF. Focal liver irradiation increases plasma SCF, but not oval cell density. In normal mouse liver, SCF is localized primarily to Kupffer cells, cholangiocytes and arterial smooth muscle, with little or no expression in hepatocytes. However, SCF appears in hepatocyte nuclei after injury, where its function is unknown. In all three models, SDF-1 is expressed exclusively in BD epithelium, indicating that tissue SDF-1 levels are proportional to the total mass of oval cells and cholangiocytes. However, increased plasma levels of SDF-1 in fumaryl acetoacetate hydroxylase-null mice were not accompanied by oval cell proliferation. CONCLUSION Changes in SCF and SDF-1 varied with the nature of liver injury and were not directly related to oval cell proliferation.
Collapse
Affiliation(s)
- E. Scott Swenson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Reiichiro Kuwahara
- Liver & Stem Cell Research Laboratory, Department of Medicine, Division of Digestive Diseases, Beth Israel Medical Center, New York, NY, USA
| | - Diane S. Krause
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Neil D. Theise
- Liver & Stem Cell Research Laboratory, Department of Medicine, Division of Digestive Diseases, Beth Israel Medical Center, New York, NY, USA
| |
Collapse
|
46
|
Malhi H, Joseph B, Schilsky ML, Gupta S. Development of cell therapy strategies to overcome copper toxicity in the LEC rat model of Wilson disease. Regen Med 2008; 3:165-73. [DOI: 10.2217/17460751.3.2.165] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aims: Therapeutic replacement of organs with healthy cells requires disease-specific strategies. As copper toxicosis due to ATP7B deficiency in Wilson disease produces significant liver injury, disease-specific study of transplanted cell proliferation will offer insights into cell and gene therapy mechanisms. Materials & methods: We used Long–Evans Cinnamon (LEC) rats to demonstrate the effects of liver preconditioning with radiation and ischemia reperfusion, followed by transplantation of healthy Long–Evans Agouti rat hepatocytes and analysis of hepatic atp7b mRNA, bile copper, liver copper and liver histology. Results: LEC rats without cell therapy or after transplantation of healthy cells without liver conditioning accumulated copper and showed liver disease during the study period. Liver conditioning incorporating hepatic radiation promoted transplanted cell proliferation and reversed Wilson disease parameters, although with interindividual variations and time lags for improvement, which were different from previous results of liver repopulation in healthy animals. Conclusion: Cell therapy will correct genetic disorders characterized by organ damage. However, suitable mechanisms for inducing transplanted cell proliferation will be critical for therapeutic success.
Collapse
Affiliation(s)
- Harmeet Malhi
- Albert Einstein College of Medicine, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Departments of Medicine and Pathology, and Institute for Clinical and Translational Research, Ullmann Building, Room 625, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Brigid Joseph
- Albert Einstein College of Medicine, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Departments of Medicine and Pathology, and Institute for Clinical and Translational Research, Ullmann Building, Room 625, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Michael L Schilsky
- Yale–New Haven Hospital, The Yale–New Haven Transplantation Center, 20 York Street, New Haven, CT 06510, USA
| | - Sanjeev Gupta
- Albert Einstein College of Medicine, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Departments of Medicine and Pathology, and Institute for Clinical and Translational Research, Ullmann Building, Room 625, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
47
|
Oertel M, Menthena A, Chen YQ, Teisner B, Jensen CH, Shafritz DA. Purification of fetal liver stem/progenitor cells containing all the repopulation potential for normal adult rat liver. Gastroenterology 2008; 134:823-32. [PMID: 18262526 DOI: 10.1053/j.gastro.2008.01.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 11/29/2007] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Previously, we showed high-level, long-term liver replacement after transplantation of unfractionated embryonic day (ED) 14 fetal liver stem/progenitor cells (FLSPC). However, for clinical applications, it will be essential to transplant highly enriched cells, while maintaining high repopulation potential. METHODS Dlk-1, a member of the delta-like family of cell surface transmembrane proteins, is highly expressed in human and rodent fetal liver. Dlk-1(+) cells, isolated from ED14 fetal liver using immunomagnetic beads, were examined for their hepatic gene expression profile and characteristic properties in vitro and their proliferative and differentiation potential in vivo after transplantation into normal adult rat liver. RESULTS Rat ED14 FLSPC were purified to 95% homogeneity and exhibited cell culture and gene expression characteristics expected for hepatic stem/progenitor cells. Rat ED14 FLSPC are alpha-fetoprotein(+)/cytokeratin-19(+) or alpha-fetoprotein(+)/cytokeratin-19(-) and contain all of the normal liver repopulation capacity found in fetal liver. Hematopoietic stem cells, a major component in crude fetal liver cell preparations that engraft in other organs, such as bone marrow, spleen, and lung, are totally removed by Dlk-1 selection, and Dlk-1 purified FLSPC repopulate only the liver. CONCLUSIONS This is the first study reporting purification of hepatic stem/progenitor cells from fetal liver that are fully capable of repopulating the normal adult liver. This represents a major advance toward developing protocols that will be essential for clinical application of liver cell transplantation therapy.
