1
|
Okedigba AO, Ng EL, Deegbey M, Rosso ML, Ngo W, Xiao R, Huang H, Zhang B, Vaissier Welborn V, Capelluto DGS. Soybean Lectin Cross-Links Membranes by Binding Sulfatide in a Curvature-Dependent Manner. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40411535 DOI: 10.1021/acs.jafc.5c04336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2025]
Abstract
Soybean (Glycine max) is a key source of plant-based protein, yet its nutritional value is impacted by antinutritional factors, including lectins. Whereas soybean lectin is known to bind N-acetyl-d-galactosamine (GalNAc), its lipid interactions remain unexplored. Using a novel purification method, we isolated lectin from soybean meals and characterized its interactions with GalNAc and the glycosphingolipid sulfatide. Isothermal titration calorimetry revealed micromolar affinity for GalNAc, whereas most GalNAc derivatives displayed weak or no binding. Lectin exhibited high-affinity binding to sulfatide in a membrane curvature-dependent manner. Binding of lectin to sulfatide promoted cross-linking of sulfatide-containing vesicles. Whereas sulfatide interaction was independent of GalNAc binding, suggesting distinct binding sites, vesicle cross-linking was inhibited by the sugar. Molecular dynamics simulations identified a consensus sulfatide-binding site in lectin. These findings highlight the dual ligand-binding properties of soybean lectin and may provide strategies to mitigate its antinutritional effects and improve soybean meal processing.
Collapse
Affiliation(s)
- Ayoyinka O Okedigba
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Emery L Ng
- Facility for Advanced Imaging and Microscopy, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mawuli Deegbey
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - M Luciana Rosso
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - William Ngo
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ruoshi Xiao
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Haibo Huang
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Valerie Vaissier Welborn
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Daniel G S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Yang Z, Ren C, He Z, Luo B, Chen X, Xu E, Guan W, Xia X. Identification of AXL as a novel positive regulator of lipid raft in gastric cancer. Cell Signal 2025; 127:111573. [PMID: 39708896 DOI: 10.1016/j.cellsig.2024.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/30/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Lipid rafts are highly heterogeneous and dynamic microdomains involved in molecule trafficking and signaling transduction. This study investigates the role of lipid rafts in gastric cancer and their key regulators. Analyzing FFPE samples from 111 gastric cancer patients, we found that high lipid raft levels predict poor prognosis. Modulating these levels in gastric cancer cell lines significantly impacted cell proliferation, migration, and invasion. Weighted Gene Co-expression Network Analysis identified AXL as a hub gene associated with lipid rafts. AXL knockdown experiments revealed its interaction with Caveolin-1, a caveolae lipid raft protein, which regulates lipid raft levels and promotes AKT and ERK signaling, enhancing cancer development and metastasis. In vivo tumorigenesis assays and survival analyses further supported these findings. This study underscores the significance of lipid rafts in gastric cancer and identifies AXL as a novel regulator, offering new insights into the molecular mechanisms of cancer progression and suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Zhi Yang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chuanfu Ren
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Ziyun He
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Banxin Luo
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Chen
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - En Xu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China; Department of General Surgery, Taikang Xianlin DrumTower Hospital, Nanjing, China.
| | - Xuefeng Xia
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China; Department of General Surgery, Taikang Xianlin DrumTower Hospital, Nanjing, China.
| |
Collapse
|
3
|
Svistunov VO, Ehrmann KJ, Lencer WI, Schmieder SS. Sorting of complex sphingolipids within the cellular endomembrane systems. Front Cell Dev Biol 2025; 12:1490870. [PMID: 40078962 PMCID: PMC11897003 DOI: 10.3389/fcell.2024.1490870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025] Open
Abstract
Cells contain a plethora of structurally diverse lipid species, which are unevenly distributed across the different cellular membrane compartments. Some of these lipid species require vesicular trafficking to reach their subcellular destinations. Here, we review recent advances made in the field that contribute to understanding lipid sorting during endomembrane trafficking.
Collapse
Affiliation(s)
- Victor O. Svistunov
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
| | - Kigumbi J. Ehrmann
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
| | - Wayne I. Lencer
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Harvard Digestive Diseases Center, Boston, MA, United States
| | - S. S. Schmieder
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Shafaq-Zadah M, Dransart E, Mani SK, Sampaio JL, Bouidghaghen L, Nilsson UJ, Leffler H, Johannes L. Exploration into Galectin-3 Driven Endocytosis and Lattices. Biomolecules 2024; 14:1169. [PMID: 39334935 PMCID: PMC11430376 DOI: 10.3390/biom14091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Essentially all plasma membrane proteins are glycosylated, and their activity is regulated by tuning their cell surface dynamics. This is achieved by glycan-binding proteins of the galectin family that either retain glycoproteins within lattices or drive their endocytic uptake via the clathrin-independent glycolipid-lectin (GL-Lect) mechanism. Here, we have used immunofluorescence-based assays to analyze how lattice and GL-Lect mechanisms affect the internalization of the cell adhesion and migration glycoprotein α5β1 integrin. In retinal pigment epithelial (RPE-1) cells, internalized α5β1 integrin is found in small peripheral endosomes under unperturbed conditions. Pharmacological compounds were used to competitively inhibit one of the galectin family members, galectin-3 (Gal3), or to inhibit the expression of glycosphingolipids, both of which are the fabric of the GL-Lect mechanism. We found that under acute inhibition conditions, endocytic uptake of α5β1 integrin was strongly reduced, in agreement with previous studies on the GL-Lect driven internalization of the protein. In contrast, upon prolonged inhibitor treatment, the uptake of α5β1 integrin was increased, and the protein was now internalized by alternative pathways into large perinuclear endosomes. Our findings suggest that under these prolonged inhibitor treatment conditions, α5β1 integrin containing galectin lattices are dissociated, leading to an altered endocytic compartmentalization.
Collapse
Affiliation(s)
- Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Institut Curie, Paris Sciences & Lettres Research University, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France; (E.D.); (S.K.M.)
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, Paris Sciences & Lettres Research University, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France; (E.D.); (S.K.M.)
| | - Satish Kailasam Mani
- Cellular and Chemical Biology Unit, Institut Curie, Paris Sciences & Lettres Research University, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France; (E.D.); (S.K.M.)
| | - Julio Lopes Sampaio
- CurieCoreTech–Metabolomics and Lipidomics Platform, Institute Curie, 75248 Paris, France; (J.L.S.); (L.B.)
| | - Lydia Bouidghaghen
- CurieCoreTech–Metabolomics and Lipidomics Platform, Institute Curie, 75248 Paris, France; (J.L.S.); (L.B.)
| | - Ulf J. Nilsson
- Department of Chemistry, Lund University, 221 00 Lund, Sweden;
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden;
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, Paris Sciences & Lettres Research University, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France; (E.D.); (S.K.M.)
| |
Collapse
|
5
|
Chettri D, Chirania M, Boro D, Verma AK. Glycoconjugates: Advances in modern medicines and human health. Life Sci 2024; 348:122689. [PMID: 38710281 DOI: 10.1016/j.lfs.2024.122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Glycans and their glycoconjugates are complex biomolecules that are crucial for various biological processes. Glycoconjugates are found in all domains of life. They are covalently linked to key biomolecules such as proteins and lipids to play a pivotal role in cell signaling, adhesion, and recognition. The diversity of glycan structures and the associated complexity of glycoconjugates is the reason for their role in intricate biosynthetic pathways. Glycoconjugates play an important role in various diseases where they are actively involved in the immune response as well as in the pathogenicity of infectious diseases. In addition, various autoimmune diseases have been linked to glycosylation defects of different biomolecules, making them an important molecule in the field of medicine. The glycoconjugates have been explored for the development of therapeutics and vaccines, representing a breakthrough in medical science. They also hold significance in research studies to understand the mechanisms behind various biological processes. Finally, glycoconjugates have found an emerging role in various industrial and environmental applications which have been discussed here.
Collapse
Affiliation(s)
- Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, Sikkim 737102, India
| | - Manisha Chirania
- Department of Microbiology, Sikkim University, Gangtok, Sikkim 737102, India
| | - Deepjyoti Boro
- Department of Microbiology, Sikkim University, Gangtok, Sikkim 737102, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, Sikkim 737102, India.
| |
Collapse
|
6
|
Sadeghi M, Rosenberger D. Dynamic framework for large-scale modeling of membranes and peripheral proteins. Methods Enzymol 2024; 701:457-514. [PMID: 39025579 DOI: 10.1016/bs.mie.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In this chapter, we present a novel computational framework to study the dynamic behavior of extensive membrane systems, potentially in interaction with peripheral proteins, as an alternative to conventional simulation methods. The framework effectively describes the complex dynamics in protein-membrane systems in a mesoscopic particle-based setup. Furthermore, leveraging the hydrodynamic coupling between the membrane and its surrounding solvent, the coarse-grained model grounds its dynamics in macroscopic kinetic properties such as viscosity and diffusion coefficients, marrying the advantages of continuum- and particle-based approaches. We introduce the theoretical background and the parameter-space optimization method in a step-by-step fashion, present the hydrodynamic coupling method in detail, and demonstrate the application of the model at each stage through illuminating examples. We believe this modeling framework to hold great potential for simulating membrane and protein systems at biological spatiotemporal scales, and offer substantial flexibility for further development and parametrization.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.
| | | |
Collapse
|
7
|
Popoff MR. Overview of Bacterial Protein Toxins from Pathogenic Bacteria: Mode of Action and Insights into Evolution. Toxins (Basel) 2024; 16:182. [PMID: 38668607 PMCID: PMC11054074 DOI: 10.3390/toxins16040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/29/2024] Open
Abstract
Bacterial protein toxins are secreted by certain bacteria and are responsible for mild to severe diseases in humans and animals. They are among the most potent molecules known, which are active at very low concentrations. Bacterial protein toxins exhibit a wide diversity based on size, structure, and mode of action. Upon recognition of a cell surface receptor (protein, glycoprotein, and glycolipid), they are active either at the cell surface (signal transduction, membrane damage by pore formation, or hydrolysis of membrane compound(s)) or intracellularly. Various bacterial protein toxins have the ability to enter cells, most often using an endocytosis mechanism, and to deliver the effector domain into the cytosol, where it interacts with an intracellular target(s). According to the nature of the intracellular target(s) and type of modification, various cellular effects are induced (cell death, homeostasis modification, cytoskeleton alteration, blockade of exocytosis, etc.). The various modes of action of bacterial protein toxins are illustrated with representative examples. Insights in toxin evolution are discussed.
Collapse
Affiliation(s)
- Michel R Popoff
- Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, F-75015 Paris, France
| |
Collapse
|
8
|
Groza R, Schmidt KV, Müller PM, Ronchi P, Schlack-Leigers C, Neu U, Puchkov D, Dimova R, Matthaeus C, Taraska J, Weikl TR, Ewers H. Adhesion energy controls lipid binding-mediated endocytosis. Nat Commun 2024; 15:2767. [PMID: 38553473 PMCID: PMC10980822 DOI: 10.1038/s41467-024-47109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Several bacterial toxins and viruses can deform membranes through multivalent binding to lipids for clathrin-independent endocytosis. However, it remains unclear, how membrane deformation and endocytic internalization are mechanistically linked. Here we show that many lipid-binding virions induce membrane deformation and clathrin-independent endocytosis, suggesting a common mechanism based on multivalent lipid binding by globular particles. We create a synthetic cellular system consisting of a lipid-anchored receptor in the form of GPI-anchored anti-GFP nanobodies and a multivalent globular binder exposing 180 regularly-spaced GFP molecules on its surface. We show that these globular, 40 nm diameter, particles bind to cells expressing the receptor, deform the plasma membrane upon adhesion and become endocytosed in a clathrin-independent manner. We explore the role of the membrane adhesion energy in endocytosis by using receptors with affinities varying over 7 orders of magnitude. Using this system, we find that once a threshold in adhesion energy is overcome to allow for membrane deformation, endocytosis occurs reliably. Multivalent, binding-induced membrane deformation by globular binders is thus sufficient for internalization to occur and we suggest it is the common, purely biophysical mechanism for lipid-binding mediated endocytosis of toxins and pathogens.
Collapse
Affiliation(s)
- Raluca Groza
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Kita Valerie Schmidt
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
- Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Paul Markus Müller
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Claire Schlack-Leigers
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Ursula Neu
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Claudia Matthaeus
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute for Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Justin Taraska
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Helge Ewers
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.
| |
Collapse
|
9
|
Pokorny L, Burden JJ, Albrecht D, Bamford R, Leigh KE, Sridhar P, Knowles TJ, Modis Y, Mercer J. The vaccinia chondroitin sulfate binding protein drives host membrane curvature to facilitate fusion. EMBO Rep 2024; 25:1310-1325. [PMID: 38321165 PMCID: PMC10933376 DOI: 10.1038/s44319-023-00040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/08/2024] Open
Abstract
Cellular attachment of viruses determines their cell tropism and species specificity. For entry, vaccinia, the prototypic poxvirus, relies on four binding proteins and an eleven-protein entry fusion complex. The contribution of the individual virus binding proteins to virion binding orientation and membrane fusion is unclear. Here, we show that virus binding proteins guide side-on virion binding and promote curvature of the host membrane towards the virus fusion machinery to facilitate fusion. Using a membrane-bleb model system together with super-resolution and electron microscopy we find that side-bound vaccinia virions induce membrane invagination in the presence of low pH. Repression or deletion of individual binding proteins reveals that three of four contribute to binding orientation, amongst which the chondroitin sulfate binding protein, D8, is required for host membrane bending. Consistent with low-pH dependent macropinocytic entry of vaccinia, loss of D8 prevents virion-associated macropinosome membrane bending, disrupts fusion pore formation and infection. Our results show that viral binding proteins are active participants in successful virus membrane fusion and illustrate the importance of virus protein architecture for successful infection.
Collapse
Affiliation(s)
- Laura Pokorny
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- MRC-LMCB, University College London, London, WC1E 6BT, UK
| | - Jemima J Burden
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David Albrecht
- MRC-LMCB, University College London, London, WC1E 6BT, UK
| | - Rebecca Bamford
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- MRC-LMCB, University College London, London, WC1E 6BT, UK
| | - Kendra E Leigh
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Timothy J Knowles
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Jason Mercer
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
- MRC-LMCB, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
10
|
Johannes L, Shafaq-Zadah M, Dransart E, Wunder C, Leffler H. Endocytic Roles of Glycans on Proteins and Lipids. Cold Spring Harb Perspect Biol 2024; 16:a041398. [PMID: 37735065 PMCID: PMC10759989 DOI: 10.1101/cshperspect.a041398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Most cell surface proteins are decorated by glycans, and the plasma membrane is rich in glycosylated lipids. The mechanisms by which the enormous complexity of these glycan structures on proteins and lipids is exploited to control glycoprotein activity by setting their cell surface residence time and the ways by which they are taken up into cells are still under active investigation. Here, two mechanisms are presented, termed galectin lattices and glycolipid-lectin (GL-Lect)-driven endocytosis, which are among the most prominent to establish a link between glycan information and endocytosis. Types of glycans on glycoproteins and glycolipids are reviewed from the angle of their interaction with glycan-binding proteins that are at the heart of galectin lattices and GL-Lect-driven endocytosis. Examples are given to show how these mechanisms affect cellular functions ranging from cell migration and signaling to vascularization and immune modulation. Finally, outstanding challenges on the link between glycosylation and endocytosis are discussed.
Collapse
Affiliation(s)
- Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, 75248 Paris Cedex 05, France
| | | | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, 75248 Paris Cedex 05, France
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Institut Curie, 75248 Paris Cedex 05, France
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 22362 Lund, Sweden
| |
Collapse
|
11
|
Park J, Ahn Y, Lee WJ, Jin S, Jeong S, Kim J, Lee YS, Lee JC, Seo D. Analysis of Phase Heterogeneity in Lipid Membranes Using Single-Molecule Tracking in Live Cells. Anal Chem 2023; 95:15924-15932. [PMID: 37774148 DOI: 10.1021/acs.analchem.3c02655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
In live cells, the plasma membrane is composed of lipid domains separated by hundreds of nanometers in dynamic equilibrium. Lipid phase separation regulates the trafficking and spatiotemporal organization of membrane molecules that promote signal transduction. However, visualizing domains with adequate spatiotemporal accuracy remains challenging because of their subdiffraction limit size and highly dynamic properties. Here, we present a single lipid-molecular motion analysis pipeline (lipid-MAP) for analyzing the phase heterogeneity of lipid membranes by detecting the instantaneous velocity change of a single lipid molecule using the excellent optical properties of nanoparticles, high spatial localization accuracy of single-molecule localization microscopy, and separation capability of the diffusion state of the hidden Markov model algorithm. Using lipid-MAP, individual lipid molecules were found to be in dynamic equilibrium between two statistically distinguishable phases, leading to the formation of small (∼170 nm), viscous (2.5× more viscous than surrounding areas), and transient domains in live cells. Moreover, our findings provide an understanding of how membrane compositional changes, i.e., cholesterol and phospholipids, affect domain formation. This imaging method can contribute to an improved understanding of spatiotemporal-controlled membrane dynamics at the molecular level.
Collapse
Affiliation(s)
- Jiseong Park
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Yongdeok Ahn
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Wonhee John Lee
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Siwoo Jin
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Sejoo Jeong
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Jaeyong Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Jong-Chan Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Daeha Seo
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
12
|
Guo Y, Wang P, Jiang L, Deng C, Zheng L, Song C, Jiao J. Multifunctional Proximity Labeling Strategy for Lipid Raft-Specific Sialic Acid Tracking and Engineering. Bioconjug Chem 2023; 34:1719-1726. [PMID: 37767911 DOI: 10.1021/acs.bioconjchem.3c00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Lipid raft-specific glycosylation has been implicated in many biological processes, including intracellular trafficking, cell adhesion, signal transduction, and host-pathogen interactions. The major predicament in lipid raft-specific glycosylation research is the unavailability of tools for tracking and manipulating glycans on lipid rafts at the microstructural level. To overcome this challenge, we developed a multifunctional proximity labeling (MPL) platform that relies on cholera toxin B subunit to localize horseradish peroxidase on lipid rafts. In addition to the prevailing electron-rich amino acids, modified sialic acid was included in the horseradish peroxidase-mediated proximity labeling substrate via purposefully designed chemical transformation reactions. In combination with sialic acid editing, the self-renewal of lipid raft-specific sialic acid was visualized. The MPL method enabled tracking of lipid raft dynamics under methyl-β-cyclodextrin and mevinolin treatments; in particular, the alteration of lipid rafts markedly affected cell migration. Furthermore, we embedded functional molecules into the method and implemented raft-specific sialic acid gradient engineering. Our novel strategy presents opportunities for tailoring lipid raft-specific sialic acids, thereby regulating interactions associated with lipid raft regions (such as cell-virus and cell-microenvironment interactions), and can aid in the development of lipid raft-based therapeutic regimens for tumors.
Collapse
Affiliation(s)
- Yuna Guo
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Pingping Wang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan 250117, China
| | - Liangyu Jiang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan 250117, China
| | - Chaowen Deng
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan 250117, China
| | - Lei Zheng
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan 250117, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Jianwei Jiao
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Deng Z, You X, Lin Z, Dong X, Yuan B, Yang K. Membrane-Active Peptides Attack Cell Membranes in a Lipid-Regulated Curvature-Generating Mode. J Phys Chem Lett 2023:6422-6430. [PMID: 37432779 DOI: 10.1021/acs.jpclett.3c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Membrane-active peptides (MAPs) exhibit great potential in biomedical applications due to their unique ability to overcome the cell membrane barrier. However, the interactions between MAPs and membranes are complex, and little is known about the possibility of MAP action being specific to certain types of membranes. In this study, a combination of molecular dynamics simulations and theoretical analysis was utilized to investigate the interactions between typical MAPs and realistic cell membrane systems. Remarkably, the simulations revealed that MAPs can attack membranes by generating and sensing positive mean curvature, which is dependent on lipid composition. Furthermore, theoretical calculations demonstrated that this lipid-regulated curvature-based membrane attack mechanism is an integrated result of multiple effects, including peptide-induced membrane wedge and softening effects, the lipid shape effect, the area-difference elastic effect, and the boundary edge effect of formed peptide-lipid nanodomains. This study enhances our comprehension of MAP-membrane interactions and highlights the potential for developing membrane-specific MAP-based agents.