Collapse
Affiliation(s)
- Michael Oertel
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, USA
| | | | | | | | | | | |
Collapse
|
48
|
Wu YM, Joseph B, Berishvili E, Kumaran V, Gupta S. Hepatocyte transplantation and drug-induced perturbations in liver cell compartments. Hepatology 2008; 47:279-87. [PMID: 17935178 DOI: 10.1002/hep.21937] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
UNLABELLED The potential for organ damage after using drugs or chemicals is a critical issue in medicine. To delineate mechanisms of drug-induced hepatic injury, we used transplanted cells as reporters in dipeptidyl peptidase IV-deficient mice. These mice were given phenytoin and rifampicin for 3 days, after which monocrotaline was given followed 1 day later by intrasplenic transplantation of healthy C57BL/6 mouse hepatocytes. We examined endothelial and hepatic damage by serologic or tissue studies and assessed changes in transplanted cell engraftment and liver repopulation by histochemical staining for dipeptidyl peptidase IV. Monocrotaline caused denudation of the hepatic sinusoidal endothelium and increased serum hyaluronic acid levels, along with superior transplanted cell engraftment. Together, phenytoin, rifampicin, and monocrotaline caused further endothelial damage, reflected by greater improvement in cell engraftment. Phenytoin, rifampicin, and monocrotaline produced injury in hepatocytes that was not apparent after conventional tissue studies. This led to transplanted cell proliferation and extensive liver repopulation over several weeks, which was more efficient in males compared with females, including greater induction by phenytoin and rifampicin of cytochrome P450 3A4 isoform that converts monocrotaline to toxic intermediates. Through this and other possible mechanisms, monocrotaline-induced injury in the endothelial compartment was retargeted to simultaneously involve hepatocytes over the long term. Moreover, after this hepatic injury, native liver cells were more susceptible to additional pro-oxidant injury through thyroid hormone, which accelerated the kinetics of liver repopulation. CONCLUSION Transplanted reporter cells will be useful for obtaining insights into homeostatic mechanisms involving liver cell compartments, whereas targeted injury in hepatic endothelial and parenchymal cells with suitable drugs will also help advance liver cell therapy.
Collapse
Affiliation(s)
- Yao-Ming Wu
- Marion Bessin Liver Research Center, Diabetes Center, Cancer Research Center, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
49
|
Oertel M, Shafritz DA. Stem cells, cell transplantation and liver repopulation. Biochim Biophys Acta Mol Basis Dis 2007; 1782:61-74. [PMID: 18187050 DOI: 10.1016/j.bbadis.2007.12.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 02/07/2023]
Abstract
Liver transplantation is currently the only therapeutic option for patients with end-stage chronic liver disease and for severe acute liver failure. Because of limited donor availability, attention has been focused on the possibility to restore liver mass and function through cell transplantation. Stem cells are a promising source for liver repopulation after cell transplantation, but whether or not the adult mammalian liver contains hepatic stem cells is highly controversial. Part of the problem is that proliferation of mature adult hepatocytes is sufficient to regenerate the liver after two-thirds partial hepatectomy or acute toxic liver injury and participation of stem cells is not required. However, under conditions in which hepatocyte proliferation is blocked, undifferentiated epithelial cells in the periportal areas, called "oval cells", proliferate, differentiate into hepatocytes and restore liver mass. These cells are referred to as facultative liver stem cells, but they do not repopulate the normal liver after their transplantation. In contrast, epithelial cells isolated from the early fetal liver can effectively repopulate the normal liver, but they are already traversing the hepatic lineage and may not be true stem cells. Mesenchymal stem cells and embryonic stem cells can be induced to differentiate along the hepatic lineage in culture, but at present these cells are inefficient in repopulating the liver. This review will characterize these various cell types and compare the properties of these cells and the conditions under which they do or do not repopulate the liver following their transplantation.
Collapse
Affiliation(s)
- Michael Oertel
- Marion Bessin Liver Research Center, Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
50
|
Alison MR, Choong C, Lim S. Application of liver stem cells for cell therapy. Semin Cell Dev Biol 2007; 18:819-26. [PMID: 17997335 DOI: 10.1016/j.semcdb.2007.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 09/28/2007] [Indexed: 02/06/2023]
Abstract
The worldwide shortage of donor livers to transplant end stage liver disease patients has prompted the search for alternative cell therapies for intractable liver disease. Embryonic stem cells can be readily differentiated into hepatocytes, and their transplantation into animals has improved liver function in the absence of teratoma formation: their use in bioartificial liver support is an obvious application. In animal models of liver disease, adopting strategies to provide a selective advantage for transplanted foetal or adult hepatocytes have proved highly effective in repopulating recipient livers, but the poor success of today's hepatocyte transplants can be attributed to the lack of a clinically applicable procedure to force a similar repopulation of the human liver. The activation of bipotential hepatic progenitor cells is clearly vital for survival in many cases of acute liver failure, but surprisingly little progress has been made with these cells in terms of transplantation. Finally there is the controversial subject of autologous bone marrow, and while the contribution of these indigenous cells to liver turnover seems at best, trivial, results from a small number of phase 1 studies of transplantation of bone marrow to cirrhotic patients have been moderately encouraging.
Collapse
Affiliation(s)
- Malcolm R Alison
- Centre for Diabetes and Metabolic Medicine, Queen Mary's School of Medicine and Dentistry, ICMS, 4 Newark Street, London E1 2AT, UK.
| | | | | |
Collapse
|