Collapse
Affiliation(s)
- Zhixiong Deng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Xin You
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhao Lin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuewei Dong
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808 Guangdong, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
- Songshan Lake Materials Laboratory, Dongguan 523808 Guangdong, China
| |
Collapse
|
14
|
Joensuu M, Syed P, Saber SH, Lanoue V, Wallis TP, Rae J, Blum A, Gormal RS, Small C, Sanders S, Jiang A, Mahrhold S, Krez N, Cousin MA, Cooper‐White R, Cooper‐White JJ, Collins BM, Parton RG, Balistreri G, Rummel A, Meunier FA. Presynaptic targeting of botulinum neurotoxin type A requires a tripartite PSG-Syt1-SV2 plasma membrane nanocluster for synaptic vesicle entry. EMBO J 2023; 42:e112095. [PMID: 37226896 PMCID: PMC10308369 DOI: 10.15252/embj.2022112095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
The unique nerve terminal targeting of botulinum neurotoxin type A (BoNT/A) is due to its capacity to bind two receptors on the neuronal plasma membrane: polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Whether and how PSGs and SV2 may coordinate other proteins for BoNT/A recruitment and internalization remains unknown. Here, we demonstrate that the targeted endocytosis of BoNT/A into synaptic vesicles (SVs) requires a tripartite surface nanocluster. Live-cell super-resolution imaging and electron microscopy of catalytically inactivated BoNT/A wildtype and receptor-binding-deficient mutants in cultured hippocampal neurons demonstrated that BoNT/A must bind coincidentally to a PSG and SV2 to target synaptic vesicles. We reveal that BoNT/A simultaneously interacts with a preassembled PSG-synaptotagmin-1 (Syt1) complex and SV2 on the neuronal plasma membrane, facilitating Syt1-SV2 nanoclustering that controls endocytic sorting of the toxin into synaptic vesicles. Syt1 CRISPRi knockdown suppressed BoNT/A- and BoNT/E-induced neurointoxication as quantified by SNAP-25 cleavage, suggesting that this tripartite nanocluster may be a unifying entry point for selected botulinum neurotoxins that hijack this for synaptic vesicle targeting.
Collapse
Affiliation(s)
- Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Parnayan Syed
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Saber H Saber
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - James Rae
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Ailisa Blum
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Christopher Small
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Shanley Sanders
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Stefan Mahrhold
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Nadja Krez
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson BuildingUniversity of EdinburghEdinburghUK
- Muir Maxwell Epilepsy CentreUniversity of EdinburghEdinburghUK
- Simons Initiative for the Developing BrainUniversity of EdinburghEdinburghUK
| | - Ruby Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Justin J Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
- UQ Centre for Stem Cell Ageing and Regenerative EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Brett M Collins
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Robert G Parton
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
- Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneQLDAustralia
| | - Giuseppe Balistreri
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Department of Virology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Andreas Rummel
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
15
|
Groza R, Schmidt KV, Müller PM, Ronchi P, Schlack-Leigers C, Neu U, Puchkov D, Dimova R, Matthäus C, Taraska J, Weikl TR, Ewers H. Adhesion energy controls lipid binding-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546235. [PMID: 37503169 PMCID: PMC10370163 DOI: 10.1101/2023.06.23.546235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Several bacterial toxins and viruses can deform membranes through multivalent binding to lipids for clathrin-independent endocytosis. However, it remains unclear, how membrane deformation and endocytic internalization are mechanistically linked. Here we show that many lipid-binding virions induce membrane deformation and clathrin-independent endocytosis, suggesting a common mechanism based on multivalent lipid binding by globular particles. We create a synthetic cellular system consisting of a lipid-anchored receptor in the form of GPI-anchored anti-GFP nanobodies and a multivalent globular binder exposing 180 regularly-spaced GFP molecules on its surface. We show that these globular, 40 nm diameter, particles bind to cells expressing the receptor, deform the plasma membrane upon adhesion and become endocytosed in a clathrin-independent manner. We explore the role of the membrane adhesion energy in endocytosis by using receptors with affinities varying over 7 orders of magnitude. Using this system, we find that once a threshold in adhesion energy is overcome to allow for membrane deformation, endocytosis occurs reliably. Multivalent, binding-induced membrane deformation by globular binders is thus sufficient for internalization to occur and we suggest it is the common, purely biophysical mechanism for lipid-binding mediated endocytosis of toxins and pathogens.
Collapse
|
16
|
Woodward X, Javanainen M, Fábián B, Kelly CV. Nanoscale membrane curvature sorts lipid phases and alters lipid diffusion. Biophys J 2023; 122:2203-2215. [PMID: 36604961 PMCID: PMC10257122 DOI: 10.1016/j.bpj.2023.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The precise spatiotemporal control of nanoscale membrane shape and composition is the result of a complex interplay of individual and collective molecular behaviors. Here, we employed single-molecule localization microscopy and computational simulations to observe single-lipid diffusion and sorting in model membranes with varying compositions, phases, temperatures, and curvatures. Supported lipid bilayers were created over 50-nm-radius nanoparticles to mimic the size of naturally occurring membrane buds, such as endocytic pits and the formation of viral envelopes. The curved membranes recruited liquid-disordered lipid phases while altering the diffusion and sorting of tracer lipids. Disorder-preferring fluorescent lipids sorted to and experienced faster diffusion on the nanoscale curvature only when embedded in a membrane capable of sustaining lipid phase separation at low temperatures. The curvature-induced sorting and faster diffusion even occurred when the sample temperature was above the miscibility temperature of the planar membrane, implying that the nanoscale curvature could induce phase separation in otherwise homogeneous membranes. Further confirmation and understanding of these results are provided by continuum and coarse-grained molecular dynamics simulations with explicit and spontaneous curvature-phase coupling, respectively. The curvature-induced membrane compositional heterogeneity and altered dynamics were achieved only with a coupling of the curvature with a lipid phase separation. These cross-validating results demonstrate the complex interplay of lipid phases, molecular diffusion, and nanoscale membrane curvature that are critical for membrane functionality.
Collapse
Affiliation(s)
- Xinxin Woodward
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Balázs Fábián
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Christopher V Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan.
| |
Collapse
|
17
|
Aguilera-Romero A, Lucena R, Sabido-Bozo S, Muñiz M. Impact of sphingolipids on protein membrane trafficking. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159334. [PMID: 37201864 DOI: 10.1016/j.bbalip.2023.159334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Membrane trafficking is essential to maintain the spatiotemporal control of protein and lipid distribution within membrane systems of eukaryotic cells. To achieve their functional destination proteins are sorted and transported into lipid carriers that construct the secretory and endocytic pathways. It is an emerging theme that lipid diversity might exist in part to ensure the homeostasis of these pathways. Sphingolipids, a chemical diverse type of lipids with special physicochemical characteristics have been implicated in the selective transport of proteins. In this review, we will discuss current knowledge about how sphingolipids modulate protein trafficking through the endomembrane systems to guarantee that proteins reach their functional destination and the proposed underlying mechanisms.
Collapse
Affiliation(s)
- Auxiliadora Aguilera-Romero
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| | - Rafael Lucena
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Susana Sabido-Bozo
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| |
Collapse
|
18
|
Suzuki KGN, Komura N, Ando H. Recently developed glycosphingolipid probes and their dynamic behavior in cell plasma membranes as revealed by single-molecule imaging. Glycoconj J 2023; 40:305-314. [PMID: 37133616 DOI: 10.1007/s10719-023-10116-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
Glycosphingolipids, including gangliosides, are representative lipid raft markers that perform a variety of physiological roles in cell membranes. However, studies aimed at revealing their dynamic behavior in living cells are rare, mostly due to a lack of suitable fluorescent probes. Recently, the ganglio-series, lacto-series, and globo-series glycosphingolipid probes, which mimic the behavior of the parental molecules in terms of partitioning to the raft fraction, were developed by conjugating hydrophilic dyes to the terminal glycans of glycosphingolipids using state-of-art entirely chemical-based synthetic techniques. High-speed, single-molecule observation of these fluorescent probes revealed that gangliosides were scarcely trapped in small domains (100 nm in diameter) for more than 5 ms in steady-state cells, suggesting that rafts including gangliosides were always moving and very small. Furthermore, dual-color, single-molecule observations clearly showed that homodimers and clusters of GPI-anchored proteins were stabilized by transiently recruiting sphingolipids, including gangliosides, to form homodimer rafts and the cluster rafts, respectively. In this review, we briefly summarize recent studies, the development of a variety of glycosphingolipid probes as well as the identification of the raft structures including gangliosides in living cells by single-molecule imaging.
Collapse
Affiliation(s)
- Kenichi G N Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| |
Collapse
|
19
|
Yu H, Zhang L, Yang X, Bai Y, Chen X. Process Engineering and Glycosyltransferase Improvement for Short Route Chemoenzymatic Total Synthesis of GM1 Gangliosides. Chemistry 2023; 29:e202300005. [PMID: 36596720 PMCID: PMC10159885 DOI: 10.1002/chem.202300005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Large-scale synthesis of GM1, an important ganglioside in mammalian cells especially those in the nervous system, is needed to explore its therapeutic potential. Biocatalytic production is a promising platform for such a purpose. We report herein the development of process engineering and glycosyltransferase improvement strategies to advance chemoenzymatic total synthesis of GM1. Firstly, a new short route was developed for chemical synthesis of lactosylsphingosine from the commercially available Garner's aldehyde. Secondly, two glycosyltransferases including Campylobacter jejuni β1-4GalNAcT (CjCgtA) and β1-3-galactosyltransferase (CjCgtB) were improved on their soluble expression in E. coli and enzyme stability by fusing with an N-terminal maltose binding protein (MBP). Thirdly, the process for enzymatic synthesis of GM1 sphingosines from lactosylsphingosine was engineered by developing a multistep one-pot multienzyme (MSOPME) strategy without isolating intermediate glycosphingosines and by adding a detergent, sodium cholate, to the later enzymatic glycosylation steps. Installation of a desired fatty acyl chain to GM1 glycosphingosines led to the formation of target GM1 gangliosides. The combination of glycosyltransferase improvement with chemical and enzymatic process engineering represents a significant advance in obtaining GM1 gangliosides containing different sialic acid forms by total chemoenzymatic synthesis in a short route and with high efficiency.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Libo Zhang
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Xiaohong Yang
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Yuanyuan Bai
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
20
|
Single-Molecule Imaging of Ganglioside Probes in Living Cell Plasma Membranes. Methods Mol Biol 2023; 2613:215-227. [PMID: 36587082 DOI: 10.1007/978-1-0716-2910-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gangliosides play a variety of physiological roles and are one of the most important lipid raft constituents. However, their dynamic behaviors have scarcely been investigated in living cells because of the lack of fluorescent probes that behave like their parental molecules. Recently, fluorescent ganglioside probes that mimic native ganglioside behaviors have been developed. In this chapter, I discuss the recent advances in research related to the lateral localization and dynamic behaviors of gangliosides in the plasma membranes of living cells.
Collapse
|
21
|
Wehrum S, Siukstaite L, Williamson DJ, Branson TR, Sych T, Madl J, Wildsmith GC, Dai W, Kempmann E, Ross JF, Thomsen M, Webb ME, Römer W, Turnbull WB. Membrane Fusion Mediated by Non-covalent Binding of Re-engineered Cholera Toxin Assemblies to Glycolipids. ACS Synth Biol 2022; 11:3929-3938. [PMID: 36367814 PMCID: PMC9764410 DOI: 10.1021/acssynbio.2c00266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Membrane fusion is essential for the transport of macromolecules and viruses across membranes. While glycan-binding proteins (lectins) often initiate cellular adhesion, subsequent fusion events require additional protein machinery. No mechanism for membrane fusion arising from simply a protein binding to membrane glycolipids has been described thus far. Herein, we report that a biotinylated protein derived from cholera toxin becomes a fusogenic lectin upon cross-linking with streptavidin. This novel reengineered protein brings about hemifusion and fusion of vesicles as demonstrated by mixing of fluorescently labeled lipids between vesicles as well as content mixing of liposomes filled with fluorescently labeled dextran. Exclusion of the complex at vesicle-vesicle interfaces could also be observed, indicating the formation of hemifusion diaphragms. Discovery of this fusogenic lectin complex demonstrates that new emergent properties can arise from simple changes in protein architecture and provides insights into new mechanisms of lipid-driven fusion.
Collapse
Affiliation(s)
- Sarah Wehrum
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Lina Siukstaite
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Daniel J. Williamson
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Thomas R. Branson
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Taras Sych
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany,Freiburg
Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany,Science
for Life Laboratory, Department of Women’s and Children’s
Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Josef Madl
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany,Freiburg
Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Gemma C. Wildsmith
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Wenyue Dai
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Erik Kempmann
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - James F. Ross
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Maren Thomsen
- School of
Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Michael E. Webb
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Winfried Römer
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany,Freiburg
Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany,
| | - W. Bruce Turnbull
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..,
| |
Collapse
|
22
|
White C, Bader C, Teter K. The manipulation of cell signaling and host cell biology by cholera toxin. Cell Signal 2022; 100:110489. [PMID: 36216164 PMCID: PMC10082135 DOI: 10.1016/j.cellsig.2022.110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
Vibrio cholerae colonizes the small intestine and releases cholera toxin into the extracellular space. The toxin binds to the apical surface of the epithelium, is internalized into the host endomembrane system, and escapes into the cytosol where it activates the stimulatory alpha subunit of the heterotrimeric G protein by ADP-ribosylation. This initiates a cAMP-dependent signaling pathway that stimulates chloride efflux into the gut, with diarrhea resulting from the accompanying osmotic movement of water into the intestinal lumen. G protein signaling is not the only host system manipulated by cholera toxin, however. Other cellular mechanisms and signaling pathways active in the intoxication process include endocytosis through lipid rafts, retrograde transport to the endoplasmic reticulum, the endoplasmic reticulum-associated degradation system for protein delivery to the cytosol, the unfolded protein response, and G protein de-activation through degradation or the function of ADP-ribosyl hydrolases. Although toxin-induced chloride efflux is thought to be an irreversible event, alterations to these processes could facilitate cellular recovery from intoxication. This review will highlight how cholera toxin exploits signaling pathways and other cell biology events to elicit a diarrheal response from the host.
Collapse
Affiliation(s)
- Christopher White
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| | - Carly Bader
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| | - Ken Teter
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| |
Collapse
|
23
|
Cail RC, Drubin DG. Membrane curvature as a signal to ensure robustness of diverse cellular processes. Trends Cell Biol 2022; 33:427-441. [PMID: 36244874 DOI: 10.1016/j.tcb.2022.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022]
Abstract
An increasing corpus of research has demonstrated that membrane shape, generated either by the external environment of the cell or by intrinsic mechanisms such as cytokinesis and vesicle or organelle formation, is an important parameter in the control of diverse cellular processes. In this review we discuss recent findings that demonstrate how membrane curvature (from nanometer to micron length-scales) alters protein function. We describe an expanding toolkit for experimentally modulating membrane curvature to reveal effects on protein function, and discuss how membrane curvature - far from being a passive consequence of the physical environment and the internal protein activity of a cell - is an important signal that controls protein affinity and enzymatic activity to ensure robust forward progression of key processes within the cell.
Collapse
|
24
|
Gandhi SA, Kelly CV. Membrane asymmetry enhances nanotube formation and limits pore resealing after electroporation. Biophys J 2022; 121:3173-3174. [PMID: 35973422 PMCID: PMC9463694 DOI: 10.1016/j.bpj.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sonali A Gandhi
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan
| | - Christopher V Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan.
| |
Collapse
|
25
|
Wirth D, Paul MD, Pasquale EB, Hristova K. Direct quantification of ligand-induced lipid and protein microdomains with distinctive signaling properties. CHEMSYSTEMSCHEM 2022; 4:e202200011. [PMID: 36337751 PMCID: PMC9634703 DOI: 10.1002/syst.202200011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/08/2022]
Abstract
Lipid rafts are ordered lipid domains that are enriched in saturated lipids, such as the ganglioside GM1. While lipid rafts are believed to exist in cells and to serve as signaling platforms through their enrichment in signaling components, they have not been directly observed in the plasma membrane without treatments that artificially cluster GM1 into large lattices. Here, we report that microscopic GM1-enriched domains can form, in the plasma membrane of live mammalian cells expressing the EphA2 receptor tyrosine kinase in response to its ligand ephrinA1-Fc. The GM1-enriched microdomains form concomitantly with EphA2-enriched microdomains. To gain insight into how plasma membrane heterogeneity controls signaling, we quantify the degree of EphA2 segregation and study initial EphA2 signaling steps in both EphA2-enriched and EphA2-depleted domains. By measuring dissociation constants, we demonstrate that the propensity of EphA2 to oligomerize is similar in EphA2-enriched and -depleted domains. However, surprisingly, EphA2 interacts preferentially with its downstream effector SRC in EphA2-depleted domains. The ability to induce microscopic GM1-enriched domains in live cells using a ligand for a transmembrane receptor will give us unprecedented opportunities to study the biophysical chemistry of lipid rafts.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218
| | - Michael D. Paul
- Program in Molecular Biophysics, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218
| | - Elena B. Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Road, La Jolla, CA 92037
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218
- Program in Molecular Biophysics, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218
| |
Collapse
|
26
|
Abstract
AB toxins are protein virulence factors secreted by many bacterial pathogens, contributing to the pathogenicity of the cognate bacteria. AB toxins consist of two functionally distinct components: the enzymatic "A" component for pathogenicity and the receptor-binding "B" component for toxin delivery. Consistently, unlike other virulence factors such as effectors, AB toxins do not require additional systems to deliver them to the target host cells. Target host cells are located in the infection site and/or located distantly from infected host cells. The first part of this review discusses the structural and functional features of single-peptide and multiprotein AB toxins in the context of host-microbe interactions, using several well-characterized examples. The second part of this review discusses toxin neutralization strategies, as well as applications of AB toxins relevant to developing intervention strategies against diseases.
Collapse
Affiliation(s)
- Jeongmin Song
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
27
|
Schmieder SS, Tatituri R, Anderson M, Kelly K, Lencer WI. Structural basis for acyl chain control over glycosphingolipid sorting and vesicular trafficking. Cell Rep 2022; 40:111063. [PMID: 35830800 PMCID: PMC9358721 DOI: 10.1016/j.celrep.2022.111063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
The complex sphingolipids exhibit a diversity of ceramide acyl chain structures that influence their trafficking and intracellular distributions, but it remains unclear how the cell discerns among the different ceramides to affect such sorting. To address the mechanism, we synthesize a library of GM1 glycosphingolipids with naturally varied acyl chains and quantitatively assess their sorting among different endocytic pathways. We find that a stretch of at least 14 saturated carbons extending from C1 at the water-bilayer interface dictate lysosomal sorting by exclusion from endosome sorting tubules. Sorting to the lysosome by the C14∗ motif is cholesterol dependent. Perturbations of the C14∗ motif by unsaturation enable GM1 entry into endosomal sorting tubules of the recycling and retrograde pathways independent of cholesterol. Unsaturation occurring beyond the C14∗ motif in very long acyl chains rescues lysosomal sorting. These results define a structural motif underlying the membrane organization of sphingolipids and implicate cholesterol-sphingolipid nanodomain formation in sorting mechanisms.
Collapse
Affiliation(s)
| | - Raju Tatituri
- Division of Rheumatology, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Michael Anderson
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Digestive Diseases Center, Boston, MA 02115, USA
| | - Kate Kelly
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Wayne I Lencer
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Harvard Digestive Diseases Center, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Wang L, Wiedmann TS, Kandimalla KK. Modulating insulin signaling and trafficking at the blood-brain barrier endothelium using lipid based nanoemulsions. Int J Pharm 2022; 622:121823. [PMID: 35605891 PMCID: PMC9881744 DOI: 10.1016/j.ijpharm.2022.121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/01/2022] [Accepted: 05/08/2022] [Indexed: 01/31/2023]
Abstract
The compositionally distinct lipid rafts present in the plasma membrane regulate the restrictive trafficking and signal transduction in the blood-brain barrier (BBB) endothelium. Several metabolic and neurodegenerative diseases are associated with lipid homeostasis disruption within the BBB endothelium. Here, we hypothesized that the delivery of lipid triglyceride based nanoemulsions containing unsaturated fatty acids (UFAs) provides a novel non-pharmacological approach to modulate lipid raft integrity and rectify the aberrant trafficking and signal transduction. The current study has shown that soybean oil nanoemulsions (SNEs) altered the morphology of lipid rafts that are stained by Alex Fluor 647 labelled cholera toxin (AF647-CTX) in polarized human cerebral microvascular endothelial (hCMEC/D3) cell monolayers. Moreover, western blot and flow cytometry analysis showed that SNEs containing polyunsaturated fatty acids (PUFAs) increased phospo-AKT (p-AKT) expression, a marker for the stimulation of metabolic arm of insulin signaling, and insulin uptake in hCMEC/D3 monolayers. However, olive oil nanoemulsions (ONEs) containing monounsaturated fatty acids (MUFAs) had no detectable impact on lipid raft integrity, AKT phosphorylation, or insulin uptake. These findings provided direct evidence that SNEs containing PUFAs can upregulate insulin-pAKT pathway, facilitate insulin trafficking at the BBB, and potentially address cerebrovascular dysfunction in metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lushan Wang
- Department of Pharmaceutics, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, United States,Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, United States
| | - Timothy S. Wiedmann
- Department of Pharmaceutics, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, United States
| | - Karunya K. Kandimalla
- Department of Pharmaceutics, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, United States,Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, United States,Corresponding author. (K.K. Kandimalla)
| |
Collapse
|
29
|
Arya SB, Chen S, Jordan-Javed F, Parent CA. Ceramide-rich microdomains facilitate nuclear envelope budding for non-conventional exosome formation. Nat Cell Biol 2022; 24:1019-1028. [PMID: 35739317 DOI: 10.1038/s41556-022-00934-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Neutrophils migrating towards chemoattractant gradients amplify their recruitment range by releasing the secondary chemoattractant leukotriene B4 (LTB4) refs. 1,2. We previously demonstrated that LTB4 and its synthesizing enzymes, 5-lipoxygenase (5-LO), 5-LO activating protein (FLAP) and leukotriene A4 hydrolase, are packaged and released in exosomes3. Here we report that the biogenesis of the LTB4-containing exosomes originates at the nuclear envelope (NE) of activated neutrophils. We show that the neutral sphingomyelinase 1 (nSMase1)-mediated generation of ceramide-enriched lipid-ordered microdomains initiates the clustering of the LTB4-synthesizing enzymes on the NE. We isolated and analysed exosomes from activated neutrophils and established that the FLAP/5-LO-positive exosome population is distinct from that of the CD63-positive exosome population. Furthermore, we observed a strong co-localization between ALIX and FLAP at the periphery of nuclei and within cytosolic vesicles. We propose that the initiation of NE curvature and bud formation is mediated by nSMase1-dependent ceramide generation, which leads to FLAP and ALIX recruitment. Together, these observations elucidate the mechanism for LTB4 secretion and identify a non-conventional pathway for exosome generation.
Collapse
Affiliation(s)
- Subhash B Arya
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Song Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fatima Jordan-Javed
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA. .,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA. .,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA. .,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Detzner J, Püttmann C, Pohlentz G, Müthing J. Ingenious Action of Vibrio cholerae Neuraminidase Recruiting Additional GM1 Cholera Toxin Receptors for Primary Human Colon Epithelial Cells. Microorganisms 2022; 10:microorganisms10061255. [PMID: 35744773 PMCID: PMC9227022 DOI: 10.3390/microorganisms10061255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
For five decades it has been known that the pentamer of B subunits (choleragenoid) of the cholera toxin (CT) of Vibrio cholerae binds with high preference to the ganglioside GM1 (II3Neu5Ac-Gg4Cer). However, the exact structures of CT-binding GM1 lipoforms of primary human colon epithelial cells (pHCoEpiCs) have not yet been described in detail. The same holds true for generating further GM1 receptor molecules from higher sialylated gangliosides with a GM1 core through the neuraminidase of V. cholerae. To avoid the artificial incorporation of exogenous gangliosides from animal serum harboring GM1 and higher sialylated ganglio-series gangliosides, pHCoEpiCs were cultured in serum-free medium. Thin-layer chromatography overlay binding assays using a choleragenoid combined with electrospray ionization mass spectrometry revealed GM1 lipoforms with sphingosine (d18:1) as the sole sphingoid base linked to C14:0, C16:0, C18:0 or C20:0 fatty acyl chains forming the ceramide (Cer) moieties of the main choleragenoid-binding GM1 species. Desialylation of GD1a (IV3Neu5Ac,II3Neu5Ac-Gg4Cer) and GT1b (IV3Neu5Ac,II3(Neu5Ac)2-Gg4Cer) of pHCoEpiCs by V. cholerae neuraminidase was observed. GD1a-derived GM1 species with stable sphingosine (d18:1) and saturated fatty acyl chains varying in chain length from C16:0 up to C22:0 could be identified, indicating the ingenious interplay between CT and the neuraminidase of V. cholerae recruiting additional GM1 receptors of pHCoEpiCs.
Collapse
|
31
|
Danielewicz N, Dai W, Rosato F, Webb ME, Striedner G, Römer W, Turnbull WB, Mairhofer J. In-Depth Characterization of a Re-Engineered Cholera Toxin Manufacturing Process Using Growth-Decoupled Production in Escherichia coli. Toxins (Basel) 2022; 14:396. [PMID: 35737057 PMCID: PMC9228256 DOI: 10.3390/toxins14060396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022] Open
Abstract
Non-toxic derivatives of the cholera toxin are extensively used in neuroscience, as neuronal tracers to reveal the location of cells in the central nervous system. They are, also, being developed as vaccine components and drug-delivery vehicles. Production of cholera-toxin derivatives is often non-reproducible; the quality and quantity require extensive fine-tuning to produce them in lab-scale settings. In our studies, we seek a resolution to this problem, by expanding the molecular toolbox of the Escherichia coli expression system with suitable production, purification, and offline analytics, to critically assess the quality of a probe or drug delivery, based on a non-toxic derivative of the cholera toxin. We present a re-engineered Cholera Toxin Complex (rCTC), wherein its toxic A1 domain was replaced with Maltose Binding Protein (MBP), as a model for an rCTC-based targeted-delivery vehicle. Here, we were able to improve the rCTC production by 11-fold (168 mg/L vs. 15 mg/L), in comparison to a host/vector combination that has been previously used (BL21(DE3) pTRBAB5-G1S). This 11-fold increase in the rCTC production capability was achieved by (1) substantial vector backbone modifications, (2) using Escherichia coli strains capable of growth-decoupling (V strains), (3) implementing a well-tuned fed-batch production protocol at a 1 L scale, and (4) testing the stability of the purified product. By an in-depth characterization of the production process, we revealed that secretion of rCTC across the E. coli Outer Membrane (OM) is processed by the Type II secretion-system general secretory pathway (gsp-operon) and that cholera toxin B-pentamerization is, likely, the rate-limiting step in complex formation. Upon successful manufacturing, we have validated the biological activity of rCTC, by measuring its binding affinity to its carbohydrate receptor GM1 oligosaccharide (Kd = 40 nM), or binding to Jurkat cells (93 pM) and delivering the cargo (MBP) in a retrograde fashion to the cell.
Collapse
Affiliation(s)
- Natalia Danielewicz
- enGenes Biotech GmbH, Mooslackengasse 17, 1190 Vienna, Austria;
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria;
| | - Wenyue Dai
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (W.D.); (M.E.W.); (W.B.T.)
| | - Francesca Rosato
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; (F.R.); (W.R.)
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Michael E. Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (W.D.); (M.E.W.); (W.B.T.)
| | - Gerald Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria;
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; (F.R.); (W.R.)
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (W.D.); (M.E.W.); (W.B.T.)
| | | |
Collapse
|
32
|
Watkins EB, Dennison AJC, Majewski J. Binding of Cholera Toxin B-Subunit to a Ganglioside GM1-Functionalized PEG-Tethered Lipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6959-6966. [PMID: 35604017 PMCID: PMC9179658 DOI: 10.1021/acs.langmuir.2c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Indexed: 05/25/2023]
Abstract
We report neutron reflectometry (NR) studies of polyethylene glycol (PEG)-tethered model lipid membranes at the solid-liquid interface and of cholera toxin's B-subunit (CTxB) binding to tethered membranes containing ganglioside GM1 receptors. First, tethered polymer brushes were formed by grafting silane-functionalized PEG lipopolymers to quartz from solution. Subsequent deposition of lipids by Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) resulted in a tethered bilayer structure separated from the solid support by a hydrated PEG layer. NR revealed that the tethers formed a highly hydrated polymer brush, uniformly separating the bilayer from the underlying solid substrate. Further, the lipid bilayer did not significantly perturb the brush's conformation relative to a free brush. Biological functionality of the tethered bilayers was verified by interacting CTxB, with ganglioside GM1 receptors incorporated into the bilayer. The surface coverage of CTxB bound to the lipid membrane, θCTB= 0.58 ± 0.08, was consistent with the coverage predicted for random sequential absorption, and toxin binding did not impact the membrane conformation.
Collapse
Affiliation(s)
- Erik B. Watkins
- MPA-11:
Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Institut
Laue-Langevin, BP 156, 38042 Grenoble, France
| | - Andrew J. C. Dennison
- Dept.
Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7HG, U.K.
| | - Jaroslaw Majewski
- Division
of Molecular and Cellular Biosciences, National
Science Foundation, Alexandria 22303, Virginia, United States
- Theoretical
Biology and Biophysics at Los Alamos National Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department
of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
33
|
Bag N, London E, Holowka DA, Baird BA. Transbilayer Coupling of Lipids in Cells Investigated by Imaging Fluorescence Correlation Spectroscopy. J Phys Chem B 2022; 126:2325-2336. [PMID: 35294838 DOI: 10.1021/acs.jpcb.2c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma membranes host numerous receptors, sensors, and ion channels involved in cellular signaling. Phase separation within the plasma membrane has emerged as a key biophysical regulator of signaling reactions in multiple physiological and pathological contexts. There is much evidence that plasma membrane composition supports the coexistence of liquid-ordered (Lo) and liquid-disordered (Ld) phases or domains at physiological conditions. However, this phase/domain separation is nanoscopic and transient in live cells. It has been recently proposed that transbilayer coupling between the inner and outer leaflets of the plasma membrane is driven by their asymmetric lipid distribution and by dynamic cytoskeleton-lipid composites that contribute to the formation and transience of Lo/Ld phase separation in live cells. In this Perspective, we highlight new approaches to investigate how transbilayer coupling may influence phase separation. For quantitative evaluation of the impact of these interactions, we introduce an experimental strategy centered around Imaging Fluorescence Correlation Spectroscopy (ImFCS), which measures membrane diffusion with very high precision. To demonstrate this strategy, we choose two well-established model systems for transbilayer interactions: cross-linking by multivalent antigen of immunoglobulin E bound to receptor FcεRI and cross-linking by cholera toxin B of GM1 gangliosides. We discuss emerging methods to systematically perturb membrane lipid composition, particularly exchange of outer leaflet lipids with exogenous lipids using methyl alpha cyclodextrin. These selective perturbations may be quantitatively evaluated with ImFCS and other high-resolution biophysical tools to discover novel principles of lipid-mediated phase separation in live cells in the context of their pathophysiological relevance.
Collapse
Affiliation(s)
- Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
34
|
STxB as an Antigen Delivery Tool for Mucosal Vaccination. Toxins (Basel) 2022; 14:toxins14030202. [PMID: 35324699 PMCID: PMC8948715 DOI: 10.3390/toxins14030202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy against cancer and infectious disease holds the promise of high efficacy with minor side effects. Mucosal vaccines to protect against tumors or infections disease agents that affect the upper airways or the lung are still lacking, however. One mucosal vaccine candidate is the B-subunit of Shiga toxin, STxB. In this review, we compare STxB to other immunotherapy vectors. STxB is a non-toxic protein that binds to a glycosylated lipid, termed globotriaosylceramide (Gb3), which is preferentially expressed by dendritic cells. We review the use of STxB for the cross-presentation of tumor or viral antigens in a MHC class I-restricted manner to induce humoral immunity against these antigens in addition to polyfunctional and persistent CD4+ and CD8+ T lymphocytes capable of protecting against viral infection or tumor growth. Other literature will be summarized that documents a powerful induction of mucosal IgA and resident memory CD8+ T cells against mucosal tumors specifically when STxB-antigen conjugates are administered via the nasal route. It will also be pointed out how STxB-based vaccines have been shown in preclinical cancer models to synergize with other therapeutic modalities (immune checkpoint inhibitors, anti-angiogenic therapy, radiotherapy). Finally, we will discuss how molecular aspects such as low immunogenicity, cross-species conservation of Gb3 expression, and lack of toxicity contribute to the competitive positioning of STxB among the different DC targeting approaches. STxB thereby appears as an original and innovative tool for the development of mucosal vaccines in infectious diseases and cancer.
Collapse
|
35
|
Hetényi A, Szabó E, Imre N, Bhaumik KN, Tököli A, Füzesi T, Hollandi R, Horvath P, Czibula Á, Monostori É, Deli MA, Martinek TA. α/β-Peptides as Nanomolar Triggers of Lipid Raft-Mediated Endocytosis through GM1 Ganglioside Recognition. Pharmaceutics 2022; 14:pharmaceutics14030580. [PMID: 35335956 PMCID: PMC8953856 DOI: 10.3390/pharmaceutics14030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
Cell delivery of therapeutic macromolecules and nanoparticles is a critical drug development challenge. Translocation through lipid raft-mediated endocytic mechanisms is being sought, as it can avoid rapid lysosomal degradation. Here, we present a set of short α/β-peptide tags with high affinity to the lipid raft-associated ganglioside GM1. These sequences induce effective internalization of the attached immunoglobulin cargo. The structural requirements of the GM1-peptide interaction are presented, and the importance of the membrane components are shown. The results contribute to the development of a receptor-based cell delivery platform.
Collapse
Affiliation(s)
- Anasztázia Hetényi
- Department of Medical Chemistry, University of Szeged, Dóm Tér 8, 6720 Szeged, Hungary; (A.H.); (N.I.); (K.N.B.); (A.T.); (T.F.)
| | - Enikő Szabó
- Institute of Genetics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (E.S.); (É.M.)
| | - Norbert Imre
- Department of Medical Chemistry, University of Szeged, Dóm Tér 8, 6720 Szeged, Hungary; (A.H.); (N.I.); (K.N.B.); (A.T.); (T.F.)
| | - Kaushik Nath Bhaumik
- Department of Medical Chemistry, University of Szeged, Dóm Tér 8, 6720 Szeged, Hungary; (A.H.); (N.I.); (K.N.B.); (A.T.); (T.F.)
| | - Attila Tököli
- Department of Medical Chemistry, University of Szeged, Dóm Tér 8, 6720 Szeged, Hungary; (A.H.); (N.I.); (K.N.B.); (A.T.); (T.F.)
| | - Tamás Füzesi
- Department of Medical Chemistry, University of Szeged, Dóm Tér 8, 6720 Szeged, Hungary; (A.H.); (N.I.); (K.N.B.); (A.T.); (T.F.)
| | - Réka Hollandi
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (R.H.); (P.H.)
| | - Peter Horvath
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (R.H.); (P.H.)
| | - Ágnes Czibula
- Institute of Genetics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (E.S.); (É.M.)
- Correspondence: (Á.C.); (T.A.M.)
| | - Éva Monostori
- Institute of Genetics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (E.S.); (É.M.)
| | - Mária A. Deli
- Synthetic and Systems Biology Unit, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary;
| | - Tamás A. Martinek
- Department of Medical Chemistry, University of Szeged, Dóm Tér 8, 6720 Szeged, Hungary; (A.H.); (N.I.); (K.N.B.); (A.T.); (T.F.)
- Correspondence: (Á.C.); (T.A.M.)
| |
Collapse
|
36
|
Azzaz F, Yahi N, Di Scala C, Chahinian H, Fantini J. Ganglioside binding domains in proteins: Physiological and pathological mechanisms. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:289-324. [PMID: 35034721 DOI: 10.1016/bs.apcsb.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gangliosides are anionic lipids that form condensed membrane clusters (lipid rafts) and exert major regulatory functions on a wide range of proteins. In this review, we propose a new view of the structural features of gangliosides with special emphasis on emerging properties associated with protein binding modes. We analyze the different possibilities of molecular associations of gangliosides in lipid rafts and the role of cholesterol in this organization. We are particularly interested in amide groups of N-acetylated sugars which make it possible to neutralize the negative charge of the carboxylate group of sialic acids. We refer to this effect as "NH trick" and we demonstrate that it is operative in GM1, GD1a, GD1b and GT1b gangliosides. The NH trick is key to understand the different topologies adopted by gangliosides (chalice-like at the edge of lipid rafts, condensed clusters in central areas) and their impact on protein binding. We define three major types of ganglioside-binding domains (GBDs): α-helical, loop shaped, and large flat surface. We describe the mode of interaction of each GBD with typical reference proteins: synaptotagmin, 5HT1A receptor, cholera and botulinum toxins, HIV-1 surface envelope glycoprotein gp120, SARS-CoV-2 spike protein, cellular prion protein, Alzheimer's β-amyloid peptide and Parkinson's disease associated α-synuclein. We discuss the common mechanisms and peculiarities of protein binding to gangliosides in the light of physiological and pathological conditions. We anticipate that innovative ganglioside-based therapies will soon show an exponential growth for the treatment of cancer, microbial infections, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fodil Azzaz
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Nouara Yahi
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Coralie Di Scala
- Neuroscience Center-HiLIFE, University of Helsinki, Helsinki, Finland
| | - Henri Chahinian
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France.
| |
Collapse
|
37
|
Lateral organization of biomimetic cell membranes in varying pH conditions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
John S, K G G, Krishna AP, Mishra R. Neurotherapeutic implications of sense and respond strategies generated by astrocytes and astrocytic tumours to combat pH mechanical stress. Neuropathol Appl Neurobiol 2021; 48:e12774. [PMID: 34811795 PMCID: PMC9300154 DOI: 10.1111/nan.12774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/04/2023]
Abstract
Aims Astrocytes adapt to acute acid stress. Intriguingly, cancer cells with astrocytic differentiation thrive even better in an acidic microenvironment. How changes in extracellular pH (pHe) are sensed and measured by the cell surface assemblies that first intercept the acid stress, and how this information is relayed downstream for an appropriate survival response remains largely uncharacterized. Methods In vitro cell‐based studies were combined with an in vivo animal model to delineate the machinery involved in pH microenvironment sensing and generation of mechanoadaptive responses in normal and neoplastic astrocytes. The data was further validated on patient samples from acidosis driven ischaemia and astrocytic tumour tissues. Results We demonstrate that low pHe is perceived and interpreted by cells as mechanical stress. GM3 acts as a lipid‐based pH sensor, and in low pHe, its highly protonated state generates plasma membrane deformation stress which activates the IRE1‐sXBP1‐SREBP2‐ACSS2 response axis for cholesterol biosynthesis and surface trafficking. Enhanced surface cholesterol provides mechanical tenacity and prevents acid‐mediated membrane hydrolysis, which would otherwise result in cell leakage and death. Conclusions In summary, activating these lipids or the associated downstream machinery in acidosis‐related neurodegeneration may prevent disease progression, while specifically suppressing this key mechanical ‘sense‐respond’ axis should effectively target astrocytic tumour growth.
Collapse
Affiliation(s)
- Sebastian John
- Brain and Cerebrovascular Mechanobiology Research, Laboratory of Translational Mechanobiology, Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Gayathri K G
- Brain and Cerebrovascular Mechanobiology Research, Laboratory of Translational Mechanobiology, Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Aswani P Krishna
- Brain and Cerebrovascular Mechanobiology Research, Laboratory of Translational Mechanobiology, Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Rashmi Mishra
- Brain and Cerebrovascular Mechanobiology Research, Laboratory of Translational Mechanobiology, Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
39
|
Jia X, Zhang Y, Wang T, Fu Y. Highly Efficient Method for Intracellular Delivery of Proteins Mediated by Cholera Toxin-Induced Protein Internalization. Mol Pharm 2021; 18:4067-4078. [PMID: 34672633 DOI: 10.1021/acs.molpharmaceut.1c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Delivery of functional proteins into cells may help us understand how specific protein influences cell behavior as well as treat diseases caused by protein deficiency or loss-of-function mutations. However, protein cannot enter cells by diffusion. In this work, a novel cell biology tool for delivering recombinant proteins into mammalian cells was developed. We hijacked the intracellular transport routes used by the cholera toxin and took advantage of recent development on split intein that is compatible with denatured conditions and shows an exceptional splicing activity to deliver a protein of interest into mammalian cells. Here, we used green fluorescent protein and apoptin as proofs-of-concept. The results demonstrate that the cholera toxin B subunit alone could deliver other recombinant proteins into cells through either covalent conjugation or noncovalent interaction. Our method offers more than 10-fold better delivery efficiency than the tat cell-penetrating peptide and is selective for ganglioside-rich cells. This study adds a useful tool to the receptor-mediated intracellular targeting toolkit and opens possibility for the selective delivery of therapeutic proteins into ganglioside-rich cells.
Collapse
Affiliation(s)
- Xiaofan Jia
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yan Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ting Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuan Fu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
40
|
Abstract
Morphological transitions are typically attributed to the actions of proteins and lipids. Largely overlooked in membrane shape regulation is the glycocalyx, a pericellular membrane coat that resides on all cells in the human body. Comprised of complex sugar polymers known as glycans as well as glycosylated lipids and proteins, the glycocalyx is ideally positioned to impart forces on the plasma membrane. Large, unstructured polysaccharides and glycoproteins in the glycocalyx can generate crowding pressures strong enough to induce membrane curvature. Stress may also originate from glycan chains that convey curvature preference on asymmetrically distributed lipids, which are exploited by binding factors and infectious agents to induce morphological changes. Through such forces, the glycocalyx can have profound effects on the biogenesis of functional cell surface structures as well as the secretion of extracellular vesicles. In this review, we discuss recent evidence and examples of these mechanisms in normal health and disease.
Collapse
Affiliation(s)
- Joe Chin-Hun Kuo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA; ,
| | - Matthew J Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA; , .,Field of Biomedical Engineering and Field of Biophysics, Cornell University, Ithaca, New York 14853, USA.,Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA
| |
Collapse
|
41
|
Lee H, Choi SQ. Sphingomyelinase-Mediated Multitimescale Clustering of Ganglioside GM1 in Heterogeneous Lipid Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101766. [PMID: 34473415 PMCID: PMC8529493 DOI: 10.1002/advs.202101766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Indexed: 05/05/2023]
Abstract
Several signaling processes in the plasma membrane are intensified by ceramides that are formed by sphingomyelinase-mediated hydrolysis of sphingomyelin. These ceramides trigger clustering of signaling-related biomolecules, but how they concentrate such biomolecules remains unclear. Here, the spatiotemporal localization of ganglioside GM1, a glycolipid receptor involved in signaling, during sphingomyelinase-mediated hydrolysis is described. Real-time visualization of the dynamic remodeling of the heterogeneous lipid membrane that occurs due to sphingomyelinase action is used to examine GM1 clustering, and unexpectedly, it is found that it is more complex than previously thought. Specifically, lipid membranes generate two distinct types of condensed GM1: 1) rapidly formed but short-lived GM1 clusters that are formed in ceramide-rich domains nucleated from the liquid-disordered phase; and 2) late-onset yet long-lasting, high-density GM1 clusters that are formed in the liquid-ordered phase. These findings suggest that multiple pathways exist in a plasma membrane to synergistically facilitate the rapid amplification and persistence of signals.
Collapse
Affiliation(s)
- Hyun‐Ro Lee
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Siyoung Q. Choi
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- KAIST Institute for the NanoCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
42
|
Wi JH, Heo CH, Gwak H, Jung C, Kim SY. Probing Physical Properties of the Cellular Membrane in Senescent Cells by Fluorescence Imaging. J Phys Chem B 2021; 125:10182-10194. [PMID: 34473497 DOI: 10.1021/acs.jpcb.1c05403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellular senescence is the irreversible cell cycle arrest in response to various types of stress. Although the plasma membrane and its composition are significantly affected by cellular senescence, detailed studies on the physical properties of the plasma membrane have shown inconclusive results. In this study, we utilized both ensemble and single-molecule fluorescence imaging to investigate how membrane properties, such as fluidity, hydrophobicity, and ganglioside GM1 level are affected by cellular senescence. The diffusion coefficient of lipid probes, as well as the type of diffusion determined by an exponent α, which is the slope of the log-log plot of mean squared displacement as a function of time lag, were analyzed. We found that the number of molecules with a lower diffusion coefficient increased as cells became senescent. The changes in the population with a lower diffusion coefficient, observed after methyl-β-cyclodextrin treatment, and the increase in ceramide levels, detected using a ceramide-specific antibody, suggest that ceramide-rich lipid rafts were enhanced in senescent cells. Our results emphasize the importance of membrane properties in cellular senescence and might serve as a base for in-depth studies to determine how such domains facilitate the signaling pathway specific to cellular senescence.
Collapse
Affiliation(s)
- Ji Hun Wi
- Theragnosis Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.,Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Cheol Ho Heo
- Theragnosis Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - HyeRan Gwak
- Theragnosis Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Cheulhee Jung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - So Yeon Kim
- Theragnosis Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
43
|
Cytokine receptor cluster size impacts its endocytosis and signaling. Proc Natl Acad Sci U S A 2021; 118:2024893118. [PMID: 34504012 DOI: 10.1073/pnas.2024893118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 01/08/2023] Open
Abstract
The interleukin-2 receptor (IL-2R) is a cytokine receptor essential for immunity that transduces proliferative signals regulated by its uptake and degradation. IL-2R is a well-known marker of clathrin-independent endocytosis (CIE), a process devoid of any coat protein, raising the question of how the CIE vesicle is generated. Here, we investigated the impact of IL-2Rγ clustering in its endocytosis. Combining total internal reflection fluorescence (TIRF) live imaging of a CRISPR-edited T cell line endogenously expressing IL-2Rγ tagged with green fluorescent protein (GFP), with multichannel imaging, single-molecule tracking, and quantitative analysis, we were able to decipher IL-2Rγ stoichiometry at the plasma membrane in real time. We identified three distinct IL-2Rγ cluster populations. IL-2Rγ is secreted to the cell surface as a preassembled small cluster of three molecules maximum, rapidly diffusing at the plasma membrane. A medium-sized cluster composed of four to six molecules is key for IL-2R internalization and is promoted by interleukin 2 (IL-2) binding, while larger clusters (more than six molecules) are static and inefficiently internalized. Moreover, we identified membrane cholesterol and the branched actin cytoskeleton as key regulators of IL-2Rγ clustering and IL-2-induced signaling. Both cholesterol depletion and Arp2/3 inhibition lead to the assembly of large IL-2Rγ clusters, arising from the stochastic interaction of receptor molecules in close correlation with their enhanced lateral diffusion at the membrane, thus resulting in a default in IL-2R endocytosis. Despite similar clustering outcomes, while cholesterol depletion leads to a sustained IL-2-dependent signaling, Arp2/3 inhibition prevents signal initiation. Taken together, our results reveal the importance of cytokine receptor clustering for CIE initiation and signal transduction.
Collapse
|
44
|
Ilangumaran Ponmalar I, Sarangi NK, Basu JK, Ayappa KG. Pore Forming Protein Induced Biomembrane Reorganization and Dynamics: A Focused Review. Front Mol Biosci 2021; 8:737561. [PMID: 34568431 PMCID: PMC8459938 DOI: 10.3389/fmolb.2021.737561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Pore forming proteins are a broad class of pathogenic proteins secreted by organisms as virulence factors due to their ability to form pores on the target cell membrane. Bacterial pore forming toxins (PFTs) belong to a subclass of pore forming proteins widely implicated in bacterial infections. Although the action of PFTs on target cells have been widely investigated, the underlying membrane response of lipids during membrane binding and pore formation has received less attention. With the advent of superresolution microscopy as well as the ability to carry out molecular dynamics (MD) simulations of the large protein membrane assemblies, novel microscopic insights on the pore forming mechanism have emerged over the last decade. In this review, we focus primarily on results collated in our laboratory which probe dynamic lipid reorganization induced in the plasma membrane during various stages of pore formation by two archetypal bacterial PFTs, cytolysin A (ClyA), an α-toxin and listeriolysin O (LLO), a β-toxin. The extent of lipid perturbation is dependent on both the secondary structure of the membrane inserted motifs of pore complex as well as the topological variations of the pore complex. Using confocal and superresolution stimulated emission depletion (STED) fluorescence correlation spectroscopy (FCS) and MD simulations, lipid diffusion, cholesterol reorganization and deviations from Brownian diffusion are correlated with the oligomeric state of the membrane bound protein as well as the underlying membrane composition. Deviations from free diffusion are typically observed at length scales below ∼130 nm to reveal the presence of local dynamical heterogeneities that emerge at the nanoscale-driven in part by preferential protein binding to cholesterol and domains present in the lipid membrane. Interrogating the lipid dynamics at the nanoscale allows us further differentiate between binding and pore formation of β- and α-PFTs to specific domains in the membrane. The molecular insights gained from the intricate coupling that occurs between proteins and membrane lipids and receptors during pore formation are expected to improve our understanding of the virulent action of PFTs.
Collapse
Affiliation(s)
| | - Nirod K. Sarangi
- School of Chemical Science, Dublin City University, Dublin, Ireland
| | - Jaydeep K. Basu
- Department of Physics, Indian Institute of Science, Bangalore, India
| | - K. Ganapathy Ayappa
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
45
|
Yokoyama N, Hanafusa K, Hotta T, Oshima E, Iwabuchi K, Nakayama H. Multiplicity of Glycosphingolipid-Enriched Microdomain-Driven Immune Signaling. Int J Mol Sci 2021; 22:9565. [PMID: 34502474 PMCID: PMC8430928 DOI: 10.3390/ijms22179565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Glycosphingolipids (GSLs), together with cholesterol, sphingomyelin (SM), and glycosylphosphatidylinositol (GPI)-anchored and membrane-associated signal transduction molecules, form GSL-enriched microdomains. These specialized microdomains interact in a cis manner with various immune receptors, affecting immune receptor-mediated signaling. This, in turn, results in the regulation of a broad range of immunological functions, including phagocytosis, cytokine production, antigen presentation and apoptosis. In addition, GSLs alone can regulate immunological functions by acting as ligands for immune receptors, and exogenous GSLs can alter the organization of microdomains and microdomain-associated signaling. Many pathogens, including viruses, bacteria and fungi, enter host cells by binding to GSL-enriched microdomains. Intracellular pathogens survive inside phagocytes by manipulating intracellular microdomain-driven signaling and/or sphingolipid metabolism pathways. This review describes the mechanisms by which GSL-enriched microdomains regulate immune signaling.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Eriko Oshima
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| | - Hitoshi Nakayama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| |
Collapse
|
46
|
Glycans in autophagy, endocytosis and lysosomal functions. Glycoconj J 2021; 38:625-647. [PMID: 34390447 PMCID: PMC8497297 DOI: 10.1007/s10719-021-10007-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Glycans have been shown to function as versatile molecular signals in cells. This prompted us to look at their roles in endocytosis, endolysosomal system and autophagy. We start by introducing the cell biological aspects of these pathways, the concept of the sugar code, and provide an overview on the role of glycans in the targeting of lysosomal proteins and in lysosomal functions. Moreover, we review evidence on the regulation of endocytosis and autophagy by glycans. Finally, we discuss the emerging concept that cytosolic exposure of luminal glycans, and their detection by endogenous lectins, provides a mechanism for the surveillance of the integrity of the endolysosomal compartments, and serves their eventual repair or disposal.
Collapse
|
47
|
Chattopadhyay M, Krok E, Orlikowska H, Schwille P, Franquelim HG, Piatkowski L. Hydration Layer of Only a Few Molecules Controls Lipid Mobility in Biomimetic Membranes. J Am Chem Soc 2021; 143:14551-14562. [PMID: 34342967 PMCID: PMC8447254 DOI: 10.1021/jacs.1c04314] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Self-assembly of
biomembranes results from the intricate interactions
between water and the lipids’ hydrophilic head groups. Therefore,
the lipid–water interplay strongly contributes to modulating
membrane architecture, lipid diffusion, and chemical activity. Here,
we introduce a new method of obtaining dehydrated, phase-separated,
supported lipid bilayers (SLBs) solely by controlling the decrease
of their environment’s relative humidity. This facilitates
the study of the structure and dynamics of SLBs over a wide range
of hydration states. We show that the lipid domain structure of phase-separated
SLBs is largely insensitive to the presence of the hydration layer.
In stark contrast, lipid mobility is drastically affected by dehydration,
showing a 6-fold decrease in lateral diffusion. At the same time,
the diffusion activation energy increases approximately 2-fold for
the dehydrated membrane. The obtained results, correlated with the
hydration structure of a lipid molecule, revealed that about six to
seven water molecules directly hydrating the phosphocholine moiety
play a pivotal role in modulating lipid diffusion. These findings
could provide deeper insights into the fundamental reactions where
local dehydration occurs, for instance during cell–cell fusion,
and help us better understand the survivability of anhydrobiotic organisms.
Finally, the strong dependence of lipid mobility on the number of
hydrating water molecules opens up an application potential for SLBs
as very precise, nanoscale hydration sensors.
Collapse
Affiliation(s)
- Madhurima Chattopadhyay
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Emilia Krok
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Hanna Orlikowska
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Henri G Franquelim
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Lukasz Piatkowski
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| |
Collapse
|
48
|
Kenworthy AK, Schmieder SS, Raghunathan K, Tiwari A, Wang T, Kelly CV, Lencer WI. Cholera Toxin as a Probe for Membrane Biology. Toxins (Basel) 2021; 13:543. [PMID: 34437414 PMCID: PMC8402489 DOI: 10.3390/toxins13080543] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022] Open
Abstract
Cholera toxin B-subunit (CTxB) has emerged as one of the most widely utilized tools in membrane biology and biophysics. CTxB is a homopentameric stable protein that binds tightly to up to five GM1 glycosphingolipids. This provides a robust and tractable model for exploring membrane structure and its dynamics including vesicular trafficking and nanodomain assembly. Here, we review important advances in these fields enabled by use of CTxB and its lipid receptor GM1.
Collapse
Affiliation(s)
- Anne K. Kenworthy
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Stefanie S. Schmieder
- Division of Gastroenterology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Digestive Diseases Center, Boston, MA 02115, USA
| | - Krishnan Raghunathan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA;
| | - Ajit Tiwari
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Ting Wang
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Christopher V. Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
| | - Wayne I. Lencer
- Division of Gastroenterology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Digestive Diseases Center, Boston, MA 02115, USA
| |
Collapse
|
49
|
Fujii Y. [Cell Function Research of β-Trefoil Lectins from Mytilidae]. YAKUGAKU ZASSHI 2021; 141:481-488. [PMID: 33790114 DOI: 10.1248/yakushi.20-00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two novel β-trefoil lectins, MytiLec-1 and SeviL were found from mussels in the coast of Yokohama and Nagasaki. MytiLec-1 was purified from gill and mantle of Mytilus galloprovincialis. It was consisted of 149 amino acid residues and there was no similarity with any other proteins when it was discovered. We advocate for this "Mytilectin" as a new protein family because of their novelty of its primary structure and homologues were also found in other mussels. Glycan array analysis revealed that MytiLec-1 specifically bound to the Gb3 and Gb4 glycan which contained the α-galactoside. MytiLec-1 caused the apoptosis against the Burkitt's lymphoma cells through the interaction of Gb3 express in their cell surface. On the other hand, SeviL obtained from gill and mantle of Mytilisepta virgata showed the specific binding against GM1b, asialo GM1 and SSEA-4 which are known as glycosphingolipid glycan including the β-galactoside. In addition, SeviL was identified as R type lectin by confirmation of QXW motif within its primary structure. Messenger RNA of SeviL like R type lectins was also found among the musssels including Mytilus galloprovincialis. SeviL also showed the apoptosis against asialo GM1 expressing cells. To apply the anticancer lectin as a novel molecular target drug, primary structure of MytiLec-1 was analyzed to enhance the stabilization of confirmation by computational design technique. It was succeeded to produce a monomeric artificial β-trefoil lectin, Mitsuba-1 without losing the Gb3 binding ability. Comparison of biological function between Mitsuba-1 and MytiLec-1 is also described in this study.
Collapse
Affiliation(s)
- Yuki Fujii
- Laboratory of Functional Morphology, Graduate School of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
50
|
Pezeshkian W, Shillcock JC, Ipsen JH. Computational Approaches to Explore Bacterial Toxin Entry into the Host Cell. Toxins (Basel) 2021; 13:toxins13070449. [PMID: 34203472 PMCID: PMC8309782 DOI: 10.3390/toxins13070449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 01/13/2023] Open
Abstract
Many bacteria secrete toxic protein complexes that modify and disrupt essential processes in the infected cell that can lead to cell death. To conduct their action, these toxins often need to cross the cell membrane and reach a specific substrate inside the cell. The investigation of these protein complexes is essential not only for understanding their biological functions but also for the rational design of targeted drug delivery vehicles that must navigate across the cell membrane to deliver their therapeutic payload. Despite the immense advances in experimental techniques, the investigations of the toxin entry mechanism have remained challenging. Computer simulations are robust complementary tools that allow for the exploration of biological processes in exceptional detail. In this review, we first highlight the strength of computational methods, with a special focus on all-atom molecular dynamics, coarse-grained, and mesoscopic models, for exploring different stages of the toxin protein entry mechanism. We then summarize recent developments that are significantly advancing our understanding, notably of the glycolipid–lectin (GL-Lect) endocytosis of bacterial Shiga and cholera toxins. The methods discussed here are also applicable to the design of membrane-penetrating nanoparticles and the study of the phenomenon of protein phase separation at the surface of the membrane. Finally, we discuss other likely routes for future development.
Collapse
Affiliation(s)
- Weria Pezeshkian
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9712 Groningen, The Netherlands
- Correspondence:
| | - Julian C. Shillcock
- Blue Brain Project, Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - John H. Ipsen
- MEMPHYS/PhyLife, Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
| |
Collapse
|